

CAD SYSTEM FOR THE ATMEL FPGA CIRCUITS

Zoltan Baruch
E-mail: Zoltan.Baruch@cs.utcluj.ro

Octavian Creţ
E-mail: Octavian.Cret@cs.utcluj.ro

Kalman Pusztai
E-mail: Kalman.Pusztai@cs.utcluj.ro

Computer Science Department, Technical University of Cluj-Napoca,
26-28 Bariţiu St., 3400 Cluj-Napoca, Romania

ABSTRACT

 In this paper we present a CAD system for logic design using the Atmel 6000 series FPGA
circuits. The design input is a textual description in the ABEL hardware description language.
This description is compiled into a set of equations. From this set of equations, an internal
representation of the digital circuit is generated. Then, the CAD system performs the technol-
ogy mapping, placement and routing steps, and generates a file for configuring the FPGA cir-
cuit. The technology mapping algorithm also tries to reduce the complexity of the placement
and routing steps. We describe a bipartitioning algorithm, that not only balances the size of
the two partitions, but also evenly distributes the connections among them. The routing algo-
rithm implemented simultaneously treats the global and local routing. According to the sorting
of the connection list, we can have two kinds of optimizations: area optimization and speed
optimization.

 1. INTRODUCTION

 Field-Programmable Gate Arrays (FPGA’s) are flexible circuits that can be easily recon-
figured by the designer, reducing considerably the design cycle [10]. There are many commer-
cial FPGA’s. The RAM-based FPGA’s, such as Xilinx’s XC3000 and XC4000, or Atmel’s
6000 series [1], are a widely used class of them. The architecture of a RAM-based FPGA con-
sists of an array of user configurable logic blocks, and a set of programmable interconnection
resources used for routing [11]. Each logic block implements a part of the design logic, and
the routing resources are used to interconnect the logic blocks.
 In computer-aided logic design for FPGA circuits, the main operations performed by the
software are the following:

• Generation of the internal representation. The design specification, as a schematic
or a description in a hardware description language (HDL), must be compiled into
an internal representation, which will be used in all the subsequent design steps.

 1

• Technology mapping. The intermediate form is adapted for the logic blocks inside
the FPGA, considering the restrictions introduced by their architecture (number of
inputs, number and type of the functions inside each block).

• Placement. Placement consists in assigning each vertex of the logical network to a
specific logic block of the FPGA circuit.

• Routing. The routing achieves the interconnection of the logic blocks. This opera-
tion is usually performed in two steps. In the global routing step, interconnection
paths at the global level are chosen, according to certain restrictions which are ef-
fective at the global level. In the detailed routing, the starting point is the result of
the global routing, the goal being to establish the routing paths at the detailed level.
The result of this step is a list of interconnection segments for each group of termi-
nals.

• Circuit configuration. The design representation (mapped, placed and routed) is
transformed into the bitstream file used for the configuration of the FPGA circuit.

 In this paper we present a CAD system for logic design using the Atmel 6000 series FPGA
circuits. The design input is a textual description in the ABEL hardware description language.
This description is compiled into a set of equations using the compiler of the Easy-ABEL de-
velopment system. From the set of equations, an internal representation of the digital circuit is
generated. Then, the CAD system performs the technology mapping, placement and routing
steps, and generates a file for configuring the FPGA circuit. Finally, the structure of the con-
figured circuit can be displayed graphically.
 The remainder of this paper is organized as follows. In Section 2, we present background
information for the technology mapping, placement, and routing problems. In Section 3, we
briefly describe the generation of the internal representation for the design. In Section 4, we
present the technology mapping algorithm for the Atmel 6002 FPGA circuit. Section 5 de-
scribes the congestion-balanced partitioning algorithm. Section 6 presents the routing algo-
rithm. Finally, conclusions are presented in Section 7.

 2. BACKGROUND

 2.1 Technology Mapping

 Technology mapping is the task of transforming an arbitrary multiple-level logic represen-
tation into an interconnection of logic elements from a given library of elements. Technology
mapping is a crucial step in the synthesis of logic circuits for different technologies, such as
sea-of-gates, gate arrays, or standard cells. The quality of the synthesized circuits depends
heavily on this step.
 The technology mapping transformation implies two distinct operations [7]: recognizing
logic equivalence between two logic functions, and finding the best set of logically equivalent
gates whose interconnection represents the original circuit. The fist operation, called
matching, involves equivalence checking and input assignment. Checking for logic
equivalence has been proved to be NP-complete. Input assignment is also computationally
complex. The second operation, called covering, involves finding an alternate representation
of a Boolean network using logic elements that have been selected from a restricted set.

 2

 The two operations intrinsic to technology mapping, matching and covering, are computa-
tionally difficult. For this reason, several approaches to technology mapping have been pur-
sued and implemented in research and commercial mapping tools (rule-based technology
mappers and heuristic algorithms). In this paper, we consider an algorithmic approach to the
technology mapping problem.
 Most algorithmic approaches to technology mapping attack the problem by dividing it into
sub-tasks. First, Boolean networks are partitioned into an interconnection of single-output
sub-networks, with the property that each internal vertex has unit outdegree (i.e., fan-out).
Then, each sub-network is decomposed into an interconnection of two-input functions (e.g.,
AND, OR, NAND, or NOR). Each sub-network is modeled by a directed acyclic graph (DAG)
called a subject graph. Finally, each subject graph is covered by an interconnection of library
cells, to produce the final circuit.

 2.2 Placement

 Given a collection of cells or modules with ports on the boundaries, and a collection of
nets (sets of ports that are to be wired together), the process of placement consists of finding
suitable physical locations for each cell on the entire layout [8]. The quality of placement is
measured by several objective functions, such as the total wirelength, the maximum cut, or the
maximum density. Because the wirelength is only known after the routing phase, estimates are
used. Some commonly used techniques for estimation of wirelength required by a given place-
ment are the following [8]: semi-perimeter method, complete graph, minimum chain, source
to sink connection, Steiner tree approximation, minimum spanning tree.
 The placement of cells in order to minimize the total wirelength is an NP-complete prob-
lem. Therefore, heuristic techniques are used. Heuristic algorithms for placement can be clas-
sified into two categories: constructive and iterative. One of the most used placement tech-
niques is the partitioning-based method.
 In computer-aided design, partitioning is the task of clustering objects into groups so that a
given objective function is optimized with respect to a set of design constraints. The partition-
ing techniques are usually based on a graph model of the design. Each node in the graph repre-
sents a physical component, and each edge represents a physical connection between two
components. The main objective of partitioning is to decompose a graph into a set of sub-
graphs to satisfy the given constraints, such as the size of the subgraph, while minimizing an
objective function, such as the number of edges connecting two subgraphs.
 The graphs can be partitioned for performance or for physical size. When partitioning for
performance, we cluster graph nodes on critical paths while minimizing communication de-
fined by the number of times control or data is passed between clusters. When partitioning for
physical cost, we cluster graph nodes by the type of operations they perform while minimizing
the number of wires between different clusters [9]. The difference between partitioning for
performance and for physical cost can be explained by its efficiency in time and space. Parti-
tioning for performance optimizes time utilization, while partitioning for physical cost opti-
mizes component utilization.
 In general, there are two basic partitioning techniques: constructive methods and iterative
improvement methods. The constructive methods partition the graph by starting with one or
more seed nodes and adding nodes to the seeds one at a time. The iterative improvement

 3

methods start with an initial partition, and then successively improve the results by moving
objects between partitions.
 An example of iterative improvement method is the min-cut partitioning. The min-cut par-
titioning algorithm (also known as the Kernighan-Lin algorithm) partitions a given graph G =
(V, E) of 2n nodes into two equal subgraphs of n nodes minimizing the connections between
the two subgraphs. The algorithm starts with an arbitrary partition of V into two subsets V1
and V2. On each iteration the algorithm interchanges k pairs (k ≤ n) of vertices between two
sets. It stops when no further improvement is possible.

 2.3 Routing

 A typical RAM-based FPGA consists of configurable I/O blocks (IOB), an array of config-
urable logic blocks (CLB), and the interconnect resources (wiring segments and programma-
ble switches). Each programmable switch is a pass-transistor controlled by a static RAM cell.
The content of the RAM cell determines whether the pass-transistor is on or off.
 The routing resources can be modeled as a graph. Each node in the graph represents either
a wiring segment or a CLB pin. Each edge represents a programmable switch in a connection
box or a switch matrix. A connection box allows CLB pins to be connected to the routing
channel, while a switch matrix provides routing paths from one channel to another. Based on
the graph model, the routing of a net consists in finding a tree on the graph that spans over all
nodes corresponding to all terminals of the net. In a feasible solution, all trees must be dis-
joint.
 There are only a few published routers for RAM-based FPGA’s: CGE [4], SEGA [6] and
TRACER-fpga [5]. CGE (Coarse Graph Expansion) [4] first uses a global routing to decom-
pose each net into a number of two-terminal connections. Its primary goal is to distribute the
connections among the channels in order to balance the channel densities. It then chooses for
each two-terminal connection exact wiring segments to implement the path assigned during
the global routing. A cost function is used to iteratively select among all exact paths the best
one. This iteration halts when no more uncompleted exact paths are left.
 SEGA (SEGment Allocator) [6] is intended for FPGA’s with variable-length wiring seg-
ments. It addresses the allocation of wiring segments to connections with the goal to match the
length of the wiring segments to the length of the connections. SEGA uses the same strategy as
CGE; the main difference comes from the cost function.
 TRACER-fpga [5] consists of two stages: initial router, and rip-up and rerouter. During the
first stage, nets are routed sequentially and independently of one another, ignoring the exis-
tence of any previously routed nets. Inevitably, there will be conflicts over the usage of rout-
ing resources among nets. During the second stage, conflicts are resolved iteratively. Within
an iteration, some nets are ripped-up and rerouted. The selection of nets for ripping-up is
guided by a simulated evolution-based optimization technique. The rerouting is done with the
expansion router, except that the presence of other already routed nets is no longer ignored.

 3. GENERATION OF THE INTERNAL REPRESENTATION

 The starting point for the implementation of a digital circuit using the proposed CAD sys-
tem is a description of the circuit in a high-level hardware description language. The language

 4

used is called ABEL-HDL (ABEL Hardware Description Language). From the source file
containing the description of the digital circuit in this language an intermediate description is
generated, using the compiler of the Easy-ABEL development system. This description is writ-
ten to a .PDS file, containing the equations of the circuit.
 The .PDS file contains two main sections:

• declarations (project title, chip, list of pins, list of nodes, etc.);
• equations, describing the functionality of the circuit.

 Each equation in the .PDS file is parsed and a graph is generated, where the nodes are basic
logic components (AND/OR gates with two-inputs, inverters, D flip-flops, tri-state buffers).
For example, for the equation:

OUT1 = (IN1 ∗ IN2 + /IN3) (1)

the graph shown in Figure 1 is generated.

 A registered assignment is implemented by a D flip-flop. Depending on the functionality of
the circuit, the registered signals may have one of the following extensions:

.CLKF This extension indicates which signal is routed to the CLK input of the D flip-
flop. This extension corresponds to the .clk extension in the ABEL-HDL lan-
guage.

.TRST This extension indicates which signal is controlling the output (in this case, we
have 3-state output pins). This extension corresponds to the .oe extension in the
ABEL-HDL language.

.SETF, .RSTF These extensions indicate which signal performs the preset of the D flip-flop.
These extensions corresponds to the .pr extension in the ABEL-HDL language.

 After building each equation's graph, the new graph must be added to the general graph of
the circuit. An important step is redundancy elimination. Instead of having multiple separate
graphs, we combine them (if possible), trying to minimize the number of nodes, and conse-
quently, the complexity of the circuit. This operation is called elimination of duplicate nodes
and it is performed at every equation parsing.
 Finally, according to the list of pins, the input and output pins are identified. The program
makes the distinction between output pins and internal nodes. An internal node is a signal
used only inside the circuit. The program generates a matrix, where aij = 1 if there is a con-
nection between the node i and j (an edge from i to j or from j to i in the circuit's graph).

IN1

OUT1

IN3

IN2

 *

/

+

Figure 1. Example of graph generated
from an equation.

 5

 4. TECHNOLOGY MAPPING

 Our algorithm uses the logical network – obtained after the internal circuit representation
step – as a starting point. This logical network has some useful properties which will be used
by the algorithm.
 The first steps in technology mapping are partitioning and decomposition. These steps have
been implemented by the internal representation generation step, a logical network being gen-
erated with the required properties. The logical network is already decomposed (i.e., it con-
tains only the basic logic components – the basic functions).
 Therefore, the only step that must be implemented is the network covering, which includes
also the Boolean matching step. For the network covering, we have to take into consideration
the library of available logic cell configurations of the Atmel 6002 FPGA circuit.
 An important aspect that we have taken into account is that the technology mapping step
will be followed by the placement and the routing steps. If the number of logic cells generated
by the technology mapping step is too large, that will considerably increase the complexity of
the placement step.
 At the routing step, we have to take care of the maximum capacity of the routing channels
inside the FPGA circuit. We establish in the program a constant which expresses that capacity,
and we duplicate the cells whose outdegree is greater than this constant, appropriately updat-
ing the connections in the design structure – otherwise the design would not be routable, no
matter how we redo the placement step.
 As can be noticed from the facts presented above, there has to be a balance between:

• generating as few cells as possible for reducing the complexity of the placement
step, and

• generating enough cells in order to ensure the routability of the mapped design.

 5. PLACEMENT

 The only metric in the cost function in traditional partitioning algorithms, applied for the
placement of FPGA circuits, is the cut size. However, the cut size alone is not a good metric
for architectures with limited routing resources, such as FPGA's and CPLD's. Since the algo-
rithm tries to place connected blocks close together, it is likely to generate a placement with
congested areas, where a feasible routing is difficult to find. In other words, it is possible to
obtain a partition with a small cut size, with one portion being heavily connected and the other
being very sparse. For FPGA applications, min-cut based placement algorithms must be modi-
fied to take into account not only the sizes of the two portions, the size of the network cross-
ing the cut-line, but also the distribution of interconnections within the two portions.
 We describe a placement procedure based on a modified min-cut bi-partitioning algorithm,
that not only balances the size of the two portions, but also evenly distributes the connections
among them [2]. We consider that multiple terminal nets are represented by a hyper-graph
model. In general, to connect k terminals, max {k-1, 0} connecting paths are needed. We de-
fine the unbalancing number of a net to be the number of connecting paths needed to connect
all the terminals in the left portion minus the number of connecting paths needed in the right
portion. The unbalancing number of a bipartition is defined to be the sum of the unbalancing
numbers of all nets. The absolute value of the unbalancing number of a bipartition counts the

 6

difference between the number of connecting paths needed in the left portion and the right
portion [9].
 Given an initial bipartition, we can compute its unbalancing number in O(|T|) time by
examining all the nets, where T is the set of all terminals. We assume that there are more
interconnecting paths in the left portion than in the right portion, that is, the unbalancing
number of this bi-partition is positive. If a node v is moved from the left portion to the right
portion, we can compute f(v, e), the amount by which the unbalancing number of the net e
decreases, by examining the set of all neighbors of v, N(v).
 The following cost function is used to incorporate the effect of congestion distribution in a
given partition:

Cut_size + WEIGHT × Unbalancing number

where WEIGHT is a constant. If WEIGHT is set to zero, then the algorithm is the same as the
conventional min-cut partitioning algorithm. By setting the value of WEIGHT appropriately,
we can control the importance of balancing the congestion.
 The above partitioning algorithm is applied recursively. The quadrature placement proce-
dure [8] is used for the sequence of cutlines, until the FPGA layout is divided into slots, one
slot corresponding to a cell.

 6. ROUTING

 The first step of the routing program consists of constructing a graph, and then selecting
the specific routing segments for each graph. Therefore the allocation of routing resources is
strongly dependent of the path chosen by the global router. Given that the FPGA device used
here is not of high structural complexity (it includes only local buses, express buses, repeaters
and logic cells), the chosen routing algorithm includes the detailed routing inside the global
routing at each hierarchical level.
 After the global routing, the connections assigned to each sub-channel are known. If the
detailed router fails to route all the connections assigned to a sub-channel, then the channel's
capacity is correspondingly reduced and the global routing at this level is redone. The advan-
tage of this approach is that the preliminary estimation in the global routing can be corrected
immediately.
 It is recommended for the algorithm to reserve the bus resources for signals that go over
longer distances (more than five cells), so that for these signals the advantages of the express
bus become visible. The express buses are not directly connected to the cells, thus they have
small capacities, are faster than the local buses, and it is indicated to use them as often as pos-
sible for increasing design performance. Also, by using an express bus instead of the local
bus, the local bus is released for other necessary routings.
 Substituting a local bus by an express bus is not possible in the following situations [1]:

• when directly connecting two cells
• when using a bidirectional signal
• when making 90° turns

 For increasing design performance, it is indicated to limit the number of local bus
segments which carry a signal and to go beyond the limit of the repeater only if it is necessary.

 7

Branching the express bus signal to the local bus at each repeater may be beneficial when
using more than eight signals or when the signal passes over more than one repeater. Figure 2
presents an example of ramification.

 Signal X is routed over the express bus and the branching to the repeaters of the local bus
segment are leading to the Z and Y cells. If signal X would have been routed over the local bus
to the Y1, Y2 and Y3 cells and over the repeaters (local bus to local bus) to the Z1, Z2 and Z3
cells, the load of the Y cells would have affected the speed of the signals which are branched
to the Z cells.
 Another key problem of the routing is the selection of the connection. When two or more
connections pass over a common routing channel, there may appear competitions for the rout-
ing resources in that channel. Because of the limited connectivity in the Atmel 6002 FPGA, it
is essential to resolve these conflicts.
 The main problem of FPGA routing is that the choice made for one connection may block
another connection [4]. Figure 3 shows two positions of the same section of an FPGA device.
Each section offers routing options for either A or B connection. In the figure, the logic cell is
denoted by L, the connectivity points by ×, the wire segment (local bus) by a solid line and the
possible routing by a dashed line.

 Let us assume that the router first performs the connection A. If the wire segment number 1
is chosen for A, then connection B cannot be routed because B relies on the single left option,
that is the wire segment number 1. The correct solution for the router is to select the wire
segment number 2 for connection A; then connection B can also be routed. This is a simple
example which illustrates the essence of the problem which appears because of the limited
routing resources inside the FPGA device.
 The algorithm cannot consider all the connecting possibilities inside the FPGA in a single
phase because it has to save memory and execution time [3]. This is the reason why it uses an

Figure 2. Example of signal ramification inside the
FPGA structure.

Figure 3. Routing conflicts.

 8

iterative approach. In the first step it considers only those possible paths for a connection
which correspond to the minimal cost (Cd) necessary for the algorithm to find out connecting
paths. If these paths fail (are in conflict with the connections already routed), the algorithm
continues its search starting with this failed path cost.
 In the first step, the connectivity graph is built on the Atmel 6002 FPGA device structure,
and the routing graph is built from the results obtained after the technology mapping and
placement steps. By direct links we denote here those links which do not imply the use of any
bus.
 In the second step, the connection list contains all the connections to be routed with the
respective linking paths, corresponding to the shortest distance possible. There may exist more
than one routing possibility with the same cost. This minimal distance is used as a cost which
is computed according to the FPGA structure. The algorithm tries to break the connections in
direct links if it does not have to pass over more than five cells, using the fact that the FPGA
cells can also be used for routing.
 In the third step, the algorithm sorts the connection list by two criteria:

1) the number of stored links
2) the cost of the competition

 Each wire segment has two associated costs: the distance cost (Cd), which reflects the rout-
ing delays associated with the wire segment, and the competition cost (Cc), which counts the
links' competition to the same wire segment.
 Each path in the connection list has also two associated costs: the sum of the distances cost
(Sd) of the wire segments in the path, and the sum of the competition cost (Sc) of the wire seg-
ments in the path.
 The connection list is sorted by the number of stored links to determine what connection is
essential. The essential connection must be identified for making the selection for a connec-
tion which has a minimal number of Sd-cost connecting alternatives. The algorithm first sorts
the connection list by the Cd cost (also because it tries to make an area and speed optimiza-
tion). By choosing first the connections with minimal Sd cost, it forces the long lines to choose
the express buses, which are much faster. From all possible connections, the one with minimal
Sc cost is chosen.
 At the routing step, the algorithm selects the linking alternatives with minimal Sc cost. At
the rerouting step, it tries to find other possible paths starting from the minimal distance,
based on the updated connectivity graph. In the connectivity graph, at this step, the connec-
tivity points used by the connections already routed are marked. The driving cell (the one
which generates the signal on the connection) is also marked in the connectivity graph, be-
cause we need signal branching in the local bus to become possible. Therefore at the rerouting
phase the linking alternatives starting from a connectivity point which is used for other con-
nections are already taken into consideration.

 7. CONCLUSIONS

 In this paper we presented a CAD system for implementing digital systems using the Atmel
6000 series FPGA circuits. The design input is a textual description in the ABEL hardware
description language. This description is compiled into a set of equations, from which an in-

 9

ternal representation of the digital system is generated. Then, the CAD system performs the
technology mapping, placement and routing steps, and generates a file for configuring the
FPGA circuit. The structure of the configured circuit can be displayed graphically.
 In order to reduce the complexity of the placement step, the technology mapping algorithm
tries to reduce the number of cells generated. In order to ensure the routability of the design,
the algorithm duplicates the cells whose fan-out is greater than the maximum number of chan-
nels of the circuit.
 The placement step uses a partitioning-based algorithm. The bi-partitioning algorithm not
only balances the size of the two portions, but also evenly distributes the connections among
them. The algorithm produces good results, in small amounts of CPU time.
 The routing algorithm implemented has the advantage that the preliminary estimation of
the global routing can be immediately and appropriately corrected. The algorithm may con-
sider the side effects of the routing decisions made for one connection on the others, thus re-
solving the routing conflicts. According to the sorting of the connection list, we can have two
kinds of optimizations: area optimization and speed optimization.
 The CAD system is implemented in the C programming language, under the Windows 95
operating system.

 8. REFERENCES

[1] Atmel Corp., (1995) “Configurable Logic. PLD, FPGA, Gate Array”, Data Book.
[2] Baruch, Z., Creţ, O., Pusztai, K., (1997) “Partitioning for FPGA Circuits”, in Proceedings

of MicroCAD'97 International Computer Science Conf., p113-116, Miskolc, Hungary.
[3] Baruch, Z., Creţ, O., Pusztai, K., (1998) “Routing for FPGA Circuits”, in Proceedings of

A&Q’98, pQ214-Q219, Cluj-Napoca, May 1998.
[4] Brown, S. D., (1992) “Routing Algorithms and Architectures for Field-Programmable

Gate Arrays”, Ph.D. Thesis, University of Toronto, Canada.
[5] Chen, C. D., Lee, Y. S., Wu, A. C. H., Lin, Y. L., (1995) “TRACER-fpga: A Router for

RAM-based FPGA’s”, in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 3/95, p371-374.

[6] Lemieux, G. G., Brown, S. D., (1993) “A Detailed Routing Algorithm for Allocating
Wire Segments in Field-Programmable Gate Arrays”, in Proceedings of ACM/SIGDA
Physical Design Workshop, p215-226.

[7] Mailhot, F., De Micheli, G., (1993) “Algorithms for Technology Mapping Based on Bi-
nary Decision Diagrams and on Boolean Operations”, in IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems, 5/93, p599-620.

[8] Sait, S. M., Youssef, H., (1995) “VLSI Physical Design Automation. Theory and Prac-
tice”, McGraw-Hill Book Company.

[9] Sun, Y., (1994) “Algorithmic Results on Physical Problems in VLSI and FPGA”, PhD
Thesis, University of Illinois.

[10] Sun, Y., Wang, T. C., Wong, C. K., Liu, C. L., (1997) “Routing for Symmetric FPGA’s
and FPIC’s”, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 1/97, p20-31.

[11] Trimberger, S. M., (1994) “Field-Programmable Gate Array Technology”, Kluwer Aca-
demic Publishers, Boston.

 10

