Input/Output Systems and Peripheral Devices

Prof. Zoltan Francisc Baruch
Computer Science Department
Technical University of Cluj-Napoca

IOSPD Discipline Information (1)

General objective

* Knowledge of operation and performance parameters for I/O interfaces and peripheral devices

Theoretical objectives

- Knowledge of the methods for performing I/O transfers
- Knowledge of various I/O buses
- Knowledge of the operating principle for various types of displays

IOSPD Discipline Information (2)

- Knowledge of graphics adapters and digital interfaces for displays
- Knowledge of the recording principle on optical discs and of various types of discs
- Practical objectives
 - Implementing in software protocols for communication with I/O controllers of peripheral devices
 - Implementing applications for controlling I/O interfaces

1OSPD Discipline Information (3)

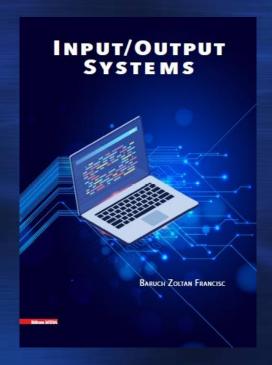
- Grading
 - 10% Quizzes at the lectures
 - ³ 40% Laboratory → evaluation during the semester, laboratory colloquy
 - 50% Exam
 - Minimum grade for each activity: 5
- Web pages
 - <u>http://users.utcluj.ro/~baruch/en/</u>

 Teaching → Input/Output Systems
- Teams: General channel, Files → Class Materials → Lecture

IOSPD Discipline Information (4)

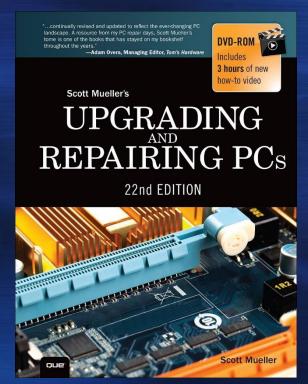
Lecture

- Quizzes for testing attention -> Teams app
- The average grade of lecture quizzes is used for computing the final grade


Exam

- Conditions to be accepted:
 - Minimum average grade of 5 for the quizzes
 - Passing grade for the laboratory
- Schematics and diagrams must be explained

IOSPD Discipline Information (5)


- Laboratory
 - Assessment:
 - Quizzes with theoretical questions (20%)
 - Colloquy: written test during the semester (20%), written test at the end of semester (60%)
 - Laboratory colloquy in the summer recovery session for students who did not pass
 - Recovery: maximum four labs
 - Maximum two labs during the semester
 - Maximum two labs at the end of semester

Bibliography (1)

Baruch, Z. F., Input/Output Systems, MEGA, Cluj-Napoca, 2020, ISBN 978-606-020-242-4

Bibliography (2)

Mueller, Scott, Upgrading and Repairing PCs, 22nd Edition, Que Publishing, 2015, ISBN 0-13-405774-0

Contents of the Lecture

- 1. Introduction
- 2. Methods for I/O Operations
- 3. Computer Buses
- 4. Expansion Modules for Embedded Systems
- 5. Computer Displays
- 6. Graphics Adapters
- 7. Optical Discs

1. Introduction

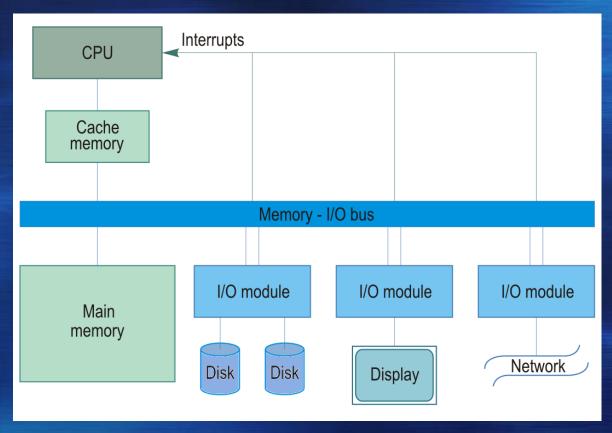
- I/O Systems
- Structure of an I/O System
- I/O Modules

I/O Systems (1)

- I/O System (IOS): performs the transfer of information between the main memory and the external environment of the computer system
 - External information media
 - Other computer systems
- The computer system's performance depends on the relationship between:
 - Processor and memory
 - Processor and I/O devices

I/O Systems (2)

- The access time and transfer rate of I/O devices affect the overall performance of the system
- CPU execution time does not include the time waiting for I/O operations or running other tasks
 - Ignores I/O operations
- A more appropriate performance metric: response time


I/O Systems (3)

- Ignoring the IOS reduces the system's global performance
- Example:
 - Assume a difference of 10% between the CPU execution time and response time
 - The CPU speed increases by a factor of 10, neglecting the I/O system
 - Amdahl's Law: a speedup of only 5 times is achieved

1. Introduction

- I/O Systems
- Structure of an I/O System
- I/O Modules

Structure of an I/O System (1)

Structure of a computer system and a typical I/O system

Structure of an I/O System (2)

- Peripheral devices are not connected directly to the system bus for the following reasons:
 - There are many types of peripherals, with various methods of operation
 - The data transfer rate of peripherals can be much lower than that of memory and CPU
 - Peripherals use different data formats and word lengths than the CPU

1. Introduction

- I/O Systems
- Structure of an I/O System

I/O Modules (1)

- An I/O module (I/O controller) performs the following:
 - Controls the external devices
 - Transfers data between those devices and main memory and/or CPU registers
- An internal interface: to the CPU and main memory
- An external interface: to the peripheral device

I/O Modules (2)

- Functions and main requirements for an I/O module:
 - Control and timing
 - Communication with the CPU
 - Communication with the external devices
 - Data buffering
 - Error detection

I/O Modules (3)

- Control and timing
 - During any period of time, the CPU may communicate with one or more external devices
 - Internal resources must be shared among several activities
 - Function to coordinate the flow of data between internal resources and external devices

I/O Modules (4)

- Communication with the CPU includes:
 - Command decoding
 - \circ Commands \rightarrow signals on the control bus
 - $^{\circ}$ Parameters \rightarrow on the data bus
 - Data transfer between the CPU and the I/O module over the data bus
 - Status reporting
 - An I/O module may be busy with the execution of the previous command → BUSY signal
 - Address recognition for each peripheral

I/O Modules (5)

- Communication with the external devices
 - Performed using control, status, and data signals
- Data buffering
 - For most peripheral devices, the transfer rate is low compared to that between main memory and CPU
 - Data transferred from main memory are buffered by the I/O module and sent to the peripheral device at its data rate

I/O Modules (6)

- Error detection
 - Errors should be reported to the CPU
 - Mechanical and electrical malfunctions
 - Accidental changes of the data transmitted between the device and I/O module
 - Error-detecting and error-correcting codes
 - Parity bit
 - CRC (Cyclic Redundancy Check)
 - ECC (Error Correcting Code)

Summary

- For users, response time is a more appropriate performance metric than CPU execution time
- The performance of IOS significantly affects the global performance of the computer system
- Peripheral devices are connected to the system bus via I/O modules

Concepts, Knowledge

- Input/output system
- CPU execution time
- Response time
- I/O module (I/O controller)
- Functions of an I/O module
- CRC, ECC codes