
 
1 Input/Output Systems and Peripheral Devices 

1. SERIAL PORT 
 

 

 

 

 

 

 

 This laboratory work presents the principles of serial communication and describes 

the controllers used by the serial ports of personal computers. First, the serial communication 

model is introduced, the parameters of serial communication are presented, and the two basic 

types of serial communication, asynchronous and synchronous, are explained. Next, the serial 

port signals are presented, the methods for controlling the data flow are explained, and the 

types of connectors and cables are described. After presenting the main features of several 

UART chips, the registers of the 16x50 family of UART chips are described in detail. The 

proposed applications aim to communicate with an FPGA development board through the 

serial port. 

 1.1. Serial Communication Model 

 An example of serial communication system is illustrated in Figure 1.1. 

 
Figure 1.1. Serial communication system. 

 The components of a serial communication system are the following: 

1. DTE – Data Terminal Equipment (computer, data terminal). It also includes the serial 

interfaces or the communication controller. 

2. DCE – Data Communication Equipment. This equipment is called modem and allows 

the computer to send information over an analog telephone line. The main functions 

accomplished by a modem are the following: 

• Digital-to-analog conversion of the computer information and analog-to-digital 

conversion of the signals on the analog telephone line. 

• Modulation/demodulation of a carrier signal. For transmission, the modem super-

poses (modulates) the digital signals of the computer over the carrier signal of the 

telephone line. For reception, the modem extracts (demodulates) the information 

carried by the carrier signal and it transfers them to the computer. 

3. The communication line represents a physical line or a telephone line. The telephone 

line can be a switched line (connected to a telephone exchange) or a leased line (dedi-

cated). 



 
2 1. Serial Port 

4. The data circuit consists of the segment between two data terminal equipment, that is, 

the modems and the communication line. For short distances, it is possible a direct se-

rial communication between two data terminal equipment via physical lines, without 

using modems. In this case, the data circuit is represented by these lines. 

5. The data link contains the data circuit and the serial interfaces of the data terminal 

equipment. 

Depending on the number of interconnected computers or devices, serial links can be 

classified into point-to-point links or multi-point links. 

 1.2. Parameters of Serial Communication 

 The communication speed (also referred to as binary rate) is measured in bits/s (bps): 

BR = 
1

T
 [Bits/s]     (1) 

where T is the time period required for transmitting a single bit. 

 The modem represents the data signals by various electrical states, depending on the 

modulation type used: frequency, amplitude, or phase. Each electrical state is maintained at the 

output of the modem for a time interval called modulation period (). The modulation speed is 

the reciprocal of the modulation period, representing the number of changes per second of the 

electrical state of the modem: 

MS = 


1
 [Baud]     (2) 

 The unit of measure for modulation speed is baud, after the name of French engineer 

and telegrapher Jean-Maurice Baudot. The relationship between communication speed BR 

and modulation speed MS is the following: 

BR = MS  log2 n [Bits/s]    (3) 

where n is the number of distinct electrical states of the modem. In the particular case when 

there are only two distinct states of the modem, the communication speed is equal to the 

modulation speed. However, in general, there are a larger number of electrical states of the 

modem, so that the communication speed is a multiple of the modulation speed. 

 Modulation speed (baud rate) and communication speed (binary rate) are often confused. 

Modulation speed is the rate at which the electrical states of the modem change in one second. 

For instance, if frequency modulation is used, and the carrier signal frequency can be changed by 

the modem at a rate of 2,400 times per second, the modulation speed is 2,400 bauds. Early 

modems encoded a bit of 0 by a certain frequency and a bit of 1 by another frequency. In this 

particular case, the modulation speed has the same value as the communication speed. In general, 

though, modems encode several bits of information by an electrical state. For instance, if the 

modem encodes 4 bits of information by a certain frequency, for the previous example the 

communication speed would be 4  2,400 = 9,600 bits/s. 

 1.3. Types of Serial Communication 

 Considering the direction of transfer, the following types of communication may be 

distinguished: 

• Simplex; 

• Half duplex; 

• Full duplex. 

In a simplex communication, data are always sent in the same direction, from the 

transmitter equipment to the receiver. In a half duplex communication, each data terminal 



 
3 Input/Output Systems and Peripheral Devices 

equipment operates alternatively as transmitter, and then as receiver. For this type of connec-

tion, a single transmission line (two wires) is sufficient. In a full duplex communication, data 

are transferred simultaneously in both directions. Early full duplex connections required two 

transmission lines (four wires), but later connections require a single line. 

 From the point of view of the synchronization between the transmitter and the receiver, 

there are two types of serial communication: 

• Asynchronous; 

• Synchronous. 

 1.3.1. Asynchronous Communication 

 To ensure synchronization between the transmitter and the receiver, each character 

sent is preceded by a START bit, with a logical 0 value (“space”), and is followed by at least 

one STOP bit, with a logical 1 value (“mark”). Therefore, the START and STOP bits sur-

round each character sent; the character sent between these two bits represents a data frame. 

This frame represents the basic digital information in a serial communication system. With 

asynchronous communication, the time interval between sending two successive characters is 

variable, and during this time the communication line is in the logical 1 state. This communi-

cation mode is also called start-stop. 

 Synchronization at the bit level is achieved with the aid of local clock signals of the same 

frequency. When the receiver detects the beginning of a character indicated by the START bit, it 

sets off a local clock oscillator, which enables correct sampling of individual bits of the character. 

Bit sampling is performed approximately in the middle of the interval corresponding to each bit. 

 Figure 1.2 illustrates the transmission of the character with ASCII code 0x61. After 

the START bit, with duration T corresponding to one bit, character transmission starts with 

the least significant bit b0. After transmitting the most significant bit b7, a parity bit p is 

transmitted; in this example, the parity is odd. The parity bit is optional, and when it is ap-

pended to the character sent, the parity can be selected to be even or odd. It is also possible to 

set the parity bit to 0 or 1, irrespective of the actual parity of the character. In the example 

illustrated, at the end of the character two STOP bits s1 and s2 are transmitted, and then the 

line remains in the logical 1 state for an undefined time. This time corresponds to an interval 

of silence. 

 
Figure 1.2. Asynchronous communication. 

 With asynchronous communication, bit synchronization is assured only during the 

actual transmission of each character. Such a communication is character-oriented and has the 

disadvantage that it requires extra information of at least 25% to identify each character. 

 1.3.2. Synchronous Communication 

 With synchronous communication, a frame does not contain a single character, but a 

block of characters or a message. Bit synchronization must be permanently assured, not only 

during actual transmission, but also during periods of silence. Therefore, time is continuously 

divided into elementary intervals at the transmitter, intervals which must then be retrieved at 

the receiver. This could cause some problems. If the local clock of the receiver is slightly 



 
4 1. Serial Port 

different in frequency from that of the receiver, errors could occur in recognizing characters, 

because of the length of transmitted blocks of characters. 

 In order to avoid such errors, the receiver clock must be resynchronized frequently 

with that of the transmitter. This can be done by ensuring that there are sufficient transitions 

from 1 to 0 and from 0 to 1 in the transmitted message. If the data to be transmitted consists 

of long strings of 1’s and 0’s, suitable transitions must be inserted to resynchronize the clocks. 

Such techniques are difficult to implement, and therefore a technique called synchronized-

asynchronous communication (simply called synchronous communication) is used instead. 

 This communication type is characterized by the fact that, even though the message is 

transmitted in a synchronous manner, there is no synchronization during the time interval 

between two messages. The information is transmitted as character blocks or successive bits, 

without START and STOP bits. In order to readjust the local oscillator at the start of a mes-

sage, each message is preceded by a number of special synchronization characters, for in-

stance, the SYN character (0x16h). To maintain synchronization, additional synchronization 

characters may be inserted into the transmitted message, at certain time intervals. 

 At the receiver there are three levels of synchronization: 

• Bit synchronization, using PLL (Phase–Locked Loop)1 circuits, based on the existing 

transitions in the received signal; 

• Character synchronization, ensured by recognizing certain synchronization charac-

ters; 

• Block or message synchronization, depending on the data protocol used. 

 1.4. The RS-232C Standard 

 The electrical specifications of the serial port used on the IBM PC computers have 

been defined in the RS-232C (Reference Standard No. 232, Revision C) standard, developed 

in 1969 by the USA Standards Committee, today known as the Electronic Industries Alliance 

(EIA). The standard has been developed for digital communication between a computer and a 

remote terminal or between two terminals, without using a computer. The terminals were 

connected through telephone lines, so that modems were needed on both ends of the commu-

nication line. 

 The RS-232C standard has suffered various changes, and several revisions of it have 

been developed. For instance, in 1987 a new revision of the standard has been developed, named 

EIA RS-232D. In 1991, the EIA and the Telecommunications Industry Association (TIA) have 

developed revision E of the standard (EIA/TIA RS-232E). The current revision is EIA RS-232F, 

released in 1997. Nevertheless, in spite of its revision, usually the standard is named RS-232C or 

RS-232. 

 In Europe, the equivalent version of the RS-232C standard is V.24, developed by the 

CCITT (Comité Consultatif International pour Téléphonie et Télégraphie) committee. The name 

of this committee has been changed in the early 1990’s to International Telecommunications 

Union (ITU). Both standards specify the signals used for communication, the voltage levels, the 

protocol used for data flow control, and the connectors of the serial interface. 

 The RS-232C standard defines both an asynchronous and a synchronous commu-

nication. Details such as character encoding (ASCII, Baudot, EBCDIC), character framing 

(character length, number of stop bits, parity) are not defined, nor the communication speeds, 

although the standard is intended for speeds lower than 20,000 bits/s. However, current 

equipment allows higher communication speeds, using voltage levels that are compatible with 

those specified by the standard. Serial ports of the computers usually allow to select one of the 

following communication speeds: 150; 300; 600; 1,200; 2,400; 4,800; 9,600; 19,200; 38,400; 

57,600; 115,200 bits/s. 

 
1 A PLL circuit represents a closed loop system for controlling the frequency of an oscillator. Its opera-

tion is based on detecting the phase difference between the input and output signals of the controlled 

oscillator. 

 



 
5 Input/Output Systems and Peripheral Devices 

 A basic RS-232C link only requires three connections: one for transmit, one for receive, 

and one for the common signal ground. However, most of the serial links also use signals for data 

flow control. 

 Unlike other types of serial communication that are differential2, the RS-232C commu-

nication is single-ended, using a single wire for each signal. Although this simplifies the circuitry 

required by the interface, at the same time the maximum communication distance is also reduced 

in the case of a direct link, without using modems. The RS-232C standard specifies a maximum 

distance of 15 m. The distance can be increased if lower communication speeds are used. 

 The electrical voltages specified by the RS-232C standard are the following: 

• The logical 0 value corresponds to a positive voltage between +3 V and +25 V; 

• The logical 1 value corresponds to a negative voltage between –3 V and –25 V. 

 1.5. Serial Interface Signals 

 The serial interface uses signals for transmitting and receiving data, as well as signals 

for controlling the flow of data between a data terminal equipment and a data communication 

equipment. Figure 1.3 presents the serial interface signals according to the RS-232C standard. 

The link illustrated is the one for which the serial port was originally developed, that is, con-

necting a modem to the computer. The figure shows the pin numbers of the DB-25 connectors 

used for such connections via modems; the numbers in parentheses represent the signals ac-

cording to the V.24 standard. 

 
Figure 1.3. Serial interface signals. 

 The most important signals are described next. 

 
2 A differential communication uses a pair of wires for each signal. Examples of interfaces that use 

differential communication are the RS-422 and RS-485 interfaces, as well as the USB and IEEE 1394 

buses. 



 
6 1. Serial Port 

 Transmit Data, TD 

 Data are sent serially on this line by the computer. After the start bit, the least signifi-

cant bit of a character is sent. In general, for data transmission the RTS, CTS, DTR, and DSR 

signals need to be asserted. These signals are asserted in a sequence of operations for estab-

lishing the link with the modem. 

 Receive Data, RD 

 This line is used by the computer to receive data from the modem or from an external 

equipment. 

 Data Terminal Ready, DTR 

 When the computer is turned on and is ready for the data communication, it asserts 

the DTR signal. The modem will answer to the DTR signal by asserting the DSR signal. 

 Data Set Ready, DSR 

 When the modem or the external equipment is turned on and is ready for the data 

communication, it asserts the DSR signal. This signal is asserted by the modem as an answer 

to the assertion of the DTR signal by the computer. The computer will send data to the modem 

only when the DSR signal is asserted. 

 Request To Send, RTS 

 When the computer is ready for data transmission, it asserts the RTS signal. This sig-

nal indicates to the modem that it can send data to the computer. A de-asserted RTS signal 

will prevent the modem from sending data to the computer. This allows the computer to con-

trol the flow of data sent by the modem. The answer to the RTS signal is received by the com-

puter on the CTS line. 

 Clear To Send, CTS 

 By asserting this signal, the modem or the external equipment indicates that it is 

ready to receive data from the computer. The CTS signal is asserted by the modem as an an-

swer to the assertion of the RTS signal by the computer. A de-asserted CTS signal will prevent 

the computer from sending data to the modem. This allows the modem to control the flow of 

data sent by the computer. 

 Carrier Detect, CD 

 By asserting this signal, the modem signals to the computer that it has detected the 

carrier signal of another modem on the telephone line, that is, there is a connection with a 

remote modem. In a serial link without modems, the assertion of the CD signal indicates that 

it is possible to communicate with an equipment at the other end of the line. Often, this signal 

is ignored by the computer. 

 Ring Indicator, RI 

 When the modem detects on the telephone line the ringing signal from another mo-

dem, it asserts the RI signal. This signal allows the program running on the computer to auto-

matically answer a remote telephone call. 

 Transmit Clock, TC 

 Represents the transmit clock signal provided to the computer by the modem in a 

synchronous communication. It is not used for asynchronous communication. 

 Receive Clock, RC 

 Represents the receive clock signal provided to the computer by the modem in a syn-

chronous communication. It is not used for asynchronous communication. 

 Transmit Current Loop Data 
 Transmit Current Loop Return 



 
7 Input/Output Systems and Peripheral Devices 

 Receive Current Loop Data 
 Receive Current Loop Return 

 These signals allow communication between equipment close to one another, without 

using modems. The method used is referred to as current-loop transmission. The logical 0 

level is indicated by a current of 20 mA, and a logical 1 level is indicated by the absence of 

this current. Connecting an equipment that uses current-loop communication to an RS-232C 

compatible serial port requires a voltage-level shifter. 

 Secondary Transmit Data, STD 
 Secondary Receive Data, SRD 

 Represent the data signals for a secondary serial link. Although theoretically two du-

plex serial links are possible through a single cable, in practice the second link is only rarely 

implemented. 

 Secondary Request To Send, SRTS 
 Secondary Clear To Send, SCTS 
 Secondary Carrier Detect, SCD 

 Represent the RTS, CTS, and CD signals, respectively, for the secondary serial link. 

 The sequence for establishing the link between the computer and the modem consists 

of the following operations: software asserts the DTR signal and waits the answer from the 

modem, represented by assertion of the DSR signal. Next, software asserts the RTS signal and 

waits the answer from the modem, represented by assertion of the CTS signal. 

 1.6. Data Flow Control 

 To be possible the communication between devices with different speeds, the design-

ers of the serial interface provided special signals for data flow control. These signals allow a 

device to stop and then to resume the data transmission when requested by the device located 

at the other end of the serial communication line. Besides this hardware method for data flow 

control, there is a software method as well, based on the transmission of special characters 

between the two devices. When the receiving device (e.g., a printer) cannot accept more data 

because its buffer is full, it sends a particular control character to the transmitting device (e.g., 

to the computer). When the receiving device can accept new data, it sends another control 

character that signals to the transmitting device that it may resume the data transmission. 

 Usually, the control method that will be used by the computer may be selected via the 

software driver of the serial controller. Some programs may use by default a particular method. 

For the peripherals, the control method may be selected either via the software or with a switch. 

It is important to use the same control method for both the computer and the peripheral in order 

to avoid data loss. 

 1.6.1. Hardware Control 

 The hardware control method assumes to use a communication protocol by means of 

the serial interface control signals. The protocol used is based on a serial communication via 

modems and a telephone line, for which the original serial interface was developed. This pro-

tocol implies establishing the connection between two modems via the telephone line and 

maintaining the data flow between them while the connection is active. The phases of this 

protocol are described next. In a simplified form, this protocol may also be used for a direct 

serial communication between two devices, without using modems and a telephone line. 

1. When a remote modem desires to establish connection with the local modem, it sends 

the ring signal over the telephone line. This signal is detected by the local modem, 

which asserts the RI signal to inform the local computer on the existence of a tele-

phone call. 



 
8 1. Serial Port 

2. When the assertion of RI signal is detected, a communication program is launched on 

the local computer. This program indicates the readiness of the computer to start the 

communication by asserting the DTR signal. 

3. When the local modem detects that the data terminal (the computer) is ready, it an-

swers the telephone call and waits the activation of the carrier signal by the remote 

modem. When the local modem detects the carrier signal, it asserts the CD signal. 

4. The local modem negotiates with the remote modem a connection with certain pa-

rameters. For instance, the two modems may determine the optimal communication 

speed based on the telephone link quality. After this negotiation, the local modem as-

serts the DSR signal. 

5. When detecting the assertion of the DSR signal, the local computer software asserts 

the RTS signal to indicate to the modem that it may send data to the computer. 

6. When the modem detects the assertion of the RTS signal, it asserts the CTS signal to 

indicate that it is ready for receiving data from the computer. 

7. Next, the data are transferred in both directions between the remote devices, on the 

TD and RD lines. 

8. Since the speed of telephone line is lower than that of the link between the computer 

and the local modem, the modem buffer will fill up. The local modem requests the 

computer to stop transmitting data by de-asserting the CTS signal. When the buffer 

empties, the modem re-asserts the CTS signal. 

9. If the computer cannot accept more data from the modem, it de-asserts the RTS sig-

nal. When the computer can accept again data from the modem, it re-asserts the RTS 

signal. 

10. At the end of the communication session, the carrier signal is de-activated, and the lo-

cal modem de-asserts the CD, CTS, and DSR signals. 

11. When detecting the de-assertion of the CD signal, the local computer de-asserts the 

RTS and DTR signals. 

From the above protocol, it follows that: 

• The computer must detect the assertion of DSR and CTS signals before transmitting 

data to the modem. De-assertion of any of these signals will usually stop the flow of 

data from the computer. 

• The modem must detect the assertion of the DTR and RTS signals before transmitting 

data over the serial line or to the computer. De-assertion of the DTR signal will stop 

the transmission of data over the serial line, and de-assertion of the RTS signal will 

stop the transmission of data to the computer. 

The status of the CD signal is not interpreted by all of the serial communication sys-

tems. In some systems, the CD signal must be asserted before the data terminal will start to 

transmit data. In other systems, the status of the CD signal is simply ignored. 

 1.6.2. Software Control 

 The software method for data flow control involves sending some control characters 

between the two devices. For instance, the peripheral will send a particular control character 

to indicate that it cannot accept more data from the computer and will send another control 

character to indicate that transmission of data may be resumed by the computer. There are two 

variants of this method. The first variant uses the XON/XOFF control characters, and the 

second variant uses the ETX/ACK control characters. 

 When using the XON/XOFF variant, the peripheral sends the XOFF character to 

indicate that its buffer is full and data transmission should be stopped by the computer. This 



 
9 Input/Output Systems and Peripheral Devices 

character is also denoted DC1 (Device Control 1) and has an ASCII code of 0x13, equivalent to 

the Ctrl-S character. The Ctrl-S character may also be entered by the user in some communication 

programs to stop the data transmission by a device connected to the computer. When the 

peripheral is ready to receive new data, it sends the XON character to the computer. This 

character is also denoted DC3 (Device Control 3) and has an ASCII code of 0x11, equivalent to 

the Ctrl-Q character. In some communication programs, entering the Ctrl-Q character cancels the 

effect of the Ctrl-S character. 

 When using the ETX/ACK variant, sending the ETX (End of TeXt) character by the 

peripheral indicates that data transmission should be stopped by the computer. This character has 

an ASCII code of 0x03 and is equivalent to the Ctrl-C character. Sending the ACK 

(ACKnowledge) character indicates the possibility to resume the data transmission by the 

computer. This character has an ASCII code of 0x06 and is equivalent to the Ctrl-F character. 

 1.7. Connectors 

 Serial ports may use either of two types of connectors. The 25-pin DB-25 connector 

has been used by previous-generation computers. Newer computers use the 9-pin DB-9 con-

nector. For the serial ports of computers male connectors are used, and for the serial ports of 

peripheral devices female connectors are used. 

 Figure 1.4 illustrates the DB-25 connector of the serial port. 

 
Figure 1.4. The DB-25 connector used for the serial ports of previous-generations personal computers. 

 Out of the 25 signals of the DB-25 connector, at most 10 signals are used for a common 

serial connection. Table 1.1 shows the names of these signals and their assignments to the DB-25 

connector pins. 

Table 1.1. Signal assignments to the DB-25 connector pins of the serial port. 

Pin Signal Meaning 
 In 

→ Out 

1 PG Protective Ground  

2 TD Transmit Data → 

3 RD Receive Data  

4 RTS Request To Send → 

5 CTS Clear To Send  

6 DSR Data Set Ready  

7 SG Signal Ground  

8 CD Carrier Detect  

20 DTR Data Terminal Ready → 

22 RI Ring Indicator  

To reduce the space occupied by the serial port connector, the DB-25 connector has 

been replaced with a smaller connector, the 9-pin DB-9 connector (Figure 1.5). 

 
Figure 1.5. The DB-9 connector used for the serial ports of personal computers. 

 Table 1.2 shows the serial port signal assignments to the DB-9 connector pins. 



 
10 1. Serial Port 

Table 1.2. Signal assignments to the DB-9 connector pins of the serial port. 

Pin Signal Meaning 
 In 

→ Out 

1 CD Carrier Detect  

2 RD Receive Data  

3 TD Transmit Data → 

4 DTR Data Terminal Ready → 

5 SG Signal Ground  

6 DSR Data Set Ready  

7 RTS Request To Send → 

8 CTS Clear To Send  

9 RI Ring Indicator  

 1.8. Cables 

 There are several variants of cables that can be used for serial communication. For 

low communication speeds and shorts lengths, normal cables can be used, that are not shield-

ed. To reduce interferences with other devices, shielded cables should be used, which contain 

a coat of aluminum foil. Ideally, the shield of the cable should be connected to the protective 

ground of the connector, if it is a DB-25 connector. The DB-9 connector does not include a 

pin for the protective ground. When using this type of connectors, the shield of the cable can 

be connected to the signal ground. 

 Notes 

• With a serial cable that uses DB-25 connectors, the electrical ground or signal ground 

SG is separated from the chassis ground or protective ground PG. The protective 

ground is directly connected to the shield of the connector (and of the device), and it 

has a protective function. By making this connection, the metallic cases of the two 

devices connected through the serial cable will be at the same potential, avoiding 

voltage differences to build between the two devices, voltages that can be dangerous 

for them. Often, the protective ground connection is missing from the serial cables. 

• The protective ground PG should never be connected to the signal ground SG. 

 The signals of the serial interface were provided in order to connect a data terminal 

equipment (DTE) to a data communication equipment (DCE). When connecting two such 

equipment, e.g., a computer to a modem, a cable that connects pins with the same numbers of 

the connectors at the two ends is required. This is called a straight-through cable. When con-

necting two equipment with different connectors, an adapter cable is required. When connect-

ing two data terminal equipment, e.g., two computers, the data sent on the TD pin of one of 

the equipment must be received on the RD pin of the other equipment. Therefore, the connec-

tions of these pins have to be inverted at the two ends of the cable; this is called a crossover 

cable. 

 1.8.1. Straight-Through Cables 

 In a straight-through cable, each pin corresponding to a particular signal at one end is 

connected to the pin corresponding to the same signal at the other end. Frequently, not all of 

the serial interface signals are used. Even when the data flow is controlled with the hardware 

method, only nine signals need to be connected between a computer and a modem, assuming 

an asynchronous communication. For instance, if DB-25 connectors are used at both ends of 

the cable, the pins that must be connected are: 2, 3, 4, 5, 6, 7, 8, 20, and 22. For a synchronous 

communication, two additional connections are needed, representing the clock signals for 

transmit and receive, which are generated by the synchronous modem. If DB-9 connectors are 

used, all the pins should be connected, except for pin 9 (RI signal). 



 
11 Input/Output Systems and Peripheral Devices 

 
Figure 1.6. Connecting a synchronous modem to a computer (DB-25 connectors). 

 Figure 1.6 illustrates the connections required for a serial cable when connecting a 

synchronous modem to a computer, assuming that DB-25 connectors are used by both devic-

es. 

 1.8.2. Adapter Cables 

 When the two connectors of a serial link are of different types, for instance, DB-25 at 

one end and DB-9 at the other end, an adapter cable is required. Although present-day IBM 

PC computers use only DB-9 connectors, some peripherals, such as serial printers, plotters, or 

modems, use DB-25 connectors. The adapter can take the form of a small assembly with two 

connectors of different types, or of an adapter cable with different types of connectors at the 

two ends. 

 Table 1.3 presents the connections required for an adapter cable between a DB-25 

connector and a DB-9 connector. 

Table 1.3. Connections for an adapter cable between a DB-25 connector and a DB-9 connector. 

DB-25 Pin DB-9 Pin Signal Meaning 

      2 3 TD Transmit Data 

      3 2 RD Receive Data 

      4 7 RTS Request To Send 

      5 8 CTS Clear To Send 

      6 6 DSR Data Set Ready 

      7 5 SG Signal Ground 

      8 1 CD Carrier Detect 

    20 4 DTR Data Terminal Ready 

    22 9 RI Ring Indicator 

 1.8.3. Crossover Cables 

 Crossover cables are needed for connecting two data terminal equipment, such as two 

computers. These cables are also needed for connecting some types of peripherals to the com-

puter, such as serial printers and plotters, because when the serial interface was designed, 

these peripherals were considered data terminals. 

 Next, two types of crossover cables are presented. The first type can be used when the 

data flow control is accomplished with the software method, while the second type can be 

used when the data flow control is accomplished with the hardware method. 

 Many serial communication systems do not use all the signals for data flow control, 

so that for these systems the connections may be simplified. In the simplest case, when the 

software method is used for data flow control, only three connections are required, for trans-

mitted data, received data, and signal ground. For instance, if DB-25 connectors are used, the 

pins that need to be connected are 2, 3, and 7, and if DB-9 connectors are used, these pins are 

2, 3, and 5. Such a cable is called null-modem cable. 



 
12 1. Serial Port 

 A null-modem cable can be used for directly connecting two data terminal equipment, 

e.g., two computers. The connections are made so that, from the point of view of the comput-

er, the communication is carried on as though at the other end were a modem, and not another 

computer. The data sent by the first computer must be received by the second computer, so 

that the TD pin on the first computer is connected to the RD pin on the second computer, and 

vice versa. The two pins for the signal ground SG must be connected together. In both con-

nectors, the DTR pin is connected to the DSR and CD pins at the same end of the link. There-

fore, when the DTR signal is asserted, the DSR and CD signals are also asserted. The DSR and 

CD signals are thus asserted the same way as though at the other end of the link were a mo-

dem. Similarly, in both connectors the RTS pin is connected to the CTS pin at the same end of 

the link. Since the computers communicate at the same speed, the data flow control is not 

needed. 

 Figure 1.7 illustrates the connections required for a null-modem cable, assuming that 

DB-9 connectors are used at both ends. 

 
Figure 1.7. Connecting two data terminal equipment via a null-modem cable (DB-9 connectors). 

 When the hardware method is used for data flow control, the three lines of the null-

modem cable presented earlier are not sufficient. In this case, a crossover cable with addition-

al connections for this control method must be used. The data pins and the signal ground pin 

are connected in the same way as for the null-modem cable. In both connectors, the DTR pin 

is connected to the DSR and CD pins at the other end of the link. By this connection, each of 

the two data terminals may determine when the other data terminal equipment is ready. The 

signals used for data flow control are RTS and CTS. In both connectors, the RTS pin is con-

nected to the CTS pin at the other end of the link. This connection ensures the data flow con-

trol with the hardware method, as described in Section 1.6.1. 

 Figure 1.8 illustrates the connections required for a crossover cable that allows a 

hardware data flow control, assuming that DB-9 connectors are used at both ends. 

 
Figure 1.8. Connecting two data terminal equipment via a crossover cable with hardware data flow control (DB-9 

connectors). 

 Note 

• Often, the crossover cable with the connections illustrated in Figure 1.8 is mistakenly 

called null-modem cable. 



 
13 Input/Output Systems and Peripheral Devices 

 1.9. UART Chips 

 The main component of a serial port is an UART (Universal Asynchronous Receiv-

er/Transmitter) chip. This chip performs the conversion of parallel data from the computer 

into the format required for the serial transmission and the conversion of serial data received 

into the parallel format used by the computer. The chip appends the start bit, the stop bit, and 

the parity bit to the serial data transmitted and it detects these bits in the serial data received. 

 In the original IBM PC and IBM PC/XT computers, UART chips from the 8250 family 

have been used. Starting with the first 16-bit systems, the UART 16450 chip, manufactured by 

National Semiconductor, has been used. This chip is compatible with the 8250-family chips at 

the register level, but allows communication at higher speeds. In the IBM PS/2 computers, the 

UART 16550 chip has been used, which has also been adopted for systems based on the 80386 

and later processors. The 16550 chip works similarly to the 8250 and 16450 chips, but contains 

in addition two 16-byte FIFO memories for transmit and receive. This memory allows 

communication at higher speeds compared to the speeds allowed by previous chips. Starting with 

the Pentium processor-based systems, the UART 16550 chip (or a later version of this) has been 

included into the motherboard chipset. Improved versions of the UART 16550 chips are the 

16650, 16750, and 16850 chips. 

 In the following, the main features of some UART chips are described. 

 8250 

 The 8250 chip has been used in the first IBM PC computers. The chip did not include 

a transmit buffer nor a receive buffer, and for this reason the communication speed provided 

was low. The chip had several bugs. The IBM PC and PC/XT computers’ ROM BIOS were 

designed to take into account these bugs. 

 8250A 

 In this version, some bugs of the UART 8250 chip have been corrected, including one 

bug in the interrupt enable register. Because the ROM BIOS of IBM PC and PC/XT comput-

ers expected this bug, the 8250A chip did not work correctly with those computers. The 

8250A chip did work with the IBM PC/AT computers, but did not work properly at speeds of 

9,600 bits/s and higher, because of the lack of transmit and receive buffers. 

 8250B 

 In this last version of the 8250-family chips, the bugs found in the two previous ver-

sions have been corrected. The interrupt enable register bug in the original 8250 version has 

been put back into the chip, in order to operate in the way expected by the ROM BIOS of 

IBM PC and PC/XT computers. This chip did not work properly at speeds of 9,600 bits/s and 

higher. 

 16450 

 This chip has been used in the first IBM PC/AT computers. The chip allowed higher 

communication speeds due to transmit and receive buffers of one byte each. In this chip, a 

working register of one byte has been added to the register set, used as temporary storage. 

 16550 

 Represents an improved version of the 16450 chip, containing transmit and receive 

buffers of 16 bytes each, organized as FIFO memories. The chip also allows transfers by mul-

tiple DMA channels. The initial version of this chip did not allow to use the FIFO memories, 

bug that has been corrected in the 16550A version. The last version manufactured by National 

Semiconductor is 16550D. By using the FIFO memories, the communication speeds can be 

increased significantly, eliminating the possibility to loose characters at higher speeds. The 

maximum communication speed allowed by the 16550 chip is 115,200 bits/s. 



 
14 1. Serial Port 

 16650, 16750, and 16850 

 Several improved versions of the 16550 chip have been produced, which are compat-

ible with it, but they contain larger FIFO memories: 

• The 16650 chip includes two FIFO memories of 32 bytes each; 

• The 16750 chip includes two FIFO memories of 64 bytes each; 

• The 16850 chip includes two FIFO memories of 128 bytes each. 

These chips allow higher communication speeds, of 230.4 Kbits/s (16650), 460.8 

Kbits/s (16750), and 921.6 Kbits/s (16850). The use of these chips is recommended with 

high-speed external serial links, such as those carried out with an ISDN adapter. 

 1.10. The Serial Ports of Personal Computers 

 The original IBM PC computers’ BIOS software allowed to use two serial ports, 

named COM1 and COM2. Later on, the number of ports has been extended with other two 

ports, named COM3 and COM4. Starting with the Windows 95 operating system, the number 

of serial ports has been extended to 128.  These ports are managed with the device drivers that 

control them. 

 Access to the serial ports can be accomplished with BIOS functions (interrupt 0x14), 

with operating system functions, or directly via the registers of the UART chips. Each UART 

chip associated with a serial port contains a number of eight I/O registers starting from the serial 

port’s base address. The BIOS stores the base addresses of COM1..COM4 serial ports into four 

successive 16-bit words, from address 0x0000:0x0400 corresponding to port COM1. 

 The base addresses of COM1..COM4 serial ports are shown in Table 1.4. In general, the 

addresses of COM1 and COM2 ports are fixed, and have the values shown in this table. The 

addresses of COM3 and COM4 ports may be different from those shown. In Table 1.4 the 

interrupt levels used by COM1..COM4 serial ports are also shown. 

Table 1.4. Standard assignment of base addresses and interrupt levels to the serial ports. 

Serial Port Base Address Interrupt 

COM1 0x3F8 IRQ 4 

COM2 0x2F8 IRQ 3 

COM3 0x3E8 IRQ 4 

COM4 0x2E8 IRQ 3 

 In principle, each serial port requires its own interrupt level. When there are more than 

two serial ports in the computer, it might be necessary to share some interrupt levels. For 

instance, the COM3 port shares the level-4 interrupt (IRQ 4) with the COM1 port, and the COM4 

port shares the level-3 interrupt (IRQ 3) with the COM2 port. The PCI bus allows to share the 

interrupt levels, so that for expansion boards based on the PCI or PCI Express bus it is possible to 

use a single interrupt level without conflicts. 

 1.11. The Registers of UART 16x50 Chips 

 The registers of UART chips are accessible with I/O instructions. For the first serial port, 

the registers have addresses between 0x3F8 and 0x3FF, while for the second port the registers 

have addresses between 0x2F8 and 0x2FF. The first two addresses allow access to several 

registers of the chip. There are some registers that are not accessible by software. 

 The addresses of software-accessible registers for the first two serial ports, their access 

modes (R – read, W – write, R/W – read/write), abbreviations and names are presented in Table 

1.5. The column labeled Offset indicates the displacement of each register’s address relative to 

the serial port’s base address. The column labeled DLAB (Divisor Latch Access Bit) represents 

the value of bit 7 of the line control register (LCR). When set to 1, this bit allows access to two 

registers used for setting the communication speed. 



 
15 Input/Output Systems and Peripheral Devices 

Table 1.5. The registers of UART 16x50 chips. 

COM1 COM2 Offset DLAB Access Abbrev. Name 

0x3F8 0x2F8 + 0 

0 W THR Transmitter Holding Register 

0 R RBR Receiver Buffer Register 
1 R/W – Divisor Latch Register LSB 

0x3F9 0x2F9 + 1 
0 R/W IER Interrupt Enable Register 

1 R/W – Divisor Latch Register MSB 

0x3FA 0x2FA + 2 
X R IIR Interrupt Identification Register 

X W FCR FIFO Control Register 
0x3FB 0x2FB + 3 X R/W LCR Line Control Register 

0x3FC 0x2FC + 4 X R/W MCR Modem Control Register 

0x3FD 0x2FD + 5 X R LSR Line Status Register 

0x3FE 0x2FE + 6 X R MSR Modem Status Register 

0x3FF 0x2FF + 7 X R/W – Scratch Register 

 Note 

• The 16650, 16750, and 16850 chips contain additional registers in comparison with 

those indicated in Table 1.5. The structure of these registers may vary from one man-

ufacturer to another, reason for which these registers are not described in this labora-

tory work. 

 THR - Transmitter Holding Register 

 Represents the transmit buffer, which is selected if the DLAB bit of LCR register is 0. 

The character to be sent must be written to this register. If the Transmitter Shift Register 

(TSR) is emptied (that is, the chip may begin sending a new character), the contents of THR 

register (or, when the FIFO memories are enabled, a byte from the transmit FIFO memory) is 

transferred into the TSR register and transmission of the character begins. 

 If the THR register is emptied (that is, may be written with a new character), the chip 

generates an interrupt request if generation of this type of interrupt is enabled. The status of 

this register can be determined by testing bit 5 of the LSR register. 

 TSR - Transmitter Shift Register 

 It is an internal register not accessible by software. When the transmission of a char-

acter is finished, the contents of THR register (or, when the FIFO memories are enabled, a 

byte from the transmit FIFO memory) is transferred automatically into the TSR register and 

its transmission begins. 

 If the TSR register is emptied (that is, transmission of a new character may begin), 

but the THR register is empty (or, when the FIFO memories are enabled and the transmit 

FIFO memory is emptied below a certain threshold level), the chip generates an interrupt re-

quest when this type of interrupt is enabled. The status of this register can be determined by 

testing bit 6 of the LSR register. 

 RBR - Receiver Buffer Register 

 Represents the receive buffer, which is selected if the DLAB bit of the LCR register is 

0. A received character is placed into this register. The presence of a character in the RBR 

register may be determined by testing bit 0 of the LSR register. If the FIFO memories are 

disabled, the received character must be read by the software from the RBR register before a 

new character is received; otherwise, an overrun error will occur. The reception a character 

generates an interrupt request, if this type of interrupt is enabled. If the FIFO memories are 

enabled, it is possible that the receive interrupt will be generated only after receiving a certain 

number of characters into the receive FIFO memory. This threshold value can be programmed 

by setting bits 7..6 of the FCR register. 

 RSR - Receiver Shift Register 

 It is an internal register not accessible by software. Each character is received into 

this register. When the reception of a character is finished, the contents of the RSR register is 



 
16 1. Serial Port 

transferred automatically into the RBR register if the FIFO memories are disabled. If these 

memories are enabled, the characters received are placed into the receive FIFO memory. 

 Divisor Latch Register LSB & MSB 

 These registers contain the value by which the 16x50 chip’s internal clock frequency 

(1.8432 MHz) should be divided to get the desired binary rate. The LSB register contains the 

least significant byte of the divisor, and the MSB register contains the most significant byte of 

the divisor. The two divisor registers are accessible if the DLAB bit of the LCR register is 1. 

For computing the value of the divisor, the clock factor of the 16x50 chip should be taken into 

account. Usually, this factor is 16 (the binary rate is 16 times lower than the frequency ob-

tained by division). The following formula may be used: 

 Divisor = 1,843,200 / (BinaryRate  16) 

 Table 1.6 contains the divisors corresponding to various binary rates. 

Table 1.6. Divisors of the 1.8432 MHz frequency for various binary rates. 

Binary Rate 
(Bits/s) 

Divisor 
Binary Rate 

(Bits/s) 
Divisor 

50 0x0900 4,800 0x0018 

150 0x0300 9,600 0x000C 

300 0x0180 19,200 0x0006 

600 0x00C0 38,400 0x0003 

1,200 0x0060 57,600 0x0002 

2,400 0x0030 115,200 0x0001 

 IER - Interrupt Enable Register 

 This register is accessible if the DLAB bit of the LCR register is 0. The UART chip 

may generate five types of interrupt requests, with different priority levels. The IER register 

allows to individually enable these interrupts. The structure of this register is illustrated in 

Figure 1.9. 

 
Figure 1.9. Interrupt Enable Register (IER). 

 The bits of the IER register are described next. 

• Bits 7..4 are not used (set to 0). 

• Bit 3 (Enable Modem Status Interrupt) enables by value 1 the generation of an inter-

rupt request when the modem status register (MSR) changes. 

• Bit 2 (Enable Receiver Line Status Interrupt) enables by value 1 the generation of an 

interrupt request when the line status register (LSR) changes, usually, when receive 

errors occur. 

• Bit 1 (Enable Transmitter Holding Register Empty Interrupt) enables by value 1 the 

generation of an interrupt request when the THR register is empty, that is, after trans-

ferring the contents of this register to the TSR register. When this interrupt occurs, a 

new character can be written into the THR register. 

• Bit 0 (Enable Received Data Available Interrupt) enables by value 1 the generation of 

an interrupt request when a character is received. If the FIFO memories are enabled, 



 
17 Input/Output Systems and Peripheral Devices 

this bit also enables the generation of the time-out interrupt. This interrupt is de-

scribed in the next section. 

 IIR - Interrupt Identification Register 

 This register is read-only. Although the interrupts generated by the 16x50 chip occur 

on a single interrupt level (IRQ 4 for the first serial port and IRQ 3 for the second port), these 

interrupts may have four types of causes, with different priority levels. Identification of the 

interrupt cause can be performed by testing bits 3..0 of the interrupt identification register 

(IIR). The other bits of this register indicate the status of FIFO memories. 

 The meanings of IIR register bits that allow to identify the cause of an interrupt are 

shown in Table 1.7. 

Table 1.7. Bits of IIR register used to identify the cause of an interrupt. 

Bits 3..0 Priority Interrupt Type Interrupt Cause Interrupt Reset 

0 0 0 1 – – No interrupts – 

0 0 0 0 3 (lowest) 
Change of modem 
status 

The CTS or DSR or RI or 
CD signal has changed 

Read the modem status 
register (MSR) 

0 0 1 0 2 
End of character 
transmission 

The THR register is empty 
Read IIR or write a 
character to THR 

0 1 0 0 1 Character received 

The RBR register contains 
a character received or the 
receive FIFO memory is 
filled above the threshold 
level 

Read the RBR register 
or empty the receive 
FIFO memory below the 
threshold level 

1 1 0 0 1 Time-out 

No characters have been 
read or placed from/into 
the receive FIFO during 
four characters and there 
is at least one character in 
the FIFO memory 

Read the RBR register 

0 1 1 0 0 (highest) 
Change of line 
status 

Overrun, framing, or parity 
error, or Break interrupt 

Read the LSR register 

 The UART chip can also be used with software polling, testing periodically bit 0 of the 

interrupt identification register. If this bit is 0, an interrupt occurred. 

 The receive FIFO memory threshold level refers to the number of characters that must 

be received before the chip will generate a receive interrupt, if this type of interrupt is enabled. 

Setting this threshold level is described in the section dedicated to the FIFO memory control 

register (FCR). 

 On a receive operation with the FIFO memories enabled, the UART chip will generate 

an interrupt request even though the receive FIFO memory contains a lower number of characters 

than the threshold level, but no characters have been received in a time equal to the period 

needed to transfer four characters. This represents the time-out interrupt and it has been provided 

for cases when the transmitter stops transmitting characters in order to wait for an answer from 

the receiver. Without this interrupt, it would be possible that the receiver does not detect that 

characters have been received, since the receive FIFO memory does not contain a sufficient 

number of characters to generate a receive interrupt. The bit combination in the IIR register that 

indicates this interrupt cause may be ignored, because the UART chip will also indicate that 

characters are available in the receive buffer. 

 Bits 7..4 of the IIR register are described next. 

• Bits 7..6 indicate the status of FIFO memories: 

00: There are no FIFO memories (the chip is an 8250 or 16450). 

01: Reserved combination. 

10: The FIFO memories are enabled, but unusable. This situation may occur with the 

16550 chip, because of the bug in using the FIFO memories. 

11: The FIFO memories are enabled and operational. 

• Bits 5..4 are reserved (set to 0). 



 
18 1. Serial Port 

 FCR - FIFO Control Register 

 This register is available on the 16550 and later UART chips. The structure of the 

FCR Register is illustrated in Figure 1.10. 

 
Figure 1.10. FIFO Control Register (FCR). 

 The bits of the FCR register are described next. 

• Bits 7..6 (Receiver Trigger) allow to set the number of characters received in the re-

ceive FIFO memory after which the chip will generate a receive interrupt, if this type 

of interrupt is enabled. If this number is set to a value greater than 1, the chip will not 

generate an interrupt request after each character received, which will decrease the 

time needed for interrupt handling. The meaning of bits 7..6 is the following: 

00: The interrupt request is generated after each character received; 

01: The interrupt request is generated after 4 characters received; 

10: The interrupt request is generated after 8 characters received; 

11: The interrupt request is generated after 14 characters received. 

• Bits 5..4 are reserved (set to 0). 

• Bit 3 (DMA Mode Select), present on the 16550 and later chips, allows to select the 

mode of DMA transfers. When the FIFO memories are enabled, there are two DMA 

transfer modes that can be selected, mode 0 and mode 1. Mode 0, selected if bit 3 of 

the FCR register is 0, allows single-word DMA transfers. Mode 1, selected if bit 3 of 

the FCR register is 1, allows multi-word DMA transfers, which are performed contin-

uously until the receive FIFO memory is emptied or the transmit FIFO memory is 

filled. On the 16450 chip, only mode 0 is allowed. 

• Bit 2 (Transmitter FIFO Reset) allows to clear the transmit FIFO memory by setting 

this bit to 1. 

• Bit 1 (Receiver FIFO Reset) allows to clear the receive FIFO memory by setting this 

bit to 1. 

• Bit 0 (FIFO Enable) enables by value 1 the transmit and receive FIFO memories. By 

default, these memories are disabled, for compatibility with the 8250 and 16450 

UART chips. By setting this bit to 0, the FIFO memories will be disabled, and the da-

ta stored to them will be lost. 

 Note 

• When the FIFO memories are not used, or bits 7..6 of the FCR register are set so that 

an interrupt request will be generated after each character received, in the receive in-

terrupt handling routine is enough to read the RBR receive register only once. If the 

FIFO memories are used, in the receive interrupt handling routine a program loop 

should be implemented to read characters from the RBR receive register one by one, 

as long as there is at least one character in this register. The presence of a character in 

the RBR receive register is indicated by the fact that bit 0 of the LSR register is set to 



 
19 Input/Output Systems and Peripheral Devices 

1. After reading a character from the RBR register, the chip will load automatically 

the next character from the FIFO memory, if there is any character in this memory. 

 LCR - Line Control Register 

 By writing the line control register it is possible to set the parameters of the serial 

communication. The structure of the LCR register is illustrated in Figure 1.11. 

 
Figure 1.11. Line Control Register (LCR). 

 The meaning of LCR register bits is the following: 

• Bit 7 (Divisor Latch Access Bit) changes the function of registers accessible through 

addresses 0x3F8 (0x2F8) and 0x3F9 (0x2F9). If this bit is 0, the accessible registers 

are Transmitter / Receiver Buffer Register and Interrupt Enable Register, respective-

ly. If bit 7 is 1, the accessible registers are the divisor latch registers (LSB and MSB, 

respectively). 

• Bit 6 (Set Break). If set to 1, the chip forces the communication line to the logical 0 

level (space). This corresponds to the “break” state of the line, which allows to draw 

a remote terminal’s attention by an interrupt generated when this state of the line is 

detected. The line may be brought to the normal state by setting bit 6 to 0. 

• Bit 5 (Stick Parity) allows to send or wait for parity bits with a fixed value, 0 or 1: 

0: The parity is checked normally, according to the Parity Enable and Even Parity Se-

lect bits; 

1: If the Parity Enable bit is 1, fixed-value bits are sent or checked in place of the 

parity bit, according to the Even Parity Select bit. If the Even Parity Select bit is 0, 

the parity bit is always 1, and if the Even Parity Select bit is 1, the parity bit is al-

ways 0. 

• Bit 4 (Even Parity Select) indicates the type of parity used, if parity generation and 

parity checking is enabled by the Parity Enable bit: 

0: Odd parity; 

 1: Even parity. 

• Bit 3 (Parity Enable) enables or disables parity generation and parity checking: 

0: Parity generation and parity checking is disabled; 

 1: Parity generation and parity checking is enabled. 

• Bit 2 (Number of Stop Bits) indicates the number of stop bits generated or expected 

by the UART chip: 

0: 1 stop bit; 

 1: 2 stop bits (1.5 bits if character length is 5 bits). 



 
20 1. Serial Port 

 The receiver only checks the first stop bit, regardless of the number of stop bits se-

lected. 

• Bits 1..0 (Word Length Select) specify the length of characters sent or received: 

00: 5 bits/character; 

 01: 6 bits/character; 

 10: 7 bits/character; 

 11: 8 bits/character. 

 MCR - Modem Control Register 

 The MCR register (Figure 1.12) is used to control the communication with the modem. 

 
Figure 1.12. Modem Control Register (MCR). 

 The meaning of MCR register bits is the following: 

• Bits 7..5 are not used (set to 0). 

• Bit 4 (Loop) allows to test the UART chip and the communication programs. By 

setting this bit to 1, the following operations will be performed: 

1. The transmitter serial output is placed into the logical 1 state. 

2. The receiver serial input is disconnected. 

3. The data on the TSR register output will be received in the receive buffer RBR. 

4. The input lines for modem control DSR, CTS, RI, and DCD are disconnected, 

and they can be controlled with bits 0..3 of the MCR register (Data Terminal 

Ready, Request To Send, OUT1, and OUT2, respectively). If the interrupts are 

enabled, changes of these bits will generate interrupt requests as if the signals 

had been activated by the modem. 

• Bits 2 and 3 (OUT1 and OUT2) can be used to implement a user-defined commu-

nication. 

• Bit 1 (Request To Send) asserts by value 1 the RTS signal of the interface. 

• Bit 0 (Data Terminal Ready) asserts by value 1 the DTR signal of the interface. 

 Note 

• The DTR, RTS, OUT1, and OUT2 signals are active in the logical 0 state. 

 LSR - Line Status Register 

 This register indicates the communication line status. Bits 6..5 refer to the transmitter, 

and bits 4..0 refer to the receiver (Figure 1.13). 

 The meaning of LSR register bits is the following: 

• Bit 7 (Error in Receiver FIFO) is set to 1 when the FIFO memories are enabled and at 

least a parity error, a framing error, or a “break” condition occurred while receiving the 

characters present in the receive FIFO memory. 



 
21 Input/Output Systems and Peripheral Devices 

• Bit 6 (Transmitter Shift Register Empty) is set to 1 if both the THR and TSR registers are 

empty. If the FIFO memories are enabled, this bit is set to 1 when both the transmit 

FIFO memory and the TSR register are empty. 

 
Figure 1.13. Line Status Register (LSR). 

• Bit 5 (Transmitter Holding Register Empty) is set to 1 when the contents of the THR 

register is transferred into the TSR register and transmission of the character begins. 

This indicates that the UART chip is ready to accept a new character for transmission. 

When the THR register is empty, the UART chip generates an interrupt request if this 

type of interrupt is enabled. This bit is reset to 0 when a new character is written into 

the THR register. If the FIFO memories are enabled, this bit is set to 1 when the 

transmit FIFO memory is empty and it is reset to 0 when at least one character is writ-

ten into the transmit FIFO memory. 

• Bit 4 (Break Interrupt) is set to 1 if spaces (logical 0) are detected on the line for a 

longer period than that needed to send one character. In this case, a byte with value 0 

is written into the receive buffer and an interrupt request is generated. This bit is reset 

to 0 by reading the LSR register. 

• Bit 3 (Framing Error) is set to 1 if a character is received without the corresponding 

stop bits. The receiver only checks the first stop bit, regardless of the number of stop 

bits programmed. When detects this error, the chip tries to resynchronize. This bit is 

reset to 0 by reading the LSR register. 

• Bit 2 (Parity Error) is set to 1 if a character with a parity different than that expected is 

received. This bit is reset to 0 by reading the LSR register. 

• Bit 1 (Overrun Error) is set to 1 if a new character is received before the program 

reads the character from the RBR register. In this case, one or more characters will be 

lost. The overrun error, like other errors, generates an interrupt request. This bit is re-

set to 0 by reading the LSR register. If the FIFO memories are enabled and the receive 

FIFO memory is filled above the threshold level, an overrun error will be signaled on-

ly after the FIFO memory is full and the next character has been received in the RSR 

register. 

• Bit 0 (Data Ready) is set to 1 when a character has been received and it has been 

transferred into the RBR register or into the FIFO memory. This bit is reset to 0 by 

reading the character from the RBR register or after reading all the characters from 

the receive FIFO memory. By receiving a character, an interrupt request will be gen-

erated if this type of interrupt is enabled. 

 MSR - Modem Status Register 

 This register contains information about the modem status (Figure 1.14). The mean-

ing of MSR register bits is the following: 



 
22 1. Serial Port 

• Bits 7..4 indicates the current status of the CD, RI, DSR, and CTS signals, respective-

ly. An asserted signal is indicated by the corresponding bit in the MSR register set to 

1. If the Loop bit of the MCR register is 1, the state of bits 7, 6, 5, 4 in the MSR regis-

ter is equivalent to the state of bits OUT2, OUT1, Data Terminal Ready, and Request 

To Send, respectively, in the MCR register. 

• Bits 3..0 indicates the change of signals CD, RI, DSR, and CTS, respectively, from the 

last read of the MSR register. These bits are reset when the MSR register is read. 

 Note 

• The CTS, DSR, RI, and CD signals are active in the logical 0 state. 

 
Figure 1.14. Modem Status Register (MSR). 

 Scratch Register 

 This register is not used for communication; it may be used for temporary storage of a 

byte. 

1.12. Port Access in Windows Operating Systems 

 1.12.1. The I/O Port Access Problem 

 Windows operating systems, starting with the NT version, will generate a privileged 

instruction exception if an attempt is made to access an I/O port from a program running in user 

mode. This is due to the restrictions imposed by the processor running in protected mode. 

 In protected mode, accessing I/O ports is controlled by the I/O privilege level (IOPL) in 

the flags register (EFLAGS) and the I/O permission bitmap of a Task State Segment (TSS). 

 The processor recognizes four privilege levels for the programs, from 0 to 3, where 0 is 

the highest privilege level. The two IOPL bits indicate the privilege level that a process should 

have to be able to execute the privileged instructions; such instructions are the I/O instructions IN 

and OUT. For instance, if both IOPL bits are 1, the privileged instructions can only be executed 

by processes with a privilege level of 0 or 1. 

 Under Windows operating systems, only two privilege levels are used out of the proces-

sor’s four privilege levels. Programs in user mode will run with privilege level 3, while the oper-

ating system’s kernel and device drivers will run with privilege level 0. Consequently, privileged 

instructions can be executed by the user programs only through the operating system or device 

drivers. 

 The I/O permission bitmap contains one bit for each I/O address. If the bit corresponding 

to an I/O address is set, an I/O instruction with that address will generate an exception, otherwise 

the I/O operation will be allowed. This bitmap can be used to allow certain user programs to 

access certain I/O ports. The processor checks the I/O permission bitmap when an I/O instruction 

is executed in a process and the process is not privileged enough to execute the instruction. 

 In addition to restrictions imposed by the operating systems on port accesses, another 

problem is that most of today’s programming environments for high-level languages do not pro-



 
23 Input/Output Systems and Peripheral Devices 

vide functions for direct I/O port access, functions that existed in previous versions of these pro-

gramming environments. 

 There are two solutions to the problem of accessing I/O ports under Windows operating 

systems. The first solution is to use a device driver that runs with privilege level 0 and which 

performs port accesses. Data are transferred between a user program and the device driver via 

calls to the DeviceIoControl system function; the operation to be performed by the driver is 

specified by an IOCTL (I/O Control) code. To simplify user programs, the driver may provide 

some I/O functions similar to the inportb() and outportb() functions provided by earlier 

versions of programming environments for the C language. For instance, these functions might 

be provided as dynamic link libraries (DLLs). Consequently, there is no need to directly call the 

DeviceIoControl system function. 

 This solution is recommended for accessing the I/O ports. However, the disadvantage of 

using such a device driver is that the efficiency of data transfers will be quite low. At each call of 

a function to read or write a byte or word, the processor must switch from privilege level 3 to 

level 0, and after performing the operation must switch back. Nevertheless, the driver may also 

provide functions for reading and writing a data block, instead of reading and writing a single 

byte. 

 The second solution to the problem of accessing I/O ports is to modify the I/O permis-

sion bitmap to allow a particular process to access certain I/O ports. Although this method is not 

recommended, it allows running existing applications under the Windows operating systems. 

 1.12.2. The Marvin HW Driver 

 There are several drivers available for accessing I/O ports under the Windows operating 

systems. For the laboratory applications, the Marvin HW driver developed by Marvin Test Solu-

tions Inc. will be used. The current version (in 2025) of the driver is 5.0.8.0. 

 The Marvin HW driver can be used on 32-bit and 64-bit Windows platforms. It includes 

32-bit and 64-bit DLL files that use IOCTL calls to access the kernel-mode drivers. For interfac-

ing with the DLL files, a C/C++ header file (Hw.h) is available. The header file defines functions 

for reading a byte, a 16-bit word, or a 32-bit double-word from an input port, and for writing a 

byte, a word, or a double-word to an output port. Besides these functions, the header file also 

defines functions for reading and writing a byte, a word, or a double-word from/to the memory. 

The memory functions are useful for accessing the physical memory. For instance, they can be 

used for accessing the configuration space of a PCI device or the memory-mapped registers of an 

I/O controller. 

 In the Hw.h header file, the functions for reading a byte, a word, and a double-word from 

an input port are defined as follows: 

INT __inp(WORD wPort); 

WORD __inpw(WORD wPort); 

DWORD __inpd(WORD wPort); 

 These functions return the value read from the specified port. The single parameter of 

these functions (wPort) represents the port address, which is always a 16-bit value. The 

__inp() function reads a byte from the port, the __inpw() function reads a word from the 

port, and the __inpd() function reads a double-word from the port. 

 Notes 

• Although the __inp() function returns an INT value, the function is used for reading 

a single byte from an 8-bit port. 

• The names of these functions start with two underline characters. These functions 

should not be confused with the _inp(), _inpw(), and _inpd() functions, whose 

names start with a single underline character and which are available when the 

conio.h header file is included in the source code. The functions defined in the conio.h 



 
24 1. Serial Port 

header file cannot be called in user-mode programs, because each call would generate 

a privileged instruction exception. 

In the Hw.h header file, the functions for writing a byte, a word, and a double-word to an 

output port are defined as follows: 

INT  __outp(WORD wPort, INT iData); 

WORD __outpw(WORD wPort, WORD wData); 

DWORD __outpd(WORD wPort, DWORD dwData); 

 The first parameter of these functions (wPort) represents the port address, which is al-

ways a 16-bit value. The second parameter represents the data to be written to the specified port. 

The __outp() function writes a byte to the port, the __outpw() function writes a word to the 

port, and the __outpd() function writes a double-word to the port. 

 Notes 

• Although the second parameter of the __outp() function is specified with the type 

INT, this function is used for writing a single byte to an 8-bit port. 

• Each of these functions returns the data written to the port. However, the return value 

is usually ignored. 

• The names of these functions start with two underline characters. These functions 

should not be confused with the _outp(), _outpw(), and _outpd() functions, 

which have restrictions similar to those of the _inp(), _inpw(), and _inpd() func-

tions. 

The following functions are available for reading a byte, a word, or a double-word from 

a memory location: 

BYTE _inm(DWORD_PTR dwAddress); 

WORD _inmw(DWORD_PTR dwAddress); 

DWORD _inmdw(DWORD_PTR dwAddress); 

 These functions return the value read from the memory location with the specified ad-

dress (dwAddress). The parameter of these functions is defined with the type DWORD_PTR, 

which is a 64-bit unsigned integer. 

 For writing a byte, a word, or a double-word to a memory location the following func-

tions are available: 

BOOL _outm(DWORD_PTR dwAddress, INT iData); 

BOOL _outmw(DWORD_PTR dwAddress, WORD wData); 

BOOL _outmdw(DWORD_PTR dwAddress, DWORD dwData); 

 The first parameter of these functions (dwAddress) represents the memory address, 

which is defined as a 64-bit unsigned integer. The second parameter represents the data to be 

written to the specified address. These functions return TRUE if the execution was successful. 

 Note 

• Although the second parameter of the _outm() function is specified with the type 

INT, this function is used for writing a single byte to a memory location. 

 Assuming that the 64-bit Marvin HW driver is installed, for using the functions pro-

vided by this driver in a 64-bit application the following operations are required: 

1. After creating the application project, copy the Hw.h and Hw64.lib files into the folder 

of the application project. These files are available in the installation folder of the 

Marvin HW driver (C:\Program Files (x86)\Marvin Test Solutions\HW). 

2. Check that the active solution platform is set to x64. For this, select Build → Configu-

ration Manager… in the main menu. In the Configuration Manager dialog window, 



 
25 Input/Output Systems and Peripheral Devices 

check that x64 is displayed under both the Active Solution Platform and Platform 

fields, and then select the Close button. 

3. Insert the following line into the source file in which the Marvin HW driver functions 

will be used: 

#include "Hw.h" 

4. Before using the driver functions, call the HwOpen() function. If this function returns 

FALSE, display an error message specifying that the driver is not installed correctly. 

At the end of the application, call the HwClose() function: 

if (!HwOpen()) { ... }; 

... 

HwClose(); 

5. Before building the application, specify the Hw64.lib file as an additional dependency 

for the linker. For this, right-click on the project name in the Solution Explorer tab 

and select the Properties option. In the Property Pages dialog window, expand the 

Configuration Properties option, expand the Linker option, and select the Input line. 

On the right tab, select the Additional Dependencies line, click on the arrow at the 

end of the line, and select <Edit…>. In the Additional Dependencies dialog box, enter 

Hw64.lib and select the OK button. Close the Property Pages dialog window. 

 1.13. Applications 

 1.13.1. Answer the following questions: 

a.  What is the difference between the unit of measure for modulation speed and the unit 

of measure for communication speed? 

b.  How can the synchronization between the receiver clock and the transmitter clock be 

ensured in the case of a synchronous communication? 

c.  How can the correctness of data blocks transmitted be ensured in the case of a syn-

chronous communication? 

d.  What is the function of each of the following signals of the serial interface: DTR, 

DSR, RTS, and CTS? 

e.  What is the reason for which I/O ports cannot be accessed directly from user pro-

grams under the Windows operating systems? 

 1.13.2. Consider an 8-bit read/write port with the address defined by the PORT constant 

and an 8-bit mask defined by the BIT4 constant as (1 << 4). Use the __inp() and __outp() 

functions of the Marvin HW driver to write the sequences of instructions in the C language that 

perform the following operations: 

• Wait until the bit of the port defined by the BIT4 mask becomes set; 

• Set the bit of the port defined by the BIT4 mask; 

• Clear the bit of the port defined by the BIT4 mask; 

• Complement (toggle) the bit of the port defined by the BIT4 mask. 

Other bits of the port should not be altered by the sequences of instructions. 

 1.13.3. Build and test the TestCom1DT-e application, whose source files are available on 

the laboratory page in the TestCom1DT-e.zip archive. This application checks the existence of 

the serial port with the base address 0x3F8. The check is performed by writing the values 0xAA 

and 0x55 into the port’s LCR register and then reading them back. If the values read match the 

values written, the application assumes that the port exists. Use the Visual Studio 2022 pro-

gramming environment to build this application, by performing the following operations: 

1. Launch the Visual Studio 2022 programming environment. 



 
26 1. Serial Port 

2. Select Create a new project, or File → New → Project…. In the Create a new project 

dialog window, select Windows Desktop Wizard, and select the Next button. Enter the 

name of the project into the Project name field. In the Location field, select the path to 

the project folder; this folder should be a subfolder of the D:\Student or E:\Student fol-

der. Check the Place solution and project in the same directory option to avoid creat-

ing another folder for the solution. Select the Create button. 

3. In the Windows Desktop Project dialog box, select the Desktop Application (.exe) op-

tion for the application type, check the Empty project option, and then select the OK 

button. 

4. Check that the active solution platform is set to x64 by selecting Build → Configura-

tion Manager… in the main menu. In the Configuration Manager dialog window, 

check that x64 is displayed under both the Active Solution Platform and Platform 

fields, and then select the Close button. 

5. In the Solution Explorer tab, right-click on the project name and select the Properties 

option. In the Property Pages dialog window, expand the Configuration Properties 

option, select the Advanced option, select the Character Set line in the right tab, and 

change its property to Not Set. Select the OK button. 

6. Copy to the project folder the files contained in the TestCom1DT-e.zip archive. 

7. In the main menu, select Project → Add Existing Item…. Select the files copied to the 

project folder, and then select the Add button. 

8. Copy to the project folder the Hw.h and Hw64.lib files. These files are available in the 

installation folder of the driver (C:\Program Files (x86)\Marvin Test Solutions\HW). 

9. Add to the project the Hw.h file. 

10. Specify the Hw64.lib file as an additional dependency for the linker, as described in 

Step 5 of the sequence of operations presented in Section 1.12.2. 

11. Select Build → Build Solution, make sure that the application builds without errors, 

and then run the application by selecting Debug → Start Without Debugging. 

 Note 

• The TestCom1DT-e application uses the DrawText() function for displaying the con-

tents of the application window. The TestCom1TO-e application, also available on the 

laboratory page, performs the same operations as the TestCom1DT-e application, but us-

es the TextOut() function for displaying the contents of the application window. 

 1.13.4. Create a Windows application for initializing the COM1 serial port. As tem-

plate for the Windows application, use the AppScroll-e application, whose source files are availa-

ble on the laboratory web page in the AppScroll-e.zip archive. Perform the following operations 

to create the application project: 

1. In the Visual Studio 2022 programming environment, create a new empty Windows 

Desktop project with the Windows Desktop Wizard. Check the Place solution and 

project in the same directory option to avoid creating another folder for the solution. 

2. Check that the active solution platform is set to x64. 

3. Change the Character Set project property to Not Set, as described in Step 5 of the 

sequence of operations presented for Application 1.13.3. 

4. Copy to the project folder the files contained in the AppScroll-e.zip archive and add 

these files to the project. 

5. Copy to the project folder the Hw.h, Hw64.lib, and ComDef-e.h files from the folder of 

the project created for Application 1.13.3. 



 
27 Input/Output Systems and Peripheral Devices 

6. Add to the project the Hw.h and ComDef-e.h files. 

7. Specify the Hw64.lib file as an additional dependency for the linker. 

8. Open the AppScroll-e.cpp source file and add a #include directive to include the 

ComDef-e.h header file. 

9. Select Build → Build Solution and make sure that the application builds correctly. 

In the AppScroll-e.cpp source file, write a function to initialize the COM1 serial port 

with the following parameters: binary rate of 115,200 bits/s; character length of 8 bits; no 

parity bit; 1 stop bit. Use the ComDef-e.h definition file for the serial port. Perform the follow-

ing steps to initialize the serial port: 

1. Set bit 7 of the LCR register to 1; the mask of this bit is LCR_DLAB. Setting this bit is 

needed to access the divisor registers for specifying the value by which the serial con-

troller’s clock frequency should be divided to get the desired binary rate. 

2. Write the least significant byte of the divisor to the DLR_LSB register and the most 

significant byte of the divisor to the DLR_MSB register. The divisors are defined in 

Table 1.6. 

3. Using the description of the LCR register (Section 1.11), write to the LCR register a 

byte conforming to the required communication parameters. Bit 7 of this byte should 

be 0 in order to access the registers normally after accessing the divisor registers. 

4. Set the following bits of the MCR register: Data Terminal Ready; Request To Send; 

OUT2. 

In the AppScroll() function, after initializing the Marvin HW driver with the 

HwOpen() function, call the CreateFile() function to open the COM1 port (similarly to the 

call in the TestCom1DT-e application), call the function for initializing the COM1 port, and 

then call the CloseHandle() function to close the COM1 port. 

 1.13.5. Extend Application 1.13.4 by writing a function that sends a single character 

through the COM1 serial port. In the AppScroll() function, after initializing the COM1 port, 

use this function to send a command for turning on/off the LEDs or changing the color of the 

RGB LEDs on a development board connected to the computer through the serial port. The 

commands consist of character strings that are interpreted by an application running on a mi-

croprocessor implemented on the development board. Example commands are presented in 

the Board-Commands.txt file. For testing the application on the virtual machine, launch the 

Oracle VM VirtualBox, select Settings → Serial Ports → Port 1, select the Raw File option 

for Port Mode, and in the Path/Address field enter the full path and filename on the host sys-

tem to which the characters sent through the serial port of the virtual machine will be written. 

 1.13.6. Create a new application for sending commands to the same development 

board of Application 1.13.5 for reading the status of switches or buttons and receiving the 

results returned by the board. The commands are presented in the Board-Commands.txt file. 

First, create an empty Windows Desktop project with the Windows Desktop Wizard. Then, 

copy to the project folder the source, header, and resource files from the folder of the project 

created for Application 1.13.4, and perform the same operations that are specified for creating 

that application. In the AppScroll-e.cpp source file, after initializing the COM1 port, use the 

WriteFile() function for sending to the development board the same command specified in 

Application 1.13.5 for turning on/off the LEDs or changing the color of the RGB LEDs. For 

details on the function parameters, access the Windows Developer documentation by placing 

the cursor inside the function name and pressing the F1 key. Test the application on the virtu-

al machine. Next, use the WriteFile() function for sending to the development board the 

command for reading the status of switches. Finally, receive the results returned by the devel-

opment board using the ReadFile() function, and display the characters received. 



 
28 1. Serial Port 

 1.13.7. Extend Application 1.13.4 to send a character string through the COM1 serial 

port. First, write a function that sends a single character through the COM1 serial port. In the 

AppScroll() function, call the function written for Application 1.13.4 for initializing the 

COM1 serial port, and then, in a loop, call the function for sending a single character to send a 

string of characters. Connect a crossover serial cable between the COM1 ports of two comput-

ers. Launch the HyperTerminal PE or the Tera Term application on the computer used as 

receiver and create a connection with the same parameters as those of the transmitter serial 

port. Then, launch the transmitter application and verify its operation watching the characters 

displayed in the HyperTerminal PE or Tera Term window. 

 1.13.8. Extend Application 1.13.7 to receive a character string through the COM1 

serial port. First, write a function that receives a single character through the COM1 serial 

port. In the AppScroll() function, call the function written for Application 1.13.4 for initial-

izing the COM1 serial port, and then, in a loop, call the function for receiving a single charac-

ter to receive a string of characters. The application will display each character received and 

will complete when the ESC (0x1B) character is received. Connect a crossover serial cable 

between the COM1 ports of two computers. Launch the HyperTerminal PE or the Tera Term 

application on the computer used as transmitter and create a connection with the same param-

eters as those of the receiver serial port. Then, launch the receiver application and verify its 

operation entering text lines in the HyperTerminal PE or Tera Term window. 

 1.13.9. Modify Application 1.13.8 so that it will send back (in echo) each character 

received on the COM1 serial port. Verify the application similarly to the procedure described 

for Application 1.13.8. 

 1.13.10. Connect two computers through a crossover serial cable. Use the transmitter 

application 1.13.7 and the receiver application 1.13.8 to send a character string from one of 

the computers to the other. The receiver computer should display the character string re-

ceived. 

 Bibliography 

[1] Baruch, Z., Sisteme de intrare/ieşire, Îndrumător de lucrări de laborator, U.T.PRES, 

Cluj-Napoca, 1998. 

[2] National Semiconductor Corp., “PC16550D Universal Asynchronous Receiver/ Trans-

mitter with FIFOs”, 1995, www.national.com/ds.cgi/PC/PC16550D.pdf. 

[3] Peacock, C., “Interfacing the Serial / RS232 Port”, Beyond Logic, 2010, 

http://beyondlogic.org/serial/serial.htm. 

[4] Rosch, W. L., Hardware Bible, Sixth Edition, Que Publishing, 2003. 

[5] Strangio, C. E., “The RS232 Standard”, CAMI Research Inc., Lexington, Massachusetts, 

1993-2015, http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html. 

[6] Wikimedia Foundation, Inc., “RS-232”, Wikipedia, The Free Encyclopedia, 2024, 

http://en.wikipedia.org/wiki/RS-232. 

 

 

http://www.national.com/ds.cgi/PC/PC16550D.pdf
http://beyondlogic.org/serial/serial.htm
http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://en.wikipedia.org/wiki/RS-232

