

RECONFIGURABLE, REAL TIME, SINGLE CHIP
CONVOLUTION DEVICE FOR IMAGE PROCESSING

Sergiu Nedevschi, Octavian Creţ, Zoltan Baruch

Technical University of Cluj-Napoca, ROMANIA, 24-26 Bariţiu St., Cluj-Napoca

Sergiu.Nedevschi@cs.utcluj.ro, Octavian.Cret@cs.utcluj.ro, Zoltan.Baruch@cs.utcluj.ro

Abstract: This paper continues a previous work on the design and implementation of a real time, sin-
gle chip, generalized convolution device for image processing. The objective of this work is to im-
prove the effectiveness of the previous solution by reducing the complexity and introducing
reconfigurability features. The results achieved are based on the features offered by the XILINX
XC4000 FPGA circuit family, the most important among them being the distributed memory matrices.
This allows the use of the serial distributed arithmetic in implementing a reconfigurable convolution
device in a single FPGA chip.

Keywords: real time image processing, reconfigurable convolution device, serial distributed arithme-
tic, matrix multiplication, RAM based shift registers, XILINX FPGA.

1. INTRODUCTION

The architecture of the convolution device working with a 3×3 kernel that was imple-
mented in [1] is shown in Figure 1.

x x x x x

Serial_IN

Serial_OUT

ADDER

 S1 S2 S3

 S4 S5 S6

 S7 S8 S9

 K1 K2 K3

 K4 K5 K6

 K7 K8 K9

Figure 1. The architecture of the 3×3 convolution system.

mailto:nedevschi@utcluj.ro

 A conventional implementation approach implies a high number of circuits. Since the
purpose was a single chip, compact, easy reconfigurable and real time working implementa-
tion, a FPGA based solution was chosen. This option determined the reorientation of the de-
sign towards exploiting the FPGA families features.

The most important advantage of the XC4000 family used in the implementation is
the double functionality of the elementary CLB cells as logical function generators or as
RAM or ROM memory matrices. The available memory at a CLB cell level is organized as a
32×1 block or two 16×1 blocks. The access time to these memories is under 10 ns. The exis-
tence of these memory blocks, distributed at the whole FPGA chip level, allowed the imple-
mentation of the three chains of 8-bit serial shift registers storing three image lines, the
achievement of a serial distributed arithmetic for bit serial manner parallel multiplication of
the neighborhood pixels with kernel coefficients, and in the same time the summing of the
partial products [1], [4], [5].

The block diagram of the generalized convolution device [1] is shown in Figure 2.

R
E
G1

R
E
G2

R
E
G3

M

U

X

R

E

G4

R

E

G5

 FULL

 ADDER

16 bits

FULL
ADDER
16 bits

32 x 16
LOOKUP

TABLE

16 x 16
LOOKUP

TABLE

(3 x 256) x 8
bits SHIFT
REGISTER

OR

(3 x 512) x 5
bits SHIFT
REGISTER

16

1616

16
5

4

P
S
C

D_IN
18

8

D_OUT

CLK/8

CLK CLK CLK

LOAD

SAVE

CLK

2**-1

Figure 2. Block diagram of the generalized convolution device.

2. THE PROPOSED ARCHITECTURE

The objective of this work is to improve the effectiveness of the previous solution by

reducing the complexity and introducing reconfigurability features.
The analysis of the previous solution leads to the conclusion that the chain of 8-bit

shift registers, although it offers significant advantages, consumes a great amount of FPGA
resources. Finding a better solution to this problem could save these resources and would al-
low the implementation of new facilities as reconfigurable kernels.

The replacement of the chain of 8-bit shift registers is possible only if the source im-
age memory is fast enough to supply data at a rate that is comparable to the shift registers
pipe rate.

A mixed solution is proposed, in which a pipe of 8-bit shift registers having the di-
mension of the convolution kernel is maintained, and an address generation logic able to load
from the source image memory the needed operands is added. This solution frees a large
amount of resources and allows the implementation of a set of dynamically reconfigurable
convolution kernels.

 2

2.1 The convolution device

The chain of 8-bit shift registers that allowed access, in each clock period, to a pixel
neighborhood, must be replaced by an 8-bit registers matrix having the same dimension as the
processed neighborhood, a supplementary column of 8-bit registers used as an input buffer
and an address generator able to load a new column of pixels from the source image memory
in each convolution step.
 In the case of a 3×3 neighborhood, the three chains of 8-bit shift registers [1] are
eliminated and replaced by nine 8-bit shift registers that store only the exact neighborhood of
the currently processed pixel and three supplementary 8-bit shift registers used as an input
buffer.

For ensuring the access to a new neighborhood, in each processing step, a left-to-right
shift of the matrix elements and a device able to provide new input elements is necessary.

The general block diagram of the system is shown in Figure 3. The convolution device
contains three main functional blocks: the address generation logic, the serial distributed ma-
trix multiplier and the dynamically reconfigurable convolution kernel.

Source
Image

Memory
General

convolution
device16

Addresses

8

Content

16

Addresses

8

Content

Destination
Image

Memory

Figure 3. Block diagram of the general convolution system.

2.2 The address generation logic

This logic will read three new elements per cycle from the source image memory us-

ing the following address generation algorithm: (0, 256, 512), (1, 257, 513), (2, 258, 514), etc.
(for a 256×256 pixels image). A pixel identified by its Column and Row address is located in
the memory at the following address:

Current_Address = Column_Counter·256 + Row_Counter (1)

The block diagram of the address generation logic is shown in Figure 4. It generates
the following three addresses for loading, in each processing step, a new neighborhood-sized
column in the input buffers (R0, R1, R2):

Addr0 = Column_Counter · 256 + Row_Counter
Addr1 = (Column_Counter + 1) · 256 + Row_Counter
Addr2 = (Column_Counter + 2) · 256+ Row_Counter

(2)

The Address_Multiplexer_Counter N3 is used to select the addresses (located on the
busses Addr0, Addr1 and Addr2) that access the source image memory. These addresses ac-
cess pixels located on consecutive rows of the image. The N2 and N1 counters are used to
build the addresses according to the equations (2).

The multiplication by 256 is implemented by a concatenation of the Column_Counter
(N2) bus (on the most significant 8 bits) with the Row_Counter (N1) bus (on the least signifi-
cant 8 bits of the Addr busses).

 3

N1
Counter (0-255)

8

8 8

N2
Counter (0-253)

8

8 88 8

1 2

8 8

CE CE

16 1616

N3
Counter (0-2)

2

16

16

MCLOCK
16-bit Buffer

4-to-1 16-bit Multiplexer
Select

TC

TC

MCLOCK

MCLOCK

MCLOCK

To Source Image Memory

Addr0

Addr1

Addr2

Figure 4. The address generation logic.

Two supplementary 8-bit full adders are necessary to ensure the correct access to the
desired pixel, according to the equations (2).

The ranges for the Address_Multiplexer_Counter (N3), the Column_Counter (N2) and
the Row_Counter (N1) are [0-2], [0-253] and [0-255], respectively. The counters are cascaded
using the Terminal Count (TC) and Clock Enable (CE) signals. The MCLOCK period must
be equal to or greater than the memory access time (Tmem).

2.3 The serial distributed matrix multiplier block

 The two-dimensional convolution between an image neighborhood and a convolution
kernel can be represented by an one-dimensional sum of products:

)]()}2(...

2)}(2){([{

1
1

1
1

1

1
0

1

22

ii,nii,n-

ii,
m

i
ii,

m

i
ii

KSKS

KSKS...KS

⋅+⋅++

+⋅+∑ ⋅=∑ ⋅

−

−

=

−

= (3)

where: Si represents the neighborhood elements, Ki represents the kernel coefficients, m2 rep-
resents the number of pixels in a neighborhood, Si,j represents the j-th order bit of the Si pixel,
j ∈ [1,...,n], n represents the number of bits of a pixel.
 The j-th order term can be developed as the following sum of products:

22 ,2,21,1

2

1 mjmjj

m

i
ii,j KS...KSKSKS ⋅++⋅+⋅=∑ ⋅

=
 (4)

The Si,j terms represent the j-th order bits of the neighborhood elements, taking 0 or 1
values. The Ki terms represent the constant coefficients of the convolution kernel.
 For a given set of coefficients these sums of products can be memorized in a ROM
used as a lookup table. The access to this lookup table will be made using the j-th order bits of
neighborhood pixels.

 4

 Figure 5 shows the block diagram of such a multiplier [1]. The use of the shift regis-
ters allows simultaneous access to all the bits of the same order of the current neighborhood
pixels. These bits are used to address the partial sums in the lookup table.
 The final result of the matrix multiplication is obtained by accumulation of the sums
of partial products in a number of steps equal to the number of bits in a pixel.
 The matrix multiplication period Tp is determined by the number of bits used for pixel
representation n, and the period in which a step of the multiplication algorithm is performed,
Tc:

Tp = n · Tc (5)

 n bits Serial Shift Register
 MSB-In LSB-Out
 Clock

 n bits Serial Shift Register
 MSB-In LSB-Out
 Clock

 n bits Serial Shift Register
 MSB-In LSB-Out
 Clock

Serial_In

Clock

.

Si Multiplier Matrix Sum of Partial Products for Ki Multiplicand

Address
0

1

2

.

.

.

m Data

Adder

Register Scaler

Look Up Table

.

Product

2n

2n

Clock

ROM Based

 n bits Serial Shift Register
 MSB-In LSB-Out
 Clock

1 1

1

1

1

S0

S

S

S

1

2

m

S

S

S

S

0,j

1,j

2,j

m ,j

j

2

2

2

Figure 5. Block diagram of the serial distributed matrix multiplier [1].

 The convolution products are computed in 8 clock cycles, using the lookup table to
stores the partial products. For scaling the result with the sum of the convolution kernel terms,

Ki, the values stored are previously divided by ∑
=

m

i
iK

1

. This is possible because all these val-

ues are smaller than 1, which makes the decimal point to be in the same position. A two's
complement fixed point arithmetic with an 8 bit fractional part is used for normalized coeffi-
cients representation. The final result will be an integer on 8 bits.

ADDRESS DATA
0...000 0...000
0...001 K1 / Σ
0...010 K2 / Σ

(K0...011 1 + K2) / Σ
0...100 K3 / Σ
0...101 (K1 + K3) / Σ
0...110 (K2+ K3) / Σ

(K0...111 1 + K2+K3) / Σ
… …
1...111 (K1 + K2 + ...+ Km) / Σ

Figure 6. The contents of the lookup table.

 5

 Figure 6 shows the contents of the lookup tables, where Σ represents ∑
=

m

i
iK

1

.

 The registers R0, R1, R2, S1, S4 and S7 (Figure 7) are implemented with flip-flops
(because a parallel load operation is necessary), while for the remaining shift-registers (S2,
S3, S5, S6, S8 and S9) we can use the previous solution: the use of the Select-RAM modules
as shift-registers [1].
 The internal structure of the convolution kernel is shown in Figure 7.

1-
to

-4
 1

6
bi

ts
D

em
ul

tip
le

xe
r8

8

8

8

From Source
 Image Memory

R0

R1

R22

N3
Counter (0-2)

S1 S2 S3

S4 S5 S6

S7 S8 S9

S1 S2 S3 S5 S6 S7 S8 S9S4

Partial products
Look-up Table

8

8

8

A1A7

0

A0

8-bit Full Adder

LOAD

MCLOCK

PL PL

PL

PL

PL

PL

Input Buffer

1

2

0

Figure 7. The internal structure of the convolution kernel.

2.4 Implementation details

 Because the serial distributed arithmetic was used for matrix multiplication, the access
to the 9 neighborhood pixels is serial, starting with the LSBs.
 The sum of partial products for each order of the current neighborhood pixels must be
stored in the lookup table. The 9 pixels imply a 9-bit address bus, and in consequence a
lookup table with 29 locations. In order to reduce the size of the lookup table, the address vec-
tor is split into two, 5-bit and 4-bit fields. This leads to the use of a memory with 25 locations
for storing the sums of the partial products for the first 5 terms, and the use of a memory with
24 locations for storing the sums of the partial products for the last 4 terms. Also, it is neces-
sary to append an adder to calculate the total sums (Figure 8).

 6

R
E
G1

R
E
G2

R
E
G3

M

U

X

R

E

G4

R

E

G5

 FULL

 ADDER

16 bits

FULL
ADDER
16 bits

32 x 16
LOOKUP

TABLE

16 x 16
LOOKUP

TABLE

16

1616

16
5

4

8

D_OUT

CLK CLK

LOAD

SAVE

CLK
Address

Generation
Block

Data
Multiplexer

Source
Image

Memory

16

8

Figure 8. The schematic of the 3×3 convolution device data path.

 The timing diagram of the system is presented in Figure 9. Assuming Tmem = 80 ns
(corresponding to MCLOCK), the maximum clock period is 30 ns (corresponding to
CLOCK).

CLOCK

MCLOCK

LOAD

PL

(for S1, S4 and S7)

Figure 9. The time diagram of the control block signals.

 Because this pixel period is not long enough for the execution of all algorithm step
operations (as the access of the sums of the partial products, their summing, the final accumu-
lation), a pipeline solution is necessary for parallel execution of operations. Thus, REG1 and
REG2 registers are introduced for storing the partial sum of partial products, REG3 for stor-
ing the sum of partial products, and REG4 for accumulating the sum of partial products. The
command block associated with this data path generates the signals shown in Figure 9.

2.5 Reconfigurability opportunities

 With all these optimizations, the available silicon area increases considerably, allow-
ing the implementation of a reconfigurable system in the following way. Several convolution
sets of partial products, corresponding to different convolution kernels, can be stored in a
separate configuration memory. For implementing the desired convolution, the corresponding
set of partial products can be used to reconfigure the lookup table.

A second variant consists of storing the different kernels in separate lookup tables and
to multiplex the kernel being computed.
 This way, the system becomes dynamically reconfigurable, all the configurations be-
ing stored on-chip and the switch between configurations being achieved at request in very
short time, compared to the time necessary for a full reconfiguration in ordinary XC4000
FPGA devices.

 7

2.6 Experimental results

 The presented scheme was implemented and tested on a XILINX PC development
system. The test was successfully carried out for a 3×3 convolution kernel applied to a 256×
256 image matrix.

The reconfigurability capabilities are still under development.
The use of the Virtex-EM family FPGA devices allows a faster implementation (the

source and destination image memories being stored on-chip, with considerably shorter ac-
cess times).

3. CONCLUSIONS AND FUTURE DEVELOPMENTS

 The XILINX XC4000 family features and the chosen design solution allow the devel-
opment of a real time, single chip, generalized convolution device for image processing.

Future developments can be achieved in the following directions.

• The growth of the spatial resolution to 512×512 pixels. This would imply only small
changes of the address generation block, the serial distributed matrix multiplier block
remaining unchanged.

• The possibility to choose between different convolution kernels. This can be achieved
by storing in PROM memories the sums of partial products for different kernels and
creating the possibility to select the corresponding PROM for a desired kernel, mak-
ing the system dynamically reconfigurable.

• The real time execution of complex processes by serially linking several convolution
devices and selecting the corresponding convolutions sequence. In a Virtex–EM
FPGA device, all the convolution kernels can be stored on the same chip and the en-
tire computation can be realized by a unique device.

REFERENCES

[1] Nedevschi, S., Samways, P., Marian, M., Hall, T. (1996): Real-time, Single-chip, General-

ised Convolution Device for Image Processing. ACAM Scientific Journal, Vol. 5, No.1,
pp.11-22.

[2] Sternberg, S. R. (1982): Pipeline Architectures for Image Processing, Multicomputers and
Image Processing-Algorithms and Programs, L. Uhr, ed., Academic Press, pp. 291-305.

[3] Pratt, W. K. (1991): Digital Signal Processing, Second Edition, Wiley Interscience Publi-
cation.

[4] Mintzer, L. (1987): Mechanization of Digital Signal Processors, Handbook of Digital
Signal Processing, pp. 941-973.

[5] Goslin, G. (1995): Using XILINX FPGAs to Design Custom Digital Signal Processing
Devices, Xilinx University Program Workshop, Fall 1995, XILINX Inc.

[6] Goslin, G., Newgard, B. (1995): 16-Tap, 8-Bit FIR Filter Application Guide, Xilinx Uni-
versity Program Workshop, Fall 1995, XILINX Inc.

[7] Alfke, P. (1995): Efficient Shift Register, LFSR Counters and Long Pseudo-Random Se-
quence Generators, Xilinx University Program Workshop, Fall 1995, XILINX Inc.

 8

