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the divisor, the digit was chosen correctly. Otherwise, another digit is chosen and the 
subtraction is repeated. In each step of the operation a digit of the quotient is ob-
tained. 
 Binary numbers contain only 0 and 1, so binary division is restricted to these 
two choices. The division operation consists of a series of subtractions of the divisor 
from the partial remainder, which are only executed if the divisor is smaller than the 
partial remainder, when the digit of the quotient is 1; otherwise, the corresponding 
digit of the quotient is 0. 
 Consider the division of two numbers, 74 (100 10102) by 8 (10002). 
 1001010 : 1000 = 1001 Quotient 
      -1000 
    10    Partial remainders 
    101 
    1010 
   -1000 
      10   Remainder 

 3.3.1. Restoring Division 

 We assume that both the dividend and divisor are positive and hence the 
quotient and the remainder are positive or zero. 
 Figure 3.20 shows the circuit which implements the division algorithm. In 
each step of the algorithm, the divisor is shifted one position to the right, and the 
quotient is shifted one position to the left. 

 
Figure 3.20. First version of the divider circuit. 

 Figure 3.21 shows the steps of the first version of the division algorithm. 
 Initially, the dividend is loaded into the right half of the 2n-bit A register, and 
the divisor is loaded into the left half of the 2n-bit B register. The n-bit quotient regis-
ter (Q) is set to 0, and the counter N is set to n+1. In order to determine whether the 
divisor is smaller than the partial remainder, the divisor register (B) is subtracted from 
the remainder register (A). If the result is negative, the next step is to restore the pre-
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vious value by adding the divisor back to the remainder, generating a 0 in the Q0 posi-
tion of the quotient register. This is the reason why this method is called restoring divi-
sion. If the result is positive, a 1 is generated in the Q0 position of the quotient register. 
In the next step, the divisor is shifted to the right, aligning the divisor with the divi-
dend for the next iteration. 

 
Figure 3.21. The first version of the restoring division algorithm. 

 Example 3.4 

 Using the first version of the restoring division algorithm, divide the 4-bit 
numbers X = 13 and Y = 5 (11012 ÷ 01012). 

 Answer 

 Table 3.6 shows the contents of the registers in each step of the operation, 
finally obtaining a quotient of 2 and a remainder of 3. 
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Table 3.6. Division example using the first version of the algorithm. 

 Shifting the partial remainder to the left instead of shifting the divisor to the 
right produces the same alignment and simplifies the hardware necessary for the ALU 
and the divisor register. Both the divisor register and the ALU could have the size 
reduced to half (n bits instead of 2n bits). 
 The second improvement comes from the fact that the first step of the algo-
rithm cannot generate a digit of 1 in the quotient, because, in this case, the quotient 
would be too large for its register. By switching the order of the operations to shift 
and then to subtract, one iteration of the algorithm can be removed. 
 Another observation is that the size of the A register could be reduced to 
half, and the A and Q registers could be combined, shifting the bits of the quotient 
into the A register instead of shifting in zeros as in the preceding algorithm. The A 
and Q registers are shifted left together. Figure 3.22 shows the final version of the 
restoring division algorithm. 

Step A Q B Operation 

0 0000 1101 0000 0101 0000 Initialization 

1 1011 1101 
0000 1101 
0000 1101 

0000 
0000 
0000 

0101 0000 
0101 0000 
0010 1000 

A = A - B 
A = A + B, Shift left Q, Q0 = 0 
Shift right B 

2 1101 1000 
1110 0101 
0000 1101 
0000 1101 

 
0000 
0000 
0000 

 
0010 1000 
0010 1000 
0001 0100 

A = A - B 
 
A = A + B, Shift left Q, Q0 = 0 
Shift right B 

3 1110 1100 
1111 1001 
0000 1101 
0000 1101 

 
0000 
0000 
0000 

 
0001 0100 
0001 0100 
0000 1010 

A = A - B 
 
A = A + B, Shift left Q, Q0 = 0 
Shift right B 

4 1111 0110 
0000 0011 
0000 0011 
0000 0011 

 
0000 
0001 
0001 

 
0000 1010 
0000 1010 
0000 0101 

A = A - B 
 
Shift left Q, Q0 = 1 
Shift right B 

5 1111 1011 
1111 1110 
0000 0011 
0000 0011 

 
0001 
0010 
0010 

 
0000 0101 
0000 0101 
0000 0010 

A = A - B 
 
A = A + B, Shift left Q, Q0 = 0 
Shift right B 
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Figure 3.22. Final version of the restoring division algorithm. 

 The final version of the restoring divider circuit is shown in Figure 3.23. 

 
Figure 3.23. Final version of the restoring divider circuit. 
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 Example 3.5 

 Using the final version of the algorithm, divide X = 13 by Y = 5. 

 Answer 

 Table 3.7 shows the contents of the registers in each step of the operation. 
The remainder is formed in the A register, and the quotient in the Q register. 

Table 3.7. Division example using the final version of the restoring division algorithm. 

 3.3.2. Nonrestoring Division 

 Restoring the partial remainder increases the execution time of the division 
operation, since on average the restoring is executed in 50% of the cases. Each addi-
tion of the divisor to the partial remainder is followed by a subtraction of the divisor 
in the next step, after the partial remainder is shifted one position to the left. Shifting 
to the left is equivalent to multiplying by 2. 
 The sequence of operations performed is as follows: 

• The divisor (Y) is subtracted from the partial remainder (R): 

R ← R – Y 

• If the result is negative, the partial remainder is restored in the same step: 

R ← R – Y + Y 

Step A Q B Operation 

0 0 0000 1101 0101 Initialization 

1 0 0001 
1 1011 
1 1100 
0 0101 
0 0001 

1010 
 
 
 

1010 

 
 
 
 

0101 

Shift left A_Q 
A = A - B 
 
A = A + B, Q0 = 0 
 

2 0 0011 
1 1011 
1 1110 
0 0101 
0 0011 

0100 
 
 
 

0100 

 
 
 
 

0101 

Shift left A_Q 
A = A - B 
 
A = A + B, Q0 = 0 
 

3 0 0110 
1 1011 
0 0001 

1000 
 

1001 

 
 

0101 

Shift left A_Q 
A = A - B 
Q0 = 1 

4 0 0011 
1 1011 
1 1110 
0 0101 
0 0011  

0010 
 
 
 

0010 

 
 
 
 

0101 

Shift left A_Q 
A = A - B 
 
A = A + B, Q0 = 0 
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• In the next step, the partial remainder is shifted one position left: 

R ← 2×R 

• The divisor is subtracted from the partial remainder: 

R ← 2×R – Y 

 The same result can be obtained by another sequence of operations: 

• The divisor is subtracted from the partial remainder: 

R ← R – Y 

• If the result is negative, the partial remainder is not restored, but it is shifted 
one position left in the next step: 

R ← 2×R – 2×Y 

• The divisor is added to the partial remainder: 

R ← 2×R – 2×Y + Y 

 In conclusion, in each step of the nonrestoring division, after shifting the 
registers A_Q one position left, the divisor is subtracted from or added to the partial 
remainder, depending on the sign of the partial remainder in the preceding step. If the 
partial remainder is positive, in the next step a subtraction is performed, otherwise the 
operation performed is an addition. After the last step, if the partial remainder is posi-
tive, the remainder obtained is correct; otherwise, the remainder must be corrected by 
restoring it (adding the divisor to the remainder). 

 3.3.3. SRT Division 

 The name of the SRT division stands for Dura W. Sweeney, James E. Rob-
ertson, and Keith D. Tocher, who independently proposed a fast algorithm for 2’s 
complement numbers that use the technique of shifting over zeros for division. 
 To divide two n-bit numbers X and Y, the operands are loaded into the Q and 
B registers, respectively, and the A register is set to 0. The SRT division algorithm is 
as follows: 

1. If register B has k leading zeros when expressed using n bits, shift all the reg-
isters k positions left. 

2. The following steps are repeated n times: 

If the top three bits of the A register are equal, shift the A_Q registers one 
position left, and set Q0 = 0. 

If the top three bits of the A register are not equal and A is negative, shift 
the A_Q registers one position left, set Q0 = –1 (1 ), and add B to A. 


