
Structure of Computer Systems 74

the divisor, the digit was chosen correctly. Otherwise, another digit is chosen and the
subtraction is repeated. In each step of the operation a digit of the quotient is ob-
tained.
 Binary numbers contain only 0 and 1, so binary division is restricted to these
two choices. The division operation consists of a series of subtractions of the divisor
from the partial remainder, which are only executed if the divisor is smaller than the
partial remainder, when the digit of the quotient is 1; otherwise, the corresponding
digit of the quotient is 0.
 Consider the division of two numbers, 74 (100 10102) by 8 (10002).
 1001010 : 1000 = 1001 Quotient
 -1000
 10 Partial remainders
 101
 1010
 -1000
 10 Remainder

 3.3.1. Restoring Division

 We assume that both the dividend and divisor are positive and hence the
quotient and the remainder are positive or zero.
 Figure 3.20 shows the circuit which implements the division algorithm. In
each step of the algorithm, the divisor is shifted one position to the right, and the
quotient is shifted one position to the left.

Figure 3.20. First version of the divider circuit.

 Figure 3.21 shows the steps of the first version of the division algorithm.
 Initially, the dividend is loaded into the right half of the 2n-bit A register, and
the divisor is loaded into the left half of the 2n-bit B register. The n-bit quotient regis-
ter (Q) is set to 0, and the counter N is set to n+1. In order to determine whether the
divisor is smaller than the partial remainder, the divisor register (B) is subtracted from
the remainder register (A). If the result is negative, the next step is to restore the pre-

Arithmetic-Logic Unit 75

vious value by adding the divisor back to the remainder, generating a 0 in the Q0 posi-
tion of the quotient register. This is the reason why this method is called restoring divi-
sion. If the result is positive, a 1 is generated in the Q0 position of the quotient register.
In the next step, the divisor is shifted to the right, aligning the divisor with the divi-
dend for the next iteration.

Figure 3.21. The first version of the restoring division algorithm.

 Example 3.4

 Using the first version of the restoring division algorithm, divide the 4-bit
numbers X = 13 and Y = 5 (11012 ÷ 01012).

 Answer

 Table 3.6 shows the contents of the registers in each step of the operation,
finally obtaining a quotient of 2 and a remainder of 3.

Structure of Computer Systems 76

Table 3.6. Division example using the first version of the algorithm.

 Shifting the partial remainder to the left instead of shifting the divisor to the
right produces the same alignment and simplifies the hardware necessary for the ALU
and the divisor register. Both the divisor register and the ALU could have the size
reduced to half (n bits instead of 2n bits).
 The second improvement comes from the fact that the first step of the algo-
rithm cannot generate a digit of 1 in the quotient, because, in this case, the quotient
would be too large for its register. By switching the order of the operations to shift
and then to subtract, one iteration of the algorithm can be removed.
 Another observation is that the size of the A register could be reduced to
half, and the A and Q registers could be combined, shifting the bits of the quotient
into the A register instead of shifting in zeros as in the preceding algorithm. The A
and Q registers are shifted left together. Figure 3.22 shows the final version of the
restoring division algorithm.

Step A Q B Operation

0 0000 1101 0000 0101 0000 Initialization

1 1011 1101
0000 1101
0000 1101

0000
0000
0000

0101 0000
0101 0000
0010 1000

A = A - B
A = A + B, Shift left Q, Q0 = 0
Shift right B

2 1101 1000
1110 0101
0000 1101
0000 1101

0000
0000
0000

0010 1000
0010 1000
0001 0100

A = A - B

A = A + B, Shift left Q, Q0 = 0
Shift right B

3 1110 1100
1111 1001
0000 1101
0000 1101

0000
0000
0000

0001 0100
0001 0100
0000 1010

A = A - B

A = A + B, Shift left Q, Q0 = 0
Shift right B

4 1111 0110
0000 0011
0000 0011
0000 0011

0000
0001
0001

0000 1010
0000 1010
0000 0101

A = A - B

Shift left Q, Q0 = 1
Shift right B

5 1111 1011
1111 1110
0000 0011
0000 0011

0001
0010
0010

0000 0101
0000 0101
0000 0010

A = A - B

A = A + B, Shift left Q, Q0 = 0
Shift right B

Arithmetic-Logic Unit 77

Figure 3.22. Final version of the restoring division algorithm.

 The final version of the restoring divider circuit is shown in Figure 3.23.

Figure 3.23. Final version of the restoring divider circuit.

Structure of Computer Systems 78

 Example 3.5

 Using the final version of the algorithm, divide X = 13 by Y = 5.

 Answer

 Table 3.7 shows the contents of the registers in each step of the operation.
The remainder is formed in the A register, and the quotient in the Q register.

Table 3.7. Division example using the final version of the restoring division algorithm.

 3.3.2. Nonrestoring Division

 Restoring the partial remainder increases the execution time of the division
operation, since on average the restoring is executed in 50% of the cases. Each addi-
tion of the divisor to the partial remainder is followed by a subtraction of the divisor
in the next step, after the partial remainder is shifted one position to the left. Shifting
to the left is equivalent to multiplying by 2.
 The sequence of operations performed is as follows:

• The divisor (Y) is subtracted from the partial remainder (R):

R ← R – Y

• If the result is negative, the partial remainder is restored in the same step:

R ← R – Y + Y

Step A Q B Operation

0 0 0000 1101 0101 Initialization

1 0 0001
1 1011
1 1100
0 0101
0 0001

1010

1010

0101

Shift left A_Q
A = A - B

A = A + B, Q0 = 0

2 0 0011
1 1011
1 1110
0 0101
0 0011

0100

0100

0101

Shift left A_Q
A = A - B

A = A + B, Q0 = 0

3 0 0110
1 1011
0 0001

1000

1001

0101

Shift left A_Q
A = A - B
Q0 = 1

4 0 0011
1 1011
1 1110
0 0101
0 0011

0010

0010

0101

Shift left A_Q
A = A - B

A = A + B, Q0 = 0

Arithmetic-Logic Unit 79

• In the next step, the partial remainder is shifted one position left:

R ← 2×R

• The divisor is subtracted from the partial remainder:

R ← 2×R – Y

 The same result can be obtained by another sequence of operations:

• The divisor is subtracted from the partial remainder:

R ← R – Y

• If the result is negative, the partial remainder is not restored, but it is shifted
one position left in the next step:

R ← 2×R – 2×Y

• The divisor is added to the partial remainder:

R ← 2×R – 2×Y + Y

 In conclusion, in each step of the nonrestoring division, after shifting the
registers A_Q one position left, the divisor is subtracted from or added to the partial
remainder, depending on the sign of the partial remainder in the preceding step. If the
partial remainder is positive, in the next step a subtraction is performed, otherwise the
operation performed is an addition. After the last step, if the partial remainder is posi-
tive, the remainder obtained is correct; otherwise, the remainder must be corrected by
restoring it (adding the divisor to the remainder).

 3.3.3. SRT Division

 The name of the SRT division stands for Dura W. Sweeney, James E. Rob-
ertson, and Keith D. Tocher, who independently proposed a fast algorithm for 2’s
complement numbers that use the technique of shifting over zeros for division.
 To divide two n-bit numbers X and Y, the operands are loaded into the Q and
B registers, respectively, and the A register is set to 0. The SRT division algorithm is
as follows:

1. If register B has k leading zeros when expressed using n bits, shift all the reg-
isters k positions left.

2. The following steps are repeated n times:

If the top three bits of the A register are equal, shift the A_Q registers one
position left, and set Q0 = 0.

If the top three bits of the A register are not equal and A is negative, shift
the A_Q registers one position left, set Q0 = –1 (1), and add B to A.

