
A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23 – 25, 2002, Cluj-Napoca, Romania

 1 of 6

CONFIGURABLE PROCESSOR

Zoltan Baruch, Octavian Creţ, Kalman Pusztai

Technical University of Cluj-Napoca, Romania, Computer Science Department
E-mail: {Zoltan.Baruch, Octavian.Cret, Kalman.Pusztai}@cs.utcluj.ro

Abstract. Configurable architectures can deliver the high performance required by
computationally-demanding applications, similar to the ASIC circuits, while providing the
flexibility of the programmable processors. The performances achieved by these architectures
are often one or two orders of magnitude higher than those of processor-based alternatives. In
this paper we describe the design and implementation of a configurable processor. The proces-
sor consists of a constant part and a configurable structure. The constant part allows to solve
simple applications without changing the existing resources. The configurable part is defined by
the user, based on the requirements of a specific application. This part contains application-
specific functional blocks, controlled by special instructions. The integration of a classical proc-
essor and a configurable architecture within the same circuit allows to exploit the advantages of
both architectures. For the design of the configurable processor we used the VHDL language.
The implementation was performed using a Xilinx XCV600E FPGA device. This processor can
be used in several types of applications: data encryption and compression, image processing,
digital signal processing, special arithmetic.

Key Words: Configurable computing, Configurable architectures, Reconfigurable de-
vices, FPGA devices.

1. INTRODUCTION

Regarding their advantages, the configurable computers or processors are situ-
ated between ASICs (Application-Specific Integrated Circuits) and programmable proc-
essors. Application-specific circuits allow the highest performance by sacrificing flexi-
bility. General-purpose programmable processors allow the highest flexibility, but their
performance is lower compared to a solution adapted to a particular application. Con-
figurable computing ensure the performance required by computation-intensive appli-
cations, maintaining in the same time the advantages of the programmable processors.

Application-specific instruction sets, customized I/O solutions and optimized
control can substantially improve the performance of programmable processors [9]. Be-
fore the advent of programmable circuits, modifying a processor’s instruction set re-
quired a writable control store and a custom microprogram for each particular applica-
tion. Programmable circuits provide an adequate implementation platform for applica-
tion-specific control units, due to the rapid development time and simplified design pro-
cess.

An FPGA (Field-Programmable Gate Array) device contains logical blocks and
interconnection lines between them. The operations that are to be performed by the de-
vice are specified by configuration bits, which define the various blocks’ function and

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23 – 25, 2002, Cluj-Napoca, Romania

 2 of 6

the interconnections between blocks [1]. The FPGA devices were originally designed as
an alternative to gate arrays configured by masks, in order to be “programmable” by the
user. Like processors, FPGA devices can be programmed after fabrication in order to
solve any computational problem allowed by their hardware resources. This program-
mability differentiates processors and FPGA devices from application-specific func-
tional units, which can perform only a function or a limited number of functions.

Today’s FPGA devices are suitable for implementing configurable architectures.
This is possible due to the devices’ higher capacity and their more flexible interconnec-
tion structure. In the same time, the configuration time and the size of configuration
streams has been reduced significantly.

This paper describes the design and implementation of a configurable processor
called ConP using an FPGA circuit. The processor contains the kernel of a general-
purpose processor and it can be extended in order to be used for specific application.
This extension is accomplished by adding new instructions and functional units, without
the change of the general-purpose kernel. By combining a classical processor and a con-
figurable architecture in the same device is possible to exploit the advantages of both.

The organization of this paper is as follows. In the next Section we introduce the
main aspects of configurable computing and configurable architectures. In Section 3 we
present the main features of the ConP processor and its general structure. The imple-
mentation of this processor and the design tools used are described in section 4. The
conclusions are presented in Section 5.

2. CONFIGURABLE COMPUTING

The main characteristic of traditional processors is that they can be programmed
to solve virtually any computational task. The configurable architectures maintain the
general nature of computing, but this computing is organized in a different manner. In
traditional processors, operations are composed temporally by sequencing them in time,
using registers or memory to store intermediate results (Figure 1). In configurable ar-
chitectures, tasks are implemented by spatially composing primitive operators, that is,
by linking them together by wires. In this way, parallel processing is possible, since op-
erators and functional units can perform their operations simultaneously, which results
in a considerable performance improvement.

Figure 1. (a) Temporal and (b) spatial computations for the expression:
yi = w1 ∗ xi + w2 ∗ xi-1 + w3 ∗ xi-2 + w4 ∗ xi-3.

To compare various architectures, DeHon introduced the instruction depth,
which depends on the number of cycles required to perform a single iteration of a given

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23 – 25, 2002, Cluj-Napoca, Romania

 3 of 6

task [3]. If a single instruction can be issued in each cycle for a complex task requiring
many primitive operations (typical of scalar processors), a large number of instruction
cycles are required to perform the task, which requires a deep instruction memory. If a
task with low data dependencies and high throughput requirements is to be performed, it
may require only a few instruction cycles on an array of spatial processing elements,
and hence require only a shallow instruction memory.

In general, the functional and interconnection units of configurable architectures,
such as FPGA devices, can store a single instruction, since they perform the same op-
eration in each cycle. In this case, by instruction we mean the set of bits that control one
cycle of the operation in the programmable device. Programmable architectures, such as
processors, use deep instruction memory. Therefore, the instruction depth is an impor-
tant characteristic that distinguishes configurable and programmable architectures.

The computational density represents the number of bit operations a device can
perform per unit of area-time. A configurable device often can perform, in a single cy-
cle, a computation that takes a processor hundreds of cycles. An FPGA device might
require tens of cycles of latency to compute the first result, but because it performs the
computation using a spatial pipeline composed of many active functional units, rather
then sequentially with a small number of functional units, it achieves higher throughput.

Compared to traditional processors, the main reasons for the higher computa-
tional density of FPGA devices are the following:

• An FPGA device contains more active computing units in the same area as the
processor, and therefore the degree of parallelism of the FPGA device is higher.

• FPGA devices can control operations at bit level, while processors can control
their operators only at word level. As a result, processors often waste part of
their computational capacity when operating on narrow-width data.

The disadvantage of configurable architectures is that they must perform the
same operation in each cycle in order to take advantage of their high computational den-
sity. The programmable architectures contain relatively large cache memories for in-
structions and data, so that they can perform a large number of different operations with
no decrease of their computational density.

Based on the previous observations, we can conclude that, for tasks that require
high throughput and contain regular computations, the configurable architectures are
more advantageous. For these tasks, the required throughput is obtained at lower cost
than with programmable architectures. When a task contains a large number of compu-
tations that are not performed frequently, or when a high throughput is not required, it is
better to use programmable architectures.

3. DESIGN OF THE CONFIGURABLE PROCESSOR

The ConP configurable processor consists of a constant part and an application-
specific structure. The constant part allows to perform simple tasks without any change
of the existing resources. The configurable part is defined by the user, based on the re-
quirements of the specific application. This part consists of application-specific func-
tional units that are controlled by special instructions. For the design of this processor,
we used the VHDL hardware description language and the Active-HDL CAD system.

The main features of the ConP processor are the following:

• 16-bit external data bus and 12-bit address bus;

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23 – 25, 2002, Cluj-Napoca, Romania

 4 of 6

• Eight general-purpose registers: R0..R7;
• Three status flags: S (sign), Z (zero), C (carry);
• Load/store architecture;
• Direct, register-indirect, and immediate addressing modes;
• Stack memory organized in the internal memory;
• Expandable instruction set and addressing modes;
• I/O unit, that allow the addressing of 64 I/O registers and interrupt handling.

For the design of the ConP processor, we used a functional VHDL description.
Therefore, the internal structure of the processor was generated by the synthesis system.
A possible general structure of the processor is illustrated in Figure 2.

Figure 2. Block diagram of the ConP processor.

The processor contains three buses: a 16-bit data bus (DBUS), a 12-bit address
bus (ABUS), and an 8-bit I/O bus (IOBUS). These buses are connected to the external
pins of the processor. The I/O address space is isolated from the memory address space.
The registers accessible by the programmer are the general-purpose registers R0..R7.
Other registers, not accessible by program, are the program counter (PC), the stack
pointer (SP), the instruction register (IR), the address register (AR), end two temporary
registers (TEMP1, TEMP2). The ALU performs simple arithmetic and logical opera-
tions, as well as shift left, logical shift right, and arithmetic shift right. The control unit
initiates and controls each transfer and data processing. All transfers are synchronized
with the system clock.

For instruction execution, a number of clock cycles between 3 and 6 are re-
quired. These cycles are denoted by T0..T5. The instruction fetch requires two clock cy-
cles, T0 and T1. Instruction decoding is performed in cycle T2. The operations specified
by the instruction are performed in one to three cycles. In each cycle, in addition to the
operations specific to a particular cycle, other operations are performed that are needed
to prepare for the next cycle.

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23 – 25, 2002, Cluj-Napoca, Romania

 5 of 6

4. IMPLEMENTATION OF THE CONFIGURABLE PROCESSOR

For the design and implementation of the ConP processor we used the VHDL
language and synthesis software for FPGA devices. VHDL is the most used hardware
description language standardized by the IEEE, so that it is supported by many design
tools. After the simulation of the description with the Active-HDL VHDL simulator, we
synthesized the description. For synthesis we used the Synopsys FPGA Express soft-
ware, that generates a netlist from a VHDL description and then optimizes this netlist
for the target FPGA device. The generated netlist is used to implement the processor in
an FPGA device.

Figure 3. Layout of the ConP processor in the XCV600E FPGA device.

For implementation we used a Xilinx XCV600E FPGA device. This device
contains 3456 (48x72) configurable logic blocks. The implementation was performed
using the Xilinx Foundation Series software. From the netlist generated by logic synthe-
sis the Foundation software performs the required operations for the configuration of
the FPGA device and allows the simulation of the design based on the real signal de-
lays. The layout of the ConP processor in the XCV600E FPGA device is shown in Fig-
ure 3.

Table 1. Main implementation parameters of the ConP processor.

Parameter Value
Maximum delay on the interconnection lines 11.96 ns
Maximum clock frequency 52.42 MHz
Number of configurable blocks (CLB) 425
Number of flip-flops 576
Number of I/O blocks (IOB) 18
Number of equivalent gates 14,109

A&QT-R 2002 (THETA 13)
2002 IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics

May 23 – 25, 2002, Cluj-Napoca, Romania

 6 of 6

Table 1 presents the main implementation parameters of the ConP processor. As
a synthesis option, we specified an operating frequency of 50 MHz. By changing the
synthesis options, it is possible to increase this frequency. The processor uses about
12% of the FPGA device resources, and therefore it is possible to extend the instruction
set with instructions that require complex logic.

5. CONCLUSIONS

In this paper we introduced the configurable computing, the configurable archi-
tectures, and then the design and implementation of the ConP configurable processor.
This processor consists of a constant part and a configurable part. The constant part can
be used to solve simple applications without changing the existing resources. The con-
figurable part is defined by the user, based on the requirements of a specific application.
This part contains application-specific functional blocks, controlled by special instruc-
tions. The integration of a classical processor and a configurable architecture within the
same device allows to exploit the advantages of both architectures. Classical processors
allow the highest flexibility, but their performance is lower than that of application-
specific solutions. Application-specific circuits ensure the highest performance by sacri-
ficing the flexibility.

For the design of the configurable processor we used the VHDL language. The
implementation was performed using a Xilinx XCV600E FPGA device. This processor
can be used in several types of applications: data encryption and compression, image
processing, digital signal processing, special arithmetic.

REFERENCES

[1] Brown, S., Rose, J. [1996] FPGA and CPLD Architectures: A Tutorial, IEEE De-
sign & Test of Computers, Summer, pp. 42–57.

[2] Callahan, T. J., Hauser, J. R., Wawrzynek, J. [2000] The Garp Architecture and C
Compiler, Computer, Vol. 33, No. 4, pp. 62–69.

[3] DeHon, A. [2000] The Density Advantage of Configurable Computing, Com-
puter, Vol. 33, No. 4, pp. 41–49.

[4] Ebeling, C., Cronquist, D. C., Franklin, P. [1996] RaPiD – Reconfigurable Pipe-
lined Datapath. In Proceedings of the 6th International Workshop on Field-
Programmable Logic and Applications, Springer-Verlag, pp. 126–135.

[5] Goldstein, S. C. et al. [2000] PipeRench: A Reconfigurable Architecture and
Compiler, Computer, Vol. 33, No. 4, pp. 70–77.

[6] Guccione, S. A., Gonzales, M. J. [1995] Classification and Performance of Recon-
figurable Architectures. In Proceedings of the 5th International Workshop on
Field-Programmable Logic and Applications, Springer-Verlag, pp. 439–448.

[7] Haynes, S. D., Stone, J., Cheung, P. Y. K. [2000] Video Image Processing with
the Sonic Architecture, Computer, Vol. 33, No. 4, pp. 50–57.

[8] Salcic, Z., Smailagic, A. [1999] Digital Systems Design and Prototyping Using
Field Programmable Logic, Kluwer Academic Publishers.

[9] Wirthlin, M. J., Hutchings, B. L. [1995] DISC: A Dynamic Instruction Set Com-
puter. In Proceedings of the 4th IEEE Symposium of FPGAs for Custom Comput-
ing Machines FCCM ’95, Los Alamitos, IEEE CS Press, pp. 99–107.

