

Genetic Algorithm for Circuit Partitioning

ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI

Computer Science Department, Technical University of Cluj-Napoca,
26, Bariţiu St., 3400 Cluj-Napoca, Romania

{Zoltan.Baruch, Octavian.Cret, Kalman.Pusztai}@cs.utcluj.ro

 Abstract. In computer-aided logic design, partitioning is the task of clustering circuit ele-
ments into groups so that a given objective function is optimized with respect to a set of de-
sign constraints. In this paper we present a genetic algorithm for the circuit partitioning prob-
lem. The objective of the proposed algorithm is not only to balance the size of the two por-
tions, but also to evenly distribute the connections among them. The implemented algorithm
has been compared to a simulated annealing partitioning algorithm. Experiments show that
the execution time of the genetic algorithm is lower, the results being comparable to that ob-
tained by simulated annealing.

1. Introduction

In computer-aided design, partitioning is the task of clustering objects into groups so
that a given objective function is optimized with respect to a set of design constraints. Parti-
tioning is used frequently in physical design; for example, at the layout level it is used to find
strongly connected components that can be placed together in order to minimize the layout
area and propagation delay. In the layout synthesis process of FPGA circuits, the partitioning
is used in the placement step, which assigns each node of the Boolean network to a specific
logic block in the FPGA device. Partitioning can also be used to divide a large design into
several chips to satisfy packaging constraints.

The partitioning techniques are based on a graph model of the design. Application of
these basic partitioning methods requires the mapping of design structures into graph models.
Each node in the graph represents a physical component, and each edge represents a physical
connection between two components. The main objective of partitioning is to decompose a
graph into a set of subgraphs to satisfy the given constraints, such as the size of the subgraph,
while minimizing an objective function, such as the number of edges connecting two sub-
graphs.
 The partitioning problem is shown to be NP-complete [1]. Exact algorithms for solv-
ing this problem, using techniques like dynamic programming, are found to be computation-
ally expensive. Hence, approximate solutions are generally obtained in polynomial time using
various heuristics. Simulated annealing (SA) has been employed for such hard optimization
problems. A logarithmic temperature scheduling for SA is proved to ensure a global optimum

 1

solution. This requires a very slow cooling schedule, and often this makes SA prohibitively
slow. Therefore, an efficient algorithm for the partitioning problem is desirable.

An efficient paradigm for solving hard optimization problems is the genetic algorithm
(GA). J. H. Holland proposed that the simulation of natural evolution in which population un-
dergoes adaptation, under controlled evolution strategy, can be an efficient alternative ap-
proach for solving complex optimization problems. Genetic algorithms work with a popula-
tion of solutions. By the simulated evolution process of GA, over a number of generations, the
candidate solutions retain the better characteristics of multiple solutions of earlier generations.
This intrinsic parallelism provides the GA with an advantage over simulated annealing [2]
which uses one single solution.
 Because of such advantages, we are motivated to attempt a solution to the circuit parti-
tioning problem by GA. The experimental results show the efficacy of GA for the partitioning
problem.
 The rest of this paper is organized as follows. In the next section, we formulate the cir-
cuit partitioning problem. In Section 3, we describe some related work. In Section 4, we de-
scribe the genetic algorithm for circuit partitioning. Conclusions are presented in Section 5.
References are listed at the end.

2. The Circuit Partitioning Problem

 The circuit partitioning problem can be formulated as a graph partitioning problem. A
standard mathematical model of the circuits associates a graph G = (V, E) with the circuit net-
list, where vertices in V represent modules, and edges in E represent signal nets. The vertices
and edges of G may be weighted to reflect module area or importance of a wiring connection.
 Two basic formulations for circuit partitioning are the following:

• Minimum Cut: Given G = (V, E), partition V into disjoint subsets U and W such that
e(U, W), i.e., the number of edges in {(u, w) ∈ E | u ∈ U, w ∈ W}, is minimized.

• Minimum-Width Bisection: Given G = (V, E), partition V into disjoint subsets U and
W, with |U| = |W|, such that e(U, W) is minimized.

 Because minimum-width bisection divides modules so that their number is equal in
each partition, it is a more desirable objective for real circuits.
 The more general partitioning problem is when k disjoint subsets are formed. This is
called k-way partitioning and can be defined as follows:

• Given G = (V, E), where each vertex v ∈ V has a size s(v), and each edge e ∈ E has a
weight w(e), partition V into k subsets V1, V2, …, Vk, such that a given objective func-
tion is optimized, taking into account a number of constraints.

 Because circuit nets often have more than two pins, the netlist is more generally repre-
sented by a hypergraph H = (V, E’), where hyperedges in E’ are the subsets of V contained by
each net. A large segment of the literature treats graph partitioning instead of hypergraph par-
titioning since the formulation is simpler, and many algorithms are applicable only to graph
inputs. In this paper, we will discuss graph partitioning.

3. Related Work

 Many approaches have been proposed for the circuit partitioning problem. They in-
clude group swapping [3], [4], simulated annealing [2], network flow [5], eigenvector decom-
position [6], etc.

 2

 Kernighan and Lin proposed a two-way partitioning algorithm with constraints on the
subset size. This algorithm randomly starts with two subsets, and pairwise swapping is itera-
tively applied on all pairs of nodes. Subsequently, many improvements have been made to this
method. Schweikert and Kernighan proposed the use of a net cut model so that the algorithm
can handle multipin net cases [3]. Fiduccia and Mattheyses improved this algorithm by reduc-
ing time complexity to O(P) with respect to the number of pins P, and Krishnamurthy [4] fur-
ther added in lookahead ability. The Kernighan-Lin based algorithm is quite efficient but it
needs a predefined subset size to start with.
 Simulated annealing [2] is another method based on iterative improvement. The objec-
tive function in simulated annealing is analogous to energy in a physical system, and each
move is analogous to changes in the energy of the system. The Metropolis Monte Carlo
method is used to decide whether a move is accepted. Simulated annealing usually produces
good results at the expense of very long running time.
 The maximum-flow-minimum-cut algorithm was presented by Ford and Fulkerson.
They transformed the minimum cut problem into the maximum flow problem [5]. In order to
separate a pair of nodes into two subsets, the minimum number of crossing edges is equal to
the maximum amount of flow from one node to the other. Although this algorithm can find
the optimum solution between any pair of nodes in a network, there is no constraint on the
sizes of resultant subsets. In practice, the result is not useful if two very unevenly sized sub-
sets are generated.
 In eigenvector decomposition [6], connections are represented in a matrix. The eigen-
vectors of the matrix define the locations of all components and thus derive partitioning re-
sults. This method requires the transformation of every multipin net into several two-pin nets
in real circuits before establishing the matrix.
 Several studies using genetic algorithms (GAs) for the partitioning problem have been
done [7], [8]. These algorithms are motivated by the principles of natural selection. GAs gen-
erate potential solutions derived from solutions which were previously well ranked and mu-
tated by genetic operators such as crossover, mutation, and inversion. GAs are effective for
solving NP-complete problems, but their effectiveness is greatly dependent on the representa-
tion of the solution space. They are inherently parallelizable since numerous solutions can be
generated and tested simultaneously.
 Chandrasekharam et al. [7] described a GA for the node partitioning problem (NPP),
with applications in VLSI design. This algorithm was used to solve several graph-theoretic
problems, including graph colouring, clique cover, and maximal clique, which may be viewed
as instances of a general NPP. Three applied problems in VLSI design, which are instances of
NPP, were solved using this algorithm. The problems include test scheduling for “built-in self
test” (BIST) schemes of VLSI circuits, input encoding of finite state machines or digital logic
in control synthesis, and the determination of row and column folding to obtain an optimal
area PLA.
 Bui and Moon [8] described a hybrid GA for the graph partitioning problem. The algo-
rithm include a fast local improvement heuristic. One of the features of the algorithm is the
schema preprocessing phase that improves the solution space searching capability of the GA.

4. Genetic Algorithm for Circuit Partitioning

 4.1. Overview of the Algorithm

 The GA for the circuit partitioning problem (CPP) may be briefly described as follows.
The algorithm starts with an initial population of partitions. In each generation, offspring par-

 3

titions are obtained by a process of crossover between two parent partitions, at a specific
crossover rate. A process of mutation is also used for changing the structure of few selected
partitions in the population in each generation. From the initial partitions and the offspring
partitions a set of partitions are selected as the initial population of the next generation. This
process is continued for a number of generations. At the end the best partition available in the
population is chosen as the solution for the CPP.
 The only metric in the cost function in traditional partitioning algorithms, applied for
the placement of FPGA circuits, is the cut size. However, the cut size alone is not a good met-
ric for architectures with limited routing resources, such as FPGA circuits. Since the algorithm
tries to place connected blocks close together, it is possible to obtain a partition with a small
cut size, with one portion being heavily connected and the other being very sparse [9]. The
proposed GA not only balances the size of the two portions, but also evenly distributes the
connections among them. We define the unbalancing number of a net to be the number of
connecting paths needed to connect all the terminals in the left portion minus the number of
connecting paths needed in the right portion. The unbalancing number of a bi-partition is de-
fined to be the sum of the unbalancing numbers of all nets.
 The following fitness function is used to incorporate the effect of congestion distribu-
tion in a given partition:

Fi = 1 / (Cut_size + WEIGHT × Unbalancing number)

where WEIGHT is a constant. If WEIGHT is set to zero, then the algorithm is similar with a
conventional partitioning algorithm. By setting the value of WEIGHT appropriately, we can
control the importance of balancing the congestion.
 The process of genetic evolution essentially modifies the structure of elements in the
population. Therefore the structural representation of the solution is important. The structure
contains smaller building blocks, referred to as ‘genes’. For an efficient GA, in addition to a
proper solution structure, it is necessary that the initial population of solutions be a diverse
representative of the search space. The genetic operators crossover and mutation should be
efficient. Also the strategy of next generation population selection should ensure the survival
of better solutions in the long term and, at the same time, allow every new solution to compete
for survival in the short term. These aspects of the GA are detailed as follows.

4.2. Solution Representation

 Solution representation has a major role in designing an efficient GA. This representa-
tion should permit a large diversity in a small population. In the same time, the solution repre-
sentation should allow easy crossover and mutation operations, and easy computation of the
objective function.
 Based on these criteria, we have chosen a string of subsets of compatible nodes as the
solution structure. The subsets in a solution are disjoint. Since the objective function is pri-
marily determined by a cover of valid subsets, the number of subsets in the partition are cho-
sen as one field in the solution structure. This is shown in Fig. 1.

P1 P2 . . Pl . . Pk No. of subsets

Fig. 1. Solution representation of CPP.

 4

 4.3. Initial Population Generation

 The GA starts with a random initial population of solutions. This population is ob-
tained by generating random covers of compatible subsets of nodes. A random choice of size
of each subset in the cover contributes to some diversity in the population. Experimentally the
population of solutions are verified for diversity, and the method of initial population genera-
tion is observed to give adequate diversity.

 4.4. Genetic Operators

 Crossover is defined as an operator by which an offspring solution is obtained from
two candidate solutions of a population (parent solutions). If Πa and Πb are two candidate so-
lutions, representing valid partitions, the crossover operation is defined as Πa × Πb → Πo,
where Πo, the offspring, is another valid partition. The crossover combines schemata from
both parents, and therefore the offspring inherits some of the characteristics of the parents.
 The crossover operator with solution structures as strings of subsets is given in Fig. 2.
The offspring partition is constructed in three parts. The first part includes all subsets from Πa
up to the random cut l. The second part is from Πb from the random cut m forward. The third
part is from the subsets of the remaining nodes to be added for making the partition a valid
cover. No preliminary knowledge is necessary regarding the number of disjoint subsets of
nodes. This makes the choice of solution representation and corresponding crossover operator
suitable for this GA.

Fig. 2. Crossover operator.

 If a certain solution reproduces for a large number of times in the early stages of the
GA, it is likely that all solutions in the population would inherit some features of this solution
and so tend to be the same. Hence, the parent selection strategy employed should avoid this
premature convergence of the GA to a local optimum. We achieved this by not permitting any
better fit parent to reproduce more than once in a single generation.
 Mutation is implemented as follows. Depending on the mutation rate, a few nodes are
selected randomly from subsets, and placed in the other possible compatible subsets. If a com-
patible subset is not found, a new subset is added with such a node. If this results in emptying
any subset, a compaction in the subset list is performed. Such low level mutation would
disturb the solution structure by only a small amount. This mutation process would permit
population diversity to be maintained in later stages of the GA. Mutation also helps the GA to
surmount any local optimum.

 5

 4.5. Next Generation Population Selection

 The conventional GA employs the approach of generating two offspring from two par-
ents and replacing the parents by the two offspring for the next generation process. However,
we employed a different evolution strategy. In our approach, all offspring’s replace an equiva-
lent number of worst solutions in the current population. This strategy helps the survival of
any better solution over many generations. The solutions generated by the genetic operators
compete for at least one generation. This approach to next population selection provides an
efficient performance for the GA.

5. Conclusions

 In this paper we presented a GA for the circuit partitioning problem. The algorithm not
only balances the size of the two portions, but also evenly distributes the connections among
them. As the solution structure, a string of subsets of compatible nodes has been chosen. The
parent selection strategy employed avoids the premature convergence of the GA to a local op-
timum. The mutation process permits population diversity to be maintained. The algorithm
has been implemented and compared to a simulated annealing partitioning algorithm. Experi-
ments show that the execution time of the genetic algorithm is lower, the results being compa-
rable to that obtained by simulated annealing.

6. References

[1] S.M. Sait and H. Youssef, “VLSI Physical Design Automation”, McGraw-Hill
Book Company, 1995
[2] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by Simulated Anneal-
ing”, Science, No. 220, pp. 671-680, May 1983
[3] Y.C. Wei and C.K. Cheng, “Ratio Cut Partitioning for Hierarchical Designs”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 10, No. 7, pp. 911-921, July 1991
[4] B. Krishnamurthy, “An Improved Min-Cut Algorithm for Partitioning VLSI Net-
works”, IEEE Transactions on Computers, Vol. 33, No. 5, pp. 438-446, May 1984
[5] H.H. Yang and D.F. Wong, “Efficient Network Flow Based Min-Cut Balanced
Partitioning”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 15, No. 12, pp. 1533-1540, December 1996
[6] S.W. Hadley and B.L. Mark, “An Efficient Eigenvector Approach for Finding Net-
list Partitions”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 11, No. 7, pp. 885-892, July 1992
[7] R. Chandrasekharam, S. Subhramanian and S. Chaudhury, “Genetic Algorithm for
Node Partitioning Problem and Applications in VLSI Design”, IEE Proceedings-E,
Vol. 140, No. 5, pp. 255-260, September 1993
[8] T.N. Bui and B.R. Moon, “Genetic Algorithm and Graph Partitioning”, IEEE
Transactions on Computers, Vol. 45, No. 7, pp. 841-855, July 1996
[9] Z. Baruch, O. Creţ and K. Pusztai, “Partitioning for FPGA Circuits”, MicroCAD '97
International Computer Science Meeting, Miskolc, Hungary, Section D, pp. 113-116,
1997

 6

	The GA for the circuit partitioning problem (CPP) may be briefly described as follows. The algorithm starts with an initial population of partitions. In each generation, offspring partitions are obtained by a process of crossover between two parent par
	The only metric in the cost function in traditional partitioning algorithms, applied for the placement of FPGA circuits, is the cut size. However, the cut size alone is not a good metric for architectures with limited routing resources, such as FPGA circ
	Fi = 1 / (Cut_size + WEIGHT (Unbalancing number)

