
TMS320C62x Image/VideoProcessing
Library

Programmer’s Reference

Literature Number: SPRU400A
April 2002

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2002, Texas Instruments Incorporated

iiiRead This First

Preface

��������	�
��	�

About This Manual

Welcome to the TMS320C62x Image/Video Library, or IMGLIB for short. The
IMGLIB is a collection of high-level optimized DSP functions for the
TMS320C62x device. This source code library includes C-callable functions
(ANSI-C language compatible) for general-purpose imaging functions that in-
clude compression, video processing, machine vision, and medical imaging
type applications.

This document contains a reference for the IMGLIB functions and is organized
as follows:

� Overview – an introduction to the TI C62x IMGLIB

� Installation – information on how to install and rebuild IMGLIB

� IMGLIB Functions – a description of the routines in the library and how
they are organized

� IMGLIB Function Tables – a list of functions grouped by catagories

� IMGLIB Reference – a detailed description of each IMGLIB function

� Information about performance and support

How to Use This Manual

The information in this document describes the contents of the TMS320C62x
IMGLIB in several different ways.

� Chapter 1 – Overview provides a brief introduction to the TI C62x IM-
GLIB, shows the organization of the routines contained in the library, and
lists the features and benefits of the IMGLIB.

� Chapter 2 – Installing and Using IMGLIB provides information on how
to install, use, and rebuild the TI C62x IMGLIB.

� Chapter 3 – IMGLIB Function Descriptions provides a brief description
of each IMGLIB function.

Notational Conventions

iv

� Chapter 4 – IMGLIB Function Tables provides information about each
IMGLIB function in table format for easy reference. The information shown
for each function includes the syntax, a brief description, and a page refer-
ence for obtaining more detailed information.

� Chapter 5 – IMGLIB Reference provides a list of the routines within the
IMGLIB organized into functional categories. The functions within each
category are listed in alphabetical order and include arguments, descrip-
tions, algorithms, benchmarks, and special requirements.

� Appendix A – Performance and Support describes performance con-
siderations related to the C62x IMGLIB and provides information about
software updates and customer support.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface.

� In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of a syntax
that are within parentheses describe the type of information that should be
entered.

� Macro names are written in uppercase text; function names are written in
lowercase.

� The TMS320C62x is also referred to in this reference guide as the C62x.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the C62x/C67x digital signal processors, development
tools, and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

Trademarks

vRead This First

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/6701 digital signal processors. This book includes in-
formation on the internal data and program memories, the external
memory interface (EMIF), the host port interface (HPI), multichannel
buffered serial ports (McBSPs), direct memory access (DMA), enhanced
DMA (EDMA), expansion bus, clocking and phase-locked loop (PLL),
and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C6000 Chip Support Library (literature number SPRU401)
describes the application programming interfaces (APIs) used to config-
ure and control all on-chip peripherals.

TMS320C62x DSP Library (literature number SPRU402) describes the 32
high-level, C-callable, optimized DSP functions for general signal proc-
essing, math, and vector operations.

Trademarks

Windows is a registered trademark of Microsoft Corporation.

TMS320C62x and TMS320C64x are trademarks of Texas Instruments.

TMS320C6000 is a trademark of Texas Instruments.

Code Composer Studio is a trademark of Texas Instruments.

Contents

vii

������	

1 Introduction 1-1.
Introduces the TMS320C62x IMGLIB and describes its features and benefits.

1.1 Introduction to the TI C62x IMGLIB 1-2.
1.2 Features and Benefits 1-2.
1.3 Software Routines 1-2.

2 Installing and Using IMGLIB 2-1.
Provides information on how to install, use, and rebuild the IMGLIB.

2.1 Installing IMGLIB 2-2.
2.2 Using IMGLIB 2-4.

2.2.1 Calling an IMGLIB Function From C 2-4.
2.2.2 Calling an IMGLIB Function from Assembly 2-4.
2.2.3 How IMGLIB is Tested – Allowable Error 2-5.
2.2.4 How IMGLIB Deals with Overflow and Scaling Issues 2-5.
2.2.5 Code Composer Studio Users 2-5.

2.3 Rebuilding IMGLIB 2-5.

3 IMGLIB Function Descriptions 3-1.
Provides a brief description of each IMGLIB function.

3.1 IMGLIB Functions Overview 3-2.
3.2 Compression/Decompression 3-2.
3.3 Image Analysis 3-4.
3.4 Picture Filtering/Format Conversions 3-6.

4 IMGLIB Function Tables 4-1.
Provides tables containing all IMGLIB functions.

4.1 IMGLIB Function Tables 4-2.

Contents

viii

5 IMGLIB Reference 5-1.
Provides a list of the functions in the IMGLIB organized into functional catagories.

5.1 Compression/Decompression 5-2.
IMG_fdct_8x8 5-2.
IMG_idct_8x8 5-4.
IMG_mad_8x8 5-7.
IMG_mad_16x16 5-10.
IMG_mpeg2_vld_intra 5-13.
IMG_mpeg2_vld_inter 5-17.
IMG_quantize 5-19.
IMG_sad_8x8 5-22.
IMG_sad_16x16 5-24.
IMG_wave_horz 5-26.
IMG_wave_vert 5-31.

5.2 Image Analysis 5-35.
IMG_boundary 5-35.
IMG_dilate_bin 5-37.
IMG_erode_bin 5-39.
IMG_histogram 5-41.
IMG_perimeter 5-44.
IMG_sobel 5-46.
IMG_thr_gt2max 5-49.
IMG_thr_gt2thr 5-51.
IMG_thr_le2min 5-53.
IMG_thr_le2thr 5-55.

5.3 Picture Filtering/Format Conversions 5-57.
IMG_conv_3x3 5-57.
IMG_corr_3x3 5-60.
IMG_corr_gen 5-62.
IMG_errdif_bin 5-65.
IMG_median_3x3 5-69.
IMG_pix_expand 5-71.
IMG_pix_sat 5-72.
IMG_ycbcr422_rgb565 5-74.
IMG_yc_demux_be16 5-80.
IMG_yc_demux_le16 5-82.

A Performance and Support A-1.
Describes performance considerations related to the C62x IMGLIB and provides information
about software updates and customer support issues.

A.1 Performance Considerations A-2.
A.2 IMGLIB Software Updates A-2.
A.3 IMGLIB Customer Support A-2.

B Glossary B-1.
Defines terms and abbreviations used in this book.

Tables

ixContents

�����	

4–1 Compression/Decompression 4-2.
4–2 Image Analysis 4-3.
4–3 Picture Filtering/Format Conversions 4-4.

1-1

������������

This chapter introduces the TMS320C62x Image/Video Library (IMGLIB)
and describes its features and benefits.

Topic Page

1.1 Introduction to the TI C62x IMGLIB 1-2.

1.2 Features and Benefits 1-2.

1.3 Software Routines 1-2.

Chapter 1

Introduction to the TI C62x IMGLIB

 1-2

1.1 Introduction to the TI C62x IMGLIB

The TI C62x IMGLIB is an optimized Image/Video Processing Functions Li-
brary for C programmers using TMS320C62x devices. It includes many C-call-
able, assembly-optimized, general-purpose image/video processing routines.
These routines are typically used in computationally intensive real-time ap-
plications where optimal execution speed is critical. By using these routines,
you can achieve execution speeds considerably faster than equivalent code
written in standard ANSI C language. In addition, by providing ready-to-use
DSP functions, TI IMGLIB can significantly shorten your image/video process-
ing application development time.

1.2 Features and Benefits

The TI C62x IMGLIB contains commonly used image/video processing rou-
tines. Source code is provided that allows you to modify functions to match
your specific needs.

IMGLIB features include:

� Optimized assembly code routines

� C-callable routines fully compatible with the TI C6x compiler

� Benchmarks (cycles and code size)

� Tested against reference C model

Note:

Although the code provided in this software release has been optimized for
C62x DSP devices, it will also be operational on other members of the TI
C6000 DSP family as new devices are made available.

1.3 Software Routines

The rich set of software routines included in the IMGLIB are organized into
three different functional catagories as follows:

� Compression and decompression

� Image Analysis

� Picture filtering/format conversions

2-1

��	�������������	����������

This chapter provides information on how to install, use, and rebuild IMGLIB.

Topic Page

2.1 Installing MGLIB 2-2.

2.2 Using IMGLIB 2-4.

2.3 Rebuilding IMGLIB 2-5.

Chapter 2

Installing IMGLIB

 2-2

2.1 Installing IMGLIB

Note:

You should read the README.txt file for specific details of the release.

The archive has the following structure:

 img62x.zip

|

+–– README.txt Top–level README file

|

+–– lib

| |

| +–– img62x.lib Library archive

| |

| +–– img62x.src Full source archive

| | (Hand–assembly and headers)

| +–– img62x_sa.src Full source archive

| | (Linear asm and headers)

| +–– img62x_c.src Full source archive

| (C and headers)

|

+–– include Unpacked header files

|

+–– examples Example files

|

+–– doc

 |

 +–– img62xlib.pdf This document

First Step: De-Archive IMGLIB

The lib directory contains the library archive and the source archive. Please
install the contents of the lib directory in a directory pointed by your C_DIR en-
vironment. If you choose to install the contents in a different directory, make
sure you update the C_DIR environment variable,for example, by adding the
following line in autoexec.bat file:

Installing IMGLIB

2-3Installing and Using IMGLIB

SET C_DIR=<install_dir>/lib;<install_dir>/include;%C_DIR%

or under Unix/csh:

setenv C_DIR ”<install_dir>/lib;<install_dir>/
include; $C_DIR”

or under Unix/Bourne Shell:

C_DIR=”<install_dir>/lib;<install_dir>/include;$C_DIR” ;
export C_DIR

Using IMGLIB

 2-4

2.2 Using IMGLIB

2.2.1 Calling an IMGLIB Function From C

In addition to correctly installing the IMGLIB software, you must follow these
steps to include an IMGLIB function in your code:

� Include the function header file corresponding to the IMGLIB function

� Link your code with img62x.lib

� Use a correct linker command file for the platform you use. Remember
most functions in img62x.lib are written assuming little-endian mode of op-
eration.

For example, if you want to call the fdct_8x8 IMGLIB function you would add

#include <fdct_8x8.h>

in your C file and compile and link using

cl6x main.c –z –o fdct_8x8_drv.out –lrts6201.lib
–limg62x.lib

Code Composer Studio Users

Assuming your C_DIR environment is correctly set-up (as mentioned in
section 2.1), you would have to add IMGLIB in the Code Composer Studio en-
vironment by choosing img62x.lib from the menu Project –> Add Files to Proj-
ect. Also please make sure you link with the correct run-time support library.

2.2.2 Calling an IMGLIB Function from Assembly

The C62x IMGLIB functions were written to be used from C. Calling the func-
tions from assembly language source code is possible as long as the calling-
function conforms to the Texas Instruments C6000 C compiler calling conven-
tions. Please refer to section 8, Runtime Environment, of TMS320C6000 Opti-
mizing C Compiler User’s Guide (literature number SPRU187).

Rebuilding IMGLIB

2-5Installing and Using IMGLIB

2.2.3 How IMGLIB is Tested – Allowable Error

IMGLIB is tested under Code Composer Studio environment against a refer-
ence C implementation. Test routines that deal with fixed-point type results ex-
pect identical results between Reference C implementation and its Assembly
implementation. The test routines that deals floating point typically allow an er-
ror margin of 0.000001 when comparing the results of reference C code and
IMGLIB assembly code.

2.2.4 How IMGLIB Deals with Overflow and Scaling Issues

The IMGLIB functions implement the exact functionality of the reference C
code. The user is expected to conform to the range requirements specified in
the function API and also additionally be responsible to restrict the input range
in such a way that the outputs do not overflow.

2.2.5 Code Composer Studio Users

If you set up a project Under Code Composer Studio, you could add IMGLIB
by choosing img62x.lib from the menu Project –> Add Files to Project. Also
please make sure you link with the correct run-time support library and IMGLIB
by having the following lines in your linker command file:

–lrts6201.lib

–limg62x.lib

The include directory contains the header files necessary to be included in the
C code when you call an IMGLIB function from C code.

2.3 Rebuilding IMGLIB

If you would like to rebuild IMGLIB (for example, because you modified the
source file contained in the archive), you will have to use the mk6x utility as
follows:

 mk6x img62x.src –l img62x.lib

Using IMGLIB / Rebuilding IMGLIB

3-1

�������
����������	��������	

This chapter provides a brief description of each IMGLIB function listed in three
catagories. It also gives representative examples of their areas of applicability.

Topic Page

3.1 IMGLIB Functions Overview 3-2.

3.2 Compression/Decompression 3-2.

3.3 Image Analysis 3-4.

3.4 Picture Filtering/Format Conversions 3-6.

Chapter 3

IMGLIB Functions Overview

 3-2

3.1 IMGLIB Functions Overview

The C62x IMGLIB provides a collection of C callable high performance rou-
tines that can serve as key enablers for a wide range of image/video process-
ing applications. These functions are representative of the high performance
capabilities of the C62x DSP. Some of the functions provided and their areas
of applicability are listed below. The areas of applicability are only provided as
representative examples; users of this software will surely conceive many
more creative uses.

3.2 Compression/Decompression

This section describes the functions that are applicable to compression/de-
compression standards such as JPEG, MPEG video, and H.26x.

� IMG_fdct_8x8

� IMG_idct_8x8

Forward and Inverse DCT (Discrete Cosine Transform) functions,
IMG_fdct_8x8 and IMG_idct_8x8, respectively, are provided. These
functions have applicability in a wide range of compression standards
such as JPEG Encode/Decode, MPEG Video Encode/Decode, and H.26x
Encode/Decode. These compression standards are used in diverse end-
applications such as:

� JPEG is used in printing, photography, security systems, etc.

� MPEG video standards are used in digital TV, DVD players, set-top
boxes, video-on-demand systems, video disc applications, multime-
dia/streaming media applications, etc.

� H.26x standards are used in video telephony and some streaming me-
dia applications.

Note that the Inverse DCT function performs an IEEE 1180-1990 com-
pliant inverse DCT, including rounding and saturation to signed 9-bit quan-
tities. The forward DCT rounds the output values for improved accuracy.
These factors can have significant effect on the final result in terms of pic-
ture quality, and are important to consider when implementing DCT-based
systems or comparing the performance of different DCT-based imple-
mentations.

Compression/Decompression

3-3IMGLIB Function Descriptions

� IMG_mad_8x8

� IMG_mad_16x16

� IMG_sad_8x8

� IMG_sad_16x16

These functions are provided to enable high-performance motion-estima-
tion algorithms used in applications such as MPEG Video Encode or H.26x
Encode. Video encoding is useful in video-on-demand systems, stream-
ing media systems, video telephony, etc. Motion estimation is typically one
of the most computation-intensive operations in video encoding systems;
the high performance enabled by the functions provided can enable signif-
icant improvements in such systems.

� IMG_mpeg2_vld_intra

� IMG_mpeg2_vld_inter

The MPEG-2 variable length decoding functions provide a highly inte-
grated and efficient solution for performing variable length decoding, run-
length expansion, inverse scan, dequantization, saturation and mismatch
control of MPEG-2 coded intra and non-intra macroblocks. The perfor-
mance of any MPEG-2 video decoder system relies heavily on the efficient
implementation of these decoding steps.

� IMG_quantize

Quantization is an integral step in many image/video compression sys-
tems, including those based on widely used variations of DCT-based
compression such as JPEG, MPEG, and H.26x. The routine IMG_quan-
tize can be used in such systems to perform the quantization step.

� IMG_wave_horz

� IMG_wave_vert

Wavelet processing is finding increasing use in emerging standards such
as JPEG2000 and MPEG-4, where it is typically used to provide highly effi-
cient still picture compression. Various proprietary image compression
systems are also wavelets-based. Included in this release are utilities
IMG_wave_horz and IMG_wave_vert for computing horizontal and
vertical wavelet transforms. Together, they can be used to compute 2-D
wavelet transforms for image data. The routines are flexible enough, with-
in documented constraints, to accommodate a wide range of specific
wavelets and image dimensions.

Image Analysis

 3-4

3.3 Image Analysis

This section provides a description of the functions that are applicable to image
analysis standards.

� IMG_boundary

Boundary and Perimeter computation functions, IMG_boundary and
IMG_perimeter, are provided. These are commonly used structural
operators in machine vision applications.

� IMG_dilate_bin

� IMG_erode_bin

The IMG_dilate_bin and IMG_erode_bin functions are morphological op-
erators that are used to perform Dilation and Erosion operations on binary
images. Dilation and Erosion are the fundamental “building blocks” of vari-
ous morphological operations such as Opening, Closing, etc. that can be
created from combinations of dilation and erosion. These functions are
useful in machine vision and medical imaging applications.

� IMG_histogram

The histogram routine provides the ability to generate an image histo-
gram. An image histogram is basically a count of the intensity levels (or
some other statistic) in an image. For example, for a grayscale image with
8-bit pixel intensity values, the histogram will consist of 256 bins corre-
sponding to the 256 possible pixel intensities. Each bin will contain a count
of the number of pixels in the image that have that particular intensity val-
ue. Histogram processing (such as histogram equalization or modifica-
tion) are used in areas such as machine vision systems and image/ideo
content generation systems.

� IMG_perimeter

Boundary and Perimeter computation functions, IMG_boundary and
IMG_perimeter, are provided. These are commonly used structural
operators in machine vision applications.

� IMG_sobel

Edge Detection is a commonly-used operation in machine vision systems.
Many algorithms exist for edge detection, and one of the most commonly
used ones is Sobel Edge Detection. The routine IMG_sobel provides an
optimized implementation of this edge detection algorithm.

Image Analysis

3-5IMGLIB Function Descriptions

� IMG_thr_gt2max

� IMG_thr_gt2thr

� IMG_thr_le2min

� IMG_thr_le2thr

Different forms of Image Thresholding operations are used for various rea-
sons in image/video processing systems. For example, one form of
thresholding may be used to convert grayscale image data to binary image
data for input to binary morphological processing. Another form of thresh-
olding may be used to clip image data levels into a desired range, and yet
another form of thresholding may be used to zero out low-level perturba-
tions in image data due to sensor noise. Thresholding is also used for sim-
ple segmentation in machine vision applications.

Picture Filtering/Format Conversions

 3-6

3.4 Picture Filtering/Format Conversions

This section provides a description of the functions that are applicable to pic-
ture filtering and format conversions.

� IMG_conv_3x3

The convolution function is used to apply generic image filters with a 3x3
filter mask, such as image smoothing, sharpening, etc.

� IMG_corr_3x3

� IMG_corr_gen

Correlation functions are provided to enable image matching. Image
matching is useful in applications such as machine vision, medical imag-
ing, and security/defense. Two versions of correlation functions are pro-
vided: IMG_corr_3x3 implements highly optimized correlation for com-
monly used 3x3 pixel neighborhoods, and a more general version,
IMG_corr_gen, can implement correlation for user specified pixel neigh-
borhood dimensions within documented constraints.

� IMG_errdif_bin

Error Diffusion with binary valued output is useful in printing applications.
The most widely used error diffusion algorithm is the Floyd-Steinberg al-
gorithm. An optimized implementation of this algorithm is provided in the
function, IMG_errdif_bin.

� IMG_median_3x3

Median filtering is used in image restoration, to minimize the effects of im-
pulsive noise in imagery. Applications can cover almost any area where
impulsive noise may be a problem, including security/defense, machine
vision, and video compression systems. Optimized implementation of me-
dian filter for 3x3 pixel neighborhood is provided in the routine IMG_me-
dian_3x3.

� IMG_pix_expand

� IMG_pix_sat

The routines IMG_pix_expand and IMG_pix_sat respectively expand
8-bit pixels to 16-bit quantities by zero extension, and saturate 16-bit
signed numbers to 8-bit unsigned numbers. They can be used to prepare
input and output data for other routines such as the horizontal and vertical
scaling routines.

Picture Filtering/Format Conversions

3-7IMGLIB Function Descriptions

� IMG_ycbcr422p_rgb565

Color space conversion from YCbCr to RGB enables the display of digital
video data generated for instance by an MPEG or JPEG decoder system
on RGB displays.

� IMG_yc_demux_be16

� IMG_yc_demux_le16

These routines takes a packed YCrYCb color buffer in big endian or little
endian format and expand the constituent color elements into separate
buffers in little endian byte ordering.

4-1

�������
�������������	�

This chapter provides tables containing all IMGLIB functions, a brief descrip-
tion of each, and a page reference for more detailed information.

Topic Page

4.1 IMGLIB Function Tables 4-2.

Chapter 4

IMGLIB Function Tables

 4-2

4.1 IMGLIB Function Tables

The routines included in the image library are organized into three functional
categories and listed below in alphabetical order.

Table 4–1. Compression/Decompression

Function Description Page

void IMG_fdct_8x8(short fdct_data[], unsigned
num_fdcts)

Forward Discrete Cosine
Transform (FDCT)

5-2

void IMG_idct_8x8(short idct_data[], unsigned
num_idcts)

Inverse Discrete Cosine
Transform (IDCT)

5-4

void IMG_mad_8x8(void *ref_data, void * src_data, int
pitch, void *motvec)

8x8 Minimum Absolute Difference 5-7

void IMG_mad_16x16(void *ref_data, void * src_data, int
pitch, void *motvec)

16x16 Minimum Absolute
Difference

5-10

void IMG_mpeg2_vld_intra(short *Wptr, short *outi,
unsigned int *Mpeg2v, int dc_pred[3])

MPEG-2 Variable Length
Decoding of Intra MBs

5-13

void IMG_mpeg2_vld_inter(short *Wptr, short *outi,
unsigned int *Mpeg2v)

MPEG-2 Variable Length
Decoding of Inter MBs

5-17

void IMG_quantize(short *data, int num_blks, int blk_sz,
const short *recip_tbl, int q_pt)

Matrix Quantization with
Rounding

5-19

unsigned IMG_sad_8x8(unsigned char *srcImg, unsigned
char *refImg, int pitch);

Sum of Absolute Differences on
single 8x8 block

5-22

unsigned IMG_sad_16x16(unsigned char *srcImg,
unsigned char *refImg, int pitch);

Sum of Absolute Differences on
single 16x16 block

5-24

void IMG_wave_horz(short *in_data, short *qmf, short
*mqmf, short *out_data, int cols)

Horizontal Wavelet Transform 5-26

void IMG_wave_vert(short *in_data[], short *qmf,short
*mqmf,short *out_ldata,short *out_hdata,int cols,int M)

Vertical Wavelet Transform 5-31

IMGLIB Function Tables

4-3IMGLIB Function Tables

Table 4–2. Image Analysis

Function Description Page

void IMG_boundary(unsigned char *in_data, int rows, int
cols, int *XY, int *out_data)

Boundary Structural Operator 5-35

void IMG_dilate_bin(unsigned char *in_data, unsigned
char *out_data, char *mask, int cols)

3x3 Binary Dilation 5-37

void IMG_erode_bin(unsigned char *in_data, unsigned
char *out_data, char *mask, int cols)

3x3 Binary Erosion 5-39

void IMG_histogram(unsigned char *in_data, int n, int
accumulate, unsigned short *t_hist, unsigned short *hist)

Histogram Computation 5-41

void IMG_perimeter(unsigned char *in_data, int cols,
unsigned char *out_data)

Perimeter Structural Operator 5-44

void IMG_sobel(const unsigned char *in_data, unsigned
char *out_data, short cols, short rows)

Sobel Edge Detection 5-46

void IMG_thr_gt2max(unsigned char *in_data, unsigned
char *out_data, short cols, short rows, unsigned char
threshold)

Thresholding – Clamp to 255 5-49

void IMG_thr_gt2thr(unsigned char *in_data, unsigned
char *out_data, short cols, short rows, unsigned char
threshold)

Thresholding – Clip above
threshold

5-51

void IMG_thr_le2min(unsigned char *in_data, unsigned
char *out_data, short cols, short rows, unsigned char
threshold)

Thresholding – Clamp to zero 5-53

void IMG_thr_le2thr(unsigned char *in_data, unsigned
char *out_data, short cols, short rows, unsigned char
threshold)

Thresholding – Clip below
threshold

5-55

IMGLIB Function Tables

 4-4

Table 4–3. Picture Filtering/Format Conversions

Function Description Page

void IMG_conv_3x3(unsigned char *in_data, unsigned
char *out_data, int cols, char *mask, int shift)

3x3 Convolution 5-57

void IMG_corr_3x3(const unsigned char *in_data, int
*out_data, unsigned char mask[3][3], int x_dim, int n_out)

3x3 Correlation 5-60

void IMG_corr_gen(short *in_data, short *h, short
*out_data, int m, int cols)

Generalized Correlation 5-62

void IMG_errdif_bin(unsigned char errdif_data[], int cols,
int rows, short err_buf[], unsigned char thresh)

Error Diffusion, Binary Output 5-65

void IMG_median_3x3(unsigned char *in_data, int cols,
unsigned char *out_data)

3x3 Median Filter 5-69

void pix_expand(int n, unsigned char *in_data, short
*out_data)

Pixel Expand 5-71

void IMG_pix_sat(int n, short *in_data, unsigned char
*out_data)

Pixel Saturation 5-72

void IMG_ycbcr422p_rgb565(short coeff[5], unsigned
char *y_data, unsigned char *cb_data, unsigned char
*cr_data, unsigned short *rgb_data, unsigned num_pixels)

Planarized YCbCr 4:2:2/4:2:0 to
RGB 5:6:5 color space
conversion

5-74

void IMG_yc_demux_be16(int n, unsigned char *yc, short
*y, short *cr, short *cb)

YCbCr Demultiplexing
(big endian source)

5-80

void IMG_yc_demux_le16(int n, unsigned char *yc, short
*y, short *cr, short *cb)

YCbCr Demultiplexing
(little endian source)

5-82

5-1

����������������

This chapter provides a list of the routines within the IMGLIB organized into
functional categories. The functions within each category are listed in alpha-
betical order and include arguments, descriptions, algorithms, benchmarks,
and special requirements.

Topic Page

5.1 Compression/Decompression 5-2.

5.2 Image Analysis 5-35.

5.3 Picture Filtering/Format Conversions 5-57.

Chapter 5

IMG_fdct_8x8

5-2

5.1 Compression/Decompression

Forward Discrete Cosine Transform (FDCT)IMG_fdct_8x8

Function void IMG_fdct_8x8(short fdct_data[], unsigned num_fdcts)

Arguments

fdct_data Pointer to ‘num_fdct’ 8x8 blocks of image data. Must be
double-word aligned.

num_fdcts Number of FDCTs to perform. Note that IMG_fdct_8x8
requires exactly ‘num_fdcts’ blocks of storage starting at
the location pointed to by ‘fdct_data’, since the transform
is executed completely in place.

Description This routine implements the Forward Discrete Cosine Transform (FDCT). Out-
put values are rounded, providing improved accuracy. Input terms are ex-
pected to be signed 11Q0 values, producing signed 15Q0 results. A smaller
dynamic range may be used on the input, producing a correspondingly smaller
output range. Typical applications include processing signed 9Q0 and un-
signed 8Q0 pixel data, producing signed 13Q0 or 12Q0 outputs, respectively.
No saturation is performed.

Algorithm The Forward Discrete Cosine Transform (FDCT) is described by the following
equation:

I(u, v) �
�(u)�(v)

4

�
7
�

x � 0

7
�

y � 0
i(x, y) cos�(2x � 1)u�

16
� cos�(2y � 1)v�

16
�

where

z � 0 � �(z) � 1
2�

z 	 0 � �(z) � 1

i(x,y) : pixel values (spatial domain)

I(u,v) : transform values (frequency domain)

This particular implementation uses the Chen algorithm for expressing the
FDCT. Rounding is performed to provide improved accuracy.

IMG_fdct_8x8

5-3 IMGLIB Reference

Special Requirements
� Input terms are expected to be signed 11Q0 values, i.e., in the range

[–512,511], producing signed 15Q0 results. Larger inputs may result in
overflow.

� The IMG_fdct_8x8 routine accepts a list of 8x8 pixel blocks and performs
FDCTs on each. Pixel blocks are stored contiguously in memory. Within
each pixel block, pixels are expected in left-to-right, top-to-bottom order.

� Results are returned contiguously in memory. Within each block, frequen-
cy domain terms are stored in increasing horizontal frequency order from
left to right, and increasing vertical frequency order from top to bottom.

Implementation Notes
� The code is setup to provide an early exit if it is called with num_fdcts = 0.

In such case it will run for 13 cycles.

� Both vertical and horizontal loops have been software pipelined.

� For performance, portions of the optimized assembly code outside the
loops have been interscheduled with the prolog and epilog code of the
loops. Also, twin stack pointers are used to accelerate stack accesses. Fi-
nally, pointer values and cosine term registers are reused between the
horizontal and vertical loops to reduce the impact of pointer and constant
re-initialization.

� To save code size, prolog and epilog collapsing have been performed in
the optimized assembly code to the extent that it does not impact perfor-
mance.

� To reduce register pressure and save some code, the horizontal loop uses
the same pair of pointer registers for both reading and writing. The pointer
increments are on the loads to permit prolog and epilog collapsing, since
loads can be speculated.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code masks interrupts for nearly its entire duration.
Interrupts are locked out for ‘40 +160 * num_fdcts’ cycles. As a result, the
code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 160 * num_fdcts + 48

For num_fdtcs = 6, cycles = 1008
For num_fdcts = 24, cycles = 3888

Code size 1216 bytes

IMG_idct_8x8

5-4

Inverse Discrete Cosine Transform (IDCT)IMG_idct_8x8

Function void IMG_idct_8x8(short_idct data[], unsigned num_idcts)

Arguments

idct_data Pointer to ‘num_idcts’ 8x8 blocks of DCT coefficients.
Must be double-word aligned.

num_idcts Number of IDCTs to perform.

Description This routine performs an IEEE 1180-1990 compliant IDCT, including rounding
and saturation to signed 9-bit quantities. The input coefficients are assumed to
be signed 12-bit DCT coefficients.

The function performs a series of 8x8 IDCTs on a list of 8x8 blocks.

Algorithm The Inverse Discrete Cosine Transform (IDCT) is described by the following
equation:

i(x, y) � 1
4

7
�

u � 0

7
�

v � 0
I(u, v) cos�(2x � 1)u�

16
� cos�(2y � 1)v�

16
�

where

z � 0 � �(z) � 1
2�

z 	 0 � �(z) � 1

i(x,y) : pixel values (spatial domain)

i(x,y) : pixel values (spatial domain)

I(u,v) : transform values (frequency domain)

This particular implementation uses the Even-Odd Decomposition algorithm
for expressing the IDCT. Rounding is performed so that the result meets the
IEEE 1180-1990 precision and accuracy specification.

Special Requirements
� Input DCT coefficients are expected to be in the range +2047 to –2048 in-

clusive. Output terms are saturated to the range +255 to –256 inclusive
(i.e., inputs are in a signed 12-bit range and outputs are saturated to a
signed 9-bit range).

� The code is set up to provide an early exit if it is called with num_idcts = 0.
In such case, it will run for 13 cycles.

IMG_idct_8x8

5-5 IMGLIB Reference

� The IMG_idct_8x8 routine accepts a list of 8x8 DCT coefficient blocks and
performs IDCTs on each. Coefficient blocks are stored contiguously in
memory. Within each block, frequency domain terms are stored in increas-
ing horizontal frequency order from left to right and increasing vertical fre-
quency order from top to bottom.

� Results are returned contiguously in memory. Within each pixel block, pix-
els are returned in left-to-right, top-to-bottom order.

� The idct_data[] array must be aligned to a 32-bit (word) boundary.

� The routine requires one 8x8 block’s worth of extra storage at the end of
the list of DCT blocks. The caller must provide room for ‘num_idcts + 1’
blocks of data in the idct_data[] array. The original contents of the extra
block are ignored and overwritten with intermediate results by idct_8x8().

� The optimized assembly code requires ‘(168 * num_idcts) + 62’ cycles to
process ‘num_idcts’ blocks. When ‘num_idcts’ is zero, the function takes
an early exit and runs for only 35 cycles (again, including overhead).

Implementation Notes
� The idct_8x8() function returns its results in place, although it generates

intermediate results out of place. As a result, when processing N blocks,
it requires N+1 blocks of storage, with the extra block occurring immedi-
ately after the valid input data. The initial value of this extra block is ig-
nored, as its value is overwritten with the intermediate results of the IDCT.

� For performance, portions of the optimized code outside the loops have
been inter-scheduled with the prolog and epilog code of the loops. Also,
twin stack pointers are used to accelerate stack accesses. Finally, pointer
values and cosine term registers are reused between the horizontal and
vertical loops to save the need for messy pointer and constant re-initializa-
tion.

� To save code size, prolog and epilog collapsing have been performed to
the extent that it does not impact performance. Also, code outside the
loops has been scheduled to pack as tightly into fetch packets as possible
to avoid alignment padding NOPs.

IMG_idct_8x8

5-6

� The IDCTs cannot be performed completely in place due to the transpose
that each pass performs. In order to save data memory, the horizontal
pass works from the end of the array towards the beginning, writing its re-
sult one IDCT block later in memory, thus performing the IDCT nearly in
place. The vertical pass performs its IDCTs in the opposite direction, work-
ing from the start of the array towards the end, writing the results in place.
A nice side effect of this is that the pointer values at the end of the horizon-
tal loop are a fixed offset relative to their required values for the vertical
loop, regardless of the number of IDCTs performed. This makes the point-
er re-initialization exceptionally cheap.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 168 * num_idcts + 62

For num_idcts = 6, cycles = 1070
For num_idcts = 24, cycles = 4094

Code size 1344 bytes

IMG_mad_8x8

5-7 IMGLIB Reference

8x8 Minimum Absolute DifferenceIMG_mad_8x8

Function void IMG_mad_8x8(unsigned char *refImg, unsigned char *srcImg, int pitch,
int h, int v, unsigned int *match)

Arguments

*refImg Pointer to a pixel in a reference image which constitutes
the top left corner of the area to be searched. The
dimensions of the search area are given by (h + 8) x
(v + 8).

srcImg[8*8] Pointer to 8x8 source image pixels.

pitch Width of reference image.

h Horizontal dimension of the search space.

v Vertical dimension of the search space. Must be a
multiple of 2.

match[2] Result.

match[0]: Packed best match location. The upper half
word contains the horizontal pixel position and the lower
half word the vertical pixel position of the best matching
8x8 block in the search area. The range of the
coordinates is [0,h–1] in the horizontal dimension and
[0,v–1] in the vertical dimension, where the location (0,0)
represents the top left corner of the search area.

match[1]: Minimum absolute difference value at the best
match location.

Description This routine locates the position of the top-left corner of an 8x8 pixel block in
a reference image which most closely matches the 8x8 pixel block in srcImg[],
using the sum of absolute differences metric. The source image block srcImg[
] is moved over a range that is h pixels wide and v pixels tall within a reference
image that is pitch pixels wide. The pointer *refImg points to the top-left corner
of the search area within the reference image. The match location as well as
the minimum absolute difference value for the match are returned in the
match[2] array. The search is performed in top-to-bottom, left-to-right order,
with the earliest match taking precedence in the case of ties.

Algorithm Behavioral C code for the routine is provided below: The assembly imple-
mentation has restrictions as noted under Special Requirements.

void IMG_mad_8x8

(

 const unsigned char *restrict refImg,

 const unsigned char *restrict srcImg,

IMG_mad_8x8

5-8

 int pitch, int h, int v,

 unsigned int *restrict match

)

{

 int i, j, x, y, matx, maty;

 unsigned matpos, matval;

 matval = ~0U;

 matx = maty = 0;

 for (x = 0; x < h; x++)

 for (y = 0; y < v; y++)

 {

 unsigned acc = 0;

 for (i = 0; i < 8; i++)

 for (j = 0; j < 8; j++)

 acc += abs(srcImg[i*8 + j] –

 refImg[(i+y)*pitch + x + j]);

 if (acc < matval)

 {

 matval = acc;

 matx = x;

 maty = y;

 }

 }

 matpos = (0xffff0000 & (matx << 16)) |

 (0x0000ffff & maty);

 match[0] = matpos;

 match[1] = matval;

}

Special Requirements
� v must be a multiple of 2.

� srcImg and refImg do not alias in memory.

� No special alignment of srcImg or refImg is expected.

IMG_mad_8x8

5-9 IMGLIB Reference

Implementation Notes
� Every inner loop iteration computes 4 pixel differences each for two

vertically adjacent search locations. 4 iterations are therefore required to
compute one line and 4*16=64 iterations to compute the complete SADs
of the two search locations. Delay slot stuffing and outer loop branch
overhead is minimized.

� Bank Conflicts: At most one bank conflict can occurr.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 67.25 * h * v + 23

For h = 4, v = 4, cycles = 1099
For h = 64, v = 32, cycles = 137,728

Code size 864 bytes

IMG_mad_16x16

5-10

16x16 Minimum Absolute DifferenceIMG_mad_16x16

Function void IMG_mad_16x16 (unsigned char *refImg, unsigned char *srcImg, int
pitch, int h, int v, unsigned int *match)

Arguments

*refImg Pointer to a pixel in a reference image which
constitutes the top left corner of the area to be
searched. The dimensions of the search area are
given by (h + 16) x (v + 16).

srcImg[16*16] Pointer to 16x16 source image pixels.

pitch Width of reference image.

h Horizontal dimension of the search space.

v Vertical dimension of the search space. Must be a
multiple of 2.

match[2] Result.

match[0]: Packed best match location. The upper half
word contains the horizontal pixel position and the
lower half word the vertical pixel position of the best
matching 16x16 block in the search area. The range
of the coordinates is [0,h–1] in the horizontal
dimension and [0,v–1] in the vertical dimension,
where the location (0,0) represents the top left corner
of the search area.

match[1]: Minimum absolute difference value at the
best match location.

Description This routine locates the position of the top-left corner of an 16x16 pixel block
in a reference image which most closely matches the 16x16 pixel block in
srcImg[], using the sum of absolute differences metric. The source image
block srcImg[] is moved over a range that is h pixels wide and v pixels tall within
a reference image that is pitch pixels wide. The pointer *refImg points to the
top-left corner of the search area within the reference image. The match loca-
tion as well as the minimum absolute difference value for the match are re-
turned in the match[2] array.

IMG_mad_16x16

5-11 IMGLIB Reference

Algorithm Behavioral C code for the routine is provided below: The assembly imple-
mentation has restrictions as noted under Special Requirements.

void IMG_mad_16x16

(

 const unsigned char *restrict refImg,

 const unsigned char *restrict srcImg,

 int pitch, int h, int v,

 unsigned int *restrict match

)

{

 int i, j, x, y, matx, maty;

 unsigned matpos, matval;

 matval = ~0U;

 matx = maty = 0;

 for (x = 0; x < h; x++)

 for (y = 0; y < v; y++)

 {

 unsigned acc = 0;

 for (i = 0; i < 16; i++)

 for (j = 0; j < 16; j++)

 acc += abs(srcImg[i*16 + j] –

 refImg[(i+y)*pitch + x + j]);

 if (acc < matval)

 {

 matval = acc;

 matx = x;

 maty = y;

 }

 }

 matpos = (0xffff0000 & (matx << 16)) |

 (0x0000ffff & maty);

 match[0] = matpos;

 match[1] = matval;

}

IMG_mad_16x16

5-12

Special Requirements
� It is assumed that srcImg[] and refImg[] do not alias in memory.

� v must be a multiple of 2.

� There are no alignment restrictions.

Implementation Notes
� Every inner loop iteration computes 4 pixel differences each for two

vertically adjacent search locations. 4 iterations are therefore required to
compute one line and 4*16=64 iterations to compute the complete SADs
of the two search locations. Delay slot stuffing and outer loop branch
overhead is minimized.

� Bank Conflicts: At most one bank conflict can occurr.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 231 * h * v + 21

For h = 4, v = 4, cycles = 3725
For h = 64, v = 32, cycles = 474,133

Code size 832 bytes

IMG_mpeg2_vld_intra

5-13 IMGLIB Reference

MPEG-2 Variable Length Decoding of Intra MBsIMG_mpeg2_vld_intra

Function void IMG_mpeg2_vld_intra(short *Wptr, short *outi, unsigned int *Mpeg2v, int
dc_pred[3])

Arguments

Wptr[64] Pointer to array that contains quantization matrix. The
elements of the quantization matrix in Wptr[] must be
ordered according to the scan pattern used (zigzag or
alternate scan).

outi[6*64] Pointer to the IDCT coefficients output array, elements
must be set to zero prior to function call. The routine
assumes 6 8x8 blocks per MB, i.e. 4:2:0 format.

Mpeg2v Pointer to the context object containing the coding
parameters of the MB to be decoded and the current state
of the bitstream buffer. The structure is described below.

dc_pred[3] Intra DC prediction array, the first element of dc_pred is
the DC prediction for Y, the second for Cr and the third for
Cb.

Description This routine takes a bitstream of an MPEG-2 intra coded macroblock (MB) and
returns the decoded IDCT coefficients. The routine checks the coded block
pattern (cbp) and performs DC and AC coefficient decoding including variable
length decode, run-length expansion, inverse zigzag ordering, de-quantiza-
tion, saturation and mismatch control. An example program is provided which
illustrates the usage of this routine.

The structure Mpeg2v is defined as follows:

 typedef struct {

 unsigned int *bsbuf; // pointer to bitstream buffer

 unsigned int next_wptr; // next word to read from buffer

 unsigned int bptr; // bit position within word

 unsigned int word1; // word aligned buffer

 unsigned int word2; // word aligned buffer

 unsigned int top0; // top 32 bits of bitstream

 unsigned int top1; // next 32 bits of bitstream

 unsigned char *scan; // inverse zigzag scan matrix

 unsigned int intravlc; // intra_vlc_format

 unsigned int quant_scale; // quantiser_scale

 unsigned int dc_prec; // intra_dc_precision

 unsigned int cbp; // coded_block_pattern

 unsigned int fault; // fault condition (returned)

};

IMG_mpeg2_vld_intra

5-14

All variables in this strucure must have the layout as shown since they are be-
ing accessed by this routine through appropriate offsets. Other variables may
be appended to the structure.

The routine sets the fault flag Mpeg2v.fault to 1 if an invalid VLC code was en-
countered or the total run for a block exceeded 63. In theses cases the decoder
has to resynchronize.

The routine requires proprietary variable length decoding look-up tables. The
tables are based on Table B-14 and B-15 in the MPEG-2 standard text. They
are provided as:

b-14s_tbl.c run-level VLD table, 1152 bytes

b-15s_tbl.c run-level VLD table, 1152 bytes

b-14_len_tbl.c code word length table, 512 bytes

b-15_len_tbl.c code word length table, 512 bytes

b-14_len_c_tbl.c code word compl. length table, 512 bytes

b-15_len_c_tbl.c code word compl. length table, 512 bytes

Before calling the routine the bitstream varaibles in Mpeg2v have to be initial-
ized. If bsbuf[] is a circular buffer of size BSBUF_SIZE words and bsptr con-
tains the number of bits in the buffer that already have been consumed, then
next_wptr, bptr, word1, word2, top0 and top1 are initialized as follows:

1) next_wptr: bsptr may not be a multiple of 32, therefore it is set to the next
lower multiple of 32.

next_wptr = (bsptr >> 5);

2) bptr: bptr is the bit pointer which points to the current bit within the word
pointed to by next_wptr.

bptr = bsptr & 31;
bptr_cmpl = 32 - bptr;

3) word1 and word2: Read the next 3 words from the bitstream buffer bsbuf.
bsbuf_words is the size of the bitstream buffer in words (word0 is a tempo-
rary variable not passed in Mpeg2v).

word0 = bsbuf[next_wptr];
next_wptr = (next_wptr+1) & (BSBUF_SIZE -1);
word1 = bsbuf[next_wptr];
next_wptr = (next_wptr+1) & (BSBUF_SIZE -1);
word2 = bsbuf[next_wptr];
next_wptr = (next_wptr+1) & (BSBUF_SIZE -1);

IMG_mpeg2_vld_intra

5-15 IMGLIB Reference

4) top0 and top1: Shift words word0, word1, word2 by bptr to the left so that
the current bit becomes the left-most bit in top0 and top0 and top1 contain
the next 64 bits to be decoded.

s1 = word0 << bptr;
s2 = word1 >> bptr_cmpl; /*unsigned shift*/
top0 = s1 + s2;
s3 = word1<< bptr;
s4 = word2 >> bptr_cmpl; /*unsigned shift*/
top1 = s3 + s4;

Note that the routine returns the updated state of the bitstream buffer vari-
ables, top0, top1, word1, word2, bptr and next_wptr. If all other functions which
access the bitstream in a decoder system maintain the buffer variables in the
same way, then the above initialization procedure has to be performed only
once at the beginning.

Algorithm This routine is implemented as specified in the MPEG-2 standard text (ISO/
IEC 13818-2).

Special Requirements
� The bitstream must be stored in memory in 32-bit words which are in little

Endian byte order.

� Bitstream buffer is set to 512 32-bit words (=2048 bytes), buffer needs to
be aligned at a 2048 boundary because it is circular. If this needs to be
changed, AMR register setup has to be modified and alignment changed
accordingly. Register B7 is used as the address pointer to the bitstream
buffer in circular addressing mode with a size of 2^(10+1) bytes =
2048 bytes = 512 words. Accordingly, AMR is set to 0x000A0004. Note
that the AMR register is set to zero on exit.

� Wptr is allowed to overrun once (to detect total run overrun), so maximum
overrun that can occur is 66 (Error mark). Therefore, in memory 66+1 half
words behind the weighting matrix should be valid (e.g., no cache or pe-
ripherals). No memory is overwritten, only loads occurr.

� Zigzag matrix (Zptr) is 64 bytes circularly addressed and needs to be
aligned at a 64 byte boundary (serves protection from random stores into
memory).

� Inside the routine word1 (next_wptr-2) and word2 (next_wptr-1) are re-
constructed from the bitstream buffer and therfore have to be kept alive
in the bitstream buffer. For instance, in a double buffering scheme the bit-
stream buffer can only be updated when next_wptr-2 (and not next_wptr)
has crossed the half buffer boundary.

IMG_mpeg2_vld_intra

5-16

Implementation Notes
� 4:2:0 color format supported only.

� The instruction NORM is used to detect the number of leading zeros or
ones in a code word. This value together with additional bits extracted from
the codeword is then used as an index into look-up tables to determine the
length, run, level, and sign. Escape code sequences are directly extracted
from the code word.

� DC coefficients are decoded without lookup tables by exploiting the rela-
tively simple relationship between the number of leading zeros and
dc_size and the length of the code word.

� Look-up tables len and len_c are be offset against each other so that they
start in different memory banks to reduce bank conflicts.

� Bank Conflicts: Up to 3 bank conflicts can occur on exit of the inner loop
due to stack accesses.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 10 * (S – CB) + 57 * CB + 15 * NCB + 68

where S is the number of symbols in the MB, CB is the
number of coded blocks, and NCB is the number of
non-coded blocks (NCB = 6 – CB).

For S = 120, CB = 6, NCB = 0, cycles = 1550
For S = 200, CB = 6, NCB = 0, cycles = 2350

Code size 1824 bytes

Data size 4352 bytes for look-up tables

IMG_mpeg2_vld_inter

5-17 IMGLIB Reference

MPEG-2 Variable Length Decoding of Inter MBsIMG_mpeg2_vld_inter

Function void IMG_mpeg2_vld_inter(short *Wptr, short *outi, unsigned int *Mpeg2v)

Arguments

Wptr[64] Pointer to array that contains quantization matrix. The
elements of the quantization matrix in Wptr[] must be
ordered according to the scan pattern used (zigzag or
alternate scan).

outi[6*64] Pointer to the IDCT coefficients output array, elements
must be set to zero prior to function call. The routine
assumes 6 8x8 blocks per MB, i.e., 4:2:0 format.

Mpeg2v Pointer to the context object containing the coding
parameters of the MB to be decoded and the current state
of the bitstream buffer.

Description This routine takes a bitstream of an MPEG-2 non-intra coded macroblock (MB)
and returns the decoded IDCT coefficients. The routine checks the coded
block pattern (cbp) and performs coefficient decoding including variable length
decode, run-length expansion, inverse zigzag ordering, de-quantization, satu-
ration, and mismatch control. An example program is provided which illus-
trates the usage of this routine.

See the description of the IMG_mpeg2_vld_intra routine for further informa-
tion about the usage of this routine.

Algorithm This routine is implemented as specified in the MPEG-2 standard text (ISO/
IEC 13818-2).

Special Requirements See IMG_mpeg2_vld_intra function.

Implementation Notes
� 4:2:0 color format supported only.

� The instruction NORM is used to detect the number of leading zeros or
ones in a code word. This value together with additional bits extracted from
the codeword is then used as an index into look-up tables to determine the
length, run, level, and sign. Escape code sequences are directly extracted
from the code word.

� Look-up tables len and len_c are be offset against each other so that they
start in different memory banks to reduce bank conflicts.

� Bank Conflicts: Up to 3 bank conflicts can occur on exit of the inner loop
due to stack accesses.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

IMG_mpeg2_vld_inter

5-18

Benchmarks

Cycles 10 * S + 48 * CB + 15 * NCB + 60

where S is the number of symbols in the MB, CB is the
number of coded blocks, and NCB is the number of
non-coded blocks (NCB = 6 – CB).

For S = 120, CB = 6, NCB = 0, cycles = 1548
For S = 200, CB = 6, NCB = 0, cycles = 2348

Code size 1376 bytes

Data size 2176 bytes for lookup tables

IMG_quantize

5-19 IMGLIB Reference

Matrix Quantization with RoundingIMG_quantize

Function void IMG_quantize (short *data, int num_blks, int blk_size, const short
*recip_tbl, int q_pt)

Arguments

data[] Pointer to data to be quantized. Must be word aligned and
contain num_blks*blk_size elements.

num_blks Number of blocks to be processed.

blk_size Block size. Must be a multiple of 16 and ≥ℑ⁄

recip_tbl[] Pointer to quantization values (reciprocals) . Must be word
aligned and contain blk_size elements.

q_pt Q-point of quantization values. 0 ≤ q_pt ≤ 31

Description This routine quantizes a list of blocks by multiplying their contents with a sec-
ond block of values that contains reciprocals of the quantization terms. This
step corresponds to the quantization that is performed in 2-D DCT-based com-
pression techniques, although the routine may be used on any signed 16-bit
data using signed 16-bit quantization terms.

The routine merely multiplies the contents of the quantization array recip_tbl[]
with the data array data[]. Therefore, it may be used for inverse quantization
as well, by setting the Q-point appropriately.

Algorithm Behavioral C code for the routine is provided below:

void IMG_quantize

(

 short *data, /* Data to be quantized. */

 int num_blks, /* Number of 64-element blocks. */

 int blk_size, /* Block size (multiple of 16). */

 const short *recip_tbl, /* Quant. values (reciprocals). */

 int q_pt /* Q-point of Quant values. */

)

{

 short recip;

 int i, j, k, quot, round;

 /* -- */

 /* Set rounding term as 0.5, effectively. */

 /* -- */

IMG_quantize

5-20

 round = q_pt ? 1 << (q_pt - 1) : 0;

 /* -- */

 /* Outer loop: Step between quant matrix elements. */

 /* -- */

 for (i = 0; i < blk_size; i++)

 {

 /* -- */

 /* Load a reciprocal and point to appropriate */

 /* element of block. */

 /* -- */

 recip = recip_tbl[i];

 k = i;

 /* -- */

 /* Inner loop: Step between blocks of elements, */

 /* quantizing. */

 /* -- */

 for (j = 0; j < num_blks; j++)

 {

 quot = data[k] * recip + round;

 data[k] = quot >> q_pt;

 k += blk_size;

 }

 }

}

Special Requirements
� The block size, blk_size, must be at least 16 and a multiple of 16.

� The Q-point, q_pt, controls rounding and final truncation; it must be in the
range 0 ≤ q_pt ≤ 31.

� Both input arrays, data[] and recip_tbl[], must be word aligned.

� The data[] array must contain num_blks * blk_size elements, and the
recip_tbl[] array must contain blk_size elements.

Implementation Notes
� The outer loop is unrolled 16 times to allow greater amounts of work to be

performed in the inner loop.

� Reciprocals and data terms are loaded in pairs with wordwide loads, mak-
ing better use of the available memory bandwidth.

IMG_quantize

5-21 IMGLIB Reference

� The outer loop has been interleaved with the prolog and epilog of the inner
loop.

� Epilog code from the inner loop has been moved into the exit-code delay
slots through creative use of branch delay slots.

� Twin stack pointers have been used to speed up stack accesses.

� The inner loop steps through individual blocks, while the outer loop steps
through reciprocals for quantization. This eliminates redundant loads for
the quantization terms.

� The direction of travel for the inner loop oscillates with each iteration of the
outer loop to simplify pointer updating in the outer loop and reduce register
pressure. (e.g., in the first iteration of the outer loop, the inner loop steps
forward through memory; in the second iteration of the outer loop, the in-
ner loop steps backwards through memory, etc.)

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles (blk_size/16) * (4 + num_blks * 12) + 26

For blk_size = 64, num_blks = 8, cycles = 426
For blk_size = 256, num_blks = 24, cycles = 4696

Code size 1024 bytes

IMG_sad_8x8

5-22

Sum of Absolute Differences on Single 8x8 BlockIMG_sad_8x8

Function unsigned IMG_sad_8x8(unsigned char *srcImg, unsigned char *refImg, int
pitch)

Arguments

srcImg[64] 8x8 source block.

refImg[] Reference image.

pitch Width of reference image.

Description This function returns the sum of the absolute differences between the source
block and the 8x8 region pointed to in the reference image.

The code accepts a pointer to the 8x8 source block (srcImg), and a pointer to
the upper-left corner of a target position in a reference image (refImg). The
width of the reference image is given by the pitch argument.

Algorithm Behavioral C code for the routine is provided below:

IMG_unsigned_sad_8x8

(

 const unsigned char *restrict srcImg,

 const unsigned char *restrict refImg,

 int pitch

)

{

 int i, j;

 unsigned sad = 0;

 for (i = 0; i < 8; i++)

 for (j = 0; j < 8; j++)

 sad += abs(srcImg[j+i*8] – refImg[j+i*pitch]);

 return sad;

}

Special Requirements No alignment restrictions.

IMG_sad_8x8

5-23 IMGLIB Reference

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 80

Code size 256 bytes

IMG_sad_16x16

5-24

Sum of Absolute Differences on Single 16x16 BlockIMG_sad_16x16

Function unsigned IMG_sad_16x16(unsigned char *srcImg, unsigned char *refImg, int
pitch)

Arguments

srcImg[256] 16x16 source block.

refImg[] Reference image.

Pitch Width of reference image.

Description This function returns the sum of the absolute differences between the source
block and the 16x16 region pointed to in the reference image.

The code accepts a pointer to the 16x16 source block (srcImg), and a pointer to
the upper-left corner of a target position in a reference image (refImg). The
width of the reference image is given by the pitch argument.

Algorithm Behavioral C code for the routine is provided below:

IMG_unsigned_sad_16x16

(

 const unsigned char *restrict srcImg,

 const unsigned char *restrict refImg,

 int pitch

)

{

 int i, j;

 unsigned sad = 0;

 for (i = 0; i < 16; i++)

 for (j = 0; j < 16; j++)

 sad += abs(srcImg[j+i*16] – refImg[j+i*pitch]);

 return sad;

}

Special Requirements No alignment restrictions.

IMG_sad_16x16

5-25 IMGLIB Reference

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 272

Code size 256 bytes

IMG_wave_horz

5-26

Horizontal Wavelet TransformIMG_wave_horz

Function void IMG_wave_horz (short *in_data, short *qmf, short *mqmf, short
*out_data, int cols)

Arguments

in_data[cols] Pointer to one row of input pixels. Must be word aligned.

qmf[8] Pointer to Q.15 qmf filter-bank for low-pass filtering. Must
be word aligned.

mqmf[8] Pointer to Q.15 mirror qmf filter bank for high-pass
filtering. Must be word aligned.

out_data[cols] Pointer to row of reference/detailed decimated outputs

cols Number of columns in the input image. Must be a multiple
of 2.

Description This routine performs a 1-D Periodic Orthogonal Wavelet decomposition. It
also performs the row decomposition component of a 2-D wavelet transform.
An input signal x[n] is low pass and high pass filtered and the resulting signals
decimated by factor of two. This results in a reference signal r1[n] which is the
decimated output obtained by dropping the odd samples of the low pass filter
output and a detail signal d[n] obtained by dropping the odd samples of the
highpass filter output. A circular convolution algorithm is implemented and
hence the wavelet transform is periodic. The reference signal and the detail
signal are each half the size of the original signal.

Algorithm Behavioral C code for the routine is provided below:

void IMG_wave_horz

(

 const short *restrict in_data, /* Row of input pixels */

 const short *restrict qmf, /* Low–pass QMF filter */

 const short *restrict mqmf, /* High–pass QMF filter */

 short *restrict out_data, /* Row of output data */

 int cols /* Length of input. */

);

{

 int i, res, iters;

 int j, sum, prod;

 short *xptr = in_data;

 short *yptr = out_data;

IMG_wave_horz

5-27 IMGLIB Reference

 short *x_end = &in_data[cols – 1];

 short xdata, hdata;

 short *xstart;

 short *filt_ptr;

 int M = 8;

 /* ––– */

 /* Set our loop trip count and starting x posn. */

 /* ‘xstart’ is used in the high–pass filter loop. */

 /* ––– */

 iters = cols;

 xstart = in_data + (cols – M) + 2;

 /* ––– */

 /* Low pass filter. Iterate for cols/2 iterations */

 /* generating cols/2 low pass sample points with */

 /* the low–pass quadrature mirror filter. */

 /* ––– */

 for (i = 0; i < iters; i += 2)

 {

 /* ––– */

 /* Initialize our sum to the rounding value */

 /* and reset our pointer. */

 /* ––– */

 sum = Qr;

 xptr = in_data + i;

 /* ––– */

 /* Iterate over the taps in our QMF. */

 /* ––– */

 for (j = 0; j < M; j++)

 {

 xdata = *xptr++;

 hdata = qmf[j];

 prod = xdata * hdata;

 sum += prod;

IMG_wave_horz

5-28

 if (xptr > x_end) xptr = in_data;

 }

 /* ––– */

 /* Adjust the Qpt of our sum and store result. */

 /* ––– */

 res = (sum >> Qpt);

 *out_data++ = res;

 }

 /* ––– */

 /* High pass filter. Iterate for cols/2 iters */

 /* generating cols/2 high pass sample points with */

 /* the high–pass quadrature mirror filter. */

 /* ––– */

 for (i = 0; i < iters ; i+=2)

 {

 /* ––– */

 /* Initialize our sum and filter pointer. */

 /* ––– */

 sum = Qr;

 filt_ptr = mqmf + (M – 1);

 /* ––– */

 /* Set up our data pointer. This is slightly */

 /* more complicated due to how the data wraps */

 /* around the edge of the buffer. */

 /* ––– */

 xptr = xstart;

 xstart += 2;

 if (xstart > x_end) xstart = in_data;

 /* ––– */

 /* Iterate over the taps in our QMF. */

 /* ––– */

 for (j = 0; j < M; j++)

IMG_wave_horz

5-29 IMGLIB Reference

 {

 xdata = *xptr++;

 hdata = *filt_ptr––;

 prod = xdata * hdata;

 if (xptr > x_end) xptr = in_data;

 sum += prod;

 }

 /* ––– */

 /* Adjust the Qpt of our sum and store result. */

 /* ––– */

 res = (sum >> Qpt);

 *out_data++ = res;

 }

}

Special Requirements
� This function assumes that the number of taps for the qmf and mqmf filters

is 8, and that the filter coefficient arrays qmf[] and mqmf[] are word
aligned.

� The array in_data[] is assumed to be word aligned.

� This function assumes that filter coefficients are maintained as 16-bit Q.15
numbers.

� It is also assumed that input data is an array of shorts, to allow for re-use
of this function to perform Multi Resolution Analysis where the output of
this code is feedback as input to an identical next stage.

� The transform is a dyadic wavelet, requiring the number of image columns
cols to be a multiple of 2.

Implementation Notes
� The main ideas used for optimizing the code include issuing one set of

reads to the data array and performing low-pass and high pass filtering to-
gether to maximize the number of multiplies. The last six elements of the
low-pass filter and the first six elements of the high-pass filter use the
same input. This is used to appropriately change the output pointer to the
low-pass filter after six iterations. However, for the first six iterations point-
er wraparound can occur and hence this creates a dependency. Preread-
ing those six values outside the array prevents the checks that introduce

IMG_wave_horz

5-30

this dependency. In addition, the input data is read as word wide quantities
and the low-pass and high-pass filter coefficients are stored in registers
allowing for the input loop to be completely unrolled. Thus the assembly
code has only one loop. A predication register is used to reset the low-pass
output pointer after three iterations. The merging of the loops in this fash-
ion allows for the maximum number of multiplies with the minimum num-
ber of reads.

� This code can implement the Daubechies D4 filter bank for analysis with
four vanishing moments. The length of the analyzing low-pass and high-
pass filters is 8 in this case.

� Bank Conflicts: The code has no bank conflicts.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles (4 * cols) + 5

For cols = 256, cycles = 1029
For cols = 512, cycles = 2058

Code size 640 bytes

IMG_wave_vert

5-31 IMGLIB Reference

Vertical Wavelet TransformIMG_wave_vert

Function void IMG_wave_vert (short *in_data[], short *qmf, short *mqmf, short
*out_ldata, short *out_hdata, int cols)

Arguments

*in_data[8] Pointer to an array of 8 pointers that point to input data
line buffers. Each of the 8 lines has cols number of
elements and must be word aligned.

qmf[8] Pointer to Q.15 QMF filter bank for low-pass filtering. Must
be word aligned.

mqmf[8] Pointer to Q.15 mirror QMF filter bank for high-pass
filtering. Must be word aligned.

out_ldata[] Pointer to one line of low-pass filtered outputs consisting
of cols number of elements.

out_hdata[] Pointer to one line of high-pass filtered outputs consisting
of cols number of elements.

cols Width of each line in the input buffer. Must be a multiple of
2.

Description This routine performs the vertical pass of a 2-D wavelet transform. A vertical
filter is applied on 8 lines which are pointed to by the pointers contained in the
array in_data[]. Instead of transposing the input image and re-using the hori-
zontal wavelet function, the vertical filter is applied directly to the image data
as is, producing a single line of high-pass and a single line of low-pass filtered
outputs. The vertical filter is traversed over the entire width of the line.

In a traditional wavelet implementation, for a given pair of output lines, the input
context for the low-pass filter is offset by a number of lines from the input con-
text for the high-pass filter. The amount of offset is determined by the number
of filter taps and is generally ‘num_taps – 2’ rows (this implementation is fixed
at 8 taps, so the offset would be 6 rows).

This implementation breaks from the traditional model so that it can re-use the
same input context for both low-pass and high-pass filters simultaneously. The
result is that the low-pass and high-pass outputs must instead be offset by the
calling function. On order to write the low-pass filtered output to the top half and
the high pass-filtered output to the bottom half of the output image, the respec-
tive start pointers have to be set to:

out_lstart = o_im + ((rows >> 1) – 3) * cols
out_hstart = o_im + (rows >> 1) * col

IMG_wave_vert

5-32

Where o_im is the start of the output image, rows is the number of rows of the
input image, and cols is the number of cols of the output image. This The fol-
lowing table illustrates how the pointers out_ldata and out_hdata need to be
updated at the start of each call to this function:

Call Number out_ldata out_hdata

1 out_lstart out_hstart

2 out_lstart + cols out_hstart + cols

3 out_lstart + 2 * cols out_hstart + 2 * cols

At this point out_ldata wraps around to become o_im, while out_hdata pro-
ceeds as usual:

4 o_im out_hstart + 3 * cols

Corresponding to the output pointer update scheme described above, the in-
put buffer lines have to be filled starting with the 6th row from the bottom of the
input image. That is for the first call of the wave_vert function the eight input
line buffers consist of the last six plus the first two lines of the image. For the
second call the input line buffers contain the last four plus the first 4 lines of the
image, and so on.

The routine can be used to obtain maximum performance by using a working
buffer of ten input lines to effectively mix processing and data transfer through
DMAs. At the start of the routine, eight input lines are loaded into the first 8 line
buffers and processing begins. In the background the next two lines are
fetched. The pointers are moved up by 2, namely ptr[i] = ptr[i+2] and the last
two lines now point to lines 9 and 10 and processing starts again. In the back-
ground the next two lines are loaded into the first two lines of the line buffer.
Pointers move up again by two but now the last two point to line 0 and 1. This
pattern then repeats.

Algorithm Behavioral C code for the routine is provided below:

void IMG_wave_vert

(

 short **in_data, /* Array of row pointers */

 short *lp_filt, /* Low pass QMF filter */

 short *hp_filt, /* High pass QMF filter */

 short *out_ldata, /* Low pass output data */

 short *out_hdata, /* High pass output data */

 int cols /* Length of rows to process */

)

IMG_wave_vert

5-33 IMGLIB Reference

{

 int i, j;

 /* –– */

 /* First, perform the low–pass filter on the eight input rows. */

 /* –– */

 for (i = 0; i < cols; i++)

 {

 int sum = 1 << 14;

 for (j = 0; j < 8; j++)

 sum += in_data[j][i] * lp_filt[j];

 out_ldata[i] = sum >> 15;

 }

 /* –– */

 /* Next, perform the high–pass filter on the same eight input rows. */

 /* –– */

 for (i = 0; i < cols; i++)

 {

 int sum = 1 << 14;

 for (j = 0; j < 8; j++)

 sum += in_data[j][i] * hp_filt[7 – j];

 out_hdata[i] = sum >> 15;

 }

}

Special Requirements
� Since the wavelet transform is dyadic cols must be a multiple of 2.

� The filters qmf[] and mqmf[] are assumed to be word aligned and have
8 taps.

� The input data on any line must be word aligned.

� The mqmf filter is constructed from the qmf as follows:

 status = –1;

 for (i = 0; i < M; i++)

 {

 status = status * –1;

 hdata = qmf[i] * status;

 filter[i] = hdata;

 }

IMG_wave_vert

5-34

Implementation Notes
� The inner loop that advances along each filter tap is unrolled. Wordwide

data loads are performed and split multiplies are used to perform two itera-
tions of low-pass filtering in parallel. By loading the filter coefficients in a
special fashion, the low-pass filter kernel is re-used for performing the
high-pass filter, thereby saving code size.

� In order to eliminate bank conflicts, successive lines in the line buffer are
separated by exactly one word so that loads to any successive lines may
be parallelized together.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 8 * cols + 48

For cols = 256, cycles = 2096
For cols = 512, cycles = 4144

Code size 736 bytes

IMG_boundary

5-35 IMGLIB Reference

5.2 Image Analysis

Boundary Structural OperatorIMG_boundary

Function void IMG_boundary(unsigned char *in_data, int rows, int cols, int *out_coord,
int *out_gray)

Arguments

in_data[] Input image of size rows * cols. Must be word aligned.

rows Number of input rows.

cols Number of input columns. Must be multiple of 4.

out_coord[] Output array of packed coordinates. Must be word
aligned.

out_gray[] Output array of corresponding gray levels. Must be word
aligned.

Description This routine scans an image for non-zero pixels. The locations of those pixels
are stored to the array out_coord[] as packed Y/X pairs, with Y in the upper
half, and X in the lower half. The gray levels of those pixels are stored in the
out_gray[] array.

Algorithm Behavioral C code for the routine is provided below:

void IMG_boundary

(

 const unsigned char in_data,

 int rows, int cols,

 int out_coord,

 int out_gray

)

{

 int x, y, p;

 for (y = 0; y < rows; y++)

 for (x = 0; x < cols; x++)

 if ((p = in_data[x + y*cols] != 0)

 {

 *out_coord++ = ((y & 0xFFFF) << 16)
 | (x & 0xFFFF);

 *out_gray++ = p;

 }

}

IMG_boundary

5-36

Special Requirements
� Array in_data[] must be word aligned.

� cols must be a multiple of 4.

� At least one row is being processed.

� Output buffers out_coord and out_gray should start in different banks and
must be word aligned.

� No more than 32764 rows or 32764 columns are being processed.

Implementation Notes
� Outer and inner loops are collapsed together.

� Inner loop is unrolled to process four pixels per iteration.

� Bank Conflicts: No bank conflicts occur as long as out_coord and
out_gray start in different banks. If they start in the same bank, every ac-
cess to each array will cause a bank conflict.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 1.25 * (cols * rows) + 12

For cols = 128, rows = 3, cycles = 492
For cols = 720, rows = 8, cycles = 7212

Code size 160 bytes

IMG_dilate_bin

5-37 IMGLIB Reference

3x3 Binary DilationIMG_dilate_bin

Function void IMG_dilate_bin(unsigned char *in_data, unsigned char *out_data, char
*mask, int cols)

Arguments

in_data[] Binary input image (8 pixels per byte). Must be word
aligned.

out_data[] Filtered binary output image. Must be word aligned.

mask[3][3] 3x3 filter mask.

cols Number of groups of 8 image columns to process. cols
must be a multiple of 4.

Description This routine implements 3x3 binary dilation. The input image consists of binary
valued pixels (0s or 1s). The dilation operator generates output pixels by OR-
ing the pixels under the input mask together to generate the output pixel. The
input mask specifies whether one or more pixels from the input are to be ig-
nored.

Algorithm The routine computes output for a target pixel as follows:

result = 0;

if (mask[0][0] != DONT_CARE) result |= input[y + 0][x + 0];

if (mask[0][1] != DONT_CARE) result |= input[y + 1][x + 1];

if (mask[0][2] != DONT_CARE) result |= input[y + 2][x + 2];

if (mask[1][0] != DONT_CARE) result |= input[y + 0][x + 0];

if (mask[1][1] != DONT_CARE) result |= input[y + 1][x + 1];

if (mask[1][2] != DONT_CARE) result |= input[y + 2][x + 2];

if (mask[2][0] != DONT_CARE) result |= input[y + 0][x + 0];

if (mask[2][1] != DONT_CARE) result |= input[y + 1][x + 1];

if (mask[2][2] != DONT_CARE) result |= input[y + 2][x + 2];

output[y][x] = result;

For this code, “DONT_CARE” is specified by a negative value in the input
mask. Non-negative values in the mask cause the corresponding pixel to be
included in the dilation operation.

IMG_dilate_bin

5-38

Special Requirements
� Pixels are organized within each byte such that the pixel with the smallest

index is in the LSB position, and the pixel with the largest index is in the
MSB position (i.e., the code assumes a LITTLE ENDIAN bit ordering.)

� Negative values in the mask specify “DONT_CARE”, and non-negative
values specify that pixels are included in the dilation operation.

� The input image needs to have a multiple of 32 pixels (bits) per row. There-
fore, cols must be a multiple of 4.

Implementation Notes
� The 3x3 dilation mask is applied to 32 output pixels simultaneously. This

is done with 32-bit-wide bit-wise operators in the register file. In order to
do this, the code reads in a 34-bit-wide input window, and 40-bit operations
are used to manipulate the pixels initially. Because the code reads a 34-bit
context for each 32-bits of output, the input needs to be one byte longer
than the output in order to make the rightmost two pixels well-defined.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles (cols/4) * 5 + 39

For cols = 128 (1024 pixels), cycles = 199
For cols = 720 (5760 pixels), cycles = 939

Code size 480 bytes

IMG_erode_bin

5-39 IMGLIB Reference

3x3 Binary ErosionIMG_erode_bin

Function void IMG_erode_bin(unsigned char *in_data, unsigned char *out_data, char
*mask, int cols)

Arguments

in_data[] Binary input image (8 pixels per byte). Must be word
aligned.

out_data[] Filtered binary output image. Must be word aligned.

mask[3][3] 3x3 filter mask.

cols Number of groups of 8 image columns to process. cols
must be a multiple of 4.

Description This routine implements 3x3 binary erosion. The input image consists of binary
valued pixels (0s or 1s). The erosion operator generates output pixels by AND-
ing the pixels under the input mask together to generate the output pixel. The
input mask specifies whether one or more pixels from the input are to be ig-
nored.

Algorithm The routine computes output for a target pixel as follows:

if (mask[0][0] != DONT_CARE) result &= input[y + 0][x + 0];

if (mask[0][1] != DONT_CARE) result &= input[y + 1][x + 1];

if (mask[0][2] != DONT_CARE) result &= input[y + 2][x + 2];

if (mask[1][0] != DONT_CARE) result &= input[y + 0][x + 0];

if (mask[1][1] != DONT_CARE) result &= input[y + 1][x + 1];

if (mask[1][2] != DONT_CARE) result &= input[y + 2][x + 2];

if (mask[2][0] != DONT_CARE) result &= input[y + 0][x + 0];

if (mask[2][1] != DONT_CARE) result &= input[y + 1][x + 1];

if (mask[2][2] != DONT_CARE) result &= input[y + 2][x + 2];

output[y][x] = result;

result = 1;

For this code, “DONT_CARE” is specified by a negative value in the input
mask. Non-negative values in the mask cause the corresponding pixel to be
included in the erosion operation.

Special Requirements
� Pixels are organized within each byte such that the pixel with the smallest

index is in the LSB position, and the pixel with the largest index is in the
MSB position. (That is, the code assumes a LITTLE ENDIAN bit ordering.)

� Negative values in the mask specify “DONT_CARE”, and non-negative
values specify that pixels are included in the erosion operation.

� The input image needs to have a multiple of 32 pixels (bits) per row. There-
fore, cols must be a multiple of 4.

IMG_erode_bin

5-40

Implementation Notes
� The 3x3 erosion mask is applied to 32 output pixels simultaneously. This

is done with 32-bit-wide bit-wise operators in the register file. In order to
do this, the code reads in a 34-bit-wide input window, and 40-bit operations
are used to manipulate the pixels initially. Because the code reads a 34-bit
context for each 32-bits of output, the input needs to be one byte longer
than the output in order to make the rightmost two pixels well-defined.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles (cols/4) * 5 + 39

For cols = 128 (1024 pixels), cycles = 199
For cols = 720 (5760 pixels), cycles = 939

Code size 448 bytes

IMG_histogram

5-41 IMGLIB Reference

Histogram ComputationIMG_histogram

Function void IMG_histogram (unsigned char *in_data, int n, int accumulate, unsigned
short *t_hist, unsigned short *hist)

Arguments

in_data[n] Input image. Must be word aligned.

n Number of pixels in input image. Must be a multiple of 8.

accumulate 1: add to existing histogram in hist[]

–1: subtract from existing histogram in hist[]

t_hist[1024] Array of temporary histogram bins. Must be initialized to
zero.

hist[256] Array of updated histogram bins.

Description This routine computes the histogram of the array in_data[] which contains n
8-bit elements. It returns a histogram in the array hist[] with 256 bins at 16-bit
precision. It can either add or subtract to an existing histogram, using the “ac-
cumulate” control. It requires temporary storage for four temporary histo-
grams, t_hist[], which are later summed together.

Algorithm Behavioral C code for the function is provided below:

void IMG_histogram (unsigned char *in_data, int n, int accumu-
late, unsigned short *t_hist,
unsigned short * hist)

{

 int pixel, j;

 for (j = 0; j < n; j++)

 {

 pixel = (int) in_data[j];

 hist[pixel] += accumulate;

 }

}

Special Requirements
� The temporary array of data, t_hist[], must be initialized to zero.

� The input array of data, in_data[], must be word-aligned.

� n must be a multiple of 8.

� The maximum number of pixels that can be profiled in each bin is 65535
in the main histogram.

IMG_histogram

5-42

Implementation Notes
� This code operates on four interleaved histogram bins. The loop is divided

into two halves. The even half operates on even words full of pixels and
the odd half operates on odd words. Each half processes 4 pixels at a time,
and both halves operate on the same four sets of histogram bins. This in-
troduces a memory dependency on the histogram bins which ordinarily
would degrade performance. To break the memory dependencies, the two
halves forward their results to each other via the register file, bypassing
memory. Exact memory access ordering obviates the need to predicate
stores.

� The algorithm is ordered as follows:

1) Load from histogram for even half.

2) Store odd_bin to histogram for odd half (previous iteration).

3) If data_even = previous data_odd, increment even_bin by 2, else in-
crement even_bin by 1, forward to odd.

4) Load from histogram for odd half (current iteration).

5) Store even_bin to histogram for even half.

6) If data_odd = previous data_even increment odd_bin by 2 else incre-
ment odd_bin by 1, forward to even.

7) Go to 1.

� With this particular ordering, forwarding is necessary between even/odd
halves when pixels in adjacent halves need to be placed in the same bin.
The store is never predicated and occurs speculatively as it will be over-
written by the next value containing the extra forwarded value.

� The four histograms are interleaved with each bin spaced four half-words
apart and each histogram starting in a different memory bank. This allows
the four histogram accesses to proceed in any order without worrying
about bank conflicts. The diagram below illustrates this (addresses are
half-word offsets):

0 1 2 3 4 5 …

hst0 hst1 hst2 hst3 hst0 hst1 …

bin0 bin0 bin0 bin0 bin1 bin1 …

hst0,…,hst3 are the four histograms and bin0, bin1,… are the bins used.
These are then summed together at the end in blocks of 4.

IMG_histogram

5-43 IMGLIB Reference

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 9/8 * n + 560

For n = 512, cycles = 1136
For n = 1024, cycles = 1712

Code size 832 bytes

IMG_perimeter

5-44

Perimeter Structural OperatorIMG_perimeter

Function void IMG_perimeter (unsigned char *in_data, int cols, unsigned char
*out_data)

Arguments

in_data[] Input binary image data. Must be double-word aligned.

cols Number of input columns. Must be ≥3.

out_data[] Output boundary image data.

Description This routine produces the boundary of an object in a binary image. It echoes
the boundary pixels with a value of 0xFF and sets the other pixels to 0x00.
Detection of the boundary of an object in a binary image is a segmentation
problem and is done by examining spatial locality of the neighboring pixels.
This is done by using the four connectivity algorithm:

pix_top

pix_lft pix_cent pix_rgt

pix_bot

The output pixel at location ‘pix_cent’ is echoed as a boundary pixel if
‘pix_cent’ is non-zero and any one of its four neighbors is zero. The four neigh-
bors are as shown above.

Algorithm Behavioral C code for the routine is provided below:

void IMG_perimeter (unsigned char *in_data, int cols, unsigned char
*out_data)

{

 int icols, count = 0;

 unsigned char pix_lft, pix_rgt, pix_top;

 unsigned char pix_bot, pix_cent;

 for(icols = 1; icols < (cols–1); icols++)

 {

 pix_lft = in_data[icols – 1];

 pix_cent = in_data[icols + 0];

 pix_rgt = in_data[icols + 1];

 pix_top = in_data[icols – cols];

 pix_bot = in_data[icols + cols];

 if (((pix_lft==0)||(pix_rgt==0)||(pix_top==0)||(pix_bot==0))
 && (pix_cent > 0))

 {

IMG_perimeter

5-45 IMGLIB Reference

 out_data[icols] = pix_cent;

 count++;

 }

 else

 {

 out_data[icols] = 0;

 }

 }

 return(count);

}

Special Requirements
� cols must be ≥3.

� This code expects three input lines each of width ‘cols’ pixels and pro-
duces one output line of width (cols – 1) pixels.

Implementation Notes
� To decide whether the given pixel at ‘pix_cent’ is a boundary pixel or not,

5 pixels have to be examined. This leads to a highly conditional code. The
conditional code is reduced by performing multiplies to examine whether
the four neighboring pixels are zero or not. Conditionally replacing the val-
ue of the output pixel based on status flag also helps scheduling. Notice
also that the ‘pix_cent’ variable lives too long in the kernel. This is because
its value is not consumed for a long time after it is produced. This can hin-
der the start of the next iteration. This is avoided by issuing moves and
making copies of this variable.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENIDAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 3 * (cols – 2) + 28

For cols = 128, cycles = 406
For cols = 720, cycles = 2182

Code size 352 bytes

IMG_sobel

5-46

Sobel Edge DetectionIMG_sobel

Function void IMG_sobel(const unsigned char *in_data, unsigned char *out_data, short
cols, short rows)

Arguments

in_data[] Input image of size cols * rows. Must be half-word
aligned.

out_data[] Output image of size cols * (rows–2). Must be half-word
aligned.

cols Number of columns in the input image. Must be multiple
of 2.

rows Number of rows in the input image. cols * (rows–2) must
be ≥8.

Description This routine applies horizontal and vertical Sobel edge detection masks to the
input image and produces an output image which is two rows shorter than the
input image. Within each row of the output, the first and the last pixel will not
contain meaningful results.

Algorithm The Sobel edge-detection masks shown below are applied to the input image
separately. The absolute values of the mask results are then added together.
If the resulting value is larger than 255, it is clamped to 255. The result is then
written to the output image.

Horizontal Mask Vertical Mask

–1 –2 –1 –1 0 1

0 0 0 –2 0 2

1 2 1 –1 0 1

This is a C model of the Sobel implementation. This C code is functionally
equivalent to the assembly code without restrictions. The assembly code may
impose additional restrictions.

 void IMG_sobel

(

 const unsigned char *in, /* Input image data */

 unsigned char *out, /* Output image data */

 short cols, short rows /* Image dimensions */

)

{

 int H; /* Horizontal mask result */

 int V; /* Vertical mask result */

IMG_sobel

5-47 IMGLIB Reference

 int O; /* Sum of horizontal and vertical masks */

 int i; /* Input pixel offset */

 int o; /* Output pixel offset. */

 int xy; /* Loop counter. */

 int i00, i01, i02;

 int i10, i12;

 int i20, i21, i22;

 for (xy = 0, i = cols + 1, o = 1;

 xy < cols*(rows–2) – 2;

 xy++, i++, o++)

 {

 i00=in[i–cols–1]; i01=in[i–cols]; i02=in[i–cols+1];

 i10=in[i –1]; i12=in[i +1];

 i20=in[i+cols–1]; i21=in[i+cols]; i22=in[i+cols+1];

 H = –i00 – 2*i01 – i02 + i20 + 2*i21 + i22;

 V = –i00 + i02 – 2*i10 + 2*i12 – i20 + i22;

 O = abs(H) + abs(V);

 if (O > 255) O = 255;

 out[o] = O;

 }

}

Special Requirements
� cols must be a multiple of 2.

� At least eight output pixels must be processed, i.e., cols * (rows–2) must
be ≥8.

� in_data[] and out_data[] must be half-word aligned.

IMG_sobel

5-48

Implementation Notes
� The values of the left-most and right-most pixels on each line of the output

are not well defined.

� Bank Conflicts: Up to two cycles of bank-hits can occur during initializa-
tion in this code. No further bank-hits occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 3 * cols * (rows - 2) + 34

For cols = 128, rows = 8, cycles = 2338
For cols = 720, rows = 8, cycles = 12,994

Code size 608 bytes

IMG_thr_gt2max

5-49 IMGLIB Reference

Thresholding – Clamp to 255IMG_thr_gt2max

Function void IMG_thr_gt2max(unsigned char *in_data, unsigned char *out_data, short
cols, short rows, unsigned char threshold)

Arguments

in_data[] pointer to input image data. Must be word aligned.

out_data[] pointer to output image data. Must be word aligned.

cols number of image columns

rows number of image rows. cols*rows must be multiple of 16.

threshold threshold value

Description This routine performs a thresholding operation on an input image in in_data[]
whose dimensions are given by the arguments ‘cols’ and ‘rows’. The thresh-
olded pixels are written to the output image pointed to by out_data[]. The input
and output are exactly the same dimensions.

Pixels that are below or equal to the threshold value are written to the output
unmodified. Pixels that are greater than the threshold are set to 255 in the out-
put image.

Please see the functions IMG_thr_le2min, IMG_thr_le2thr and
IMG_thr_gt2thr for other thresholding functions.

Algorithm Behavioral C code for this routine is provided below:

void IMG_thr_gt2max(const unsigned char *in_data, unsigned
char *out_data, short cols, short rows, unsigned char thresh-
old)

{

 int i;

 for (i = 0; i < rows * cols; i++)

 out_data[i] = in_data[i] > threshold ? 255 :
in_data[i];

}

Special Requirements
� Input and output buffers do not alias.

� Input and output buffers must be word aligned.

� rows * cols must be a multiple of 4.

IMG_thr_gt2max

5-50

Implementation Notes
� Bank Conflicts: No bank conflicts occur in this function.

� Endian: This code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 24 + 9 * (cols * rows / 16)

For cols = 32 and rows = 32, cycles = 600

Code size 192 bytes

IMG_thr_gt2thr

5-51 IMGLIB Reference

Thresholding – Clip above thresholdIMG_thr_gt2thr

Function void IMG_thr_gt2thr(unsigned char *in_data, unsigned char *out_data, short
cols, short rows, unsigned char threshold)

Arguments

in_data[] pointer to input image data.

out_data[] pointer to output image data.

cols number of image columns

rows number of image rows. cols*rows must be multiple of 4.

threshold threshold value

Description This routine performs a thresholding operation on an input image in in_data[]
whose dimensions are given by the arguments ‘cols’ and ‘rows’. The thresh-
olded pixels are written to the output image pointed to by out_data[]. The input
and output are exactly the same dimensions.

Pixels that are below or equal to the threshold value are written to the output
unmodified. Pixels that are greater than the threshold are set to the threshold
value in the output image.

Please see the functions IMG_thr_le2min, IMG_thr_le2thr and
IMG_thr_gt2max for other thresholding functions.

Algorithm Behavioral C code for this routine is provided below:

void IMG_thr_gt2thr(const unsigned char *in_data, unsigned
char *out_data, short cols, short rows, unsigned char thresh-
old)

{

 int i;

 for (i = 0; i < rows * cols; i++)

 out_data[i] = in_data[i] > threshold ? thr :
in_data[i];

}

Special Requirements
� Input and output buffers do not alias.

� rows * cols must be a multiple of 4.

IMG_thr_gt2thr

5-52

Implementation Notes
� Bank Conflicts: No bank conflicts occur in this function.

� Endian: This code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles rows * cols + 20

For rows = 32 and cols = 32, cycles = 1042

Code size 192 bytes

IMG_thr_le2min

5-53 IMGLIB Reference

Thresholding – Clamp to zeroIMG_thr_le2min

Function void IMG_thr_le2min(unsigned char *in_data, unsigned char *out_data, short
cols, short rows, unsigned char threshold)

Arguments

in_data[] pointer to input image data. Must be word aligned.

out_data[] pointer to output image data. Must be word aligned.

cols number of image columns

rows number of image rows. cols*rows must be multiple of 16.

threshold threshold value

Description This routine performs a thresholding operation on an input image in in_data[]
whose dimensions are given by the arguments ‘cols’ and ‘rows’. The thresh-
olded pixels are written to the output image pointed to by out_data[]. The input
and output are exactly the same dimensions.

Pixels that are above the threshold value are written to the output unmodified.
Pixels that are less than or equal to the threshold are set to zero in the output
image.

Please see the functions IMG_thr_gt2thr, IMG_thr_le2thr and
IMG_thr_gt2max for other thresholding functions.

Algorithm Behavioral C code for this routine is provided below:

void IMG_thr_le2min(const unsigned char *in_data, unsigned
char *out_data, short cols, short rows, unsigned char
threshold)

{

 int i;

 for (i = 0; i < rows * cols; i++)

 out_data[i] = in_data[i] <= threshold ? 0 :
in_data[i];

}

Special Requirements
� Input and output buffers do not alias.

� Input and output buffers must be word aligned.

� rows * cols must be a multiple of 16.

IMG_thr_le2min

5-54

Implementation Notes
� Bank Conflicts: No bank conflicts occur in this function.

� Endian: This code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 24 + 9 * (cols * rows / 16)

For cols = 32 and rows = 32, cycles = 600

Code size 512 bytes

IMG_thr_le2thr

5-55 IMGLIB Reference

Thresholding – Clip below thresholdIMG_thr_le2thr

Function void IMG_thr_le2thr(unsigned char *in_data, unsigned char *out_data, short
cols, short rows, unsigned char threshold)

Arguments Arguments

in_data[] pointer to input image data

out_data[] pointer to output image data

cols number of image columns

rows number of image rows. rows*cols must be a multiple of 4.

threshold threshold value

Description This routine performs a thresholding operation on an input image in in_data[]
whose dimensions are given by the arguments ‘cols’ and ‘rows’. The thresh-
olded pixels are written to the output image pointed to by out_data[]. The input
and output are exactly the same dimensions.

Pixels that are above the threshold value are written to the output unmodified.
Pixels that are less than or equal to the threshold are set to the threshold value
in the output image.

Please see the functions IMG_thr_gt2thr, IMG_thr_le2min and
IMG_thr_gt2max for other thresholding functions.

Algorithm Behavioral C code for this routine is provided below:

void IMG_thr_le2thr(const unsigned char *in_data, unsigned
char *out_data, short cols, short rows, unsigned char
threshold)

{

 int i;

 for (i = 0; i < rows * cols; i++)

 out_data[i] = in_data[i] <= threshold ? threshold :
in_data[i];

}

Special Requirements
� Input and output buffers do not alias.

� rows * cols must be a multiple of 4.

IMG_thr_le2thr

5-56

Implementation Notes
� Bank Conflicts: No bank conflicts occur in this function.

� Endian: This code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles cols * rows + 20

For cols = 32, rows = 32, cycles = 1042

Code size 192 bytes

IMG_conv_3x3

5-57 IMGLIB Reference

5.3 Picture Filtering/Format Conversions

3x3 ConvolutionIMG_conv_3x3

Function void IMG_conv_3x3(unsigned char *in_data, unsigned char *out_data, int cols
char *mask, int shift)

Arguments Arguments

in_data[] Input image

out_data[] Output image

cols Number of columns in the input image. Must be a multiple
of 8.

mask[3][3] 3x3 mask

shift Shift value

Description The convolution kernel accepts three rows of ‘cols’ input pixels and produces
one output row of ‘cols’ pixels using the input mask of 3 by 3. The user defined
shift value is used to shift the convolution value, down to the byte range. The
convolution sum is also range limited to 0..255. The shift amount is non-zero
for low pass filters, and zero for high pass and sharpening filters.

Algorithm This is the C equivalent of the assembly code without restrictions. The assem-
bly code is hand optimized and restrictions apply as noted.

void IMG_conv_3x3(unsigned char *in_data, unsigned char
*out_data, int cols, char *mask, int shift)

{

 unsigned char *IN1,*IN2,*IN3;

 unsigned char *OUT;

 short pix10, pix20, pix30;

 short mask10, mask20, mask30;

 int sum, sum00, sum11;

 int i;

 int sum22, j;

 IN1 = in_data;

IMG_conv_3x3

5-58

 IN2 = IN1 + x_dim;

 IN3 = IN2 + x_dim;

 OUT = out_data;

 for (j = 0; j < cols; j++)

 {

 sum = 0;

 for (i = 0; i < 3; i++)

 {

 pix10 = IN1[i];

 pix20 = IN2[i];

 pix30 = IN3[i];

 mask10 = mask[i];

 mask20 = mask[i + 3];

 mask30 = mask[i + 6];

 sum00 = pix10 * mask10;

 sum11 = pix20 * mask20;

 sum22 = pix30 * mask30;

 sum += sum00 + sum11+ sum22;

 }

 IN1++;

 IN2++;

 IN3++;

 sum = (sum >> shift);

 if (sum < 0) sum = 0;

 if (sum > 255) sum = 255;

 *OUT++ = sum;

 }

}

IMG_conv_3x3

5-59 IMGLIB Reference

Special Requirements
� cols output pixels are produced when three lines, each with a width of cols

pixels, are given as input.

� cols must be a multiple of 8.

� The array pointed to by out_data should not alias with the array pointed
to by in_data.

� The mask to the kernel should be such that the sum for each pixel is less
than or equal to 65536. This restriction arises because of the use of ADD2
instruction to compute two pixels in a register.

Implementation Notes
� This code is designed to take advantage of the 8-bit multiplier capability

provided by MPYSU4/MPYUS4. The kernel uses loop unrolling and com-
putes eight output pixels for every iteration.

� The eight bit elements in each mask are replicated four times to fill a word.
This is achieved by the use of PACKL4 and PACK2 instructions.

� The image data is brought in using LDNDW. The results of the multiplica-
tions are summed using ADD2. The output values are packed using
SPACK2 and stored using STNDW which writes eight 8-bit values at a
time.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 9 * cols/8 + 33

For cols = 256, cycles = 321
For cols = 720, cycles = 843

Code size 800 bytes

IMG_corr_3x3

5-60

3x3 CorrelationIMG_corr_3x3

Function void IMG_corr_3x3(const unsigned char *in_data, int *out_data, unsigned
char mask[3][3], int x_dim, int n_out)

Arguments

in_data Pointer to input array of 8-bit pixels

out_data Pointer to output array of 32-bit values

mask[3][3] Pointer to 8-bit mask. Must be word aligned.

x_dim Width of image

n_out Number of outputs. Must be multiple of 2.

Description This routine performs a point by point multiplication of the 3x3 mask with the
input image. The result of the nine multiplications are then summed together
to produce a 32-bit sum. The sum is then stored in an output array. The image
mask to be correlated is typically part of the input image or another image. The
mask is moved one column at a time, advancing the mask over the portion of
the row specified by ‘n_out’. When ‘n_out’ is larger than ‘x_dim’, multiple rows
will be processed.

In an application the correlation kernel is called once for every row as shown
below:

for (i = 0; i < rows; i++)

{

 IMG_corr_3x3(&i_data[i * x_dim], &o_data[i*n_out], mask,
x_dim, n_out);

}

Alternately, the kernel may be invoked for multiple rows at a time, although the
two outputs at the end of each row will have meaningless values. For example:

 IMG_corr_3x3(i_data, o_data, mask, x_dim, 2 * x_dim);

This will produce two rows of outputs into ‘o_data’. The outputs at locations
o_data[x_dim – 2], o_data[x_dim – 1], o_data[2*x_dim – 2] and
o_data[2*x_dim – 1] will have meaningless values. This is harmless, although
the application will have to account for this when interpreting the results.

Algorithm Behavioral C code is provided below:

void IMG_corr_3x3

(

 const unsigned char *i_data, /* input image */

 int *restrict o_data, /* output image */

IMG_corr_3x3

5-61 IMGLIB Reference

 const unsigned char mask[3][3], /* convolution mask */

 int x_dim, /* width of image */

 int n_out /* number of outputs */

)

{

 int i, j, k;

 for (i = 0; i < n_out; i++)

 {

 int sum = 0;

 for (j = 0; j < 3; j++)

 for (k = 0; k < 3; k++)

 sum += i_data[j * x_dim + i + k] * mask[j][k];

 o_data[i] = sum;

 }

}

Special Requirements
� The array pointed to by out_data must not alias with the array pointed to

by in_data.

� The number of outputs ‘n_out’ must be a multiple of 2. In cases where
‘n_out’ is not a multiple of 2, most applications can safely round ‘n_out’ up
to the next multiple of 2 and ignore the extra outputs. This kernel does not
round ‘n_out’ up for the user.

� The mask[3][3] array must be word aligned. No other restrictions are
placed on the alignments of the inputs.

Implementation Notes
� The inner loops are unrolled completely. The outer loop is unrolled 2

times.

� To save register pressure, we store our mask values packed in registers.
This allows us to store our 9 element mask in 5 registers.

� Bank Conflicts: Up to 5 bank conflicts occur during the setup code.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 4.5 * n_out + 35

For n_out = 248, cycles = 1151

Code size 416 bytes

IMG_corr_gen

5-62

Generalized CorrelationIMG_corr_gen

Function void IMG_corr_gen(short *in_data, short *h, short *out_data, int M, int cols)

Arguments

in_data[] Input image data (one line of width ‘cols’). Must be word
aligned.

h[M] 1xM tap filter.

out_data[] Output array of size cols – M + 4. Must be word aligned.

M Number of filter taps.

cols Width of line of image data.

Description This routine performs a generalized correlation with a 1xM tap filter. It can be
called repetitively to form an arbitrary MxN 2-D generalized correlation func-
tion. The correlation sums are stored as half words. The input pixel, and mask
data are assumed to be shorts. No restrictions are placed on the number of
columns in the image (cols) or the number of filter taps (M).

Algorithm Behavioral C code for the routine is provided below:

void IMG_corr_gen_cn

(

 const short *in_data,

 const short *h,

 short *out_data,

 int M,

 int cols

)

{

 int i, j;

 for (j = 0; j < cols – M; j++)

 for (i = 0; i < M; i++)

 out_data[j] += in_data[i + j] * h[i];

}

Special Requirements
� Arrays in_data[], out_data[], and h[] must be word aligned.

� The size of the output array must be at least (cols – M + 4).

IMG_corr_gen

5-63 IMGLIB Reference

Implementation Notes
� Since this function performs generalized correlation, the number of filter

taps can be as small as one. Hence, it is not beneficial to pipeline this loop
in its original form. In addition, collapsing of the loops causes data depen-
dencies and degrades the performance.

� However, loop order interchange can be used effectively. In this case the
outer loop of the natural C code is exchanged to be the inner loop that is
to be software pipelined, in the optimized assembly code. It is beneficial
to pipeline this loop because typical image dimensions are larger than the
number of filter taps. Note however, that the number of data loads and
stores increase within this loop compared to the natural C code.

� Unrolling of the outer loop assumes that there are an even number of filter
taps (M). Two special cases arise:

� M = 1. In this case, a separate version that processes just 1 tap is used
and the code directly starts from this loop without executing the ver-
sion of the code for even number of taps.

� M is odd. In this case, the even version of the loop is used for as many
even taps as possible and then the last tap is computed using the odd
tap special version created for M = 1.

� The inner loop is unrolled 4 times, assuming that the loop iteration
(cols – M) is a multiple of 4. In most typical images cols is a multiple of 4
but since M is completely general (cols – M) may not be a multiple of 4.
If (cols – M) is not a multiple of 4 then the inner loop iterates fewer times
than required and certain output pixels may not be computed. This prob-
lem is solved with the following process:

� Four is added to (cols – M) so that the next higher multiple of 4 is com-
puted. This implies that in certain cases up to 4 extra pixels may be
computed. In order to annul this extra computation, 4 locations start-
ing at out_data[cols-M] are zeroed out before returning to the calling
function.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

IMG_corr_gen

5-64

Benchmarks

Cycles (case 1 – even
number of filter taps)

(cols - M + 24) * M/2 + 36

For M = 8, cols = 720, cycles = 2980

Cycles (case 2 – odd
number of filter taps)

(cols - M + 23) * (M-1)/2 + (cols - M + 3) * 3/4 +
50

For M = 9, cols = 720, cycles = 3520

Code size 768 bytes

IMG_errdif_bin

5-65 IMGLIB Reference

Error Diffusion, Binary OutputIMG_errdif_bin

Function void IMG_errdif_bin(unsigned char errdif_data[], int cols, int rows, short
err_buf[], unsigned char thresh)

Arguments

errdif_data[] Input/output image data

cols Number of columns in the image. Must be ≥ 2.

rows Number of rows in the image

err_buf[] Buffer of size cols+1 where one row of error values is
saved. Must be initialized to zeros prior to first call.

thresh Threshold value in the range [0, 255]

Description This routine implements the Floyd-Steinberg error diffusion filter with binary
output.

Pixels are processed from left-to-right, top-to-bottom in an image. Each pixel
is compared against a user-defined threshold. Pixels that are larger than the
threshold are set to 255, and pixels that are smaller or equal to the threshold
are set to 0. The error value for the pixel (e.g., the difference between the
thresholded pixel and its original gray level) is propagated to the neighboring
pixels using the Floyd Steinberg filter (see below). This error propagation dif-
fuses the error over a larger area, hence the term “error diffusion.”

The Floyd Steinberg filter propagates fractions of the error value at pixel loca-
tion X to four of its neighboring pixels. The fractional values used are:

X 7/16

3/16 5/16 1/16

Algorithm When a given pixel at location (x, y) is processed, it has already received error
terms from four neighboring pixels. Three of these pixels are on the previous
row at locations (x–1, y–1), (x, y–1), and (x+1, y+1), and one is immediately
to the left of the current pixel at (x–1, y). In order to reduce the loop-carry path
that results from propagating these errors, this implementation uses an error
buffer to accumulate errors that are being propagated from the previous row.
The result is an inverted filter, as shown below:

1/16 5/16 3/16

7/16 Y

where Y is the current pixel location and the numerical values represent frac-
tional contributions of the error values from the locations indicated that are dif-
fused into the pixel at location Y location.

IMG_errdif_bin

5-66

This modified operation requires the first row of pixels to be processed sepa-
rately, since this row has no error inputs from the previous row. The previous
row’s error contributions in this case are essentially zero. One way to achieve
this is with a special loop that avoids the extra calculation involved with inject-
ing the previous row’s errors. Another is to pre-zero the error buffer before
processing the first row. This function supports the latter approach.

Behavioral C code for the routine is provided below:

void IMG_errdif_bin

(

 unsigned char *errdif_data, /* Input/Output image ptr */

 int cols, /* Number of columns (Width) */

 int rows, /* Number of rows (Height) */

 short err_buf, /* row–to–row error buffer. */

 unsigned char thresh /* Threshold from [0x00, 0xFF] */

)

{

 int x, i, y; /* Loop counters */

 int F; /* Current pixel value at [x,y] */

 int errA; /* Error value at [x–1, y–1] */

 int errB; /* Error value at [x, y–1] */

 int errC; /* Error value at [x+1, y–1] */

 int errE; /* Error value at [x–1, y] */

 int errF; /* Error value at [x, y] */

 /* ––– */

 /* Step through rows of pixels. */

 /* ––– */

 for (y = 0, i = 0; y < rows; y++)

 {

 /* –– */

 /* Start off with our initial errors set to zero at */

 /* the start of the line since we do not have any */

 /* pixels to the left of the row. These error terms */

 /* are maintained within the inner loop. */

 /* –– */

 errA = 0; errE = 0;

IMG_errdif_bin

5-67 IMGLIB Reference

 errB = err_buf[0];

 /* –– */

 /* Step through pixels in each row. */

 /* –– */

 for (x = 0; x < cols; x++, i++)

 {

 /* ––– */

 /* Load the error being propagated from pixel ‘C’ */

 /* from our error buffer. This was calculated */

 /* during the previous line. */

 /* ––– */

 errC = err_buf[x+1];

 /* ––– */

 /* Load our pixel value to quantize. */

 /* ––– */

 F = errdif_data[i];

 /* ––– */

 /* Calculate our resulting pixel. If we assume */

 /* that this pixel will be set to zero, this also */

 /* doubles as our error term. */

 /* ––– */

 errF = F + ((errE*7 + errA + errB*5 + errC*3) >> 4);

 /* ––– */

 /* Set pixels that are larger than the threshold to */

 /* 255, and pixels that are smaller than the */

 /* threshold to 0. */

 /* ––– */

 if (errF > thresh) errdif_data[i] = 0xFF;

 else errdif_data[i] = 0;

 /* ––– */

 /* If the pixel was larger than the threshold, then */

IMG_errdif_bin

5-68

 /* we need subtract 255 from our error. In any */

 /* case, store the error to the error buffer. */

 /* ––– */

 if (errF > thresh) err_buf[x] = errF = errF – 0xFF;

 else err_buf[x] = errF;

 /* ––– */

 /* Propagate error terms for the next pixel. */

 /* ––– */

 errE = errF;

 errA = errB;

 errB = errC;

 }

 }

}

Special Requirements
� The number of columns must be at least 2.

� err_buf[] must be initialized to zeros for the first call and the returned
err_buf [] should be provided for the next call.

� errdif_data[] is used for both input and output.

� The size of err_buf[] should be cols+1.

Implementation Notes
� The outer loop has been interleaved with the prolog and epilog of the inner

loop.

� Constants 7, 5, 3, 1 for filter-tap multiplications are shifted left 12 to avoid
SHR 4 operation in the critical path.

� The inner loop is software-pipelined.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: This function is interruptible. Maximum interrupt delay is
4*cols + 9 cycles.

Benchmarks

Cycles (cols * 4 + 14) * rows + 21

For cols = 720, rows = 480: 1,389,141 cycles

Code size 480 bytes

IMG_median_3x3

5-69 IMGLIB Reference

3x3 Median FilterIMG_median_3x3

Function void IMG_median_3x3(unsigned char *in_data, int cols, unsigned char
*out_data)

Arguments

in_data Pointer to input image data.

cols Number of columns in image.

out_data Pointer to output image data.

Description This routine performs a 3x3 median filtering algorithm. The gray level at each
pixel is replaced by the median of the nine neighborhood values. The function
processes three lines of input data pointed to by in_data, where each line is
‘cols’ pixels wide, and writes one line of output data to out_data.

The median of a set of nine numbers is the middle element so that half of the
elements in the list are larger and half are smaller. A median filter removes the
effect of extreme values from data. It is a commonly used operation for reduc-
ing impulsive noise in images.

Algorithm The algorithm processes a 3x3 region as three 3-element columns, increment-
ing through the columns in the image. Each column of data is first sorted into
MAX, MED, and MIN values, resulting in the following arrangement:

I00 I01 I02 MAX

I10 I11 I12 MED

I20 I21 I22 MIN

Where I00 is the MAX of the first column, I10 is the MED of the first column,
I20 is the MIN of the first column and so on.

The three MAX values I00, I01, I02 are then compared and their minimum val-
ue is retained, call it MIN0.

The three MED values I10, I11, I12 are compared and their median value is
retained, call it MED1.

The three MIN values I20, I21, I22 are compared and their maximum value is
retained, call it MAX2.

The three values MIN0, MED1, MAX2 are then sorted and their median is the
median value for the nine original elements.

After this output is produced, a new set of column data is read in, say I03, I13,
I23. This data is sorted as a column and processed along with I01, I11, I21, and
I02, I12, I22 as explained above. Since these two sets of data are already
sorted, they can be re-used as is.

IMG_median_3x3

5-70

Special Requirements none

Implementation Notes
� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 9 * cols + 49

For cols = 256: 2353 cycles
For cols = 720: 6529 cycles

Code size 544 bytes

IMG_pix_expand

5-71 IMGLIB Reference

Pixel ExpandIMG_pix_expand

Function void IMG_pix_expand(int n, unsigned char *in_data, short *out_data)

Arguments

n Number of samples to process. Must be multiple of 8.

in_data Pointer to input array (unsigned chars). Must be word
aligned.

out_data Pointer to output array (shorts). Must be word aligned.

Description This routine takes an array of unsigned chars (8-bit pixels) and zero-extends
them to signed 16-bit values (shorts).

Algorithm Behavioral C code for the routine is provided below:

void IMG_pix_expand (int n, unsigned char *in_data, short
*out_data)

{

int j;

for (j = 0; j < n; j++)

out_data[j] = (short) in_data[j];

}

Special Requirements
� in_data and out_data must be word aligned.

� n must be a multiple of 8.

Implementation Notes
� The code is unrolled 8 times, with two LDWs read in a total of 8 bytes each

iteration. The bytes are extracted into registers, and are then re-packed
as shorts. The packed shorts are then written with four STWs.

� The pack is achieved using MPYU and ADD. First, the data is shifted left
by 15 with the MPYU by multiplying with (1 << 15). The value is then added
to itself to shift it left one more bit. A final ADD merges the shifted quantity
with a second quantity, giving the packed result.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interruptible.

Benchmarks

Cycles 0.5 * n + 26

For cols = 256, cycles = 154
For cols = 1072, cycles = 562

Code size 288 bytes

IMG_pix_sat

5-72

Pixel SaturateIMG_pix_sat

Function void IMG_pix_sat(int n, short *in_data, unsigned char *out_data)

Arguments

n Number of samples to process. Must be a multiple of 4.

in_data Pointer to input data (shorts). Must be word aligned.

out_data Pointer to output data (unsigned chars). Must be
half-word aligned.

Description This routine performs the saturation of 16-bit signed numbers to 8-bit unsigned
numbers. If the data is over 255 it is clamped to 255, if it is less than 0 it is
clamped to 0.

Algorithm Behavioral C code for the routine is provided below:

void IMG_pix_sat_cn

(

 int n,

 const short in_data,

 unsigned char out_data

)

{

 int i, pixel;

 for (i = 0; i < n; i++)

 {

 pixel = in_data[i];

 if (pixel > 0xFF)

 {

 out_data[i] = 0xFF;

 } else if (pixel < 0x00)

 {

 out_data[i] = 0x00;

 } else

 {

 out_data[i] = pixel;

 }

 }

}

IMG_pix_sat

5-73 IMGLIB Reference

Special Requirements
� n must be a multiple of 4.

� in_data[] must be word aligned.

� out_data[] must be half-word aligned.

Implementation Notes
� The data is loaded in pairs of shorts, the sign bits are detected and the test

is done to see if values are over 8 bits. Outputs are packed back to gether
to form words, i.e. if (a & 0xff00) if (a & 0x8000) sat to 0 else sat to 0xff.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles n + 37

Code size 448 bytes

IMG_ycbcr422_rgb565

5-74

Planarized YCbCR to RGB color space conversionIMG_ycbcr422_rgb565

Function void IMG_ycbcr422_rgb565(short coeff[5], unsigned char *y_data, unsigned
char *cb_data, unsigned char *cr_data, unsigned short *rgb_data, unsigned
num_pixels)

Arguments

coeff[5] Matrix coefficients.

y_data Luminence data (Y’).

cb_data Blue color-diff (B’–Y’).

cr_data Red color-diff (R’–Y’).

rgb_data RGB 5:6:5 packed pixel out. Must be word aligned.

num_pixels Number of luma pixels to process. Must be multiple of 2.

Description This kernel performs Y’CbCr to RGB conversion. The ‘coeff[]’ array contains
the color-space-conversion matrix coefficients. The ‘y_data’, ‘cb_data’ and
‘cr_data’ pointers point to the separate input image planes. The ‘rgb_data’
pointer points to the output image buffer, and must be word aligned. The kernel
is designed to process arbitrary amounts of 4:2:2 image data, although 4:2:0
image data may be processed as well. For 4:2:2 input data, the ‘y_data’,
‘cb_data’ and ‘cr_data’ arrays may hold an arbitrary amount of image data. For
4:2:0 input data, only a single scan line (or portion thereof) may be processed
at a time.

The coefficients in the coeff array must be in signed Q13 form.

This code can perform various flavors of Y’CbCr to RGB conversion as long
as the offsets on Y, Cb, and Cr are –16, –128, and –128, respectively, and the
coefficients match the pattern shown. The kernel implements the following
matrix form, which involves 5 unique coefficients:

[coeff[0] 0.0000 coeff[1]] [Y’ – 16] [R’]

[coeff[0] coeff[2] coeff[3]] * [Cb – 128] = [G’]

[coeff[0] coeff[4] 0.0000] [Cr – 128] [B’]

Below are some common coefficient sets, along with the matrix equation that
they correspond to. Coefficients are in signed Q13 notation, which gives a suit-
able balance between precision and range.

1. Y’CbCr → RGB conversion with RGB levels that correspond to the 219-level
range of Y’. Expected ranges are [16..235] for Y’ and [16..240] for Cb and Cr.

coeff[] = { 0x2000, 0x2BDD, –0x0AC5, –0x1658, 0x3770 };

[1.0000 0.0000 1.3707] [Y’ – 16] [R’]

[1.0000 –0.3365 –0.6982] * [Cb – 128] = [G’]

[1.0000 1.7324 0.0000] [Cr – 128] [B’]

IMG_ycbcr422_rgb565

5-75 IMGLIB Reference

2. Y’CbCr → RGB conversion with the 219-level range of Y’ expanded to fill
the full RGB dynamic range. (The matrix has been scaled by 255/219). Ex-
pected ranges are [16..235] for Y’ and [16..240] for Cb and Cr.

coeff[] = { 0x2543, 0x3313, –0x0C8A, –0x1A04, 0x408D };

[1.1644 0.0000 1.5960] [Y’ – 16] [R’]

[1.1644 –0.3918 –0.8130] * [Cb – 128] = [G’]

[1.1644 2.0172 0.0000] [Cr – 128] [B’]

Other scalings of the color differences (B’–Y’) and (R’–Y’) (sometimes incor-
rectly referred to as U and V) are supported, as long as the color differences
are unsigned values centered around 128 rather than signed values centered
around 0, as noted above.

In addition to performing plain color-space conversion, color saturation can be
adjusted by scaling coeff[1] through coeff[4]. Similarly, brightness can be ad-
justed by scaling coeff[0]. General hue adjustment can not be performed, how-
ever, due to the two zeros hard coded in the matrix.

Algorithm Behavioral C code for the routine is provided below:

void IMG_ycbcr422pl_to_rgb565

(

 const short coeff[5], /* Matrix coefficients. */

 const unsigned char *y_data, /* Luminence data (Y’) */

 const unsigned char *cb_data, /* Blue color–difference (B’–Y’) */

 const unsigned char *cr_data, /* Red color–difference (R’–Y’) */

 unsigned short *rgb_data, /* RGB 5:6:5 packed pixel output. */

 unsigned num_pixels /* # of luma pixels to process. */

)

{

 int i; /* Loop counter */

 int y0, y1; /* Individual Y components */

 int cb, cr; /* Color difference components */

 int y0t,y1t; /* Temporary Y values */

 int rt, gt, bt; /* Temporary RGB values */

 int r0, g0, b0; /* Individual RGB components */

 int r1, g1, b1; /* Individual RGB components */

 int r0t,g0t,b0t; /* Truncated RGB components */

 int r1t,g1t,b1t; /* Truncated RGB components */

 int r0s,g0s,b0s; /* Saturated RGB components */

IMG_ycbcr422_rgb565

5-76

 int r1s,g1s,b1s; /* Saturated RGB components */

 short luma = coeff[0]; /* Luma scaling coefficient. */

 short r_cr = coeff[1]; /* Cr’s contribution to Red. */

 short g_cb = coeff[2]; /* Cb’s contribution to Green. */

 short g_cr = coeff[3]; /* Cr’s contribution to Green. */

 short b_cb = coeff[4]; /* Cb’s contribution to Blue. */

 unsigned short rgb0, rgb1; /* Packed RGB pixel data */

 /* –– */

 /* Iterate for num_pixels/2 iters, since we process pixels in pairs. */

 /* –– */

 i = num_pixels >> 1;

 while (i––>0)

 {

 /* –– */

 /* Read in YCbCr data from the separate data planes. */

 /* */

 /* The Cb and Cr channels come in biased upwards by 128, so */

 /* subtract the bias here before performing the multiplies for */

 /* the color space conversion itself. Also handle Y’s upward */

 /* bias of 16 here. */

 /* –– */

 y0 = *y_data++ – 16;

 y1 = *y_data++ – 16;

 cb = *cb_data++ – 128;

 cr = *cr_data++ – 128;

 /* == */

 /* Convert YCrCb data to RGB format using the following matrix: */

 /* */

 /* [Y’ – 16] [coeff[0] 0.0000 coeff[1]] [R’] */

 /* [Cb – 128] * [coeff[0] coeff[2] coeff[3]] = [G’] */

 /* [Cr – 128] [coeff[0] coeff[4] 0.0000] [B’] */

 /* */

 /* We use signed Q13 coefficients for the coefficients to make */

 /* good use of our 16–bit multiplier. Although a larger Q–point */

 /* may be used with unsigned coefficients, signed coefficients */

 /* add a bit of flexibility to the kernel without significant */

IMG_ycbcr422_rgb565

5-77 IMGLIB Reference

 /* loss of precision. */

 /* == */

 /* –– */

 /* Calculate chroma channel’s contribution to RGB. */

 /* –– */

 rt = r_cr * (short)cr;

 gt = g_cb * (short)cb + g_cr * (short)cr;

 bt = b_cb * (short)cb;

 /* –– */

 /* Calculate intermediate luma values. Include bias of 16 here. */

 /* –– */

 y0t = luma * (short)y0;

 y1t = luma * (short)y1;

 /* –– */

 /* Mix luma, chroma channels. */

 /* –– */

 r0 = y0t + rt; r1 = y1t + rt;

 g0 = y0t + gt; g1 = y1t + gt;

 b0 = y0t + bt; b1 = y1t + bt;

 /* == */

 /* At this point in the calculation, the RGB components are */

 /* nominally in the format below. If the color is outside the */

 /* our RGB gamut, some of the sign bits may be non–zero, */

 /* triggering saturation. */

 /* */

 /* 3 2 2 1 1 */

 /* 1 1 0 3 2 0 */

 /* [SIGN | COLOR | FRACTION] */

 /* */

 /* This gives us an 8–bit range for each of the R, G, and B */

 /* components. (The transform matrix is designed to transform */

 /* 8–bit Y/C values into 8–bit R,G,B values.) To get our final */

 /* 5:6:5 result, we ”divide” our R, G and B components by 4, 8, */

 /* and 4, respectively, by reinterpreting the numbers in the */

 /* format below: */

IMG_ycbcr422_rgb565

5-78

 /* */

 /* Red, 3 2 2 1 1 */

 /* Blue 1 1 0 6 5 0 */

 /* [SIGN | COLOR | FRACTION] */

 /* */

 /* 3 2 2 1 1 */

 /* Green 1 1 0 5 4 0 */

 /* [SIGN | COLOR | FRACTION] */

 /* */

 /* ”Divide” is in quotation marks because this step requires no */

 /* actual work. The code merely treats the numbers as having a */

 /* different Q–point. */

 /* == */

 /* –– */

 /* Shift away the fractional portion, and then saturate to the */

 /* RGB 5:6:5 gamut. */

 /* –– */

 r0t = r0 >> 16;

 g0t = g0 >> 15;

 b0t = b0 >> 16;

 r1t = r1 >> 16;

 g1t = g1 >> 15;

 b1t = b1 >> 16;

 r0s = r0t < 0 ? 0 : r0t > 31 ? 31 : r0t;

 g0s = g0t < 0 ? 0 : g0t > 63 ? 63 : g0t;

 b0s = b0t < 0 ? 0 : b0t > 31 ? 31 : b0t;

 r1s = r1t < 0 ? 0 : r1t > 31 ? 31 : r1t;

 g1s = g1t < 0 ? 0 : g1t > 63 ? 63 : g1t;

 b1s = b1t < 0 ? 0 : b1t > 31 ? 31 : b1t;

 /* –– */

 /* Merge values into output pixels. */

 /* –– */

 rgb0 = (r0s << 11) + (g0s << 5) + (b0s << 0);

 rgb1 = (r1s << 11) + (g1s << 5) + (b1s << 0);

 /* –– */

 /* Store resulting pixels to memory. */

 /* –– */

 *rgb_data++ = rgb0;

 *rgb_data++ = rgb1;

 }

 return;

}

IMG_ycbcr422_rgb565

5-79 IMGLIB Reference

Special Requirements
� The number of luma samples to be processed must be a multiple of 2.

� The output image must be word aligned.

Implementation Notes
� Pixel replication is performed implicitly on chroma data to reduce the total

number of multiplies required. The chroma portion of the matrix is calcu-
lated once for each Cb, Cr pair, and the result is added to both Y’ samples.

� Luma is biased downwards to produce R, G, and B values that are signed
quantities centered around zero, rather than unsigned qtys. This allows us
to use SSHL to perform saturation, followed by a quick XOR to correct the
sign bits in the final packed pixels. The required downward bias is 128
shifted left by the Q-point, 13.

� Because the loop accesses four different arrays at three different strides,
no memory accesses are allowed to parallelize in the loop. No bank
conflicts occur, as a result.

� Creatively constructed multiplies are used to avoid a bottleneck on shifts
in the loop. In particular, the 5-bit mask 0xF8000000 doubles as a
right-shift constant that happens to negate while shifting. This negation is
reversed by merging the bits with a SUB instead of an ADD or OR.

� Prolog and epilog collapsing have been performed, with only a partial
stage of prolog and epilog left uncollapsed. The partial stages a re-inter-
scheduled with the rest of the code for speed.

� Instructions have been scheduled to minimize fetch-packet padding
NOPs. Only 3 padding NOPs and 1 explicit NOP remain.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 3 * num_pixels + 46

For num_pixels = 4096: 12,334 cycles
For num_pixels = 16,384: 49,156 cycles

Code size 512 bytes

IMG_yc_demux_be16

5-80

YCbCr Demultiplexing (big endian source)IMG_yc_demux_be16

Function IMG_yc_demux_be16(int n, unsigned char *yc, short *y, short *cr, short *cb)

Arguments

n Number of luma points. Must be multiple of 8.

yc Packed luma/chroma inputs. Must be word aligned.

y Unpacked luma data. Must be word aligned.

cr Unpacked chroma r data. Must be word aligned.

cb Unpacked chroma b data. Must be word aligned.

Description This routine de-interleaves a 4:2:2 BIG ENDIAN video stream into three sepa-
rate LITTLE ENDIAN 16-bit planes. The input array ‘yc’ is expected to be an
interleaved 4:2:2 video stream. The input is expected in BIG ENDIAN byte or-
der within each 4-byte word. This is consistent with reading the video stream
from a word-oriented BIG ENDIAN device while the C6000 device is in a
LITTLE ENDIAN configuration. In other words, the expected pixel order is:

Word 0 Word 1 Word 2

Byte# 0 1 2 3 4 5 6 7 8 9 10 11

cb0 y1 cr0 y0 cb2 y3 cr2 y2 cb4 y5 cr4 y4

The output arrays ‘y’, ‘cr’, and ‘cb’ are expected to not overlap. The de-inter-
leaved pixels are written as half-words in LITTLE ENDIAN order.

This function reads the byte-oriented pixel data, zero-extends it, and then
writes it to the appropriate result array. Both the luma and chroma values are
expected to be unsigned. The data is expected to be in an order consistent with
reading byte oriented data from a word-oriented peripheral that is operating
in BIG ENDIAN mode, while the CPU is in LITTLE ENDIAN mode. This func-
tion unpacks the byte-oriented data so that further processing may proceed
in LITTLE ENDIAN mode.

Please see the function IMB_yc_demux_le16 for code which handles input
coming from a LITTLE ENDIAN device.

IMG_yc_demux_be16

5-81 IMGLIB Reference

Algorithm Behavioral C code for the routine is provided below:

void yc_demux_be16(int n, unsigned char *yc, short *y,

 short *cr, short *cb)

{

 int i;

 for (i = 0; i < (n >> 1); i++)

 {

 y[2*i+0] = yc[4*i + 3];

 y[2*i+1] = yc[4*i + 1];

 cr[i] = yc[4*i + 2];

 cb[i] = yc[4*i + 0];

 }

}

Special Requirements
� The input and output data must be aligned to word boundaries.

� n must be a multiple of 8.

Implementation Notes
� The loop has been unrolled a total of 8 times to allow for processing 4 pix-

els in each datapath.

� Wordwide loads and stores maximize memory bandwidth utilization.

� The 40-bit shifter is used to exchange the luma bytes within each word,
effectively giving leftward byte rotate.

� Bank Conflicts: In order to avoid bank conflicts, offset the Cb and Cr ar-
rays by one word (two banks), or place them in independent memory
blocks.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 3 * n/4 + 21

For n = 1024: 789 cycles

Code size 256 bytes

IMG_yc_demux_le16

5-82

YCbCr Demultiplexing (little endian source)IMG_yc_demux_le16

Function IMG_yc_demux_le16(int n, unsigned char *yc, short *y, short *cr, short *cb)

Arguments

n Number of luma points. Must be multiple of 8.

yc Packed luma/chroma inputs. Must be word aligned.

y Unpacked luma data. Must be word aligned.

cr Unpacked chroma r data. Must be word aligned.

cb Unpacked chroma b data. Must be word aligned.

Description This routine de-interleaves a 4:2:2 LITTLE ENDIAN video stream into three
separate LITTLE ENDIAN 16-bit planes. The input array ‘yc’ is expected to be
an interleaved 4:2:2 video stream. The input is expected in LITTLE ENDIAN
byte order within each 4-byte word. This is consistent with reading the video
stream from a word-oriented LITTLE ENDIAN device while the C6000 device
is in a LITTLE ENDIAN configuration. In other words, the expected pixel order
is:

Word 0 Word 1 Word 2

Byte# 0 1 2 3 4 5 6 7 8 9 10 11

y0 cr0 y1 cb0 y2 cr2 y3 cb2 y4 cr4 y5 cb4

The output arrays ‘y’, ‘cr’, and ‘cb’ are expected to not overlap. The de-inter-
leaved pixels are written as half-words in LITTLE ENDIAN order.

This function reads the byte-oriented pixel data, zero-extends it, and then
writes it to the appropriate result array. Both the luma and chroma values are
expected to be unsigned. The data is expected to be in an order consistent with
reading byte oriented data from a word-oriented peripheral that is operating
in LITTLE ENDIAN mode, while the CPU is in LITTLE ENDIAN mode. This
function unpacks the byte-oriented data so that further processing may pro-
ceed in LITTLE ENDIAN mode.

Please see the function IMB_yc_demux_be16 for code which handles input
coming from a BIG ENDIAN device.

IMG_yc_demux_le16

5-83 IMGLIB Reference

Algorithm Behavioral C code for the routine is provided below:

void IMG_yc_demux_le16(int n, unsigned char *yc, short *y,

 short *cr, short *cb)

{

 int i;

 for (i = 0; i < (n >> 1); i++)

 {

 y[2*i+0] = yc[4*i + 0];

 y[2*i+1] = yc[4*i + 2];

 cr[i] = yc[4*i + 1];

 cb[i] = yc[4*i + 3];

 }

}

Special Requirements
� The input and output data must be aligned to word boundaries.

� n must be a multiple of 8.

Implementation Notes
� The loop has been unrolled a total of 8 times to allow for processing 4 pix-

els in each datapath.

� Wordwide loads and stores maximize memory bandwidth utilization.

� The 40-bit shifter is used to exchange the luma bytes within each word,
effectively giving leftward byte rotate.

� Bank Conflicts: In order to avoid bank conflicts, offset the Cb and Cr ar-
rays by one word (two banks), or place them in independent memory
blocks.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: This code is interrupt-tolerant but not interruptible.

Benchmarks

Cycles 3 * n/4 + 18

For n = 1024: 786 cycles

Code size 224 bytes

A-1

Appendix A

����������������� ������

This appendix describes performance considerations related to the C62x
IMGLIB and provides information about software updates and customer sup-
port issues.

Topic Page

A.1 Performance Considerations A-2.

A.2 IMGLIB Software Updates A-2.

A.3 IMGLIB Customer Support A-2.

Appendix A

Performance Considerations

 A-2

A.1 Performance Considerations

Although IMGLIB can be used as a first estimation of processor performance
for a specific function, you should be aware that the generic nature of IMGLIB
might add extra cycles not required for customer specific usage.

Benchmark cycles presented assume best case conditions, typically assum-
ing all code and data are placed in internal data memory. Any extra cycles due
to placement of code or data in external data memory or cache-associated
effects (cache-hits or misses) are not considered when computing the cycle
counts.

You should also be aware that execution speed in a system is dependent on
where the different sections of program and data are located in memory. You
should account for such differences when trying to explain why a routine is tak-
ing more time than the reported IMGLIB benchmarks.

A.2 IMGLIB Software Updates

C62x IMGLIB Software updates may be periodically released incorporating
product enhancements and fixes as they become available. You should read
the README.TXT available in the root directory of every release.

A.3 IMGLIB Customer Support

If you have questions or want to report problems or suggestions regarding the
C62x IMGLIB, contact Texas Instruments at dsph@ti.com.

B-1

Appendix A

���		��!

A

address: The location of program code or data stored; an individually
accessible memory location.

A-law companding: See compress and expand (compand).

API: See application programming interface.

application programming interface (API): Used for proprietary
application programs to interact with communications software or to
conform to protocols from another vendor’s product.

assembler: A software program that creates a machine language program
from a source file that contains assembly language instructions,
directives, and macros. The assembler substitutes absolute operation
codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assert: To make a digital logic device pin active. If the pin is active low, then
a low voltage on the pin asserts it. If the pin is active high, then a high
voltage asserts it.

B

bit: A binary digit, either a 0 or 1.

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower
numbered addresses. Endian ordering is specific to hardware and is
determined at reset. See also little endian.

block: The three least significant bits of the program address. These
correspond to the address within a fetch packet of the first instruction
being addressed.

Appendix B

Glossary

 B-2

board support library (BSL): The BSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control board level peripherals.

boot: The process of loading a program into program memory.

boot mode: The method of loading a program into program memory. The
C6x DSP supports booting from external ROM or the host port interface
(HPI).

boundary: Boundary structural operator.

BSL: See board support library.

byte: A sequence of eight adjacent bits operated upon as a unit.

C
cache: A fast storage buffer in the central processing unit of a computer.

cache controller: System component that coordinates program accesses
between CPU program fetch mechanism, cache, and external memory.

CCS: Code Composer Studio.

central processing unit (CPU): The portion of the processor involved in
arithmetic, shifting, and Boolean logic operations, as well as the
generation of data- and program-memory addresses. The CPU includes
the central arithmetic logic unit (CALU), the multiplier, and the auxiliary
register arithmetic unit (ARAU).

chip support library (CSL): The CSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control all on-chip peripherals.

clock cycle: A periodic or sequence of events based on the input from the
external clock.

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal.

code: A set of instructions written to perform a task; a computer program or
part of a program.

coder-decoder or compression/decompression (codec): A device that
codes in one direction of transmission and decodes in another direction
of transmission.

Glossary

B-3Glossary

compiler: A computer program that translates programs in a high-level
language into their assembly-language equivalents.

compress and expand (compand): A quantization scheme for audio
signals in which the input signal is compressed and, after processing, is
reconstructed at the output by expansion. There are two distinct
companding schemes: A-law (used in Europe) and µ-law (used in the
United States).

control register: A register that contains bit fields that define the way a
device operates.

control register file: A set of control registers.

corr_3x3: 3x3 correlation with rounding.

corr_gen: Generalized correlation.

CSL: See chip support library.

D

device ID: Configuration register that identifies each peripheral component
interconnect (PCI).

digital signal processor (DSP): A semiconductor that turns analog signals
such as sound or light into digital signals, which are discrete or
discontinuous electrical impulses, so that they can be manipulated.

dilate_bin: 3x3 binary dilation.

direct memory access (DMA): A mechanism whereby a device other than
the host processor contends for and receives mastery of the memory bus
so that data transfers can take place independent of the host.

DMA : See direct memory access.

DMA source: The module where the DMA data originates. DMA data is read
from the DMA source.

DMA transfer: The process of transferring data from one part of memory to
another. Each DMA transfer consists of a read bus cycle (source to DMA
holding register) and a write bus cycle (DMA holding register to
destination).

Glossary

 B-4

E

erode_bin: 3x3 binary erosion.

errdif_bin: Error diffusion, binary output.

evaluation module (EVM): Board and software tools that allow the user to
evaluate a specific device.

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

external memory interface (EMIF): Microprocessor hardware that is used
to read to and write from off-chip memory.

F

fast Fourier transform (FFT): An efficient method of computing the discrete
Fourier transform algorithm, which transforms functions between the
time domain and the frequency domain.

fdct_8x8: Forward discrete cosine transform (FDCT).

fetch packet: A contiguous 8-word series of instructions fetched by the CPU
and aligned on an 8-word boundary.

FFT: See fast fourier transform.

flag: A binary status indicator whose state indicates whether a particular
condition has occurred or is in effect.

frame: An 8-word space in the cache RAMs. Each fetch packet in the cache
resides in only one frame. A cache update loads a frame with the
requested fetch packet. The cache contains 512 frames.

G

global interrupt enable bit (GIE): A bit in the control status register (CSR)
that is used to enable or disable maskable interrupts.

Glossary

B-5Glossary

H

HAL: Hardware abstraction layer of the CSL. The HAL underlies the service
layer and provides it a set of macros and constants for manipulating the
peripheral registers at the lowest level. It is a low-level symbolic interface
into the hardware providing symbols that describe peripheral
registers/bitfields and macros for manipulating them.

histogram: Histogram computation.

host: A device to which other devices (peripherals) are connected and that
generally controls those devices.

host port interface (HPI): A parallel interface that the CPU uses to
communicate with a host processor.

HPI: See host port interface; see also HPI module.

I

idct_8x8: Inverse discrete cosine transform (IDCT).

index: A relative offset in the program address that specifies which of the
512 frames in the cache into which the current access is mapped.

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data; this mode is prohibited in
RISC architecture.

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current
operation, save the current task status, and perform a particular set of
instructions. Interrupts communicate with the operating system and
prioritize tasks to be performed.

interrupt service fetch packet (ISFP): A fetch packet used to service
interrupts. If eight instructions are insufficient, the user must branch out
of this block for additional interrupt service. If the delay slots of the branch
do not reside within the ISFP, execution continues from execute packets
in the next fetch packet (the next ISFP).

Glossary

 B-6

interrupt service routine (ISR): A module of code that is executed in
response to a hardware or software interrupt.

interrupt service table (IST) A table containing a corresponding entry for
each of the 16 physical interrupts. Each entry is a single-fetch packet and
has a label associated with it.

Internal peripherals: Devices connected to and controlled by a host device.
The C6x internal peripherals include the direct memory access (DMA)
controller, multichannel buffered serial ports (McBSPs), host port
interface (HPI), external memory-interface (EMIF), and runtime support
timers.

IST: See interrupt service table.

L

least significant bit (LSB): The lowest-order bit in a word.

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed.

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have
higher-numbered addresses. Endian ordering is specific to hardware
and is determined at reset. See also big endian.

M

mad_8x8: 8x8 minimum absolute difference.

mad_16x16: 16x16 minimum absolute difference.

maskable interrupt: A hardware interrupt that can be enabled or disabled
through software.

median_3x3: 3x3 median filter.

memory map: A graphical representation of a computer system’s memory,
showing the locations of program space, data space, reserved space,
and other memory-resident elements.

memory-mapped register: An on-chip register mapped to an address in
memory. Some memory-mapped registers are mapped to data memory,
and some are mapped to input/output memory.

Glossary

B-7Glossary

most significant bit (MSB): The highest order bit in a word.

�-law companding: See compress and expand (compand).

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices.

multiplexer: A device for selecting one of several available signals.

N

nonmaskable interrupt (NMI): An interrupt that can be neither masked nor
disabled.

O

object file: A file that has been assembled or linked and contains machine
language object code.

off chip: A state of being external to a device.

on chip: A state of being internal to a device.

P

perimeter: Perimeter structural operator.

peripheral: A device connected to and usually controlled by a host device.

pix_expand: Pixel expand.

pix_sat: Pixel saturate.

program cache: A fast memory cache for storing program instructions
allowing for quick execution.

program memory: Memory accessed through the C6x program fetch
interface.

PWR: Power; see PWR module.

PWR module: PWR is an API module that is used to configure the
power-down control registers, if applicable, and to invoke various
power-down modes.

Glossary

 B-8

Q
quantize: Matrix quantization with rounding.

R
random-access memory (RAM): A type of memory device in which the

individual locations can be accessed in any order.

register: A small area of high speed memory located within a processor or
electronic device that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

reduced-instruction-set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of
microprogrammed complex instruction set computers. The result is a
higher instruction throughput and a faster real-time interrupt service
response from a smaller, cost-effective chip.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

RTOS Real-time operating system.

S
service layer: The top layer of the 2-layer chip support library architecture

providing high-level APIs into the CSL and BSL. The service layer is
where the actual APIs are defined and is the layer the user interfaces to.

sobel: Sobel edge detection.

synchronous-burst static random-access memory (SBSRAM): RAM
whose contents does not have to be refreshed periodically. Transfer of
data is at a fixed rate relative to the clock speed of the device, but the
speed is increased.

synchronous dynamic random-access memory (SDRAM): RAM whose
contents is refreshed periodically so the data is not lost. Transfer of data
is at a fixed rate relative to the clock speed of the device.

syntax: The grammatical and structural rules of a language. All higher-level
programming languages possess a formal syntax.

system software: The blanketing term used to denote collectively the chip
support libraries and board support libraries.

Glossary

B-9Glossary

T

tag: The 18 most significant bits of the program address. This value
corresponds to the physical address of the fetch packet that is in that
frame.

threshold: Image thresholding.

timer: A programmable peripheral used to generate pulses or to time
events.

TIMER module: TIMER is an API module used for configuring the timer
registers.

W

wave_horz: Horizontal wavelet transform.

wave_vert: Vertical wavelet transform.

word: A multiple of eight bits that is operated upon as a unit. For the C6x,
a word is 32 bits in length.

Index

Index-1

����"

A
A-law companding, defined B-1

address, defined B-1

API, defined B-1

application programming interface, defined B-1

assembler, defined B-1

assert, defined B-1

B
big endian, defined B-1

bit, defined B-1

block, defined B-1

board support library, defined B-2

boot, defined B-2

boot mode, defined B-2

boundary, defined B-2

BSL, defined B-2

byte, defined B-2

C
cache, defined B-2

cache controller, defined B-2

CCS, defined B-2

central processing unit (CPU), defined B-2

chip support library, defined B-2

clock cycle, defined B-2

clock modes, defined B-2

code, defined B-2

coder-decoder, defined B-2

compiler, defined B-3

compress and expand (compand), defined B-3

compression/decompression, functions table 4-2

compression/decompression functions, IMGLIB
reference 5-2

control register, defined B-3

control register file, defined B-3

corr_3x3, IMGLIB reference 5-60

correlation 3-6

CSL, defined B-3

D
DCT (discrete cosine transform), forward and

inverse 3-2

device ID, defined B-3

digital signal processor (DSP), defined B-3

dilation 3-4

direct memory access (DMA)
defined B-3
source, defined B-3
transfer, defined B-3

DMA, defined B-3

E
edge detection 3-4

erosion 3-4

error diffusion 3-6

evaluation module, defined B-4

expand 3-6

external interrupt, defined B-4

external memory interface (EMIF), defined B-4

Index

Index-2

F
fetch packet, defined B-4

filtering
median 3-6
picture, functions table 4-4

flag, defined B-4

forward and inverse DCT 3-2

frame, defined B-4

G
general-purpose imaging functions, IMGLIB

reference 5-35

GIE bit, defined B-4

H
H.26x 3-2, 3-3

HAL, defined B-5

histogram 3-4

host, defined B-5

host port interface (HPI), defined B-5

HPI, defined B-5

I
image thresholding 3-5

imaging, general purpose, functions table 4-3

IMG_boundary
IMGLIB function descriptions 3-4
IMGLIB reference 5-35

IMG_conv_3x3, IMGLIB function descriptions 3-6

IMG_convolution, IMGLIB reference 5-57

IMG_corr_3x3, IMGLIB function descriptions 3-6

IMG_corr_gen
IMGLIB function descriptions 3-6
IMGLIB reference 5-62

IMG_dilate_bin
IMGLIB function descriptions 3-4
IMGLIB reference 5-37

IMG_erode_bin
IMGLIB function descriptions 3-4
IMGLIB reference 5-39

IMG_errdif_bin
IMGLIB function descriptions 3-6
IMGLIB reference 5-65

IMG_fdct_8x8
IMGLIB function descriptions 3-2
IMGLIB reference 5-2

IMG_histogram
IMGLIB function descriptions 3-4
IMGLIB reference 5-41

IMG_idct_8x8
IMGLIB function descriptions 3-2
IMGLIB reference 5-4

IMG_mad_16x16, IMGLIB function
descriptions 3-3

IMG_mad_8x8
IMGLIB function descriptions 3-3
IMGLIB reference 5-7, 5-10

IMG_median_3x3
IMGLIB function descriptions 3-6
IMGLIB reference 5-69

IMG_mpeg2_vld_inter
IMGLIB function descriptions 3-3
IMGLIB reference 5-17

IMG_mpeg2_vld_intra
IMGLIB function descriptions 3-3
IMGLIB reference 5-13

IMG_perimeter
IMGLIB function descriptions 3-4
IMGLIB reference 5-44

IMG_pix_expand
IMGLIB function descriptions 3-6
IMGLIB reference 5-71

IMG_pix_sat
IMGLIB function descriptions 3-6
IMGLIB reference 5-72

IMG_quantize
IMGLIB function descriptions 3-3
IMGLIB reference 5-19, 5-80, 5-82

IMG_sad_16x16
IMGLIB function descriptions 3-3
IMGLIB reference 5-24

IMG_sad_8x8
IMGLIB function descriptions 3-3
IMGLIB reference 5-22

IMG_sobel
IMGLIB function descriptions 3-4
IMGLIB reference 5-46

IMG_thr_gt2max, IMGLIB function descriptions 3-5
IMG_thr_gt2thr, IMGLIB function descriptions 3-5

Index

Index-3

IMG_thr_le2min, IMGLIB function descriptions 3-5

IMG_thr_le2thr, IMGLIB function descriptions 3-5

IMG_wave_horz
IMGLIB function descriptions 3-3
IMGLIB reference 5-26

IMG_wave_vert
IMGLIB function descriptions 3-3
IMGLIB reference 5-31

IMG_yc_demux_be16, IMGLIB function
descriptions 3-7

IMG_yc_demux_le16, IMGLIB function
descriptions 3-7

IMG_ycbcr422_rgb565, IMGLIB reference 5-74

IMG_ycbcr422p_rgb565, IMGLIB function
descriptions 3-7

IMGLIB
calling an IMGLIB function from Assembly 2-4
calling an IMGLIB function from C 2-4

Code Composer Studio users 2-4
features and benefits 1-2
functions, table 4-2

compression/decompression 4-2
general-purpose imaging 4-3
picture filtering 4-4

how IMGLIB deals with overflow and
scaling 2-5

how IMGLIB is tested 2-5
how to install 2-2
how to rebuild IMGLIB 2-5
introduction 1-1, 1-2
software routines 1-2
using IMGLIB 2-4

IMGLIB function descriptions
IMG_boundary 3-4
IMG_conv_3x3 3-6
IMG_corr_3x3 3-6
IMG_corr_gen 3-6
IMG_dilate_bin 3-4
IMG_erode_bin 3-4
IMG_errdif_bin 3-6
IMG_fdct_8x8 3-2
IMG_histogram 3-4
IMG_idct_8x8 3-2
IMG_mad_16x16 3-3
IMG_mad_8x8 3-3
IMG_median_3x3 3-6
IMG_mpeg2_vld_inter 3-3
IMG_mpeg2_vld_intra 3-3
IMG_perimeter 3-4

IMGLIB function descriptions (continued)
IMG_pix_expand 3-6
IMG_pix_sat 3-6
IMG_quantize 3-3
IMG_sad_16x16 3-3
IMG_sad_8x8 3-3
IMG_sobel 3-4
IMG_thr_gt2max 3-5
IMG_thr_gt2thr 3-5
IMG_thr_le2min 3-5
IMG_thr_le2thr 3-5
IMG_wave_horz 3-3
IMG_wave_vert 3-3
IMG_yc_demux_be16 3-7
IMG_yc_demux_le16 3-7
IMG_ycbcr422p_rgb565 3-7

IMGLIB reference
compression/decompression functions 5-2
corr_3x3 5-60
general-purpose imaging 5-35
IMG_boundary 5-35
IMG_convolution 5-57
IMG_corr_gen 5-62
IMG_dilate_bin 5-37
IMG_erode_bin 5-39
IMG_errdif_bin 5-65
IMG_fdct_8x8 5-2
IMG_histogram 5-41
IMG_idct_8x8 5-4
IMG_mad_8x8 5-7, 5-10
IMG_median_3x3 5-69
IMG_mpeg2_vld_inter 5-17
IMG_mpeg2_vld_intra 5-13
IMG_perimeter 5-44
IMG_pix_expand 5-71
IMG_pix_sat 5-72
IMG_quantize 5-19, 5-80, 5-82
IMG_sad_16x16 5-24
IMG_sad_8x8 5-22
IMG_sobel 5-46
IMG_wave_horz 5-26
IMG_wave_vert 5-31
IMG_ycbcr422_rgb565 5-74
picture filtering/format conversion

functions 5-57
threshold 5-49, 5-51, 5-53, 5-55

index, defined B-5
indirect addressing, defined B-5
installing IMGLIB 2-2
instruction fetch packet, defined B-5

Index

Index-4

internal interrupt, defined B-5

internal peripherals, defined B-6

interrupt, defined B-5

interrupt service fetch packet (ISFP), defined B-5

interrupt service routine (ISR), defined B-6

interrupt service table (IST), defined B-6

IST, defined B-6

J
JPEG 3-2, 3-3

L
least significant bit (LSB), defined B-6

linker, defined B-6

little endian, defined B-6

M
maskable interrupt, defined B-6

median filtering 3-6

memory map, defined B-6

memory-mapped register, defined B-6

minimum absolute difference 3-3

most significant bit (MSB), defined B-7

MPEG 3-2, 3-3

µ-law companding, defined B-7

multichannel buffered serial port (McBSP),
defined B-7

multiplexer, defined B-7

N
nonmaskable interrupt (NMI), defined B-7

O
object file, defined B-7

off chip, defined B-7

on chip, defined B-7

overflow and scaling 2-5

P
peripheral, defined B-7
picture filtering, functions table 4-4
picture filtering/format conversion functions, IMGLIB

reference 5-57
program cache, defined B-7
program memory, defined B-7
PWR, defined B-7
PWR module, defined B-7

Q
quantize 3-3

R
random-access memory (RAM), defined B-8
rebuilding IMGLIB 2-5
reduced-instruction-set computer (RISC),

defined B-8
register, defined B-8
reset, defined B-8
RTOS, defined B-8

S
saturate 3-6
service layer, defined B-8
STDINC module, defined B-8
synchronous dynamic random-access memory

(SDRAM), defined B-8
synchronous-burst static random-access memory

(SBSRAM), defined B-8
syntax, defined B-8
system software, defined B-8

T
tag, defined B-9
testing, how IMGLIB is tested 2-5
threshold, IMGLIB reference 5-49, 5-51, 5-53, 5-55
timer, defined B-9
TIMER module, defined B-9

Index

Index-5

U
using IMGLIB 2-4

calling an IMGLIB function from C, Code
Composer Studio users 2-4

W
wavelet 3-3

word, defined B-9

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Tables
	Introduction
	Introduction to the TI C62x IMGLIB
	Features and Benefits
	Software Routines

	Installing and Using IMGLIB
	Installing IMGLIB
	Using IMGLIB
	Calling an IMGLIB Function From C
	Code Composer Studio Users

	Calling an IMGLIB Function from Assembly
	How IMGLIB is Tested – Allowable Error
	How IMGLIB Deals with Overflow and Scaling Issues
	Code Composer Studio Users

	Rebuilding IMGLIB

	IMGLIB Function Descriptions
	IMGLIB Functions Overview
	Compression/Decompression
	Image Analysis
	Picture Filtering/Format Conversions

	IMGLIB Function Tables
	IMGLIB Function Tables

	IMGLIB Reference
	Compression/Decompression
	IMG_fdct_8x8
	IMG_idct_8x8
	IMG_mad_8x8
	IMG_mad_16x16
	IMG_mpeg2_vld_intra
	IMG_mpeg2_vld_inter
	IMG_quantize
	IMG_sad_8x8
	IMG_sad_16x16
	IMG_wave_horz
	IMG_wave_vert

	Image Analysis
	IMG_boundary
	IMG_dilate_bin
	IMG_erode_bin
	IMG_histogram
	IMG_perimeter
	IMG_sobel
	IMG_thr_gt2max
	IMG_thr_gt2thr
	IMG_thr_le2min
	IMG_thr_le2thr

	Picture Filtering/Format Conversions
	IMG_conv_3x3
	IMG_corr_3x3
	IMG_corr_gen
	IMG_errdif_bin
	IMG_median_3x3
	IMG_pix_expand
	IMG_pix_sat
	IMG_ycbcr422_rgb565
	IMG_yc_demux_be16
	IMG_yc_demux_le16

	Performance and Support
	Performance Considerations
	IMGLIB Software Updates
	IMGLIB Customer Support

	Glossary
	Index

