
Arithmetic-Logic Unit 85

mat can be done with an integer adder, while multiplication requires some extra
shifting. With this representation, although the binary point is not represented physi-
cally, the position of the binary point, established by design, cannot be changed. To
transform all the numbers into this format, a series of scaling and shifting operations
must be performed, attaching scale factors to numbers. These factors must be han-
dled by program, which increases the computing time. Other representations that
have been proposed involve storing the logarithm of a number and performing multi-
plication by adding the logarithms, or using a pair of integers (x, y) to represent the
fraction x/y.

A better solution is to use an automatic scaling technique, known as the
floating-point representation (also referred to as scientific notation). In this case, the
scaling factor becomes part of the computer word, and the position of the binary
point changes automatically for each number.

3.4.1. Floating-Point Representation

3.4.1.1. Principles

In general, a floating-point (FP) number N can be represented in the follow-
ing form:

N = ±M ∗ B±E (3.27)

A floating-point number has two components. The first component is the
mantissa (M), which represents the exact value of the number in a specific range, and is
normally stored as a signed binary fraction. The second component is the exponent (E),
which indicates the number’s order of magnitude. In the above expression, B repre-
sents the base (radix) of the exponent.

This representation can be stored in a binary word with three fields: sign,
mantissa, and exponent. For example, assuming that the word has 32 bits, a possible
assignment of bits to each field could be the following:

31 30 23 22 0
S Exponent Mantissa

This is a sign-magnitude representation, since the sign has a separate bit from
the rest of the number. The sign field consists of one bit and indicates the sign of the
number, 0 for positive and 1 for negative. No field is assigned to the exponent base B.
This is because the base B is the same for all numbers, and often it is assumed to be 2.
Therefore, there is no need to store the base.

Usually, the exponent field does not contain the true exponent, but the charac-
teristic (C), obtained by adding a fixed value, called bias, to the true exponent, so that
the resulting value is always positive:

C = E + bias (3.28)

Structure of Computer Systems86

In this way, there is no need to reserve a separate field for the sign of the ex-
ponent. This representation is known as a biased representation. The true exponent
can be determined by subtracting the bias from the content of the exponent field. In
the previous example, the exponent field consists of 8 bits, which can represent num-
bers 0 to 255. Assuming the bias value to be 128 (80h), the true exponents are in the
range from –128 to +127, being negative if C < 128, positive if C > 128, and zero if
C = 128. Thus, the exponent is represented in excess 128.

One of the advantages of the biased representation is that the operations per-
formed with the exponent are simplified, since there are no negative exponents. The
second advantage refers to the representation of zero. The mantissa of number zero
has bits of 0 in all positions. Theoretically, the exponent of number zero could have
any value, the result being zero. In some computers, if the mantissa of the result is
zero, the value of the exponent is not changed, resulting an impure zero.

For the majority of computers, it is recommended for the number zero to
have an exponent with the minimum value, resulting a pure zero. For the biased repre-
sentation, the minimum value of the exponent is 0. In this way, by using a biased rep-
resentation for the exponent, the floating-point representation of number zero is the
same with the fixed-point representation, all the bits being zero. This means that the
same circuits can be used to check if a value is zero.

Another advantage of using biased exponents is that floating-point non-
negative numbers are ordered in the same way as integers. That is, the magnitude of
floating-point numbers can be compared using an integer comparator.

A drawback of using biased exponents is that adding them is slightly compli-
cated, because it requires that the bias be subtracted from their sum.

In the previous example, the mantissa consists of 23 bits. Although the binary
point is not represented, it is assumed to be at the left side of the most significant bit
of the mantissa. For example, if B = 2, the floating-point number 1.75 can be repre-
sented in several forms:

+0.111 ∗ 21 0 1000 0001 1110 0000 0000 0000 0000 000

+0.00111 ∗ 23 0 1000 0011 0011 1000 0000 0000 0000 000

To simplify the operations with floating-point numbers and increase their
precision, these numbers are always represented in normalized form. A floating-point
number is said to be normalized if the leftmost bit (the most significant bit) of the
mantissa is 1. Therefore, in the two representations presented for 1.75, the first repre-
sentation, which is normalized, is used.

Since the leftmost bit of the mantissa of a normalized floating-point number
is always 1, this bit is often not stored and is assumed to be a hidden bit to the right of
the binary point. This allows the mantissa to have one more significant bit. Thus the
23-bit field is used to store a 24-bit mantissa with a value between 0.5 and 1.0.

With this representation, Figure 3.27 indicates the range of numbers that can
be represented in a 32-bit word.

Arithmetic-Logic Unit 87

Figure 3.27. Expressible numbers in typical 32-bit formats.

With a 32-bit word, using 2’s complement integer representation, all of the
integers from – 231 to 231 – 1 can be represented, for a total of 232 different numbers.
With the floating-point format presented, the following ranges of numbers are possi-
ble (Figure 3.27):

• Negative numbers between –(1 – 2–24) ∗ 2127 and –0.5 ∗ 2–128;
• Positive numbers between 0.5 ∗ 2–128 and (1 – 2–24) ∗ 2127.

Five regions on the number line are not included in these ranges:

• Negative numbers less than –(1 – 2–24) ∗ 2127, called negative overflow;
• Negative numbers greater than –0.5 ∗ 2–128, called negative underflow;
• Zero;
• Positive numbers less than 0.5 ∗ 2–128, called positive underflow;
• Positive numbers greater than (1 – 2–24) ∗ 2127, called positive overflow.

Sometimes, the hidden bit is assumed to be to the left of the binary point.
That is, the stored mantissa M will actually represent the value 1.M. In this case, the
normalized 1.75 will have the following form:

+1.11 ∗ 20 0 1000 0000 1100 0000 0000 0000 0000 000

Assuming a hidden bit to the left of the binary point in the floating-point
format presented, a non-zero normalized number represents the following value:

(–1)S∗ (1.M) ∗ 2E–128 (3.29)

where S denotes the sign bit.
This format can represent the following range of numbers:

Structure of Computer Systems88

• Negative numbers between –[1 + (1 – 2–23)] ∗ 2127 and – 1.0 ∗ 2–128;
• Positive numbers between 1.0 ∗ 2–128 and [1 + (1 – 2–23)] ∗ 2127.

The problem with the example floating-point format is that there is no repre-
sentation for the value zero. This is because a zero cannot be normalized since it does
not contain a non-zero digit. However, in practice the floating-point representations
reserve a special bit pattern to designate zero. Often a zero is represented by all 0’s in
the mantissa and exponent. A good example of such bit pattern assignment for 0 is
the standard format defined by the IEEE Computer Society (the IEEE 754 standard,
Section 3.4.1.2).

Overflow occurs when the result is larger than the allowable representation, for
example, when the exponent is too large to be represented in the exponent field. Un-
derflow occurs when the result is smaller than the allowable representation, for exam-
ple, when the negative exponent is too large to fit in the exponent field. Underflow is
a less serious problem because the result can generally be approximated to 0. Proces-
sors have certain mechanisms for detecting, handling, and signaling overflow and un-
derflow.

To design a floating-point format, it is important to find a compromise be-
tween the size of the mantissa and the size of the exponent. Increasing the size of the
mantissa enhances the precision of the numbers, and increasing the size of the expo-
nent increases the range of numbers that can be represented. The only way to increase
both range and precision is to use more bits. Thus, most computers offer, at least,
single-precision numbers and double-precision numbers. For example, a single-precision
format might have a size of 32 bits, and a double-precision format 64 bits.

3.4.1.2. IEEE 754 Floating-Point Standard

In the past, the execution of floating-point operations varied considerably
from one computer family to another. The variations involved the number of bits
allocated to the exponent and mantissa, the range of exponents, the rounding mode,
and the operations performed on exceptional conditions such as overflow and under-
flow. To facilitate the portability of programs from one computer to another and to
encourage the development of sophisticated numerically-oriented programs, the
IEEE Computer Society has developed the IEEE 754 standard for floating-point repre-
sentation and arithmetic. This standard was released in 1985.

The focus of the IEEE standard is the microprocessor environment, where
individual manufacturers may provide only limited numerical capability. As a result of
this standard, vendors have developed chips that implement the standard and can be
incorporated into microcomputer systems. For example, most of the floating-point
units and math coprocessors, including those of the Intel processors’, conform to this
standard.

The IEEE 754 standard defines the following formats or precisions: single,
single extended, double, and double extended. The main parameters of these formats are pre-
sented in Table 3.9. The standard does not require to implement all the formats, but

Arithmetic-Logic Unit 89

recommends to support either the combination of single and single extended formats,
or the single, double, and double extended formats.

Table 3.9. Format parameters specified by the IEEE 754 floating-point standard.

Single Single extended Double Double extended

Bits of mantissa 24 ≥ 32 53 ≥ 64

Maximum real exponent 127 ≥ 1023 1023 ≥ 16383

Minimum real exponent -126 ≤ -1022 -1022 ≤ -16382

Exponent bias 127 Not specified 1023 Not specified

In all the formats, the implied exponent base is assumed to be 2. The single-
precision, double-precision and double-precision extended formats are presented in
Figure 3.28. These formats are often implemented in the math coprocessors and
floating-point units of processors.

Figure 3.28. The single, double, and double extended formats defined by the IEEE 754
floating-point standard.

S represents the sign of the number. The biased exponent is represented on 8
bits for single-precision, on 11 bits for double-precision, and on 15 bits for double
extended-precision. The exponent biases for the three formats are 127 (3Fh), 1023
(3FFh), and 16,383 (3FFFh), respectively. The minimum values (0) and the maximum
values of the exponent (255, 2047, and 32,767) are not used for normalized numbers,
being used to represent special values.

A hidden bit is also used in the IEEE 754 standard, but the mantissa is repre-
sented differently. The representation of the mantissa is called significand in the IEEE
standard. For the single-precision and double-precision formats, the mantissa consists
of an implicit bit of 1 (the integer part), the implicit binary point, and the bits of the
fraction F:

M = 1.F

If all the fraction bits are 0, the mantissa is 1.0; if all the fraction bits are 1,
the mantissa is nearly 2.0. Thus:

Structure of Computer Systems90

1.0 ≤ M < 2.0

The double extended format is used by the floating-points units of the proc-
essors and by the math coprocessors, in order to reduce the rounding errors. In this
format, bit 63 represents the integer part of the mantissa, which is not implicit. The
numbers in this format are not always normalized, therefore they do not always begin
with a bit of 1. For this reason, this bit is represented explicitly, and is denoted by I in
Figure 3.28. In this case, the value of the mantissa is:

M = I.F

The value of a number in single-precision (NS), in double-precision (ND), and
in double extended-precision (NE) is:

NS = (–1)s ⋅ M ⋅ 2E-127 (3.30)

ND = (–1)s ⋅ M ⋅ 2E-1023 (3.31)

NE = (–1)s ⋅ M ⋅ 2E-16383 (3.32)

The range of numbers which can be represented in the single-precision for-
mat is approximately 1.18×10-38 to 3.4×1038, in the double-precision format is
2.23×10-308 to 1.79×10308, and in the double-precision extended format is 3.37×10-4932

to 1.18×104932.

Example 3.7

Show the IEEE 754 binary representation of the number –0.75 in single pre-
cision.

Answer

The number – 0.75 is also – 3/4 or – 0.11 in binary. In scientific notation the
value is – 0.11×20, and in normalized scientific notation it is - 1.1×2–1. The exponent
field will contain – 1 + 127 = 126 (7Eh). The single precision representation of -0.75
is then:

 31 30 23 22 0
1 0111 1110 1000 0000 0000 0000 0000 000

Example 3.8

What decimal number is represented by the following word?
 31 30 23 22 0

1 1000 0001 0100 0000 0000 0000 0000 000

Arithmetic-Logic Unit 91

Answer

The sign bit is 1, the exponent field contains 81h = 129, and the significand
field contains 1 × 2–2 = 0.25. The value of the number is:

(– 1)1 × 1.25 × 2(129–127) = – 1.25 × 22 = – 1.25 × 4 = – 5.0

One of the problems that could appear in floating-point calculation refers to
handling underflows and overflows. Another problem is the representation of unde-
fined values. Besides the normalized numbers, the IEEE standard specifies the repre-
sentation of some special values. The special values for the single-precision and the
double-precision formats are presented in Table 3.10. This table also indicates the
values of normalized numbers in these two formats.

Table 3.10. Values of IEEE floating-point numbers.

Single-Precision (32 bits) Double-Precision (64 bits)

Exponent Significand Value Exponent Significand Value

0 0 (–1)S 0 0 0 (–1)S 0

0 ≠0 (–1)S 2E–126 (0.F) 0 ≠0 (–1)S 2E–1022 (0.F)

1…254 any value (–1)S 2E–127 (1.F) 1…2046 any value (–1)S 2E–1023 (1.F)

255 0 (–1)S ∞ 2047 0 (–1)S ∞

255 ≠0 NaN 2047 ≠0 NaN

The value zero is represented as all 0’s in the significand and exponent. There
are two representations for value 0, depending on the sign bit: + 0 or – 0. The hidden
bit on the left of the binary point is 0 instead of 1.

When the result of one operation is smaller than the minimum possible nor-
malized number, normally the result is set to zero and the computations continue, or
an underflow condition is signaled. None of these solutions is acceptable. For this
reason, rather than having a gap between 0 and the smallest normalized number, the
IEEE 754 standard allows some numbers to be represented in unnormalized form.
These are called denormal numbers, also called subnormal numbers. They have a zero
exponent, but a non-zero significand. In this case, the hidden bit is 0.

A denormal number is computed through a technique called gradual underflow.
Table 3.11 gives an example of gradual underflow in the denormalization process.
Here the single-precision format is used, so that the minimum unbiased exponent is
-126. The true result in this example requires an exponent of –129 in order to obtain a
normalized number. Since –129 is beyond the allowable exponent range, the result is
denormalized by inserting leading zeros in the mantissa and incrementing the expo-
nent until the minimum allowed exponent of –126 is reached.

Structure of Computer Systems92

Table 3.11. Example of denormalization process using the gradual underflow technique.

Operation Sign Exponent Significand

True Result 0 –129 1.01011100000…00

Denormalize 0 –128 0.10101110000…00

Denormalize 0 –127 0.01010111000…00

Denormalize 0 –126 0.00101011100…00

Denormal result 0 –126 0.00101011100…00

In the extreme case, all the significant bits are shifted out to the right by
leading zeros, creating a zero result.

In the case of overflow, there is a special representation for infinity, consisting
of the maximum value of the exponent for the format used, and a zero significand.
Depending on the sign bit, +∞ and –∞ are possible. The value of infinity can be used
as an operand, using rules such as:

∞ + n = ∞
n / ∞ = 0
n / 0 = ∞

In this way, the user can decide to interpret the overflow as an error condition, or to
continue the computations with the value of infinity.

To signal various exception conditions, as in the case of undefined operations
such as ∞/∞, ∞–∞, ∞ ∗ 0, 0/∞, 0/0, or taking the square root of a negative number,
a special format is provided, which does not represent an ordinary number, and is
called Not a Number (NaN). The exponent has the maximum possible value, and the
significand is non-zero. Thus, there is an entire family of NaNs.

The IEEE standard specifies that when an argument of an operation is a
NaN, the result should be a NaN. Because of the rules for performing arithmetic with
NaNs, writing floating-point subroutines that can accept NaN as an argument does
not require special case checks. For example, suppose that arccos is computed in terms
of arctan, using the formula ())1/()1(2)(xxarctanxarccos +−= . If arctan handles an
argument of NaN properly, arccos will do so too. If x is a NaN, 1+x, 1-x, (1+x)(1-x)
and)1/()1(xx +− will also be NaNs. No checking for NaNs is required.

Another feature of the IEEE standard with implications for hardware is the
rounding rule. When operating on two floating-point numbers, usually the result can-
not be exactly represented as another floating-point number. The standard specifies
four rounding modes: round toward 0, round toward +∞, round toward –∞, and
round to nearest. The last rounding mode is the default, and it is provided for the
situations when the actual number is exactly halfway between two floating-point rep-
resentations. This mode rounds to an even number.

The IEEE standard defines five exceptions: underflow, overflow, divide by
zero, inexact result, and invalid operation. By default, when these exceptions occur,

Arithmetic-Logic Unit 93

they set a flag and the computation continues. The standard recommends for imple-
mentations to provide an enable bit for each exception. When an exception with an
enabled bit occurs, a software exception handler is called.

The underflow, overflow and divide-by-zero exceptions are found in most
floating-point systems. The inexact exception occurs when the result of an operation
must be rounded. This is not really an exceptional condition, because occurs fre-
quently. Thus, enabling a software exception handler for inexact results could have a
severe impact on performance. The invalid exception occurs for invalid operations, such
as 0/0, ∞–∞ or 1− .

The main advantage of the IEEE standard is that helps to write portable
software libraries that deal with floating-point exceptions. The standard also has some
drawbacks:

1. It was originally intended for microprocessors, so the requirements of high-
performance implementations were not given high priority.

2. The standard contains optional parts. For implementors, it is difficult to de-
cide which part should they implement. For portable software writers, the
question is whether they should avoid using any of the optional part of the
standard.

3. Gradual underflow has usually been implemented in a way that is orders of
magnitude slower than setting the result to zero, so users often disable it.

4. The standard does not describe the integer arithmetic and the transcendental
functions (sin, cos, exp). In particular, it does not specify the accuracy that
the transcendental functions should have, or the exceptional values of tran-
scendental functions, such as 00.

3.4.2. Floating-Point Operations

Consider two floating-point numbers:

XE
X BMX = (3.33)

YE
Y BMY = (3.34)

Table 3.12. Floating-point arithmetic operations.

Operation Result

X + Y YX
E

Y
EE

X EEBMBM YYX ≤×+− ,)(

X - Y YX
E

Y
EE

X EEBMBM YYX ≤×−− ,)(

X × Y YX EE
YX BMM +××)(

X ÷ Y YX EE
YX BMM −×÷)(

	3.4.1. Floating-Point Representation
	3.4.1.1. Principles
	3.4.1.2. IEEE 754 Floating-Point Standard

	3.4.2. Floating-Point Operations

