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Abstract 
 

We propose an Expert System Shell based on belief revision concepts who maintains 
the consistency of the knowledge base. In the first phase of this expert system shell we 
translate a classical rule-based system in an equivalent network representation where nodes 
are facts, and links stand for relationships. In the second phase we propagate any change in 
the uncertainty measures throughout the whole network. 
 This expert system shell was first implemented in software. The initial knowledge 
base is given in a text file, as a set of rules. The text file is parsed and a belief network is 
generated, having in its nodes the facts (propositions), linked by edges which contain the main 
operators: AND, OR, NOT, AGGREGATE and DET. The network also contains the ONE-OF 
operator. 

This paper continues a previous research done by Cenan in [2], extending it to a 
hardware implementation. The hardware implementation achieves much better performance 
by exploiting the parallelism of triggering all the rules in the same time.  
 The system was implemented and simulated on a XC4005E FPGA device from Xilinx 
Corporation. The main advantage obtained is an increased speed of the implementation, due 
to the high level of parallelism achieved and to the intrinsic hardware features. 
 
 

1. Introduction 
 
The past years have witnessed a noticeable research effort towards a theory of 

reasoning under uncertainty. While probability theory was recently introduced in this area 
with the emergence of Bayesian belief network [3], the role of logic and symbolic 
representations will seemingly continue to be prominent. The monopoly of probability theory 
as a tool for modeling uncertainty has been challenged by alternative approaches such as 
belief functions. Current efforts seem to be directed towards the specification of a knowledge 
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representation framework that combines the merits of classical logic and Bayesian belief 
networks. 

Solving this problem in a satisfactory way presupposes the next three requirements to 
be met and we consider that they are accepted by our approach. 

1. The necessity of a clear distinction between factual evidence and generic knowledge 
2. The need for representing partial ignorance in an unbiased way 
3. The inference at work cannot be monotonic. 

We try to represent uncertainty with a small set E = { Ei } of ordered linguistic 
variables, composed of nine elements; we will denote these nine elements by Ei, where i 
∈{1,2,…,9}. The natural order induced among the variables holds true, i.e. E1 stands for 
impossible; E9 stands for certain. 

Ei < Ej  i<j,     i, j∈{1,2,…,9} 
Uncertainty will be represented with an interval as a set of two parameters varying on 

the set E. This interval is formed by: 
• support – the positive evidence for the assertion 
• plausibility – the difference between the absolute certainty and the support of the 

negation of the assertion. 
Support and plausibility are always independently updated, since they are defined as 

different kind of information associated to a proposition, separately acquired and conceptually 
unrelated. 

Some criteria are provided, in order to measure the semantic relevance of the 
difference between belief intervals. Two distinct belief intervals are significantly different 
only if they belong to different belief states. The defined belief states partition in six areas the 
9×9 table combining all the possible values for support and plausibility [1]: 
 
                    PL 
        S 

E1… E4 E5… E8 
 

E9 

E1 
 

D 

E2… E5 
 

RD 

     
         U 

E6… E9 
 

C RB B 

B – believed 
RB - rather believed than disbelieved 
C – contradictory 
U – unknown 
RD – rather disbelieved than believed 
D – disbelieved 
 

Figure 1: The values for support and plausibility 
 
 

2. Operators defined on belief intervals 
 

To compute the belief interval associated to a compound expression, operators have 
been defined on belief intervals. We consider the notation |<exp>| as a shorthand for [s(exp), 
pl(exp)]. 
 
• Negation: 

The negation of a variable : N(Ei) = E9 – Ei = E9-(i-1) 

The negation operator for a belief interval: NOT(|a|)=[N(p(a)), N(s(a))]=[s(-a), p(-a)] 
The negation operator satisfies the involutive property: NOT(NOT(|a|))=|a| 
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• Conjunction: 
                              [E1, E9], if |a|∈U, |b|∈C 

AND(|a|, |b|) =  [min(s(a),s(b)), min(p(a),p(b))], otherwise 
 

• 

• 

• 

Disjunction: 
                              [E1, E9], if |a|∈U, |b|∈C 

  OR(|a|, |b|) = [max(s(a),s(b)), max(p(a),p(b))], otherwise 
 
Aggregation: denoted by ⊕; aggregates the evidence coming from different sources to a 
single assertion. It can be used to combine evidence for an assertion which is present in 
the conclusions of more than one inference rule: 

AGGR(|a1|, …, |an|) = [max(s(a1), … ,s(an)), min(p(a1), … ,p(an))] 
where ai stands for the evidence pertaining to a and coming from source i. 
 

Detachment: denoted by →, propagates the evidence pertaining of an inference rule to its 
conclusions. The definition of the DET operator, with the belief interval pertaining to the 
premises of the rule |h| (hypothesis) and the strength of the rule |h→t| expressing the 
deduction is given below: 

                       AND(|h|, |h→t|), if h∈B, |h|∈RB 
DET(|h|, |h→t|) = [E1, E9], otherwise 

 
 

3. Translating rules to network representation 
  

We represent knowledge by rules in a dependency network. In these networks there 
exist three types of nodes: proposition, rule and operator. Each rule node receives as input the 
belief intervals of its premises and produces as output the belief interval of its conclusion. 
Each operator node receives as input the belief intervals of its operandi and produces as 
output the belief interval of its result. 

We assume that the propositions are predicate-value pairs. Some predicates are 
Boolean and we will consider only their positive form. Other predicates can take a single 
value in a larger set of alternative choices. This is a constraint that we have implemented by 
defining an operator “one-of” for belief intervals, having the same semantic as an “exclusive-
or”. This operator gives a result in the classes Believed (B) or Rather Believed (RB) if one 
and only one of its arguments belongs to the same class. The format rules is: rule name, used 
in the explanatory process, premise, a compound expression, conclusion, and strength, a 
measure of the uncertainty used as a belief interval for this rule. 

Parsing a rule we must obtain a node with a detachment (→) operator having the 
strength of the rule as a parameter. The two links of this node come from the antecedent of the 
rule and go to consequent of the rule. Both the antecedent and the consequent part of the rule 
could be nodes denoting simple propositions or nodes with operators taking place between 
propositions. 

 The initial knowledge base is presented as a set of rules; in our example, the format 
used to insert them in the network is the following. 
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R1: Strength 8 
IF ( Smokes-a-lot Yes ) 

THEN ( Heart-risk Yes ) 
R2: Strength 8 
IF ( Stress Yes ) 

THEN ( Heart-risk Yes ) 
R3: Strength 6 

IF ( Job Manager ) 
THEN ( Stress Yes ) 

R4: Strength 6 
IF ( AND ( NOT (Stress Yes) ) (Temperament Shy) ) 

THEN ( NOT (Job Manager) ) 
R5: Strength 8 

IF ( Temperament Vehement ) 
THEN ( Heart-risk Yes ) 

R6: Strength 6 
IF ( Face-colour Ruby ) 

THEN ( Temperament Vehement ) 
R7: Strength 7 

IF ( Temperament Sure ) 
THEN ( NOT(Heart-risk Yes) ) 

Figure 2: The initial knowledge base 
 
 Then, we obtain information and we supply the systems with evidences as external 
assumptions for proposition nodes. The observations could be expressed could be expressed 
in natural language as: 
1) the patient has a ruby face 
2) the patient seems to be shy 
3) the patient is head of a department 
4) there is a small chance that the patient is not stressed 

The results are obtained in the following manner:  
(1) ( Assume (Face-colour Ruby) value (BeliefInterval (8 9)) ) 

( Proposition (Temperament Shy) Evidence (1 9)U - (1 4)D ) 
( Proposition (Heart-risk Yes) Evidence (1 9)U - (6 9)B ) 
( Proposition (Temperament Vehement) Evidence (1 9)U - (6 9)B ) 
( Proposition (Temperament Sure) Evidence (1 9)U - (1 4)D ) 
( Proposition (Face-colour Ruby) Evidence (1 9)U - (8 9)B ) 

(2) ( Assume (Temperament Shy) value (BeliefInterval (6 9)) ) 
( Proposition (Temperament Shy) Evidence (1 4)D - (6 4)C ) 
( Proposition (Heart-risk Yes) Evidence (6 9)B - (1 9)U ) 
( Proposition (Temperament Vehement) Evidence (6 9)B - (6 4)C ) 

(3) ( Assume (Job Manager) value (BeliefInterval (9 9)) ) 
( Proposition (Stress Yes) Evidence (1 9)U - (6 9)B ) 
( Proposition (Heart-risk Yes) Evidence (1 9)U - (6 9)B ) 
( Proposition (Job Manager) Evidence (1 9)U - (9 9)B ) 

(4) ( Assume (Stress Yes) value (BeliefInterval (1 6)) ) 
( Proposition (Stress Yes) Evidence (6 9)B - (6 6)RB ) 
( Proposition (Heart-risk Yes) Evidence (6 9)B - (6 6)RB ) 
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Temperament Vehement

Temperament Sure

Temperament Shy

Stress YesJob Manager

Heart-Risk Yes

Smokes-a-lot Yes

Face-color Ruby

 
Figure 3: The network representation of the knowledge base 

 
4. The hardware implementation 

 
4.1 Building the network 

  
 The initial rules are given in a text file, as shown in Figure 2. The file is first parsed by 
a program, and the corresponding network (see Figure 3) is generated. The network (a 
directed non-cyclic graph) is built according to the construction rules presented in Section 3. 
 Then, based on this graph, a VHDL source file is generated. This network can be 
easily implemented in hardware, because the belief interval values are between 1 and 9 (i.e., 
on four bits) and all the operators are based on Boolean concepts. This network had, of 
course, to be adapted to the hardware, in the way explained below. 
 There are two types of nodes in the network: operators and propositions. The 
propositions are virtual nodes - in fact, they contain a group of several operator nodes.  
 In the hardware implementation, each proposition has two four-bit data registers 
associated: Support and Plausibility, which are initialised with the values given in the text file 
containing the knowledge base. Similarly, each DET operator (and only that operator) has two 
four-bit data registers (that can only be initialised at the beginning of the process: their 
internal values can not be changed); these registers hold the STRENGTH of the rule. The 
other operators implement only their own behaviour, according to their definition. 
 Each operator's behaviour is implemented by combinatorial logic (gates, multiplexers, 
etc.). There are four-bit data busses that link the network with the PC. On these busses, the 
network can be initialised and the final results will be read. 
 The internal graph's representation is translated into VHDL source code, each node in 
the graph being emulated by a VHDL entity with the architecture (implementing their 
behaviour) given by the operators definitions. 
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4.2 Propagating belief interval values through the network 

 
 Once the network is built, it is fed with the information about a certain patient, i.e. the 
PC will send, on the data busses, the initial values of Support and Plausibility for the first 
proposition. These values will unbalance the network, in the sense that all the operators will 
produce new values for the Support and Plausibility registers of other propositions.  

The propagation of this information constitutes the inference mechanism of the expert 
system.  
 On each clock cycle, a new value is computed for several nodes in the network (the 
nodes that are influenced by the new information introduced, that unbalanced the network). In 
parallel with the propagation of these values, the PC sends the initial values of Support and 
Plausibility for the second proposition, and so on. These values will interfere in a constructive 
manner with the values that are already circulating inside the network; this effect is ensured 
by the nature of the logic operators. 
 The propagation process will end when no change occurs in the network, at any node. 
A special purpose flag detects this. Then, the PC will read back the results from each 
proposition node and will display them. 
 
 

5. Conclusions 
 
 The hardware implementation of the expert system shell shows a great deal of 
advantages over classical software implementation, which was also implemented. Even if the 
network generation phase is a little bit longer (because of VHDL source code generation), the 
propagation phase speed is much higher and allows also an execution in a parallel manner, 
that was impossible to achieve on a single-processor computing system. The gain of speed 
becomes evident when working with large networks, which are not more difficult to build 
because the construction of the network is 100% automatic. 
 The network was simulated, tested and implemented on a Xilinx XC4005E FPGA 
device, using the Xilinx Foundation Series development tools. The only inconvenient is the 
size of the Xilinx implementation, because we used the behavioural VHDL description of the 
network. A large amount of space could be saved if using the structural description; this will 
make the subject of future developments of the project. 
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