
Structure of Computer Systems288

between this new matrix and the initial collision matrix MA, because the original for-
bidden latencies for functional unit A still have to be considered in later initiations.

Figure 5.37. State diagram of a dynamic pipeline.

If the first allowable latency for vector CAB in matrix MA is chosen (in this
case 3), the entire matrix is shifted right three places, with zeros filling in on the left.
Then a logical OR operation is performed between this new matrix and the initial col-
lision matrix for function B, because the original collisions for function B are still
possible and have to be considered. The shifting and logical OR operations continue
until all possible allowable latencies are considered and the state diagram is complete.

5.7. Problems
5.7.1. Assume a pipeline with four stages that performs an add operation on two

input numbers. The pipeline has a delay of two units of time for each stage.
Also, assume that there are adequate memory and buffers. Ignore storage
time, memory access time, time to set up the pipeline control circuit, and so
on. It is necessary to sum 16 numbers with this pipeline. Describe a method
that gives the minimum possible time to perform the sum of the numbers.
Estimate the total time required by this method.

5.7.2. Indicate the type of data hazards (RAW, WAR, and WAW) that exist between
the following instructions of a RISC processor:

ADD R1, R2, R3 ; R1 = R2 + R3
ADD R4, R1, R4 ; R4 = R1 + R4
ADD R3, R1, R2 ; R3 = R1 + R2
ADD R1, R1, R4 ; R1 = R1 + R4

5.7.3. Identify all possible RAW, WAR, and WAW hazards that exist between the
instructions of the following program of a hypothetical RISC processor:



Pipelining 289

LOAD R4, #A ; load constant A into R4
LOAD R5, #B ; load constant B into R5
LOAD R6, #C ; load constant C into R6
LOAD R9, #0 ; clear R9
BEQ R4, R5, ADR1 ; if R4=R5 then go to ADR1
ADD R9, R4, R5 ; R9 = R4 + R5
MUL R9, R9, R9 ; square the contents of R9
ADD R9, R9, #1 ; increment R9

ADR1: STORE (R1), R9 ; store R9 in the memory location
; addressed by R1

5.7.4. Compare Tomasulo’s method with the scoreboard method. Describe the ad-
vantages and disadvantages of each.

5.7.5. Calculate the throughput for a pipelined instruction in which pb = 0.1, pt =
0.4, and c = 4. Assume that a branch prediction technique is used to improve
the performance of the pipeline. What will be the new throughput for the in-
struction when pr = 0.7 and d = 1?

5.7.6. Design a pipeline that efficiently multiplies a stream of 4-bit numbers A1, A2,
A3, …, with a constant 4-bit number B. Assume that A and B are positive in-
tegers.

5.7.7. Assume a pipeline that can perform addition or multiplication operations.
The pipeline consists of k stages, and each stage has a delay of 1/k time units.
When switching between operations (from addition to multiplication, or vice
versa), the pipeline should be drained before the data for the new operation
can be applied to the pipeline. Assume that there are adequate memory and
buffers. Also, ignore storage time, memory access time, time to set up the
pipeline control circuit, and so on. Determine the minimum time required to
multiply two n × n matrices (where n > k) to produce an n × n matrix prod-
uct.

5.7.8. Consider the reservation table of a static pipeline shown in Figure 5.38.

Figure 5.38. Reservation table of a three-stage static pipeline for Problem 5.7.8.

(a) Write the forbidden list; (b) Draw the state diagram; (c) Calculate the
minimum average latency and the minimum latency.

5.7.9. Consider the reservation table of a static pipeline shown in Figure 5.39.
(a) Write the forbidden list; (b) Draw the state diagram; (c) Calculate the
minimum average latency and the minimum latency; (d) Suppose that the



Structure of Computer Systems290

pipeline is to be operated with a constant latency L such that the resulting
pipeline efficiency is as close to 0.5 as possible. Determine the value of L in
this case.

Figure 5.39. Reservation table of a three-stage static pipeline for Problem 5.7.9.

5.7.10. Construct the state diagram for the pipeline reservation table shown in Figure
5.40 and calculate the pipeline’s minimum average latency.

Figure 5.40. Reservation table of a five-stage static pipeline for Problem 5.7.10.

5.7.11. Consider the reservation table of a dynamic pipeline shown in Figure 5.41.
(a) Write the collision matrices; (b) Draw the state diagram.

Figure 5.41. Reservation table of a three-stage dynamic pipeline for Problem 5.7.11.

5.7.12. Consider a six-stage instruction pipeline with the following stages: Instruction
fetch (IF), Instruction decode (ID), Execute 1 (E1), Execute 2 (E2), Execute
3 (E3), and Write-back (WB). The following code fragment of a RISC proces-
sor is to be executed in this pipeline:

LOAD R4, #A ; load constant A into R4
LOAD R5, #B ; load constant B into R5
ADD R8, R4, R5 ; R8 = R4 + R5
STORE (R1), R8 ; store R8 in the memory location

; addressed by R1
LOAD R6, #C ; load constant C into R6



Pipelining 291

ADD R9, R5, R6 ; R9 = R5 + R6
STORE (R2), R9 ; store R9 in the memory location

; addressed by R2

(a) Show the execution of this program in the style of Figure 5.6, and deter-
mine the number of clock cycles needed for its complete execution. (b) De-
termine a valid reordering of the program that will reduce its execution time.
Show the execution of the reordered program.

5.7.13. Assume an instruction pipeline with the following stages: Instruction fetch
(IF), Instruction decode (ID), Execution and effective address calculation
(EX), Memory access (MEM), Write-back (WB). This pipeline neither stalls
nor forwards on hazards, so NOP instructions have to be added. (a) Rewrite
the following code inserting as few NOP instructions as needed for proper
execution:
COPY: LOAD R1, 100(R2) ; load R1 from memory location

; addressed by R2+100
STORE 200(R2), R1 ; store R1 in the memory location

; addressed by R2+200
ADD R2, R2, #-4 ; R2 = R2 - 4
BNE R2, 0, COPY ; if R2 # 0 then go to COPY

(b) Reorder the instructions, if possible, to minimize the number of NOP in-
structions while preserving correctness.

5.7.14. Consider the logic diagram for a pipelined 3 × 3-bit multiplier presented in
Figure 5.31. (a) The six unconnected terminals of some of the M cells are re-
dundant in that they always carry the logic value 0. Certain connected lines are
also redundant in this sense and are included only to make the stages uni-
form. Identify all such redundant connections. (b) Consider a general n × n
version of this pipelined multiplier. Assuming that the stages are identical and
are labeled S0, S1, …, Sn-1, show that the total number of 1-bit buffer registers
of type R needed is 3n2 – n.

5.7.15. Design a pipelined serial adder that adds four unsigned binary numbers pre-
sented serially (with the least significant bits first) and produces their sum,
also in serial form. The adder has four input lines x, y, z, u and a single output
line S.

5.7.16. Consider the pipelined serial adder designed for Problem 5.7.15. Suppose that
the adder is reset in clock cycle 0. The least significant bits of four integer
numbers N1, N2, N3, and N4 to be added are applied to the adder in clock cy-
cle 1, and four new data bits are applied in each subsequent clock cycle. If
each number consists of 32 bits, each with the value 1, therefore representing
232 – 1, in what clock cycle will the most significant bit of the sum
N1+N2+N3+N4 be loaded into the output S flip-flop?



Structure of Computer Systems292

5.7.17. Consider again the pipelined serial adder designed for Problem 5.7.15. Table
5.2 shows the data entered into the pipeline at the indicated times. Determine
the value of S for each clock cycle.

Table 5.2. The data entered into the pipelined serial adder for Problem 5.7.16.

Clock cycle 0 1 2 3 4 5 6 7 8

x 0 1 0 1 1 0 0 0 0

y 0 1 1 1 1 0 0 0 0

z 0 0 0 1 1 0 0 0 0

u 0 1 1 1 0 0 0 0 0

S

5.7.18. A floating-point pipeline has five stages S1, S2, S3, S4, and S5, whose delays are
30, 20, 25, 20, and 35 ns, respectively. What is the pipeline’s maximum
throughput in millions of floating-point operations per second (MFLOPS)?

5.7.19. In digital signal processing it is sometimes necessary to multiply a high-speed
stream of n-bit numbers Y1, Y2, Y3 … by a single number X. The output
should be a stream of n-bit results Y1X, Y2X, Y3X, … moving at the same rate
as the input stream. Assuming that X and Yi are positive n-bit binary integers,
design a pipeline to carry out this type of multiplication efficiently.

5.7.20. Let X = x0, x1, …, xn-1 and Y = y0, y1, …, yn-1 be two fixed-point vectors of
length n. The double-length vector Z = z0, z1, …, z2n-2, z2n-1 defined by

∑
−

=
−×=

in

j
jiii yxz

0

where xj = yj = 0 if j < 0 is called convolution of X and Y. This operation is use-
ful in applications such as digital signal processing. Design a one-dimensional
systolic array to implement convolution. The array should have the general
structure of a pipeline with the X, Y, and Z vectors flowing horizontally. De-
scribe the function of the processing cell and draw a diagram to illustrate the
operation of the systolic array in the style of Figure 5.33.


	5.7. Problems

