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 Historical Considerations 

 Computer arithmetic has the constraint of limited precision. This limit may determine over-

flows or underflows, which may result in exceptions or interrupts. Floating-point arithmetic is an ap-

proximation of real numbers, and care needs to be taken to ensure that the computer number selected 

is the representation closest to the actual number. 

 Over the years there were several disputes and problems related to computer arithmetic. Some 

of the most known problems are described next. 

 The Pentium FDIV Bug 

 The first incident related to the Pentium processors occurred in the fall of 1994, a few months 

after Intel had introduced its Pentium microprocessor. This started with an e-mail message from 

Thomas Nicely, a mathematician at Lynchburg College in Virginia, who was doing computations re-

lated to the distribution of prime numbers. Nicely pointed out that the chip gave incorrect answers to 

certain floating-point division calculations. Other users confirmed the problem and identified addition-

al examples in which an error occurs. 

 Typically, the flawed chip generated a slightly inaccurate answer for only a few pairs of num-

bers. Intel claimed that only one in nine billion division operations would exhibit reduced precision, 

and for an average user, the error only occurs once in 27,000 years. Therefore, the probability of ran-

domly coming across the affected numbers was very small. But computations don't necessarily involve 

random selections of numbers, and such errors can matter in scientific and engineering applications 

and even in some spreadsheet calculations. IBM Research Division sustained that spreadsheet pro-

grams can produce errors once at each 24 days. 

 The fault itself had occurred because of the omission of five entries in a table of 1,066 values 

required by the radix-4 SRT division algorithm used by the Pentium processor. The advantage of this 

algorithm is that in each step 2 bits of the quotient are obtained, speeding up the rate at which division 

can be performed. The five cells should have contained the constant +2, but the processor fetched a 

zero. 

 Intel corrected the problem and replaced the flawed chips, but the cost of this error was about 

300 million dollars. 

 The Pentium II Math Bug 

 Just two days before the announcement of the Pentium II processor, Intel was hit by reports of 

a math bug in its Pentium Pro and the soon to be announced Pentium II processors. The bug was 

known as the Dan-0411 bug by the news media. “Dan” is the discoverer of the bug, and 04-11 (1997) 

is the date when the bug was first reported. Intel named this bug the Flag Erratum. 

 The bug relates to operations that convert floating-point numbers into integer numbers. All 

floating-point numbers are stored inside of the microprocessor in an 80-bit format. When a number is 

loaded into the microprocessor, it is converted to an 80-bit format. Integer numbers are stored exter-

nally in two different sizes. A short integer is stored in 16 bits, and a long integer is stored in 32 bits. It 

is often desirable to store the floating-point numbers as integer numbers. On occasion, the converted 

numbers won't fit into the smaller integer format. This is when the bug occurs. 

 The host software is supposed to be warned by the microprocessor when such a floating-point 

conversion error occurs; a specific error flag is supposed to be set in a floating-point status register. If 

the microprocessor fails to set this flag, it does not comply with the IEEE Floating Point Standard. For 

the Dan-0411 bug, the Pentium II and Pentium Pro fail to set this error flag in many cases. 
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 The case of the Ariane rocket is a sensational example of the drastic consequences of an un-

handled float-to-integer overflow. Pentium Pro and Pentium II users, on the other hand, are most like-

ly to see the results of this bug in their graphics displays or in heavy-duty numerical analysis 

programs. Intel says ordinary users might see a temporary screen glitch on some games when this bug 

occurs.  

 The Dan-0411 bug occurs when a large negative floating-point number is stored to memory in 

an integer format. Under normal operation, the largest negative integer (MAXNEG) is stored in memory 

when a floating-point number is too large to fit in the integer format. The FPU Status Word (FSW) is 

supposed to indicate that an Invalid Operand Exception occurred (FSW.IE = 1). Instead of setting this 

bit, the Pentium Pro only sets the Precision Exception (FSW.PE) bit. The precision-exception flag in-

dicates that a computation can’t be precisely represented by the floating-point operation – in this case, 

the float-to-integer store operation. In most cases, this bit is ignored by programmers. Therefore, when 

the conditions are met for the Dan-0411 bug to occur, programmers may never know that an error oc-

curred. 

 The Dan-0411 bug can occur when exceptions are either masked or unmasked. In the case of 

masked exceptions, the correct value is stored to memory; only the FSW is incorrectly set. For un-

masked exceptions, the errant behavior is more serious: 

 No exception occurs. The floating-point exception handler is not invoked. Therefore, the er-

rant condition is undetectable. 

 MAXNEG is returned to memory. Storing MAXNEG to memory is an errant condition. When ex-

ceptions are unmasked, nothing is supposed to he stored to memory. This means the micro-

processor is erroneously storing data to memory when no data is expected. 

 In the case of the FISTP instruction, the floating-point value is popped from the floating-point 

stack. When exceptions are unmasked, the floating-point stack is supposed to remain un-

changed to allow for error recovery. In this case, the value is popped from the stack and gone 

forever. Even if the errant condition was detectable, it would be unrecoverable after the 

FISTP instruction. 

 The Failure of the Ariane 5 Rocket 

 The French rocket Ariane 5 was launched in Kourou, French Guyana, on 4
th
 of June 1996. The 

flight of the vehicle was nominal until approximately 37 seconds after lift-off. Shortly after that time, 

the vehicle suddenly deviated its flight path, broke up, and exploded. A preliminary investigation of 

flight data showed: 

 Nominal behavior of the launcher up to 36 seconds after lift-off; 

 Failure of the back-up inertial reference system, followed immediately by failure of the active 

inertial reference system; 

 Pivoting into the extreme position of the nozzles of the two solid boosters and, slightly later, 

of the Vulcain engine, causing the launcher to deviate abruptly; and 

 Self-destruction of the launcher, correctly triggered by rupture of the links between the solid 

boosters and the core stage. 

 The origin of the failure was thus rapidly narrowed down to the flight control system, and 

more particularly to the two inertial reference systems (SRIs), which ceased to function almost simul-

taneously at about 36.7 seconds.  

 The flight control system of Ariane 5 is a standard design. The attitude of the launcher and its 

movements in space are measured by an SRI. It has its own internal computer, in which angles and 

velocities are calculated on the basis of information from an inertial platform, with laser gyros and 

accelerometers. The data from the SRI are transmitted through the data bus to the on-board computer 
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(OBC), which executes the flight program and controls the nozzles of the solid boosters and the 

Vulcain engine, via servovalves and hydraulic actuators. 

 For improved reliability, there is considerable redundancy at the equipment level. Two SRIs 

operate in parallel, with identical hardware and software. One SRI is active, and one is in “hot” stand-

by; if the OBC detects that the active SRI has failed, it immediately switches to the other one, provid-

ed that this unit is functioning properly. Likewise, there are two OBCs, and a number of other units in 

the flight control system are duplicated as well. 

 The design of the SRI used in Ariane 5 is almost identical to that of Ariane 4, particularly with 

regard to the software. Based on the extensive documentation, the following chain of events was es-

tablished, starting with the destruction of the launcher and tracing back in time toward the primary 

cause: 

 The launcher began to disintegrate at about 39 seconds because of high aerodynamic loads 

resulting from an angle of attack of more than 20 degrees, which led to separation of the boosters from 

the main stage, which in turn triggered the self-destruct system of the launcher. This angle of attack 

was caused by full nozzle deflections of the solid boosters and the main Vulcain engine. The nozzle 

deflections were commanded by the OBC software on the basis of data transmitted by the active SRI 

(SRI 2). Part of the data for that time did not consist of proper flight data, but rather showed a diagnos-

tic bit pattern of the computer of SRI 2, which was interpreted as flight data. SRI 2 did not send cor-

rect attitude data because the unit had declared a failure due to a software exception. The OBC could 

not switch to the back-up SRI (SRI 1) because that unit had already ceased to function for the same 

reason as the SRI 2. 

 The internal SRI software exception was caused during execution of a data conversion from a 

64-bit floating-point number to a 16-bit signed integer value. The value of the floating-point number 

was greater than what could be represented by a 16-bit signed integer. The result was an operand error. 

The data conversion instructions (in Ada code) were not protected from causing operand errors, alt-

hough other conversions of comparable variables in the same place in the code were protected. 

 The operand error occurred because of an unexpected high value of an internal alignment 

function result, called BH (horizontal bias), which is related to the horizontal velocity sensed by the 

platform. This value is calculated as an indicator for alignment precision over time. The value of BH 

was much higher than expected because the early part of the trajectory of Ariane 5 differs from that of 

Ariane 4 and results in considerably higher horizontal velocity values. 

 Not all the conversions were protected because a maximum workload target of 80% had been 

set for the SRI computer. To determine the vulnerability of unprotected code, an analysis was per-

formed on every operation that could generate an exception, including an operand error. In particular, 

the conversion of floating-point values to integers was analyzed; operations involving seven variables 

were at risk of leading to operand errors. This led to protection being added to four of the variables. 

The three remaining variables, including the one denoting horizontal bias, were unprotected because 

further reasoning indicated either that they were physically limited or that there was a large margin of 

safety – reasoning that in the case of the variable BH turned out to be faulty. 

 Although the source of the operand error has been identified, this in itself did not cause the 

mission to fail. The specification of the exception-handling mechanism also contributed to the failure. 

In the event of any kind of exception, according to the system specification, the failure should be indi-

cated on the data bus, the failure context should be stored in an EEPROM memory, and the SRI pro-

cessor should be shut down. 

 It was the decision to cease the processor operation that finally proved fatal. The reason be-

hind this drastic action lies in the custom within the Ariane program of addressing only random hard-

ware failures. From this point of view, exception- or error-handling mechanisms are designed for 

random hardware failures, which can be handled by a backup system. 

 Although the failure resulted from a systematic software design error, mechanisms can be in-

troduced to relieve this type of problem. For example, the computers within the SRIs could have con-
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tinued to provide their best estimates of the required attitude information. There is reason for concern 

that a software exception should be allowed, or even required, to cause a processor to halt while han-

dling mission-critical equipment. Indeed, the loss of a proper software function is hazardous because 

the same software runs in both SRI units. In the case of Ariane 5, this resulted in the switching off of 

two still healthy critical units of equipment. 

 


