

Datapath Allocation
Zoltan Baruch

Computer Science Department, Technical University of Cluj-Napoca
e-mail: baruch@utcluj.ro

Abstract. The datapath allocation is one of the basic operations executed in the process
of high-level synthesis. The other operations are partitioning and scheduling. The
datapath allocation problem consists of two important tasks: unit selection and unit as-
signment. Unit selection determines the number and types of RT components to be used
in the design. Unit assignment involves the mapping of the variables and operations in
the scheduled control- and dataflow graph into the functional, storage and interconnec-
tion units.
 In this paper we describe the basic methods that can be used to solve the alloca-
tion problem: greedy methods, which progressively construct a design while traversing
the control- and dataflow graph; decomposition methods, which decompose the alloca-
tion problem into its constituent parts and solve each of them separately; iterative meth-
ods, which try to combine and interleave the solution of the allocation subproblems. We
describe a greedy constructive algorithm, a decomposition method based on the
graph-theory, called the clique partitioning algorithm, and an iterative refinement
method, called the pairwise exchange algorithm.

Keywords: digital systems, high-level synthesis, datapath synthesis.

 11.. IInnttrroodduuccttiioonn

 In the process of high-level synthesis, the scheduling phase assigns operations to con-
trol steps, and thus converts a behavioral description into a set of register transfers that can be
described by a state table. A target architecture for such a description is the Finite State Ma-
chine with Datapath (FSMD). The control unit for this model can be derived from the con-
trol-step sequence and the conditions used to determine the next control step in the sequence.
The datapath is derived from the register transfers assigned to each control step; this task is
called datapath synthesis or datapath allocation.
 A datapath in the FSMD model is a netlist composed of three types of register transfer
(RT) components: functional, storage and interconnection. The functional units (adders, shift-
ers, ALUs) execute the operations specified in the behavioral description. The storage units
(registers, RAMs, ROMs) hold the values of variables generated and consumed during the
execution. The interconnection units (buses and multiplexers) transport data between the
functional and storage units.
 Datapath allocation consists of two important tasks: unit selection and unit assignment
(binding). Unit selection determines the number and types of RT components to be used in
the design. Unit assignment involves the mapping of the variables and operations in the
scheduled control- and dataflow graph (CDFG) into the functional, storage and interconnec-
tion units, ensuring that the design behavior operates correctly on the selected sets of compo-
nents. For every operation in the CFDG, we need a functional unit that can execute the opera-
tion. For every variable that is used across several control steps in the scheduled CDFG, we
need a storage unit to hold the data values during the variable's lifetime. Finally, for every
data transfer in the CDFG, we need a set of interconnection units to effect the transfer.

 1

 2

Figure 1. Mapping of behavioral objects into RT components.

 The mapping of variables and operations in a dataflow graph (DFG) into RT compo-
nents is illustrated in Figure 1 [1]. We select two adders, ADD1 and ADD2, and four regis-
ters, r1, r2, r3 and r4. Operations o1 and o2 cannot be mapped to the same adder, because they
must be performed in the same control step s1. On the other hand, operation o1 can share an
adder with operation o3, because they are carried out during different control steps. Opera-
tions o1 and o3 are both mapped into ADD1. Variables a and e must be stored separately be-
cause their values are needed concurrently in control step s2. Registers r1 and r2 must be con-
nected to the input ports of ADD1; otherwise, operation o3 will not be able to execute in
ADD1. Similarly, operations o2 and o4 are mapped to ADD2. There are several different ways
of performing the assignment. For example, we can map o2 and o3 to ADD1, and o1 and o4 to
ADD2.
 The allocation problem can be solved in three different ways: greedy methods, which
progressively construct a design while traversing the CDFG; decomposition methods, which
decompose the allocation problem into its constituent parts and solve each of them sepa-
rately; iterative methods, which try to combine and interleave the solution of the allocation
subproblems.

 22.. GGrreeeeddyy ccoonnssttrruuccttiivvee mmeetthhooddss

 A constructive method starts with an empty datapath and builds the datapath gradually
by adding functional, storage and interconnection units [2]. For each operation, the method
tries to find a functional unit on the partially designed datapath that is capable of executing
the operation and is idle during the control step in which the operation must be executed. If
there are two or more functional units that meet these conditions, we chose the one which
results in a minimal increase in the interconnection cost. On the other hand, if none of the
functional units on the partially designed datapath meet the conditions, we add a new
functional unit from the component library that is capable of carrying out the operation.
 Similarly, we can assign a variable to an available register only if its lifetime interval
does not overlap with those of variables already assigned to that register. A new register is
allocated only when no allocated register meets the above condition. When multiple alter-
natives exist for assignment of a variable to a register, we select the one that minimally
increases the datapath cost.

 3

 The greedy constructive allocation method is described in Figure 2. Let UBE be the
set of unallocated behavioral entities and DPcurrent be the partially designed datapath. The
behavioral entities being considered could be variables that have to be mapped into registers,
operations that have to be mapped into functional units, or data transfers that have to be
mapped into interconnection units. Initially, DPcurrent is empty. The procedure ADD (DP, ube)
structurally modifies the datapath DP by adding to it the components necessary to support the
behavioral entity ube. The function COST (DP) evaluates the area/performance cost of a
partially designed datapath DP. DPtemp is a temporary datapath which is created in order to
evaluate the cost ctemp of performing each modification to DPcurrent.

 DPcurrent = φ;
 while UBE ≠ φ do
 LowerCost = ∞;
 for all ube ∈ UBE do
 DPtemp = ADD (DPcurrent, ube);
 ctemp = COST (DPtemp);
 if ctemp < LowerCost then
 LowerCost = ctemp;
 BestEntity = ube;
 endif
 endfor
 DPcurrent = ADD (DPcurrent, BestEntity);
 UBE = UBE - BestEntity;
 endwhile

Figure 2. The constructive allocation algorithm.

 Starting with the set UBE, the for loop determines which unallocated behavioral en-
tity, BestEntity, requires the minimal increase in the cost when added to the datapath. This is
accomplished by adding each of the unallocated behavioral entities in UBE to DPcurrent indi-
vidually and then evaluating the resulting cost. The procedure ADD then modifies DPcurrent by
incorporating BestEntity to the datapath. BestEntity is deleted from the set of unallocated be-
havioral entities. The algorithm iterates in the while loop until all behavioral entities have
been allocated (i.e., UBE =φ).
 In order to use the greedy constructive method, we have to address two basic prob-
lems: the cost-function calculation and the order in which the unallocated behavioral entities
are mapped into the datapath. The costs can be computed as described in [1]. The order in
which unallocated entities are mapped into the datapath can be determined either statically or
dinamically. In a static approach, the objects are ordered before the datapath construction be-
gins. The ordering is not changed during the construction process. In a dynamic approach, no
ordering is done in advance. To select an operation or variable for assigning to the datapath,
we evaluate every unallocated behavioral entity in terms of the cost involved in modifying
the partial datapath, and the entity that requires the least expensive modification is chosen.
After each assignment, we reevaluate the costs associated with the remaining unbound enti-
ties. The algorithm described uses the dynamic strategy.
 The constructive method falls into the category of greedy algorithms. Although
greedy algorithms are simple, the solutions they find can be far from optimal.

 33.. DDeeccoommppoossiittiioonn mmeetthhooddss

 In order to improve the quality of the allocation results, we can use a decomposition
method, where the allocation process is divided into a sequence of independent tasks; each
task is transformed into a well-defined problem in graph theory and then solved with a
proven technique.
 While a greedy constructive method might interleave the storage, functional-unit, and
interconnection allocation steps, decomposition methods will complete one task before per-
forming another. Because of interdependencies among these tasks, no optimal solution is
guaranteed even if all the tasks are solved optimally.
 We describe one allocation technique based on the clique partitioning method from
the graph-theory. The three tasks of storage, functional-unit and interconnection allocation
can be solved independently by mapping each task to the problem of graph
clique-partitioning [3].

 Let G = (V, E) a graph, where V is the set of vertices and E the set of edges. Each edge
ei,j E links two different vertices v∈ i and vj ∈ V. A subgraph SG of G is defined as (SV, SE),
where SV V and SE = {e⊆ i,j | ei,j E, vi, vj ∈ ∈ SV}. A graph is complete if and only if for
every pair of its vertices there exists an edge linking them. A clique of G is a complete sub-
graph of G. The problem of partitioning a graph into a minimal number of cliques such that

 /* create a super-graph G' (S, E'); */
 S = φ; E' = φ;
 for each vi ∈ V do si = {vi}; S = S {si}; endfor U

 for each ei,j ∈ E do E' = E' {e'U i,j}; endfor
 while E' ≠ φ do
 /* find sIndex1, sIndex2 having most common neighbors */
 MaxCommons = -1;
 for each e'i,j E' do ∈
 ci,j = | COMMON_NEIGHBOR (G', si, sj) |;
 if ci,j > MaxCommons then
 MaxCommons = ci,j;
 Index1 = i; Index2 = j;
 endif
 endfor
 CommonSet = COMMON_NEIGHBOR (G', sIndex1, sIndex2);
 /* delete all edges linking sIndex1 or sIndex2 */
 E' = DELETE_EDGE (E', sIndex1);
 E' = DELETE_EDGE (E', sIndex2);
 /* merge sIndex1 and sIndex2 into sIndex1Index2 */
 sIndex1Index2 = sIndex1 sU Index2;
 S = S - sIndex1 - sIndex2;
 S = S {sU Index1Index2};
 /* add edge from sIndex1Index2 to super-nodes in CommonSet */
 for each si ∈ CommonSet do
 E' = E' {e'U i,Index1Index2};
 endfor
 endwhile

Figure 3. The clique partitionig algorithm.

 4

each node belongs to exactly one clique is called clique partitioning. For this problem heuris-
tic procedures are usually used.
 The algorithm in Figure 3 describes a heuristic proposed by Tseng and Siewiorek [3]
to solve the clique partitioning problem. A super-graph G' (S, E') is derived from the original
graph G (V, E). Each node si S is a super-node that can contain a set of one or more verti-
ces vi V. E' is identical with E except that the edges in E' link super-nodes in S. A su-
per-node si S is a common neighbor of the two super-nodes sj and s

∈
∈

∈ k S if there exists
edges e

∈
i,j and ei,k E'. The function COMMON_NEIGHBOR (G', si, s∈ j) returns the set of su-

per-nodes that are common neighbors of si and sj in G'. The procedure DELETE_EDGE(E',
si) deletes all edges in E' which have si as their end super-node.
 Initially, each vertex vi V of G is placed in a separate super-node si S of G'. At
each step, the algorithm finds the super-nodes s

∈ ∈
Index1 and sIndex2 in S such that they are

connected by an edge and have the maximum number of common neighbors. The set
CommonSet contains all the common neighbors of sIndex1 and sIndex2. All edges originating
from sIndex1 or sIndex2 in G' are deleted. These two super-nodes are merged into a single
super-node, sIndex1Index2, which contains all the vertices of sIndex1 and sIndex2. New edges are
added from sIndex1Index2 to all the super-nodes in CommonSet. The above steps are repeated
until there are no edges left in the graph. The vertices contained in each super-node si ∈ S
form a clique of the graph G.
 Figure 4 illustrates the above algorithm. In the graph of Figure 4(a), V = {v1, v2, v3,
v4, v5} and E = {e1,3, e1,4, e2,3, e2,5, e3,4, e4,5}. Initially, each vertex is placed in a separate su-
per-node (s1 .. s5 in Figure 4(b)). The edges e'1,3, e'1,4 and e'3,4 of the super-graph G' have the
maximum number of common neighbors among all edges (Figure 4(b)). The first edge, e'1,3,
is selected and the following steps are carried out to yield the graph of Figure 4(c):

1. s4, the only common neighbor of s1 şi s3 is put in CommonSet.
2. All edges are deleted that link either super-nodes s1 or s3 to other super-nodes (i.e.,

e'1,3, e'1,4, e'2,3 and e'3,4).
3. Super-nodes s1 and s3 are combined into a new super-node s13.
4. An edge is added between s13 and each super-node in CommonSet; i.e., the edge

e13,4 is added.
 On the next iteration, s4 is merged into s13 to yield the super-node s134 (Figure 4(d)).
Finally, s2 and s5 are merged into the super-node s25 (Figure 4(e)). The cliques are s134 = {v1,
v3, v4} and s25 = {v2, v5} (Figure 4(f)).
 In order to apply the clique partitioning technique to the allocation problem, we have
to first derive the graph model from the input description. Consider as an example the register
allocation. The primary goal of the register allocation is to minimize the register cost by
maximizing the sharing of common registers among variables. To solve the register alloca-
tion problem, we construct a graph G = (V, E), in which every vertex vi V uniquely repre-
sents a variable vi and there exists an edge e

∈
i,j ∈ E if and only if variables vi and vj can be

stored in the same register (i.e., their lifetime intervals do not overlap). All the variables
whose representative vertices are in a clique of G can be stored in a single register. A clique
partitioning of G provides a solution for the datapath storage-allocation problem that requires
a minimum number of registers.

 5

 6

Figure 4. Clique partitioning.

 Figure 5 shows a solution of the register-allocation problem using the clique par-
titioning algorithm.
 Both functional-unit allocation and interconnection allocation can be formulated as a
clique partitioning problem. For functional-unit allocation, each graph vertex represents an
operation. An edge exists between two vertices if two conditions are satisfied:

1. the two operations are scheduled into different control steps, and
2. there exists a functional unit that is capable of carrying out both operations.

 A clique-partitioning solution of this graph would yield a solution for the func-
tional-unit allocation problem. Since a functional unit is assigned to each clique, all opera-
tions whose representative vertices are in a clique are executed in the same functional unit.
 For interconnection-unit allocation, each vertex corresponds to a connection between
two units. An edge links two vertices if the two corresponding connections are not used con-
currently in any control step. A clique partitioning solution of such a graph implies partition-
ing of connections into buses or multiplexers. All connections whose representative vertices
are in the same clique use the same bus or multiplexer.

Figure 5. Register allocation using clique partitioning.

 Although the clique partitioning method applied to storage allocation can minimize
the storage requirements, it totally ignores the interdependence between storage and intercon-
nection allocation. Paulin and Knight [4] extend the previous method by augmenting the
graph edges with weights that reflect the impact on interconnection complexity due to regis-
ter sharing among variables. An edge is given a higher weight if sharing of a register by the
two variables corresponding to the edge's two end vertices reduces the inetrconnection cost.
On the other hand, an edge is given a lower weight if the sharing causes an increase in the
interconnection cost. The modified algorithm prefers cliques with heavier edges. Therefore,
variables that share a common register are more likely to reduce the interconnection cost.

 44.. IItteerraattiivvee rreeffiinneemmeenntt mmeetthhooddss

 Given a datapath synthesized by constructive or decomposition methods, its quality
can be improved by reallocation. Considering the functional-unit reallocation, the inter-
connection cost can be reduced by just swapping the functional-unit assignments for a pair of
operations. Changing some variable to register assignments can be advantageous too.
 The main issues in the iterative refinement are the types of modifications to be applied
to a datapath, the selection of a modification type during an iteration and the termination cri-
teria for the refinement process.

 7

 The most simple approach could be a simple assignment exchange. In this method,
the modification to a datapath is limited to a swapping of two assignments (variable pairs or
operation pairs). Assume that only operation swapping is used for the iterative refinement.
The pairwise exchange algorithm performs a series of modifications to the datapath in order
to decrease the cost of the datapath. First, all possible swappings of operation assignments
scheduled into the same control step are evaluated in terms of the gain in the datapath cost
due to a change in the interconnections. Then, the swapping that results in the largest gain is
chosen and the datapath is updated to reflect the swapped operations. This process is repeated
until no amount of swapping results in a positive gain (a futher reduction in the datapath
cost).
 The algorithm in Figure 6 describes the pairwise exchange method [1]. Let DPcurrent
represent the current datapath structure and DPtemp represent a temporary datapath created to
evaluate the cost of each operation assignment swap. The function COST (DP) evaluates the
cost of the datapath DP. The datapath costs of DPcurrent and DPtemp are represented by ccurrent
and ctemp. The procedure SWAP (DP, oi, oj) exchanges the assignments for operations oi and oj
of the same type and updates the datapath DP accordingly. In each iteration of the innermost
loop, CurrentGain represents the reduction in datapath cost due to the swapping of operations
in that iteration. BestGain keeps track of the largest reduction in the cost attainable by any
single swapping of operations evaluated so far in the current iteration.

 Suppose operation oi has been assigned to functional unit fuj and one of its input vari-
ables has been assigned to register rk. The removal of operation oi from fuj will not eliminate
the interconnection from rk to fuj unless no other operation that has been previously assigned
to fuj has its input variables assigned to rk. The iterative refinement process has to approach
the problem by considering multiple objects simultaneously. We must take into account the
relationship between entities of different types. For example, the gain obtained in operation
reallocation may be much higher if its input variables are also reallocated simultaneously.

 repeat
 BestGain = −∞;
 ccurrent = COST (DPcurrent);
 for all control steps s do
 for each oi, oj of the same type scheduled into s, i ≠ j do
 DPtemp = SWAP (DPcurrent, oi, oj);
 ctemp = COST (DPtemp);
 CurrentGain = ccurrent - ctemp;
 if CurrentGain > BestGain then
 BestGain = CurrentGain;
 BestOp1 = oi; BestOp2 = oj;
 endif
 endfor
 endfor
 if BestGain > 0 then
 DPcurrent = SWAP (DPcurrent, BestOp1, BestOp2);
 endif
 until BestGain 0 ≤

Figure 6. The pairwise exchange algorithm.

 8

The strategy of reallocating a group of different types of entities can be as simple as a greedy
constructive algorithm or as sophisticated as a branch-and-bound search.

 55.. CCoonncclluussiioonnss

 In this paper, we described the datapath allocation problem, which consists of four
basic subtasks: unit selection, functional-unit assignment, storage assignment and intercon-
nection assignment. We discussed the interdependencies among the subtasks that can be per-
formed in an interleaved manner using a greedy constructive method, or sequentially, using a
decomposition method. We also showed how to iteratively refine the datapath by a selective,
controlled reallocation process.
 The greedy constructive method is the simplest amongst all the approaches. It is easy
to implement and computationally inexpensive, but is likely to produce inferior designs. The
clique partitioning method solve the allocation tasks separately, and is applicable to storage,
functional and interconnection unit allocation. The iterative refinement method achieves a
high quality design at the expense of more computation time.
 Future research in datapath allocation will need to improve the allocation algorithms
in several directions. First, the allocation algorithms can be integrated with the scheduler in
order to take advantage of the combination between scheduling and allocation. The number
of control steps and the required number of functional units cannot accurately reflect the de-
sign quality. A fast allocator can quickly provide the scheduler with more information than
just these two numbers. Consequently, the scheduler will be able to make more accurate deci-
sions. Second, the algorithms must use more realistic cost functions based on physical design
characteristics. Finally, allocation of more complex datapath structures must be incorporated.
For example, the variables and arrays in the behavioral description could be partitioned into
memories, a task that is complicated by the fact that memory accesses may take several clock
cycles.

 RReeffeerreenncceess

[1] D. D. Gajski, N. D. Dutt, C. H. Wu, Y. L. Lin: High-Level Synthesis. Introduction to Chip
and System Design. Kluwer Academic Publishers, 1992.

[2] K. Kucukcakar, A. C. Parker: Data Path Tradeoffs using MABAL. Proceedings of the 24th
Design Automation Conference, pp. 210-215, 1990.

[3] C. J. Tseng, D. P. Siewiorek: Automated Synthesis of Data Paths on Digital Systems, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 5, no. 3,
pp. 379-395, July 1986.

[4] P. G. Paulin, J. P. Knight: Force-Directed Scheduling for the Behavioral Synthesis of
ASIC's, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 8, no. 6, pp. 661-679, June 1989.

[5] D. D. Gajski, F. Vahid, S. Narayan, J. Gong: Specification and design of Embedded Sys-
tems. P T R Prentice Hall, 1994.

 9

