
Design Representation and Methodology 41

There is considerable overlap between high-level synthesis and register-
transfer level synthesis. This is due to the fact that many systems do not provide all
the synthesis steps, but start at the register-transfer level.

2.3.4. Logic-Level Synthesis

As a result of the register-transfer level synthesis, the system to be designed is
broken down into blocks of combinational logic and storage elements. The behavior
of combinational logic is described by Boolean functions. Their optimization and
mapping to a gate level hardware structure is the task of logic-level synthesis.

The translation from behavioral representation to structural representation is
straightforward at the logic level. Thus, the main problem in logic synthesis is optimi-
zation, specifically logic minimization in order to obtain a minimal area.

2.3.5. Technology Mapping

The result of logic synthesis is a network of abstract gates. To implement the
abstract network in hardware, groups of abstract gates are mapped to physical library
cells of a given target technology. This step is called library mapping or technology mapping.

Technology mapping is not restricted to the logic level. Some systems per-
form technology mapping after register-transfer level optimizations, mapping func-
tional units to macro-blocks which are described both in the structural and the
physical domain.

Further steps of the synthesis process deal with the transition from the
structural to the physical domain at lower levels of abstraction, i.e., layout generation,
which is not presented here.

2.4. VHDL Hardware Description Language

2.4.1. Hardware Description Languages

Traditional design methodologies for hardware systems employ design speci-
fication at the conceptual level in a natural language, design description using sche-
matics, and then simulation of the description. The initial specification in a natural
language is extended with block diagrams, state diagrams and timing diagrams. In this
process, the initial specification is refined by the designer, which adds new informa-
tion until a complete design at the register transfer level is obtained.

As today’s systems become more complex, a new approach is required at the
conceptual level. Designers need to describe the system’s specifications in an executable
specification language or hardware description language (HDL). Such an approach has
several advantages.

Structure of Computer Systems42

• First, simulating an executable specification allows the designer to verify the
correctness of the system’s intended functionality. In the traditional ap-
proach, which starts with a natural-language specification, such verification
would not be possible until a simulatable system description had been ob-
tained (usually, gate-level schematics).

• The second advantage is that the specification can serve as an input to syn-
thesis tools, which, in turn, can be used to obtain an implementation of the
system, reducing the design time by a significant amount.

• Third, such a specification can serve as comprehensive documentation, pro-
viding an unambiguous description of the system’s intended functionality.

• Finally, as the designs become more complex, description languages allow to
increase the level of abstraction needed in order to deal with this complexity.

Many HDLs exist, for example, AHPL, CDL, CONLAN, DDL, ISP, PMS,
HardwareC, Verilog, VHDL. As most of them as derived from general programming
languages, e.g., PL/1, Pascal, ALGOL, C, ADA, a close relationship exists between
the use of HDLs in hardware design and of general programming languages in soft-
ware engineering.

2.4.2. Introduction to VHDL

VHDL (VHSIC Hardware Description Language) has its origin in the program-
ming language ADA. The development of the language started in 1980 and was initi-
ated by the US Department of Defense (DoD), with the intention to create a standard
HDL for its VHSIC (Very High Speed Integrated Circuit) project. The aim of this project
was to develop the next generation of integrated circuits. In the process of developing
complex integrated circuits, the designers found that the available design tools were
not appropriate, because they were based on the gate level design. The designers
needed a new description method, and proposed a new description language, VHDL.

The original version of the language was released by the DoD in 1985. The
language was improved for several years, and became an IEEE standard in 1987
(1076-1987). Later, the DoD required all military design submissions to be in VHDL.
Shortly thereafter, VHDL became an industry standard. A new version of the lan-
guage was standardized in 1993 (IEEE standard 1076-1993).

The language concepts of ADA, which was also initiated by the DoD, were
extended by the following features to handle hardware design:

• Description of hardware types (e.g., signals, bit strings);
• Description of timing behavior;
• Data driven control structures, in addition to algorithmic control structures.

VHDL provides a formal notation for communication between vendors and
users of hardware devices, between designers, and between design tools. It is a power-

Design Representation and Methodology 43

ful language which supports descriptions of hardware at many design levels, and is
used to specify full multiprocessor systems from the system level to the actual imple-
mentation in hardware. VHDL also supports verification, synthesis and testing of the
design.

The main characteristics of the VHDL language are the following:

• It supports various styles of description, such as behavioral, data flow, and
structural. Behavioral description represents an algorithmic description of the
function of the hardware system, without any structural information, en-
hanced optionally with some timing information. Data flow description repre-
sents the flow of data within a hardware system; it represents behavior while
implying structure. A typical example is a register-transfer description, where
data is exchanged between registers and similar complex objects. Structural de-
scription represents components (blocks) and their interconnections.

• It supports multiple design methodologies, such as top-down (the divide-and-
conquer approach), bottom-up, and mixed designs. In top-down design
methodology, a system is hierarchically divided into a set of subsystems that
is easier to design. In bottom-up design methodology, the designer starts with
basic components (or subsystems) and proceeds to design a complete system.

• It supports various digital modeling techniques. These include algorithmic de-
scriptions, Boolean equations, and finite-state machines.

• It supports various approaches to timing. For example, it supports a synchro-
nous approach in which signal operations take an integer number of clock cy-
cles. It also supports an asynchronous approach that allows cycles of various
lengths.

• It supports various hardware technologies, including new primitive logic
types, new primitive components, and technology-dependent attributes.

• It supports concurrent statements. VHDL is a concurrent language that can
model simultaneous events that occur in hardware by executing several
statements at the same time.

• It allows the user to define new data types, which allows for a high level of
abstraction when describing and simulating new design techniques.

Despite all these capabilities, some designers do not think VHDL works well
as a design tool. They emphasize that VHDL is too verbose. The amount of VHDL
code needed to describe a design is usually twice that needed by other HDLs. In addi-
tion, the inherent parallelism of the language make the debugging process a difficult
task. Finally, VHDL does not support visual representation (however, some CAD
systems allow visual representation of designs). Some designers believe that diagrams
provide better readability than languages.

Structure of Computer Systems44

2.4.3. VHDL Styles of Description

The main abstraction of VHDL is the design entity, which identifies and rep-
resents a single part of a design, executes a specific function, and has well-defined in-
puts and outputs. That is, an entity represents a black box; one or more input and
output lines enter and leave the black box, and a delay is identified with each line. A
VHDL model consists of at least one design entity.

Figure 2.3. Basic structure of a VHDL entity.

There are two main elements that describe an entity: the entity declaration and
the architecture body. The entity declaration contains the interface of the model to the en-
vironment, attribute descriptions, specifications and further descriptions (i.e., assertions)
common to all architectures. An architecture represents one possible implementation
of the model. Different implementations can result from different design variants or
from different levels of abstraction in the design process. Several architectures can be
associated with the same entity declaration (Figure 2.3).

Figure 2.4. Different representations of a half adder: (a) block symbol; (b) Boolean equations;
(c) truth table; (d) logic diagram.

Design Representation and Methodology 45

VHDL offers three styles of description or views for a given entity: the behav-
ioral style, the data flow style, and the structural style. A combination of these styles is
possible within the same model. We show the differences between behavioral, data
flow, and structural methodologies by describing the design of a half adder in each
style. A half adder adds two 1-bit inputs x and y to produce a 2-bit result consisting of
a sum bit S and a carry bit C_out.

Figure 2.4 shows different representations of a half adder in digital logic, us-
ing a block diagram, Boolean equations, truth table, and logic diagram.

The behavioral style presents an algorithmic description similar to most high-
level programming languages. It uses control structures such as if statements and
loops, as well as Boolean and arithmetic expressions. Figure 2.5 presents a behavioral
architecture based on the truth table of a half adder.

The keyword entity starts the description of the interface between the half
adder and its environment, followed by the name of the entity. The optional port
declaration defines the input signals x and y of type bit, and output signals S (sum)
and C_out (carry) of the same type. Bit is a predefined enumeration type ('0', '1'). The
keyword end followed by the entity name indicates the end of the entity declaration.
Each statement in VHDL is concluded by a semicolon. Comments start with “--”
and extend to the end of a line.

The keyword architecture begins the description of the architecture
body. The name behavioral is a name given to this architecture. In general, the

entity half_adder is
 port (x, y: in bit; -- input ports
 S, C_out: out bit); -- output ports
end half_adder;

architecture behaviorial of half_adder is
begin
 process -- a process contains several statements
 -- executed in a sequential manner
 variable i: integer; -- index variable
 constant C_vector: bit_vector(0 to 2) := "001";
 constant S_vector: bit_vector(0 to 2) := "010";
 -- C_vector and S_vector are derived from
 -- the truth table of the half adder
 begin
 i := 0;
 if x = '1' then i := i+1; end if;
 if y = '1' then i := i+1; end if;
 C_out <= C_vector(i) after 20 ns;
 S <= S_vector(i) after 20 ns;
 wait on x, y;
 -- process is sensitive to signals x, y
 end process;
end behavioral;

Figure 2.5. Behavioral VHDL description of a half adder from truth table.

Structure of Computer Systems46

architecture definition consists of a declarative part and an instruction part. In this
case, the declarative part is empty. The instruction part contains a process state-
ment, which is the language construct provided for the description of the behavior of
a hardware component or even a hardware system. The process statement contains
a declarative part and a statement part. The variable i stands for the number and po-
sition of the 1’s in the inputs. The constants C_vector and S_vector are initialized
to “001” and “010”, respectively. The outputs C_out and S are set to the value of the
ith position in the array C_vector and S_vector, respectively. For example, the
truth table in Figure 2.4 shows that if one of the inputs is 1 and the other is 0, the
carry becomes 0 and the sum 1. This fact is represented by the bit in position 1 of
vectors C_vector and S_vector, which are referred to by variable i. Because one
of the inputs is 1 and the other is 0, i becomes 1. Thus,

C_out = C_vector(1) = 0
S = S_vector(1) = 1

The symbol <= is called signal assignment, as opposed to the symbol :=, which
indicates a variable assignment. A variable assignment is performed as soon as the
statement is executed and the expression on the right of the symbol <= is evaluated. A
signal assignment may contain a specified delay. For instance, to indicate that it takes
some time for the carry signal to change in response to a change of the input signals x
and y, the after keyword is used.

Two types of delays are possible in a signal assignment: inertial delay or transport
delay. In an inertial delay, exemplified in the preceding VHDL description, the output
signal changes if and only if the input signal stays at a certain level at least for the
specified delay time in the statement. In other words, the output signal does not
change for an input transient of shorter duration than that of the delay time. In a
transport delay, indicated by the transport keyword, a change of the input signal is
always propagated to the output. If a statement does not contain a delay time of
greater than zero, an elementary delay, called delta delay, will be assumed.

The wait statement within a process statement causes the process to be
suspended until the value of the input signals x or y changes. Once a change appears
in any of the inputs, the process starts all over again and changes the output values as
necessary.

The data flow style describes a network of signals in which the flow of signal
values is supervised by a set of control statements. For example, at the register trans-
fer level of description, the data flow style presents the description of a circuit in
terms of a set of concurrent register and signal assignments. The transfer between the
registers are monitored by a set of control elements.

The data flow description does not have to define the components it uses. It
often uses the Boolean operators and arithmetic expressions for describing a circuit.
Another feature of this description is that it can show the amount of time elapsed in
each element of the circuit. Figure 2.6 shows a data flow architecture based on the
Boolean equations of the half adder.

Design Representation and Methodology 47

The architecture body contains a block statement, delimited by the begin and
end keywords. All statements within a block statement are initiated in parallel. The
block consists of two signal assignment statements. A signal assignment is executed in
two steps. First, the expression on the right hand side of the equation sign is evaluated
after each change of any variable term involved. Then the resulting value is assigned to
the signal after the specified delay. Any changes of the expression value in this time
interval have (in general) no effect on a previous assignment. This is an example of
data-driven control structure, when the execution of certain statements in a VHDL
model depends on a specific change of variable or signal values.

The first signal assignment specifies that the signal S will get the exclusive-or
value of the signals x and y after 30 ns. The 30 ns can be interpreted as the delay of an
XOR gate. The second signal assignment specifies that the signal C_out will get the
AND value of the input signals after 10 ns.

The structural style corresponds closely to the hardware structure of the cir-
cuit. A structural architecture can be described by declaring a set of components and
connecting them with a set of signals. If a structural architecture is compared to a C
program, the component declarations are similar to function declarations, and the in-
put and output ports or signals are similar to the parameters for the functions. Figure
2.7 represents a structural architecture based on the logic diagram of the half adder.

The architecture body is divided into two parts: the declaration part, which
appears before the keyword begin, and the interconnection part, which appears after
begin. The declaration part consists of three component statements and a signal
statement. The first component statement defines a NOT gate. The signal i is the
input, and the signal o is the output. The second and third component statements
define an AND gate and an OR gate, respectively. The signal statement defines a
series of signals that are used for interconnecting the components. For example, the
signal a is used to connect the G1 NOT gate to the G3 AND gate.

The design part includes a set of component instantiation statements. Each state-
ment creates an instance (or copy) of a component. A statement starts with a label
followed by the component name and a port map clause, which specifies the con-
nections between the component instances in the form of a network specification or
netlist. Each entry of the port map clause refers to one of the component’s ports or a

entity half_adder is
 port (x, y: in bit; -- input ports
 S, C_out: out bit); -- output ports
end half_adder;

architecture data_flow of half_adder is
begin
 S <= (not x and y) or (x and not y) after 30 ns;
 C_out <= x and y after 10 ns;
end data_flow;

Figure 2.6. Data flow VHDL description of a half adder from Boolean equations.

Structure of Computer Systems48

locally declared signal. A port of a component is connected to a port of another com-
ponent if they have a common element in the port map list. For example, at label
G1, signal x is fed into a NOT gate, with signal a as the output. At label G3, signals a
and y are fed into an AND gate, with signal c as the output.

2.4.4. The Time Model in VHDL

The three dimensions of time in VHDL are illustrated in Figure 2.8.

entity half_adder is
 port (x, y: in bit; -- input ports
 S, C_out: out bit); -- output ports
end half_adder;

architecture structural of half_adder is
component not_gate
 port (i: in bit; o: out bit);
end component;
component and_gate
 port (i1, i2: in bit; o: out bit);
end component;
component or_gate
 port (i1, i2: in bit; o: out bit);
end component;
signal a, b, c, d: bit;
begin
 G1: not_gate port map (x, a);
 G2: not_gate port map (y, b);
 G3: and_gate port map (a, y, c);
 G4: and_gate port map (b, x, d);
 G5: or_gate port map (c, d, S);
 G6: and_gate port map (x, y, C_out);
end structural;

Figure 2.7. Structural VHDL description of a half adder from logic diagram.

Design Representation and Methodology 49

Figure 2.8. Three dimensions of time in VHDL.

The real-time axis reflects the advance of time in terms of discrete events.
Besides the real-time axis, a delta-time delay allows the deterministic handling of
concurrency and zero-delay in case of signal assignment. Any signal assignment is split
into an initiation activity, the first step of a signal assignment execution, and an execution
activity, the second step. The execution takes place at least one delta-cycle after the ini-
tiation. Uncertainties caused by multiple assignments to a signal have to be solved by
the definition of a resolution function, provided by the user.

Figure 2.9 is an example of block statement with concurrent signal assign-
ments. If the block statement is initiated at time t0, both signal assignments are exe-
cuted. Both expressions at the right hand side are evaluated, and the assignments of
the values will take place within simulation cycle t0 + ∆. This means that signals a and
b will change their values. This mechanism makes sure that the execution of the
VHDL description is independent of a particular implementation by a simulator.

begin -- block statement; all statements inside
 -- the block are initiated concurrently
 a <= b; -- signal assignment with zero delay
 b <= a; -- signal assignment with zero delay
end;

Figure 2.9. Concurrent signal assignments.

Structure of Computer Systems50

Figure 2.10. VHDL time model.

Additionally, VHDL distinguishes between an inertial and a transport delay. The
inertial delay takes into account the inertia of the circuits, and is the default delay. A
change of an output demands a minimum hold time of the corresponding input sig-
nals, otherwise there will be no effect. The transport delay is used to describe changes
without considering inertia.

The third axis of the time model (Figure 2.8 and Figure 2.10) reflects the exe-
cution of statements within processes. For example, a process describes an algorithm
without any real delay in terms of time. Variable assignments within a process, for
example, consume no time. Therefore, no global variables exist in a VHDL model.
Otherwise, what happens in case of multiple assignments to a variable at the same
time has to be defined to avoid a simulator-dependent execution of a VHDL model.

2.4.5. Simulation of a Model

At the beginning of every simulation process, storage is allocated for all data
objects declared in a VHDL design (such as variables, constants and signals). Also,
initial values are assigned to these objects, and simulation time is reset to 0 ns. Simula-
tion, then, starts adding time to proceed to the next event. Signals that need values at
this time are assigned. All design units (processes) whose input signals changed are
then executed. This sequence of adding time, signal change, and process execution
continues until simulation suspends. Simulation stops when a time limit is reached
that the user has specified, or the maximum time allowed by the simulator is reached.

Design Representation and Methodology 51

Figure 2.11. Simulation process.

As an example, consider the block diagram of the circuit in Figure 2.11. As-
sume that the signals a, b, c, d, and e are initialized to 0, 1, 1, 1, and 0, respectively.
Also assume that a buffer, called the event queue, is allocated to schedule the changes to
these signals. The events at time 0 in the event queue specify that a should change to
1 at time 0 and also b should change to 0 at the same time. When these changes have
been done, the subcircuits that are affected by these signals are determined (subcircuit
1 and subcircuit 2). The changes on the outputs of these subcircuits will be deter-
mined and added to the event queues. Assume that subcircuit 1 produces 0 for the
input 1. Since subcircuit 1 has a propagation delay of 10 ns, the event (c, 0) is sched-
uled for time 10 and is added to the event queue. Also, assume that subcircuit 2 pro-
duces 0 for the input 0. Since subcircuit 2 has a propagation delay of 20 ns, the event
(d, 0) is scheduled for time 20 and is added to the event queue.

After the events at time 0 are processed, the simulation time is incremented
by 1 and the corresponding events are processed. This process continues until it
reaches time 10. At that time, event (c, 0) will be processed, which causes event (e, 1)
to be scheduled for time 15. The simulation process continues until the event queue
becomes empty or reaches some simulation time limit.

	2.3.4. Logic-Level Synthesis
	2.3.5. Technology Mapping
	2.4. VHDL Hardware Description Language
	2.4.1. Hardware Description Languages
	2.4.2. Introduction to VHDL
	2.4.3. VHDL Styles of Description
	2.4.4. The Time Model in VHDL
	2.4.5. Simulation of a Model

