
Structure of Computer Systems216

n = 1 2 3 4 5 >5

PF = 1.00 0.83 0.58 0.50 0.42 0.42

Figure 4.60. Stack processing of a reference sequence using the LRU replacement policy.

From the inclusion property of stack replacement policies follows that the
page fault frequency decreases with the increase of the available memory capacity n,
or, equivalently, the hit ratio increases. If the next page address x is in set Pt(n), it
must also be in set Pt(n + 1) because Pt(n) ⊆ Pt(n + 1). Hence if a hit occurs with ca-
pacity n, a hit also occurs when the capacity is increased to n + 1. This inclusion
property does not hold for all replacement policies. The example in Figure 4.59 shows
that increasing n from 3 to 4 frames in a system with FIFO replacement policy in-
creases the page fault frequency in this case from 0.75 to 0.83. However, this phe-
nomenon is relatively rare, not occurring for most reference sequences.

4.8.7. Memory Management in the Intel Architecture

4.8.7.1. Memory Management Overview

The memory management system of the Intel Architecture processors (Pentium
Pro, Pentium II, Pentium III, Pentium 4) is divided into two parts: segmentation and paging.
Segmentation provides a mechanism of isolating individual code, data, and stack
modules so that multiple programs (or tasks) can run on the same processor without
interfering with one another. Paging provides a mechanism for implementing a de-
mand-paged virtual memory system, where sections of a program’s execution envi-
ronment are mapped into physical memory as needed. When the processor operates
in protected mode, some form of segmentation must be used. There is no mode bit to
disable segmentation. The use of paging, however, is optional.

The Intel Architecture has three address spaces: virtual, linear, and physical. Figure
4.61 represents the relationship between these address spaces. The segmentation unit
translates a virtual address into a linear address. When the paging is not used, the lin-

Memory Systems 217

ear address corresponds to the physical address. When paging is used, the paging unit
translates the linear address into a physical address.

Figure 4.61. Address translation for the Intel Architecture.

The virtual or logical address (which represents a far pointer) consists of a
16-bit segment selector and a 32-bit effective address (or offset). The segment selector is a
unique identifier for a segment. Among other information, the selector provides an
offset into a segment descriptor table (such as the global descriptor table, GDT, or
the local descriptor table, LDT), which contains data structures called segment descrip-
tors. Each segment has a segment descriptor, specifying the size of the segment, the
access rights and privilege level for the segment, the segment type, and the address of
the first byte of the segment in the linear address space (called the base address of the
segment).

The effective address is computed by adding some combination of the ad-
dressing components. There are three addressing components: displacement, base, and
index. The displacement is an 8-bit or 32-bit immediate value following the instruction
code. The base is the contents of any general-purpose register and often points to the
beginning of the local variable area. The index is the contents of any general-purpose
register and often is used to address the elements of an array or the characters of a
string. The index may be multiplied by a scale factor (1, 2, 4, or 8) to facilitate certain
addressing, such as addressing arrays or structures. As indicated in Figure 4.61, the
effective address is computed as:

Effective Address = base + (index * scale) + displacement

Structure of Computer Systems218

As shown in Figure 4.62, segmentation provides a mechanism for dividing
the processor’s address space (called the linear address space) into smaller protected
address spaces called segments. Segments can be used to hold the code, data, and stack
for a program or to hold system data structures. If more than one program is running
on a processor, each program can be assigned its own set of segments. The processor
then establishes the boundaries between these segments and insures that one program
does not interfere with the execution of another program by writing into the other
program’s segments. The operations that may be performed on a particular type of
segment can be restricted.

Figure 4.62. Segmentation and paging for the Intel Architecture.

All of the segments within a system are contained in the processor’s linear
address space. The size of a segment can vary from 1 byte to the maximum size of the
main memory, 4 GB (232 bytes). To locate a byte in a particular segment, a logical ad-
dress must be provided. The segmentation unit adds the base address of the segment
to the offset part of the logical address (i.e., the effective address) to form a 32-bit
linear address in the processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped di-
rectly into the physical address space of processor. The physical address space is defined
as the range of addresses that the processor can generate on its address bus.

When using paging, each segment is divided into pages (ordinarily 4 KB each
in size), which are stored either in physical memory or on the disk. The operating
system maintains a page directory and a set of page tables to keep track of the pages.

Memory Systems 219

When a program (or task) attempts to access a location in the linear address space, the
processor uses the page directory and page tables to translate the linear address into a
physical address and then performs the requested operation (read or write) on the
memory location. If the page being accessed is not currently in physical memory, the
processor interrupts execution of the program, reads the page into physical memory
from the disk, and then continues executing the program.

4.8.7.2. Segmentation

The segmentation mechanism provided in the Intel Architecture can be used to
implement a wide variety of memory systems. These systems range from flat models
that make only minimal use of segmentation to protect programs, to multi-segmented
models that employ segmentation to create a robust operating environment in which
multiple programs and tasks can be executed reliably.

The simplest memory model for a system is the “flat model,” in which the op-
erating system and application programs have access to a continuous, unsegmented
address space. To implement a flat model with the Intel Architecture, at least two seg-
ment descriptors must be created, one for code references and one for data refer-
ences. Both of these segments, however, are mapped to the entire linear address
space: that is, both segment descriptors have the same base address of 0 and the same
segment limit of 4 GB. By setting the segment limit to 4 GB, the segmentation
mechanism is kept from generating exceptions for out of limit memory references,
even if no physical memory exists at a particular address. ROM (EPROM) is generally
located at the top of the physical address space, because the processor begins execu-
tion of the program at the address FFFF FFF0h. RAM (DRAM) is placed at the bot-
tom of the address space, because the initial base address for the data segment after
processor reset is 0.

The protected flat model is like the flat model, except the segment limits are set
to include only the range of addresses for which physical memory actually exists. A
general-protection exception is then generated on any attempt to access non-existent
memory. This model provides a minimum level of hardware protection against some
kinds of program errors.

The multi-segment model uses the full capabilities of the segmentation mecha-
nism to provide hardware protection of code and data. In this case, each program is
given its own table of segment descriptors and its own segments. The segments can
be private to their assigned programs or shared among programs. Access to all seg-
ments and to the execution environments of individual programs running on the sys-
tem is controlled by hardware.

Access checks can be used to protect not only against referencing an address
outside the limit of a segment, but also against performing illegal operations in certain
segments. For example, if code segments are designated as read-only segments, write
operations into code segments can be prevented by hardware. The access rights in-
formation created for segments can also be used to set up protection rings or levels.

Structure of Computer Systems220

Protection levels can be used to protect operating system procedures from unauthor-
ized access by application programs.

4.8.7.3. Paging

When operating in protected mode, the Intel Architecture can map the linear
address space directly into a large physical memory (for example, 4 GB of RAM), or
indirectly (using paging) into a smaller physical memory and disk storage. The latter
method of mapping the linear addresses space is referred to as demand-paged virtual
memory.

When paging is used, the processor divides the linear address space into
fixed-size pages (generally 4 KB in length) that can be mapped into physical memory
and/or disk storage. When a program references a logical address in memory, the
processor translates the address into a linear address and then uses its paging mecha-
nism to translate the linear address into the corresponding physical address. If the
page containing the linear address is not currently in physical memory, the processor
generates a page-fault exception. This exception directs the operating system to load the
page from disk storage into physical memory (perhaps writing different page from
physical memory to the disk), then restart the instruction that generated the exception.

Paging is different from segmentation through its use of fixed-size pages.
Unlike segments, which usually are the same size as the code or data structures they
hold, pages have a fixed size. If segmentation is the only form of address translation
which is used, a data structure which is present in physical memory will have all of its
parts in memory. If paging is used, a data structure can be partly in memory and partly
on disk.

To minimize the number of bus cycles required for address translation, the
processor holds the most recently accessed page-directory and page-table entries in
cache memories called translation look-aside buffers (TLBs). The TLBs satisfy most
requests for reading the current page directory and page tables without requiring a bus
cycle. Extra bus cycles occur only when the TLBs do not contain a page-table entry,
which typically happens when a page has not been accessed for a long time.

The information that the processor uses to translate linear addresses into
physical addresses is contained in four data structures:

• Page directory: A table of 32-bit entries contained in a 4-KB page. Up to 1024
page-directory entries (PDEs) can be held in a page directory.

• Page table: A table of 32-bit entries contained in a 4-KB page. Up to 1024
page-table entries (PTEs) can be held in a page table. Page tables are not used
for 2-MB and 4-MB pages. These pages are mapped directly from one or
more page directories.

• Page: A 4-KB, 2-MB, or 4-MB flat address space.

• Page Directory Pointer Table: A table of four 64-bit entries, each of which con-
taining a pointer to a page directory. This data structure is only used when

Memory Systems 221

the physical address extension (PAE) is enabled. The PAE flag, located in bit
5 of control register CR4, enables an extension of physical addresses in the
Intel Architecture from 32 bits to 36 bits. The processor provides 4 additional
pins for the additional address bits. This option can only be used when pag-
ing is enabled.

These tables provide access to either 4-KB or 4-MB pages when normal 32-
bit physical addressing is being used and to either 4-KB or 2-MB pages when ex-
tended 36-bit physical addressing is being used.

Figure 4.63 shows the page directory and page table hierarchy when mapping
linear addresses to 4-KB pages. The entries in the page directory point to page tables,
and the entries in a page table point to pages in physical memory. This paging method
can be used to address up to 220 pages, which spans a linear address space of 232 bytes
(4 GB).

Figure 4.63. Linear address translation for the Intel Architecture (4-KB pages).

To select the various table entries, the linear address is divided into three sec-
tions:

• Directory: Bits 22 through 31 of the linear address contain an offset to an entry
in the page directory. The selected entry provides the base physical address of
a page table.

• Table: Bits 12 through 21 contain an offset to an entry in the selected page ta-
ble. This entry provides the base physical address of a page in physical mem-
ory.

• Offset: Bits 0 through 11 contain an offset in the page.

Memory management software has the possibility to use one page directory
for all tasks, one page directory for each task, or a combination of the two.

Structure of Computer Systems222

Figure 4.64 shows how a page directory can be used to map linear addresses
to 4-MB pages. The entries in the page directory point to page tables, and the entries
in a page table point to 4-MB pages in physical memory. This paging method can be
used to map up to 1024 pages into a 4 GB linear address space. In this case, the linear
address is divided into two sections:

• Directory: Bits 22 through 31 contain an offset to an entry in the page direc-
tory. The selected entry provides the base physical address of a 4-MB page.

• Offset: Bits 0 through 21 contain an offset in the page.

It is possible to access both page tables for 4-KB pages and 4-MB pages from
the same page directory. A typical example of mixing 4-KB and 4-MB pages is to
place the operating system or executive’s kernel in a large page to reduce TLB misses
and thus improve overall system performance. The processor maintains 4KB-page
entries and 4-MB page entries in separate TLBs. So, placing often used code, such as
the operating system’s kernel, in a large page, frees up 4 KB-page TLB entries for ap-
plication programs and tasks and for less frequently used utilities.

Figure 4.64. Linear address translation for the Intel Architecture (4-MB pages).

4.9. Problems

4.9.1. Using memory units of 4 × 2 bits of the type shown in Figure 4.65, design a
16 × 4 random-access memory unit.

4.9.2. Consider the generic 1D RAM organization illustrated in Figure 4.6. Assume
the storage array is implemented by the DRAM cell of Figure 4.4(b). Describe
three ways in which the RAM can be modified to double its transfer rate.

4.9.3. Using the 64-Mbit DRAM (8E1) presented in Section 4.4.4 as the basic com-
ponent, design a 256M × 32-bit DRAM. Draw a diagram of the memory in
the style of Figures 4.9 and 4.10.

	4.8.7. Memory Management in the Intel Architecture
	4.8.7.1. Memory Management Overview
	4.8.7.2. Segmentation
	4.8.7.3. Paging
	4.9. Problems

