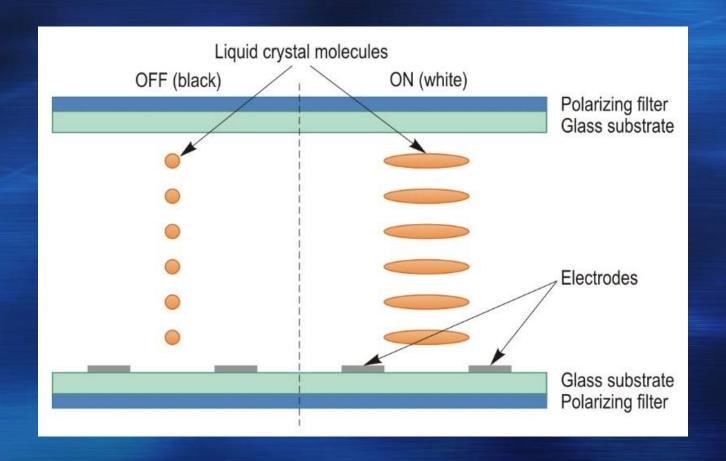
Liquid Crystal Displays

- Liquid Crystals
- Twisted Nematic Technology
- Addressing Techniques
- Backlighting Types
- Display Parameters
- Vertical Alignment Technology
- In-Plane Switching Technology

In-Plane Switching Technology

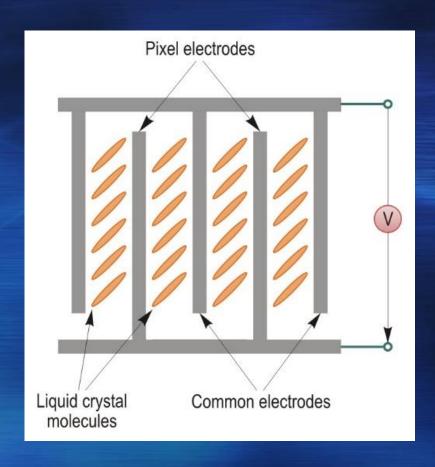
- In-Plane Switching (IPS) Technology
 - Principle of IPS Technology
 - Super IPS Technology
 - Horizontal IPS Technology
 - Advanced High-Performance IPS Technology


Principle of IPS Technology (1)

IPS – In-Plane Switching

- Developed by Hitachi Ltd.
- Conventional TN TFT display: the electrodes are mounted on separate substrates
 - Only one electrode is controlled by a TFT
- PIPS display: both electrodes are mounted on the back glass substrate → they are in the same plane

Principle of IPS Technology (2)


Principle of IPS Technology (3)

- In the OFF state: the molecules of crystals are parallel to the glass substrates
 - Are also parallel to the electrode pair
 - None of the molecules is anchored to the back glass substrate
- When a voltage is applied: the molecules can rotate freely up to 90° → align with the electric field
 - Remain parallel to the glass substrates

Principle of IPS Technology (4)

- IPS display:
 - There is no variation in molecule orientation
 - Viewing angles are increased, up to 170° or 178°
 - The brightness decreases with the increase of the viewing angle
 - Color reproduction remains consistent
- For each cell there are two electrodes
 - Two transistors are needed for each sub-pixel

Principle of IPS Technology (5)

- Possible arrangement of the electrodes
- The electrodes and transistors reduce the transparent area
- A brighter backlight is needed

Principle of IPS Technology (6)

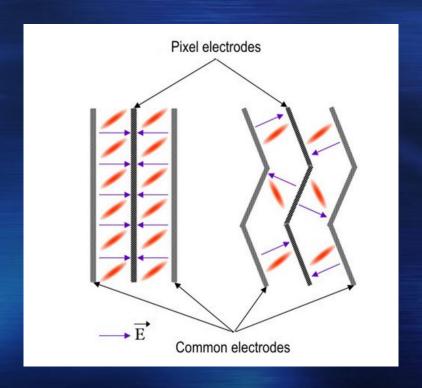
Advantages:

- Very wide viewing angles, both horizontally and vertically
- High quality color reproduction
- The image is not affected when the screen is touched
- If a TFT transistor is defective, the sub-pixel remains black

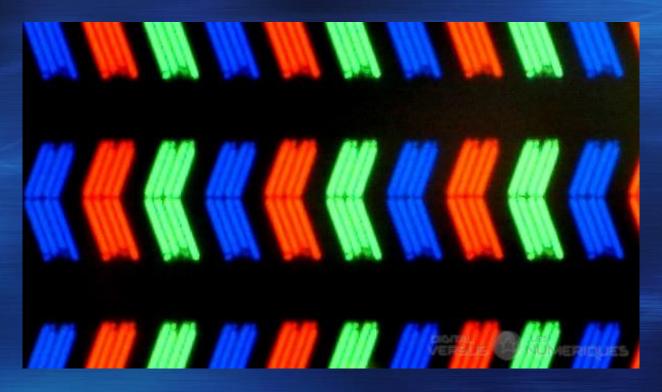
Principle of IPS Technology (7)

- Disadvantages:
 - Initially, the response time was slow (e.g., 60 ms) → later reduced to ~16 ms (without RTC)
 - The price of early IPS displays was high
 - The brightness is reduced → more intense backlight is required
 - The contrast ratio is low → light leakage around the electrodes

In-Plane Switching Technology


- In-Plane Switching (IPS) Technology
 - Principle of IPS Technology
 - Super IPS Technology
 - Horizontal IPS Technology
 - Advanced High-Performance IPS Technology

Super IPS Technology (1)

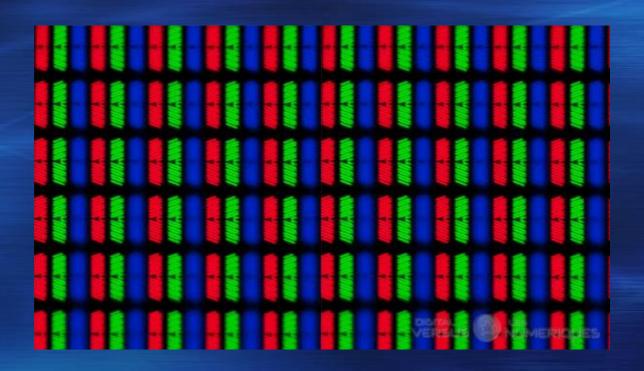

- S-IPS (Super IPS)
- Improvement of the IPS technology
- Response time is reduced by using RTC techniques
- Production costs are reduced
- Sub-pixels are divided into several domains
- Contrast ratio is improved
 - Digital Fine Contrast: complex technique to increase the dynamic contrast ratio (LG Display)

Super IPS Technology (2)

- Brightness and contrast ratio are increased
 - Different arrangement of the electrodes

Super IPS Technology (3)

Sub-pixel layout of an S-IPS display panel (© AVForums.com)


In-Plane Switching Technology

- In-Plane Switching (IPS) Technology
 - Principle of IPS Technology
 - Super IPS Technology
 - Horizontal IPS Technology
 - Advanced High-Performance IPS Technology

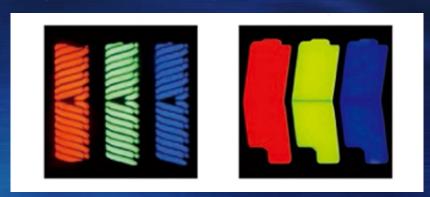
Horizontal IPS Technology (1)

- H-IPS (Horizontal IPS)
- Developed by LG Display
- New electrode layout
 - The width of common electrodes is reduced.
 - The pixel electrodes are running horizontally
- Sub-pixels are aligned vertically
- Brightness and contrast ratio are increased
- Other variants: UH-IPS, S-IPS II

Horizontal IPS Technology (2)

Sub-pixel layout of an H-IPS display panel (© DigitalVersus)

In-Plane Switching Technology


- In-Plane Switching (IPS) Technology
 - Principle of IPS Technology
 - Super IPS Technology
 - Horizontal IPS Technology
 - Advanced High-Performance IPS Technology

Advanced High-Performance IPS Technology (1)

- AH-IPS (Advanced High-Performance IPS)
- Developed by LG Display
- AH-IPS displays offer increased resolution and pixel density
 - Example: Retina Display (Apple)
- Response time: ~5 ms
 - Not as fast as that of modern TN displays
- Static contrast ratio: up to 1100:1
 - Lower than that of advanced MVA displays

Advanced High-Performance IPS Technology (2)

- Viewing angle: wider than that offered by TN and VA/MVA displays
- Color accuracy is improved
- AH-IPS displays with Ultra HD (3840 x 2160), 4K (4096 x 2160), and 5K (5120 x 2880) resolution

Sub-pixels in an IPS display (left) and AH-IPS display (right)
(© TFT Central)

5. Computer Displays

- Liquid Crystal Displays
- Organic LED Displays
- Electronic Paper Displays
- Quantum Dot Displays

Organic LED Displays

- Organic LED Displays
 - Types of Organic LEDs
 - Structure and Operation
 - Passive-Matrix Displays
 - Active-Matrix Displays
 - Color Generation Techniques
 - Transparent and Flexible Displays
 - Sub-Pixel Layouts
 - Advantages and Disadvantages

Types of Organic LEDs (1)

- OLED Organic Light Emitting Diode
 - Composed of layers of organic materials
 - Based on electroluminescence
 - In the 1970s, OLEDs based on conductive polymers were developed
 - The first practical OLED was developed at Eastman Kodak (1987)
 - In 1990, a material based on polyphenylene vinylene was developed → layer of 100 nm

Types of Organic LEDs (2)

- Depending on the size of molecules, there are two types of OLEDs:
 - With small molecules: SM-OLED (Small-Molecule OLED)
 - With polymers: P-OLED (Polymer OLED), LEP (Light Emitting Polymer)
- Both types generate light by forming electrons and holes, and then by their recombination

Types of Organic LEDs (3)

- Small-Molecule OLEDs (SM-OLED)
 - Used for most of OLED displays
 - An evaporation process under vacuum is used
 - Advantages: homogeneous films and complex multi-layer structures can be formed
 - Disadvantage: expensive process
 - Materials: fluorescent dyes
 - Absorb light and re-emit it at different wavelengths
 - Research to develop soluble SM-OLED materials
 - Enable to use inexpensive technologies

Types of Organic LEDs (4)

- Polymer OLEDs (P-OLED)
 - Require lower voltages
 - Can be processed from solutions
 - Technologies: inkjet printing; spin-coating
 - Advantage: lower cost than evaporation in vacuum
 - Materials: polyphenylene vinylene (PPV), polyfluorene (PF)

Printable P-OLED materials (Image credit Sumitomo Chemical)

Types of Organic LEDs (5)

- Based on the type of emission, there are fluorescent and phosphorescent OLEDs
- Fluorescent OLEDs
 - Fluorescence: emission of visible light by a material due to absorption of energy
 - The energy is re-emitted when the electrons return to the original energy level
 - The return occurs almost immediately (10-8 s)
 - Stops as soon as the energy source is removed

Types of Organic LEDs (6)

- Phosphorescent OLEDs
 - Phosphorescence: emission of light by a material exposed to a form of radiation
 - The emission persists after the radiation has been removed
- Concepts related to particle physics
 - Spin
 - Angular momentum carried by elementary and composite particles
 - Measured in multiples of a unit called Dirac (ħ)
 → usually, the unit ħ is omitted

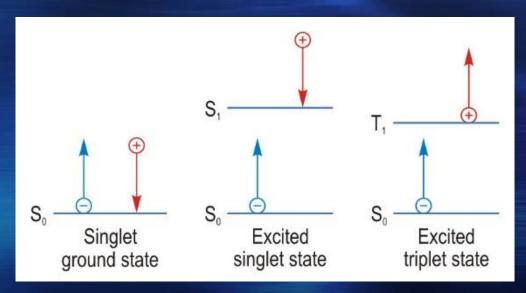
Types of Organic LEDs (7)

- Vector quantity: it has direction and magnitude
- Spin direction: direction the spin vector is pointing to
- Spin magnitude: specified by the spin quantum number (s)
- For fermions, particles that make all known matter: s is 1/2, 3/2
- Spin-½ particles: one of two orientations in a magnetic field, with the spin pointing in the +z or -z direction
- When two fermions reside on a single orbital, they must have different quantum states (the Pauli exclusion principle) \rightarrow s = 0

Types of Organic LEDs (8)

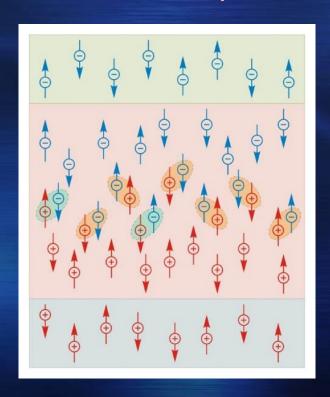
Singlet state

- Obtained when two spin-½ particles are combined
- If the particles have opposite spins, the total spin is $s = 0 \rightarrow$ only one quantum state


Triplet state

- Set of three quantum states of an elementary particle or combination of particles
- Each state has a total spin of s = 1
- Combination of two spin-½ particles: the spin directions are the same

Types of Organic LEDs (9)

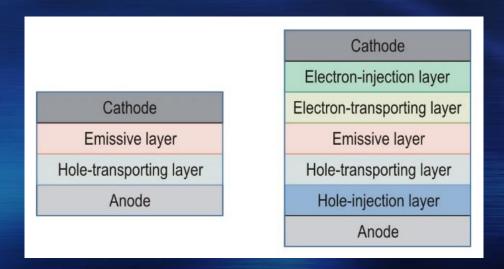

Excitons

- Formed when electrons and electron holes in a semiconductor absorb energy

Types of Organic LEDs (10)

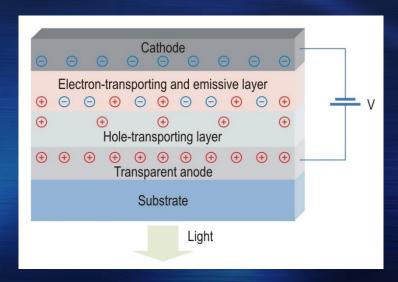
- Formation of a triplet state is more probable
- Triplet state: set of three quantum states → 75% of the excitons are in triplet state

Types of Organic LEDs (11)


- Fluorescent OLEDs:
 - Only singlet states contribute to light emission
 - Efficiency is limited to 25%
- Phosphorescent OLEDs:
 - Introduction of heavy-metal atoms into the emitting layer facilitates transition from the triplet to the singlet state → light emission
 - The singlet state also contributes to light emission
 - Efficiency approaches 100%

Organic LED Displays

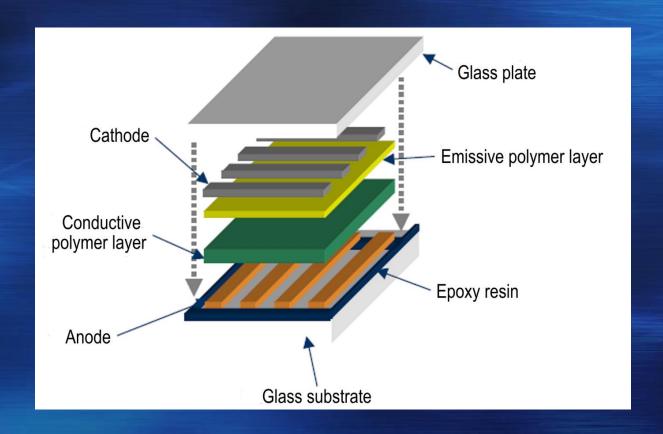
- Organic LED Displays
 - Types of Organic LEDs
 - Structure and Operation
 - Passive-Matrix Displays
 - Active-Matrix Displays
 - Color Generation Techniques
 - Transparent and Flexible Displays
 - Sub-Pixel Layouts
 - Advantages and Disadvantages


Structure and Operation (1)

- SM-OLED devices
 - First OLED devices: used a single organic layer inserted between an anode and a cathode
 - OLED devices developed at Kodak: two layers
 - Current OLED devices: multiple layers

Structure and Operation (2)

- P-OLED devices
 - Use simpler structures
 - May contain only two polymer layers
 - Cathode: metallic mirror (e.g., LiF)
 - Anode: transparent (ITO)


Structure and Operation (3)

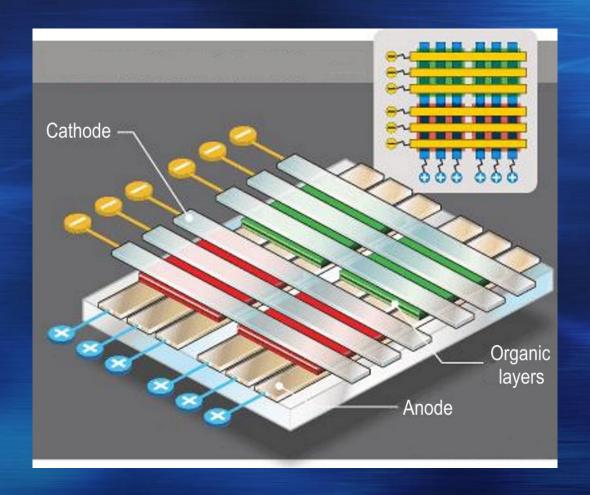
- If a voltage is applied between electrodes:
 - A current of electrons flows through the organic layers (cathode → anode)
 - Electrons and holes are attracted towards each other by electrostatic forces
 - An electron and a hole may recombine → exciton in a singlet state or triplet state
 - Depending on the type of emissive material, decay of the singlet state or triplet state releases the extra energy as a photon

Structure and Operation (4)

- Top-emitting OLED displays
 - Transparent non-metallic cathode (top)
 - Reflective anode (bottom)
 - Advantage: easy integration of transistors for active-matrix displays
- Bottom-emitting OLED displays
 - Reflective metallic cathode (top)
 - Transparent anode (bottom)
 - Luminosity is limited by the transparency of the anode and driver circuitry (active-matrix)

Structure and Operation (5)

Structure of a bottom-emitting OLED display


Organic LED Displays

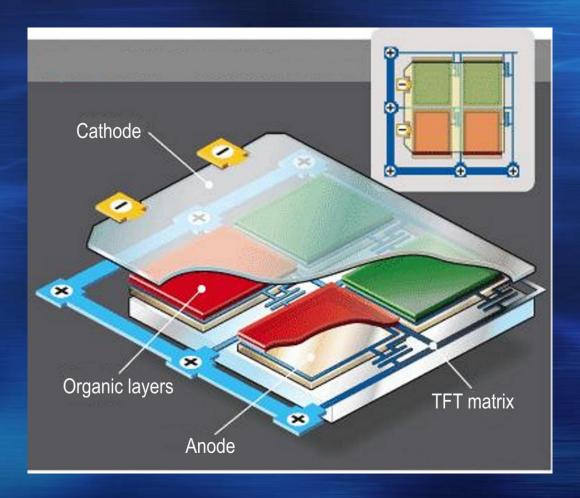
- Organic LED Displays
 - Types of Organic LEDs
 - Structure and Operation
 - Passive-Matrix Displays
 - Active-Matrix Displays
 - Color Generation Techniques
 - Transparent and Flexible Displays
 - Sub-Pixel Layouts
 - Advantages and Disadvantages

Passive-Matrix Displays (1)

- PMOLED (Passive-Matrix OLED)
- Drivers attached to each electrode
 - The pixel rows are selected successively
 - A certain voltage is applied to the columns of selected row → an electric current
- Advantage: manufacturing costs are low
- Disadvantages: relatively intensive currents are required → high power consumption; only suitable for small screens

Passive-Matrix Displays (2)

Original image © HowStuffWorks, Inc.

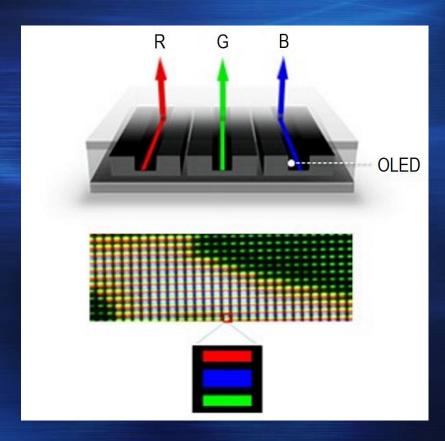

Organic LED Displays

- Organic LED Displays
 - Types of Organic LEDs
 - Structure and Operation
 - Passive-Matrix Displays
 - Active-Matrix Displays
 - Color Generation Techniques
 - Transparent and Flexible Displays
 - Sub-Pixel Layouts
 - Advantages and Disadvantages

Active-Matrix Displays (1)

- AMOLED (Active-Matrix OLED)
- Array of thin film transistors (TFTs)
- At least two transistors and a storage capacitor are needed for each sub-pixel
 - First TFT: charges the storage capacitor
 - Second TFT: provides a correct voltage
- Advantages: higher refresh rates; higher luminosity; reduced power consumption; displays are not limited in size

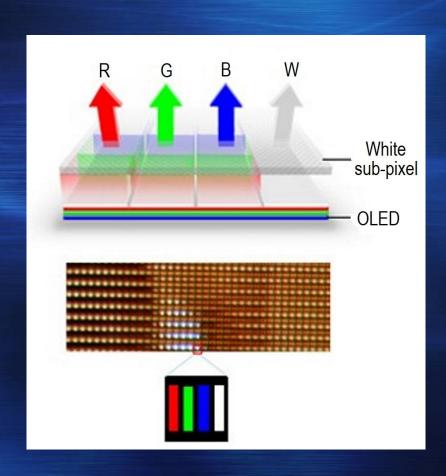
Active-Matrix Displays (2)


Original image © HowStuffWorks, Inc.

Organic LED Displays

- Organic LED Displays
 - Types of Organic LEDs
 - Structure and Operation
 - Passive-Matrix Displays
 - Active-Matrix Displays
 - Color Generation Techniques
 - Transparent and Flexible Displays
 - Sub-Pixel Layouts
 - Advantages and Disadvantages

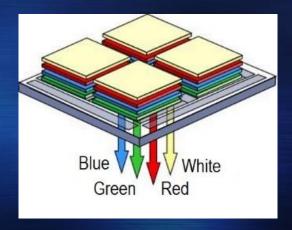
Color Generation Techniques (1)


- Direct-emission OLED (RGB OLED)
 - Uses R, G, and B subpixels → patterning of organic materials
 - High luminous efficiency
 - More complex manufacturing process
 - Color balance may change in time

Original image © LG Display

Color Generation Techniques (2)

- White-emitting OLED (WOLED)
 - The emitter layers are deposited uniformly → white light
 - Two layers: blue and yellow
 - Color filters patterned into sub-pixels (R, G, B) are applied
 - A fourth white sub-pixel
 (W) is added →
 increases the efficiency

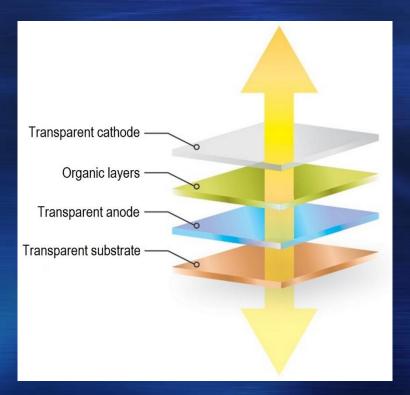

Original image © LG Display

Color Generation Techniques (3)

- Color filter deposition: photolithographic methods, also used for LCDs
- Advantages:
 - Simpler and scalable manufacturing process
 - Lower production costs
 - No color balance problems occur
- Disadvantages:
 - Lower efficiency due to the color filters
 - Additional cost of the color filters and the more complex addressing (four sub-pixels)

Color Generation Techniques (4)

- Stacked OLEDs (SOLED Stacked OLED)
 - Each pixel contains R, G, and B emitters
 - The emitters are stacked vertically, separated by transparent intermediate electrodes
 - Advantage: potential increase of resolution
 - A white-emitting OLED can be added



Organic LED Displays

- Organic LED Displays
 - Types of Organic LEDs
 - Structure and Operation
 - Passive-Matrix Displays
 - Active-Matrix Displays
 - Color Generation Techniques
 - Transparent and Flexible Displays
 - Sub-Pixel Layouts
 - Advantages and Disadvantages

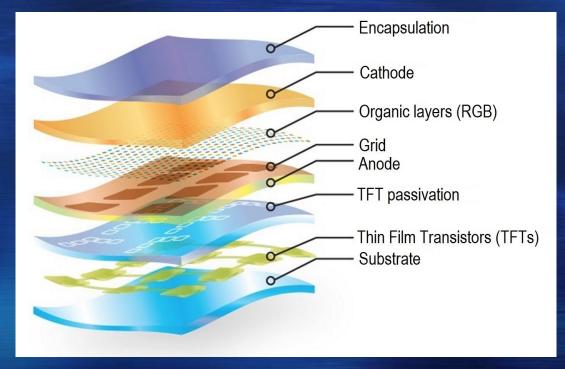
Transparent and Flexible Displays (1)

- TOLED (Transparent OLED)
 - Both the anode and cathode are transparent

Original image © Universal Display Corporation

Transparent and Flexible Displays (2)

- OFF pixels: transparency may reach 85%
- Active-matrix addressing: transparency is slightly reduced
- Example of material: PEDOT:PSS
 - Polymer based on polythiophene and sulfonated polystyrene
 - Conductive material with high efficiency
 - Transparent and easy to process
 - Can be used as hole transport layer and replacement for ITO electrodes


Transparent and Flexible Displays (3)

© Samsung Display

Transparent and Flexible Displays (4)

- FOLED (Flexible OLED)
 - Substrate of plastic or metal foil

Original image © Universal Display Corporation

Transparent and Flexible Displays (5)

- Curved displays: bent by the manufacturer
- Foldable displays: have small curvature radius
 - Examples: Pixel 9 Pro Fold, Galaxy Z Fold 6

© Samsung Electronics

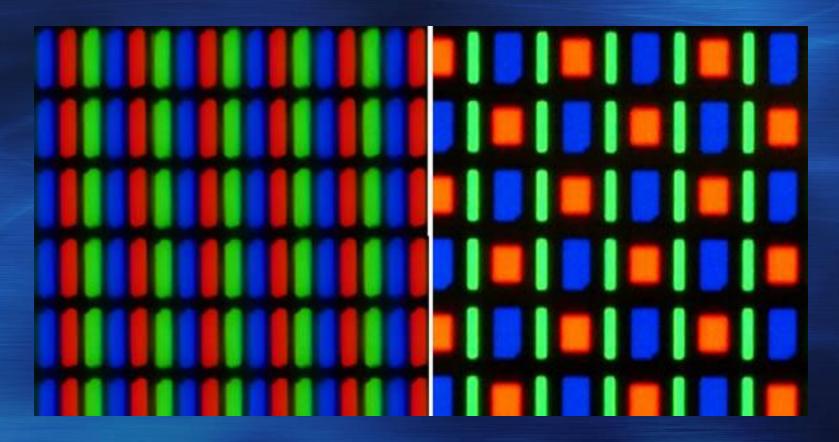
Transparent and Flexible Displays (6)

- Rollable displays
 - TV sets that roll up into a cylinder
 - Tablet-sized devices that roll up into a pen
 - Example: LG Signature OLED TV R (LG Display)

© LG Display

Organic LED Displays

- Organic LED Displays
 - Types of Organic LEDs
 - Structure and Operation
 - Passive-Matrix Displays
 - Active-Matrix Displays
 - Color Generation Techniques
 - Transparent and Flexible Displays
 - Sub-Pixel Layouts
 - Advantages and Disadvantages


Sub-Pixel Layouts (1)

- Conventional layout: RGB
- RG-B-RG PenTile Layout
 - Inspired by peculiarity of the human retina
 → fewer sensors for perceiving blue colors
 - Uses proprietary algorithms for sub-pixel rendering

Sub-Pixel Layouts (2)

- RG-BG PenTile Layout
 - G sub-pixels, alternating R and B sub-pixels
 - The input image is mapped to sub-pixels →
 1:1 mapping only for G sub-pixels
 - Only two sub-pixels are used for a pixel → the sub-pixel density can be reduced
 - Resolution of the luminance information is not affected significantly
 - Disadvantage: the pixel structure may be more visible

Sub-Pixel Layouts (3)

RGB layout (left) and RG-BG PenTile layout (right)
(Image credit Stuff-Review)

Sub-Pixel Layouts (4)

Diamond Pixel Layout

- Developed by Samsung Electronics
- The number of G subpixels is double than that of R and B subpixels
- Oval shape for G subpixels
- Diamond shape for R and B sub-pixels

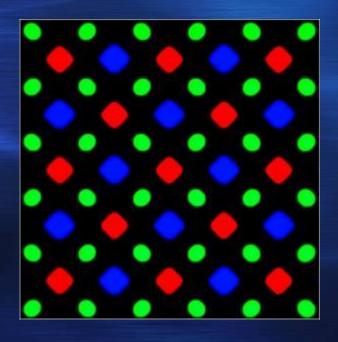


Image credit DisplayMate Technologies Corporation

Sub-Pixel Layouts (5)

- Modified Diamond Pixel layout
 - First used with the Galaxy S5 series
 - All sub-pixels are diamond-shaped
 - B sub-pixels have the same size as the R subpixels → improved efficiency of B emitter
 - Densities of over 400 or 500 pixels/inch (PPI)

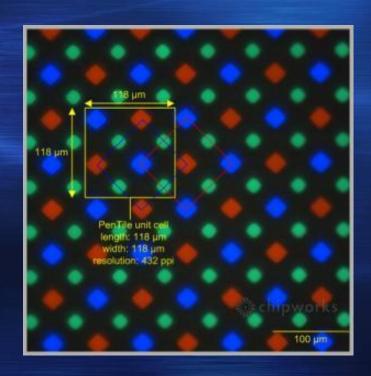


Image credit DisplayMate Technologies Corporation

Organic LED Displays

- Organic LED Displays
 - Types of Organic LEDs
 - Structure and Operation
 - Passive-Matrix Displays
 - Active-Matrix Displays
 - Color Generation Techniques
 - Transparent and Flexible Displays
 - Sub-Pixel Layouts
 - Advantages and Disadvantages

Advantages and Disadvantages (1)

Advantages

- High contrast ratio (>1,000,000:1), both static and dynamic
- Wide viewing angles -> no color shifting
- Wide color gamut
- Fast response time (0.01 ms .. 1 ms)
- On average, power consumption is lower compared to LCDs (40% .. 80%)
- The plastic substrate is lightweight
- Flexible and transparent displays can be built

Advantages and Disadvantages (2)

- Disadvantages
 - Currently, the cost of the manufacturing process is relatively high
 - The lifetime of some organic materials (blue OLEDs) is limited (e.g., between 20,000 and 50,000 hours)
 - Color balance may change in time
 - Biasing the color balance towards blue
 - Optimizing the size of R, G, and B sub-pixels
 Iarger blue sub-pixels

Advantages and Disadvantages (3)

- Image persistence may occur
- The display may be damaged by prolonged exposure to ultraviolet rays
- The organic materials can be damaged by water
- Readability in outdoor conditions may be limited
 - Circular polarizer; anti-reflective coating
- Power consumption is increased when displaying images on white background

Summary (1)

- Displays with IPS technology have both electrodes mounted on the same substrate
 - All molecules have the same orientation
 - Two transistors are required for each sub-pixel
 - Viewing angles are the widest
- The S-IPS technology uses a different arrangement of the electrodes (V-shaped)
- With the H-IPS technology, the pixel electrodes are running horizontally
- The AH-IPS technology enables to increase the pixel density

Summary (2)

- Types of OLEDs based on the size of molecules: SM-OLED and P-OLED
 - SM-OLED: manufacturing process based on evaporation under vacuum
 - P-OLED: can be processed from solutions
- Based on the type of emission: fluorescent and phosphorescent OLEDs
- Their operation is based on forming electrons and holes, and then recombining them
 - Decay of the singlet and/or triplet state releases photons

Summary (3)

- Active-matrix OLED displays require two transistors and a capacitor for each pixel
- Color generation techniques: direct-emission (RGB OLED); white-emitting OLED (WOLED); stacked OLEDs (SOLED)
- Advantages: high contrast; wide viewing angles; fast response time
- Disadvantages: limited lifetime of some OLED materials; color balance may change in time

Concepts, Knowledge (1)

- Principle of IPS technology
- Advantages, disadvantages of IPS technology
- IPS technological variants: S-IPS, H-IPS, AH-IPS
- Small-molecule OLEDs and polymer OLEDs
- Fluorescent OLEDs and phosphorescent OLEDs
- Structure and operation of an OLED cell
- Structure of a bottom-emitting OLED display
- Passive-matrix OLED displays
- Active-matrix OLED displays

Concepts, Knowledge (2)

- Direct-emission OLEDs
- White-emitting OLEDs
- Stacked OLEDs
- Transparent OLED displays
- Flexible OLED displays
- Sub-pixel layouts
- Advantages of OLED displays
- Disadvantages of OLED displays