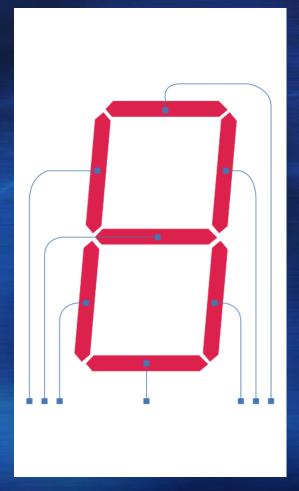
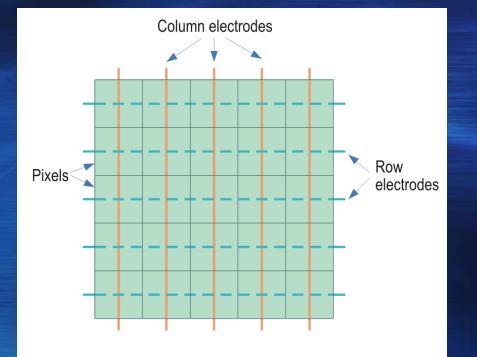
Liquid Crystal Displays


Liquid Crystals

- Twisted Nematic Technology
- Backlighting Types
- Addressing Techniques
- Display Parameters
- Vertical Alignment Technology
- In-Plane Switching Technology

Addressing Techniques

Addressing Techniques
 Direct and Multiplexed Addressing
 Passive-Matrix Displays
 Active-Matrix Displays
 Defective Pixels


Direct and Multiplexed Addressing (1)

Direct addressing

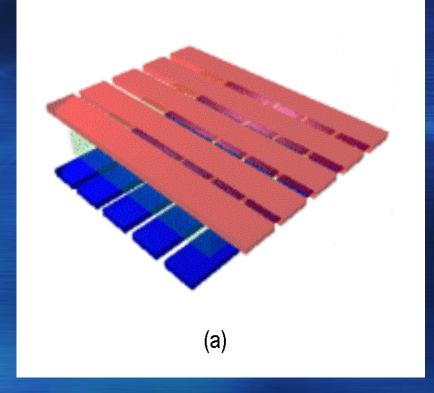
- Used for displays with a small number of display elements
- Each element (segment or pixel) can be addressed or driven separately
- A voltage should be applied to each element to change orientation of the molecules

Direct and Multiplexed Addressing (2)

Multiplexed addressing

- Used for displays with a large number of pixels
- The pixels can be addressed by a matrix of rows and columns
- Each pixel sits at the intersection of a row electrode and a column electrode

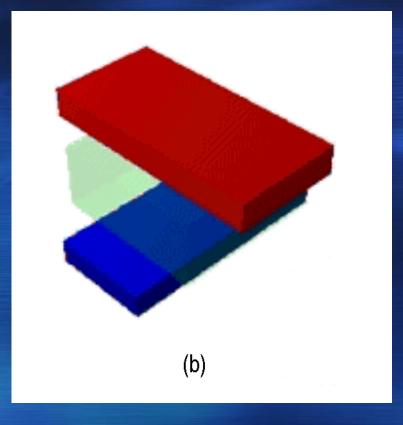
Direct and Multiplexed Addressing (3)


Advantage:

- Reduced complexity of the circuits
- For a matrix of 1000 x 1000 pixels, 2000 drivers are needed (compared to 1,000,000 with direct addressing)
- Disadvantage:
 - Reduced contrast
 - TN displays have been improved through various techniques

Addressing Techniques

Addressing Techniques
 Direct and Multiplexed Addressing
 Passive-Matrix Displays
 Active-Matrix Displays
 Defective Pixels


Passive-Matrix Displays (1)

Use a set of multiplexed transparent electrodes

- A transistor is connected to each row electrode or each column electrode
- The liquid crystal layer is placed between the electrodes
- The electrodes are composed of indium tin oxide (ITO)

Passive-Matrix Displays (2)

 A pixel – addressed when a voltage is applied across it
 The pixel becomes opaque when it is addressed

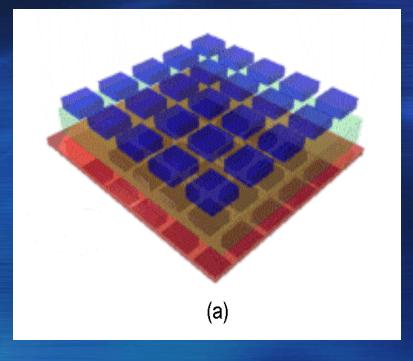
When the voltage is removed, the pixel deactivates slowly

Passive-Matrix Displays (3)

- The display controller scans across the matrix of pixels
- Delay since the voltage is applied to a pixel until it is turned on -> response time
- Inertia of the pixels after the voltage is removed

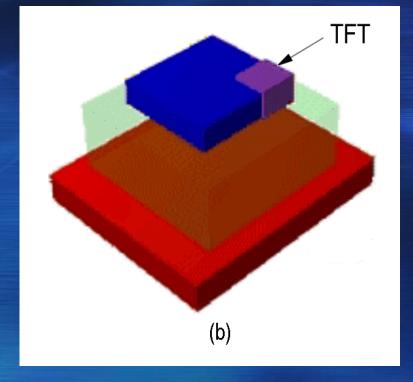
The time to scan the entire matrix must be shorter than the time needed for the pixels to deactivate

Passive-Matrix Displays (4)


Disadvantages:

- Crosstalk interference between neighboring pixels
 - Causes the occurrence of shadows for bright objects
- Viewing angle is limited
- Response time is relatively slow
 - The current image is still maintained on the screen after a new image is displayed

Addressing Techniques


Addressing Techniques
 Direct and Multiplexed Addressing
 Passive-Matrix Displays
 Active-Matrix Displays
 Defective Pixels

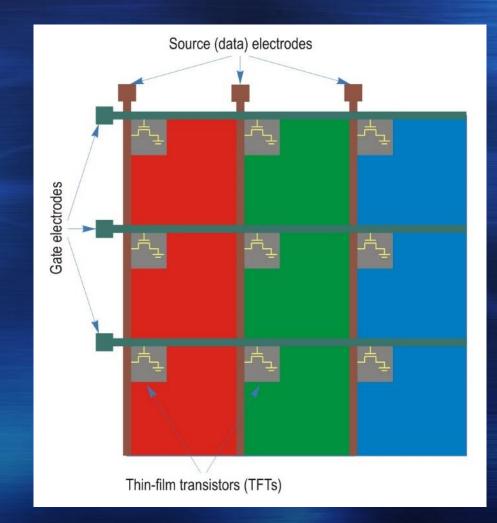
Active-Matrix Displays (1)

- The front glass plate of the display is coated with a continuous electrode
- The rear glass plate is coated with electrodes divided into pixels
- Each pixel is connected in series with a thin film transistor (TFT)
 - Also called TFT displays
- A storage capacitor can also be connected in series

Active-Matrix Displays (2)

- A pixel of the active-matrix display
- Active element: field effect transistor (FET)
- Semiconductor material: silicon
- Crystalline silicon (c-Si)
 - Expensive
 - Note: High mobility of charge carriers → enable to integrate the drivers

Active-Matrix Displays (3)


Amorphous silicon (a-Si)

- Simple manufacturing process
- Mobility of electrons is relatively low
- Hydrogenated a-Si (a-SI:H) increases the mobility of electrons

Polysilicon (p-Si)

Consists of small silicon crystals
 High mobility of charge carriers
 Semiconducting metal oxides
 Indium Gallium Zinc Oxide (IGZO)

Active-Matrix Displays (4)

April 11, 2025

Input/Output Systems and Peripheral Devices (05-2)

Active-Matrix Displays (5)

An image is created by scanning the matrix

- A row of pixels is selected by applying voltage to the row electrode connected to the transistor gates on that row
- Voltages corresponding to the image are applied to the column electrodes connected to the transistor sources
- The operations are repeated for each row
- Refresh rate of the screen: 50 or 60 Hz

Active-Matrix Displays (6)

Advantages (compared to passive matrix displays):

- Faster response time
- Higher contrast
- Higher brightness level
- Wider viewing angle

Disadvantages:

- More intense backlight is required
- Higher cost

Addressing Techniques

Addressing Techniques
 Direct and Multiplexed Addressing
 Passive-Matrix Displays
 Active-Matrix Displays
 Defective Pixels

Defective Pixels (1)

For high resolutions, many transistors are needed

• 4K resolution: $3840 \times 2160 \times 3 \cong 24.9$ million transistors

Defective transistors due to impurities

- Lit pixel (permanently on)
- Black pixel (permanently off)

Stuck pixel (one or two sub-pixels on or off)
 Manufacturers set limits for an acceptable number of defective pixels

Defective Pixels (2)

ISO standards: ergonomic requirements for flat panel displays

- ISO 13406, Part 2 (2001)
- ISO 9241, Part 303 (2008, 2011)
- Image-quality requirements:
 - Three types of defective pixels
 - Four display classes (Class II: common)
 - Maximum number of defective pixels of each type per million pixels for each class
 - Maximum number of defective pixels within a block of 5x5 pixels

Liquid Crystal Displays

Liquid Crystals

- Twisted Nematic Technology
- Backlighting Types
- Addressing Techniques
- Display Parameters
- Vertical Alignment Technology
- In-Plane Switching Technology

Display Parameters

Display Parameters
 Response Time
 Contrast Ratio
 Color Depth
 Color Gamut
 Viewing Angle

Response Time (1)

- Time required for the liquid crystals to change orientation color transition
- Especially important for dynamic images
- Standard way of measuring response time
 - Total time of a black-to-white (rise time t_R) and white-to-black transition (fall time – t_F)
 - Sector 2 Example for a TN display: $t_R = 20 \text{ ms}$, $t_F = 5 \text{ ms}$
 - Brightness variation: $10\% \rightarrow 90\% \rightarrow 10\%$ ISO standard
 - ISO standard

Response Time (2)

Response time is dependent on the LCD technology used

- Varies with the color transition
 - The speed of orientation is proportional to the intensity of the applied electric field
 - Most of the transitions are between shades of grey
 - Diagram: dependence of response time on the final grey level (black-to-grey transitions)

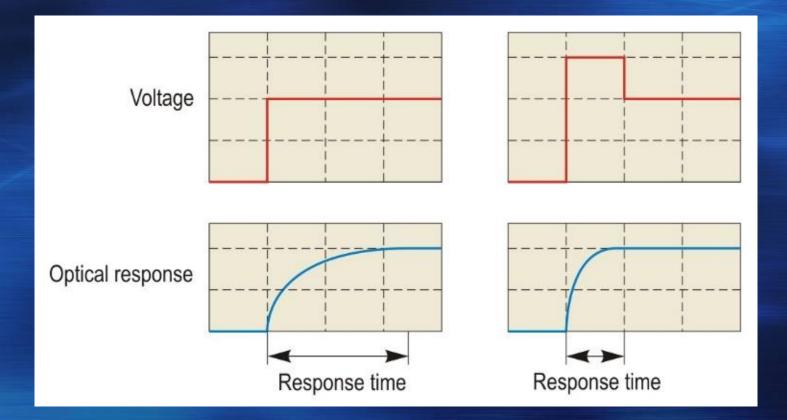
Response Time (3)

x axis: grey level (code)
 y axis: pixel response time (ms)

April 11, 2025

Input/Output Systems and Peripheral Devices (05-2)

Response Time (4)


Response time depends on the contrast setting of the display

- The orientation with the minimum angle (white color) is only reached at the maximum contrast
- Reducing the contrast increases response time
- Dependence on the brightness setting
 - At low brightness, response time may increase
 - Controlling the brightness by adjusting the backlight intensity: response time not affected

Response Time (5)

- Response Time Compensation (RTC)
 - Also called "overdrive"
 - Technique for improving response time for grey-to-grey transitions
 - Applying an over-voltage to the crystals → are forced into an intermediate position
 - Displays using the RTC technique have response times quoted for grey-to-grey (G2G) transitions

Response Time (6)

Response Time (7)

Response times for TN displays:
 Without RTC: 5 .. 10 ms
 With RTC: 1 .. 5 ms
 Problems of the RTC technique
 Video noise may be visible
 Image trailing due to the intermediate state

Response Time (8)

a) No image trailing

b) Image trailing

April 11, 2025

Input/Output Systems and Peripheral Devices (05-2)

Response Time (9)

- Variations of the RTC technique
 - ViewSonic: ClearMotiv
 - Advanced RTC: also improves black-to-black (B2B) transitions
 - Backlight shuttering: the backlight is turned off briefly
 - LG Display: Over Driving Circuit (ODC)
 - Samsung: MagicSpeed / Response Time Acceleration (RTA)

NEC Display Solutions: Rapid Response

Response Time (10)

 BenQ: Advanced Motion Accelerator (AMA)

- Reducing the motion blur with the Black Frame Insertion (BFI) technique
- AMA Z: the AMA technique combined with BFI

Display Parameters

Display Parameters
 Response Time
 Contrast Ratio
 Color Depth
 Color Gamut
 Viewing Angle

Contrast Ratio (1)

Static Contrast Ratio

- Luminosity ratio of white and black colors
- Measured at the center of the screen
- Achieving a high contrast is more difficult
- Passive display: it modulates the backlight
- It is not possible to block out the backlight completely → the contrast is reduced
- Static contrast ratios for TN displays: < 1000:1</p>
- With other technologies: up to 3000:1

Contrast Ratio (2)

Dynamic Contrast Ratio (DCR)

- Dynamic contrast control: achieved by adjusting the intensity of the backlighting
- Reducing the intensity in dark scenes
- Increasing the intensity in bright scenes
- The luminosity of white/black color: measured at the maximum/minimum backlight intensity
- LED backlighting: very high values of DCR can be achieved (> 1,000,000:1)

Contrast Ratio (3)

 Fluorescent lamps or rows of LEDs: the brightness of the whole screen is changed
 Array of LEDs: brightness can be changed selectively in different areas

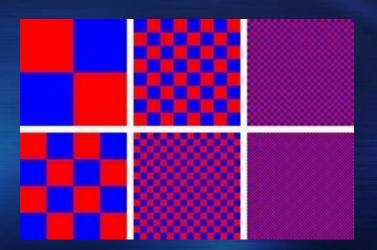
Contrast Ratio (4)

The FALD (Full-Array Local Dimming) feature may improve the dynamic contrast ratio

Display Parameters

Display Parameters
 Response Time
 Contrast Ratio
 Color Depth
 Color Gamut
 Viewing Angle

Color Depth (1)


- Represents the number of colors that can be reproduced by the display
 - Determined by the number of possible orientations in each sub-pixel
- TN technology: only 64 orientations
 - Color depth: 262,144
 - $^{\circ}$ 6 bits per sub-pixel \rightarrow 18-bit color
 - Techniques for improving the color depth: spatial dithering and Frame Rate Control

Color Depth (2)

Spatial Dithering

A new color is created by several neighboring pixels of slightly different colors
 The eye will combine the colors of close-by pixels

pixels

Color Depth (3)

Frame Rate Control (FRC)

- Represents a temporal dithering
- The color of a pixel or group of pixels is changed slightly during successive frames
- When four frames are combined: the color depth may increase to 16.2 million
- The quality of color reproduction may be affected
 - Slanting stripes
 - Flickering

Color Depth (4)

- The quality of the FRC technique may depend on the brightness and contrast settings
- VA, IPS technologies: 24-bit color, without any special technique
- 30-bit color (10 bits per sub-pixel)
 - Color depth of over 1 billion colors
 - Sometimes 24-bit color + FRC is used
 - True 30-bit color: for professional-grade monitors

Display Parameters

Display Parameters
 Response Time
 Contrast Ratio
 Color Depth
 Color Gamut
 Viewing Angle

Color Gamut (1)

- Gamut: the subset of colors that can be reproduced within a reference color space
- Color spaces
 - sRGB (standard RGB): Created by Microsoft and HP for monitors, printers, and Internet content
 - Adobe RGB: Developed by Adobe Systems to include the colors achievable on CMYK printers, but by using RGB primary colors
 - NTSC: Defined by the National Television System Committee
 - BT.2020 (Rec. 2020): Defined by the International Telecommunication Union (ITU)

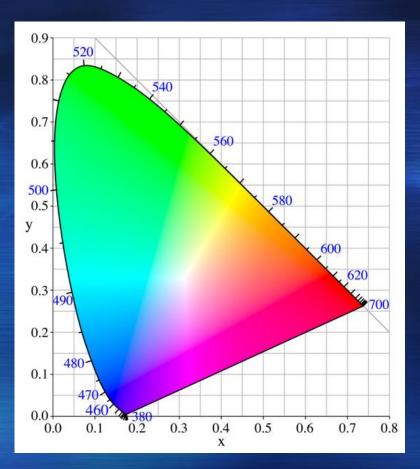
Color Gamut (2)

Concepts related to color

- Color: brightness (luminance) + chromaticity
- Luminance: measure of the luminous intensity per unit area → Cd/m² (Nits)
- Chromaticity: specifies the quality of a color regardless of its luminance
- Chromaticity: defined by the hue and saturation
- Hue: related to the wavelength of light in the visible spectrum

Color Gamut (3)

 Saturation: ratio of the dominant wavelength to other wavelengths in the color; color purity
 CIE chromaticity diagram


CIE – Commission Internationale de l'Éclairage

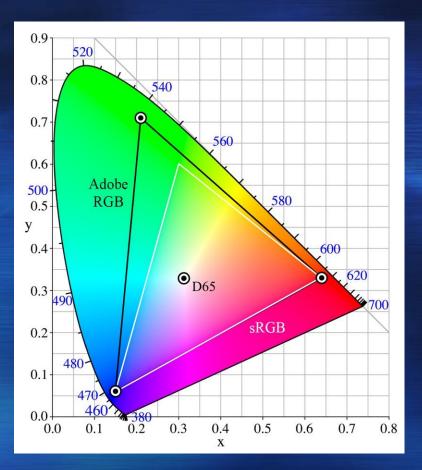
Representation of the human color perception

3D model projected onto a plane → 2D diagram

Chromaticity coordinates x, y: map the color based on the hue and saturation values

Color Gamut (4)

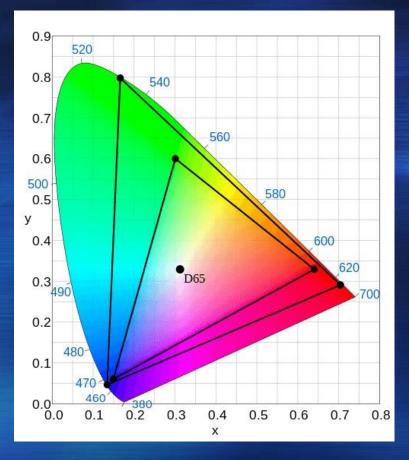
Color gamut of the average person
 Boundary of diagram: monochromatic light


- sRGB: covers 35.9% of the colors perceived by the human eye
- Adobe RGB: 52%

NTSC: 54%
BT.2020: 75.8%

Color Gamut (5)

- Color gamut of LCD monitors: also depends on the type of backlighting
 - Standard CCFL: the gamut covers approximately the sRGB color space (72% of NTSC color space)
 - Enhanced CCFL: 92% .. 102% of NTSC color space
 - White LEDs: 68% .. 72% of NTSC color space
 RGB LEDs: > 114% of NTSC color space


Color Gamut (6)

Color triangle: joining the locations of the primary colors
 D65: represents the white point
 D65 is related to standard illumination

- conditions (CIE)
- It corresponds to the average midday light

Color Gamut (7)

Gamut of the BT.2020 space (outer triangle) compared to sRGB

- Covers entirely the sRGB and Adobe RGB color spaces
- Covering the entire BT.2020 color space is extremely difficult
 - Special backlighting; highquality color filters; color enhancement technology (e.g., quantum dot film)

Display Parameters

Display Parameters
 Response Time
 Contrast Ratio
 Color Depth
 Color Gamut
 Viewing Angle

Viewing Angle (1)

Specified for the horizontal / vertical fields
 Example: 170 / 160

- Contrast ratio
 - Usually, at the maximum viewing angle it is reduced to 10:1
 - Some manufacturers consider a value of 5:1
 - Images become distorted even when the contrast ratio decreases to about 100:1
 - The contrast ratio at lower viewing angles is more important

Viewing Angle (2)

Color shifting

- At increasing viewing angles, colors may not be reproduced correctly
- Usually, it is not considered when measuring viewing angles

TN technology:

- Viewing angles are limited, especially vertically
- Other technologies:
 - Viewing angles are wider

Liquid Crystal Displays

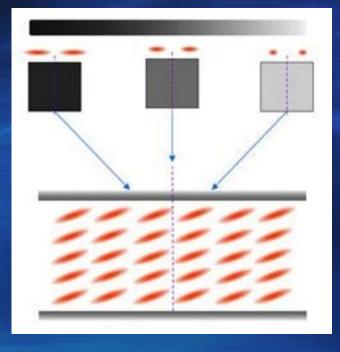
Liquid Crystals

- Twisted Nematic Technology
- Backlighting Types
- Addressing Techniques
- Display Parameters
- Vertical Alignment Technology
- In-Plane Switching Technology

Vertical Alignment Technology

Vertical Alignment (VA) Technology
 Principle of VA Technology
 Multi-Domain VA Technology
 Patterned VA Technology

Principle of VA Technology (1)


- VA Vertical Alignment
- Developed by Fujitsu Ltd.
- Uses a different type of liquid crystal, known as with "vertical alignment"
- No voltage is applied between two electrodes: the molecules are aligned perpendicularly to the glass plates
 The light is obstructed by the polarizer on the front of the screen

Principle of VA Technology (2)

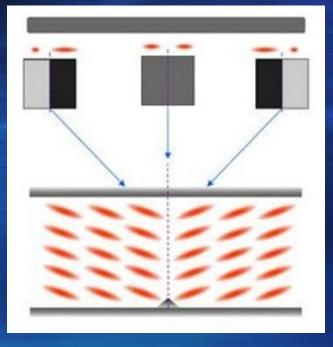
- A voltage is applied between the two electrodes: the molecules tilt with up to 90°
 - Allow passing the light in a degree proportional to the applied voltage
 - The molecules are aligned uniformly
 - The brightness of a cell changes with the viewing angle

Input/Output Systems and Peripheral Devices (05-2)

Principle of VA Technology (3)

Cell viewed from the front: only part of the light is visible

- In the direction of the tilt: bright cell
- In the direction normal to the tilt: dark cell
- Viewing angles are limited

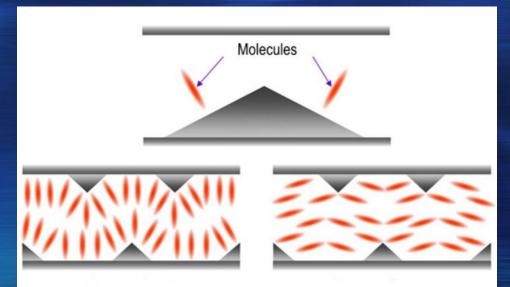

Vertical Alignment Technology

Vertical Alignment (VA) Technology
 Principle of VA Technology
 Multi-Domain VA Technology
 Patterned VA Technology

Multi-Domain VA Technology (1)

- MVA Multi-Domain Vertical Alignment
- Improvement of the VA technology
 - Reduces the brightness dependency on the viewing angle
- When no voltage is applied, the molecules are tilt at a certain angle
- Each cell is divided into two or more regions (domains)
 - In each domain, the molecules are aligned differently than in the neighbor domains

Multi-Domain VA Technology (2)


MVA display with two domains

- Combining areas of molecules oriented in opposite directions
- More uniform brightness of the cells
- Creating the domains: with pyramidal ridges
- Changing the arrangement of the ridges: more domains can be created

Multi-Domain VA Technology (3)

OFF state: the molecules align perpendicularly to the sides of the protrusions

ON state: the molecules tilt horizontally

MVA cell in OFF state (left) and ON state (right)

April 11, 2025

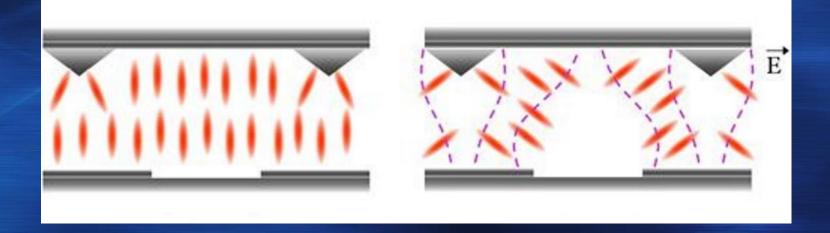
Input/Output Systems and Peripheral Devices (05-2)

Multi-Domain VA Technology (4)

At least four domains are required

 Arranging the protrusions in various patterns (e.g., in a chevron pattern)

Disadvantages


- The contrast ratio is reduced due to the light leakage around the protrusions
- Two photolithographic processes are required to form the protrusions on both substrates

Multi-Domain VA Technology (5)

Improved MVA technology

- The protrusions on one substrate are replaced by transparent electrodes for each pixel
- The oblique electrical fields around the remaining protrusions maintain the same alignment of liquid crystal molecules
- Advantages:
 - Reduced production cost
 - Increased contrast ratio

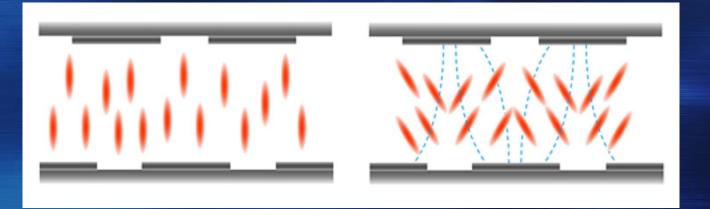
Multi-Domain VA Technology (6)

Improved MVA cell in OFF state (left) and in ON state (right)

April 11, 2025

Input/Output Systems and Peripheral Devices (05-2)

Multi-Domain VA Technology (7)


- Characteristics of MVA technology
 - Response time: ~ 12 ms (without RTC)
 - Response time increases significantly when the color change required is small
 - Contrast ratio: is improved compared to that of TN technology
 - Viewing angles: much wider, e.g., 160° both horizontally and vertically
 - Color reproduction: improved compared to TN, but problematic in a perpendicular direction

Vertical Alignment Technology

Vertical Alignment (VA) Technology
 Principle of VA Technology
 Multi-Domain VA Technology
 Patterned VA Technology

Patterned VA Technology (1)

PVA – Patterned Vertical Alignment
 Developed by Samsung Electronics
 The protrusions on both substrates are replaced by electrodes —> chevron pattern

PVA cell in OFF state (left) and in ON state (right)

April 11, 2025

Input/Output Systems and Peripheral Devices (05-2)

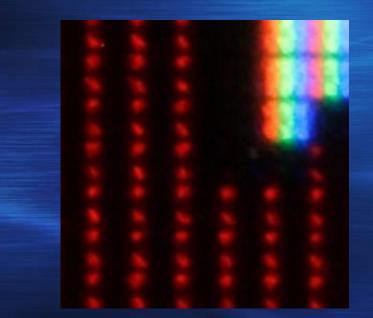
Patterned VA Technology (2)

Contrast ratio: improved (up to 3000:1)
Response time: similar to M/(A tochnology)

Response time: similar to MVA technology

- Increases significantly when the difference between the two color shades is small
- Can be improved with the RTC technique
- Color depth

 Inexpensive displays may use 18-bit color and the Frame Rate Control technique
 Color quality: problematic for a direction strictly perpendicular to the screen


Patterned VA Technology (3)

Improved PVA technology

- S-PVA (Super-PVA)
- Improved response time → advanced RTC method (Dynamic Capacitance Compensation)
 - Example: 50 ms \rightarrow 8 ms
- No color simulation methods are used → 24-bit or 30-bit color
- The sub-pixel structure is changed → two sections aligned in opposite directions

Input/Output Systems and Peripheral Devices (05-2)

Patterned VA Technology (4)

Red sub-pixels at full/low brightness (left/right)
 Sub-pixel: two zones, four domains each
 The structure may compensate the color shift effect
 Viewing angles are asymmetric

Summary (1)

- There are two addressing methods for the display elements:
 - Direct addressing
 - Multiplexed addressing
- Displays with multiplexed addressing may use a passive-matrix or an active-matrix
 - Active-matrix displays have important advantages compared to passive-matrix displays
- Liquid crystal displays require special techniques for improving some parameters

Summary (2)

Response time is especially important for dynamic images

- Depends on several factors
- The RTC technique improves response time for grey-to-grey transitions
- Dynamic contrast control can be performed by adjusting the intensity of the backlighting
- Color depth is problematic for the TN technology

Increasing the color depth: spatial dithering, frame rate control

Summary (3)

The color gamut can be represented on the CIE chromaticity diagram

- Is wider when RGB LEDs are used
- Viewing angle is the narrowest with the TN technology
- The MVA technology improves the contrast ratio, viewing angle, and color reproduction compared to the TN technology
 - The PVA technology improves the contrast ratio
 - The S-PVA technology improves the response time and color depth

Concepts, Knowledge (1)

- Direct and multiplexed addressing
- Principle of passive-matrix displays
- Principle of active-matrix displays
- Semiconductor materials used for activematrix displays
- Response time
- Response time compensation (RTC)
- Static contrast ratio
- Dynamic contrast ratio

Concepts, Knowledge (2)

- Spatial dithering technique
- Frame rate control (FRC) technique
- Color gamut
- Viewing angle
- Principle of VA technology
- MVA and improved MVA technologies
- Features of MVA technology
- PVA and improved PVA (S-PVA) technologies