

TECHNOLOGY MAPPING FOR THE ATMEL FPGA CIRCUITS

Zoltan Baruch
E-mail: Zoltan.Baruch@cs.utcluj.ro

Octavian Creţ
E-mail: Octavian.Cret@cs.utcluj.ro

Kalman Pusztai
E-mail: Kalman.Pusztai@cs.utcluj.ro

Computer Science Department, Technical University of Cluj-Napoca,
26-28 Bariţiu St., 3400 Cluj-Napoca, Romania

ABSTRACT

 In this paper we present a technology mapping algorithm for the ATMEL 6002 FPGA cir-
cuits. The algorithm tries to balance cell utilization with the goal of producing routable map-
pings. The complexity of the technology mapping step may be considerably reduced if the
internal representation generation is very well conceived. We implemented a program for in-
ternal representation generation, which leads to a very favorable starting point for the technol-
ogy mapping program, eliminating the need for the partitioning and decomposition steps. Our
algorithm takes into account the maximum capacity of the routing channels of the FPGA cir-
cuit and performs the partitioning step only if necessary (if the fan-out of a cell is larger than
this capacity).

 1. INTRODUCTION

 A Field Programmable Gate Array (FPGA) consists of a prefabricated array of logic
blocks and routing resources which can be programmed to perform a particular function. They
provide a new approach to Application Specific Integrated Circuits (ASIC) implementation
that features both large scale integration and user programmability.
 The level of integration available in FPGA's is large enough to make manual circuit design
impractical and therefore automated logic synthesis is essential for the efficient design of
FPGA circuits. Logic synthesis, in general, takes a functional description of the desired circuit,
and uses the set of circuit elements available to produce an optimized circuit. For an FPGA the
set of available circuit elements consists of the array of logic blocks.
 To implement a logic function with an FPGA circuit, one must perform the following tasks:
logic minimization, technology mapping, placement and routing. Except for logic minimi-
zation, to which traditional techniques for cell-based designs are still applicable, all tasks must
take into account the features that are unique to FPGA's.

 Technology mapping is the logic synthesis task that is directly concerned with selecting
the circuit elements used to implement the optimized circuit. Most approaches focus on using
circuit elements from a limited set of simple gates.
 The routing resources in FPGA architectures must be balanced against cell resources in or-
der to accommodate a wide spectrum of designs. Although the number of cells available in an
FPGA circuit is a hard constraint, minimizing the number of cells is pointless if the mapped
design cannot be routed. Typically, only 80% of the cells can be allocated in a mapping that is
routable.
 In this paper, we present a mapper that tries to balance cell utilization with the goal of pro-
ducing routable mappings.

 2. PREVIOUS WORK

 In early logic synthesis systems, such as SOCRATES and LSS, technology mapping is per-
formed by a series of local transformations to a circuit netlist. These systems include rule-
based expert systems used to select the sequence of local transformations. The netlist is ini-
tially constructed by implementing each node in the original network by a single circuit ele-
ment. The area and delay of the circuit are then optimized by selecting the appropriate
sequence of transformations [5].
 An important advance in technology mapping was the formalization introduced by Keutzer
in DAGON and used in misII: the set of available circuit elements is represented as a library of
functions and the construction of the optimized circuit is divided into three sub-problems: de-
composition, matching and covering [6].
 In ASIC implementation technologies that use cell generators to create circuit elements, the
set of available circuit elements consists of a parameterized family of cells rather than a spe-
cific library of functions. This cell family contains all members of a class of functions, such as
AndOrInverts (AOIs), that do not exceed parameters defining the family. Library-based tech-
nology mapping is inappropriate for cell generator technologies when the number of cells in
the family is too large to be practically expressed in a library. The key to cell generator tech-
nology mapping is the completeness of the cell family. This simplifies the matching of net-
work sub-functions to circuit elements. If a sub-function does not exceed the parameters
defining the family, it can be implemented by a cell in the family. In addition, simplified
matching makes it possible to improve the final circuit by combining decomposition and
matching.
 With the increase of the level of integration available in FPGA chips, each logic block may
consist of a k-LUT (a 1-bit memory with k inputs and one single output, implementing the
truth table of the logic function). Most of the LUT technology mappers either start from a cir-
cuit decomposed into small gates with no more than k inputs or they decompose a given cir-
cuit into such a form. The initial network is thus already feasible because each node can be
implemented by a k-input LUT. The objective is then to obtain another feasible network with
less LUT's. There are several published technology mappers (mis-pga, xmap, chortle, Flow-
Map, Tech-Map [3]).

 3. BACKGROUND

 The algorithms for technology mapping are based on Boolean techniques for matching,
i.e., for the recognition of the equivalency between a portion of a network and library cells.
 The computer-aided synthesis of a logic circuit involves two major steps: the optimization
of a technology-independent logic representation, using Boolean and/or algebraic techniques,
and technology mapping. Logic optimization is used to modify the structure of a logic des-
cription, such that the final structure has a lower cost than the original. Logic optimization has
traditionally been done before technology-dependent operations, and in the following is as-
sumed to have already taken place.
 Technology mapping is the task of transforming an arbitrary multiple-level logic repre-
sentation into an interconnection of logic elements from a given library of elements. Technol-
ogy mapping is a crucial step in the synthesis of logic circuits for different technologies, such
as sea-of-gates, gate arrays, or standard cells. The quality of the synthesized circuits depends
heavily on this step.
 The technology mapping transformation implies two distinct operations: recognizing logic
equivalence between two logic functions, and finding the best set of logically equivalent gates
whose interconnection represents the original circuit. The first operation, called matching, in-
volves equivalence checking and input assignment. Checking for logic equivalence has been
proved to be NP-complete. Input assignment is also computationally complex. The second
operation, called covering, involves finding an alternate representation of a Boolean network
using logic elements that have been selected from a restricted set [6].
 The two operations intrinsic to technology mapping, matching and covering, are compu-
tationally difficult. For this reason, several approaches to technology mapping have been pur-
sued and implemented in research and commercial mapping tools (rule-based technology
mappers and heuristic algorithms). In this paper, we consider an algorithmic approach to the
technology mapping problem.
 Most algorithmic approaches to technology mapping attack the problem by dividing it into
sub-tasks. First, Boolean networks are partitioned into an interconnection of single-output
sub-networks, with the property that each internal vertex has unit outdegree (i.e., fan-out).
Then, each sub-network is decomposed into an interconnection of two-input functions (e.g.,
AND, OR, NAND, or NOR). Each sub-network is modeled by a directed acyclic graph (DAG),
called a subject graph. Finally, each subject graph is then covered by an interconnection of
library cells, to produce the final circuit.
 In the following sections we present the major tasks in technology mapping.

3.1 Partitioning

 Partitioning is a heuristic step that transforms the technology mapping problem for multi-
ple-output networks into a sequence of sub-problems involving single-output networks. Parti-
tioning is performed during the initial setup phase and as a part of the iterative improvement
of a mapped network. We treat here the first case.
 The initial partitioning scheme is achieved by grouping vertices into single-output sub-
networks, with the property that each outgoing edge of an internal vertex reconverges at or
before the output vertex of the sub-network. Partitioning is also used to isolate the combina-
tional portion of a network from the sequential elements and from the I/O's, where ad-hoc
techniques for mapping are used.

 3

 After the partitioning step, the circuit is represented by a set of combinational circuits that
can be modeled by subject graphs (single-output Boolean networks).

3.2 Decomposition

 Decomposition is applied to each subject graph after partitioning. It yields an equivalent
subject graph, where each vertex is a base function, e.g., a two-input AND/OR/NAND/NOR
function. Decomposition provides a mapping solution for libraries that include the base func-
tions (i.e., almost all libraries). Decomposition also increases the granularity of the network,
which is beneficial for the covering step.

3.3 Network Covering

 At this point, the logic circuit to be mapped has been partitioned into subject graphs [Γ1, ...
Γk], that have been decomposed. We denote by Γf a subject graph whose single-output vertex
is vf. We consider here the covering of a subject graph Γf that optimizes some cost criteria
(e.g., area or timing). For this purpose we use the notions of cluster and cluster function [6].
 A cluster is a connected sub-graph of the subject graph Γf, having only one vertex with
zero out-degree vi (i.e., a single output). It is characterized by its depth (longest directed path
to vi) and its number of inputs. The associated cluster function is the Boolean function ob-
tained by collapsing the Boolean expressions associated with the vertices into a single Boo-
lean function. All possible clusters rooted at vertex vj of Γf and their functions are denoted by
{κi.1, ..., κi.n}.

 Example. For the following Boolean network:

f = j + t
j = xy
x = e + z (1)
y = a + c

dcz +=
there are six possible cluster functions containing the vertex vj of the subject graph Γf:

κi.1 = xy
κi.2 = x(a + c)
κi.3 = (e + z)y
κi.4 = (e + z)(a + c) (2)
κi.5 = (dce ++) y
κi.6 = (dce ++) (a + c)

 The covering algorithm attempts to match each cluster function κi.k to a library element. A
cover is a set of clusters matched to library elements that cover the subject graph. A cover
may optimize the overall area and/or timing. The cost of a cover is computed by adding the
cost of the clusters corresponding to the support variables in the cluster function κi.k to the
cost of the library element, for any permutation of its variables.

 4

 4. OUR APPROACH

 4.1 Internal representation generation

 The starting point is the design specification in the ABEL-HDL hardware description lan-
guage. The .ABL source file is compiled and an equations-based specification is obtained, in
the PDS format (the .PDS file is generated using the Easy-ABEL development system).
 Our program generates the design netlist, first by building a component graph. In this
graph, the vertices represent basic logic components (e.g., 2-input logic gates, flip-flops, tri-
state buffers, etc.), and the edges represent the nets (interconnections between basic logic
components). The basic components were chosen to be the simplest possible, because the
logical network will be used in the technology mapping step, and it corresponds perfectly to
the type of FPGA chip used (Atmel 6002).
 Each equation in the .PDS file is parsed and a rooted graph is generated, the root being the
vertex corresponding to the output signal for the parsed equation. A distinction is made be-
tween combinatorial and registered assignments.
 After building each equation's graph, it must be appended to the general circuit graph. A
very important step is redundancies elimination, resulting in a considerable amount of verti-
ces being eliminated from the graph; this operation is done when parsing each equation.
 Finally, according to the pin list in the .PDS file, input and output pins are identified. The
program makes the distinction between output pins and internal nodes, which are signals used
only internally, important for optimization.
 For example, for the circuit given by the following equations:

Q:= (A∗B+C)
Q.CLKF = (CLOCK)

Q.TRST = (/OE) (3)
Q.SETF = (D + E)

Q.RSTF = (F)

the generated logical network is shown in Figure 1.

 The corresponding circuit is presented in Figure 2.

A

 :=

C

B
 *

+

CLOCK

 Q

/

OE

(output node)

D

E
+ F

Figure 1. Internal representation generated from

the equations (3).

 5

A

B
C D

CLK R

 S Q

Q

Q

CLOCK

OE

D
E

F

Figure 2. The corresponding circuit for the graph in Figure 1.

 The program generates a file containing a netlist. It contains an adjacency matrix, where
aij = 1 if there is a connection between the nodes i and j (an edge from vertex i to vertex j or
from j to i inside the graph).

 4.2 The Technology Mapping Algorithm

 Our algorithm uses the logical network – obtained after the internal circuit representation
step – as a starting point. This logical network has some interesting properties which will be
used by the algorithm.
 As mentioned in Section 3, the first steps in technology mapping are partitioning and de-
composition. Here we do not have to implement these steps, because our program has already
generated a logical network which has the required properties. We do not partition again the
logical network after its generation, because, as mentioned in Section 4.1, the redundancies
have been eliminated during the generation. In addition, the logical network is already de-
composed (i.e., it contains only the basic logic components).
 Therefore, the only step that must be implemented is the network covering (which includes
the Boolean matching). For the network covering, we have to take into consideration the li-
brary of available logical cell's configurations in the Atmel 6002 FPGA chip.
 An important aspect that we have taken into account is that the technology mapping step
will be followed by the placement step and by the routing one. If the number of logic cells
generated by the technology mapping step is too large, that will considerably increase the
complexity of the placement step.
 As can be noticed, there has to be a balance between:

• generating as few cells as possible for reducing the complexity of the placement
step, and

• generating enough cells so that the mapped design will be routable.

 In the internal representation, a vertex has one of the following types:

• input node
• output node
• D flip-flop
• logic gate (AND, OR, or INVERT)
• output tri-state buffer

 6

 In addition to the given types, there are a few more types which had to be introduced be-
cause of the particularities of the Atmel library of logic configurations. Therefore, the program
detects the EXCLUSIVE-OR (XOR) gates and the 2-to-1 MULTIPLEXER (MUX)
configurations embedded in the components graph. These configurations will be used in the
effective technology mapping step.
 It is important to start from the outputs of the design and execute the mapping process re-
cursively towards the inputs, because in this approach the result is optimal (we tested this ap-
proach and the approach in which the starting point is a random point inside the graph, and
the results were considerably better in the former case).
 An important feature of the Atmel library of logic cells is that there are some complex cells
which have sub-configurations, as shown in Figure 3. Consequently, after the first pass, the
program has to merge together those configurations which can be mapped into the same cell
(for example, the cluster functions f = A ∗ B and Q:= A ⊕ B are mapped in the first cell (Figure
3.a), and g = A ⊕ B, h = /(A ∗ B) – in the second cell (Figure 3.b). Of course, if there are other clus-
ter functions ‘A ⊕ B’, it will not be possible to map them into the cell 3.a, because the only output of
the cell sub-configuration is connected to the D input of the D flip-flop.
 Therefore, after detecting and introducing the XOR and MUX configurations, the program
starts from the outputs towards the inputs and maps the cluster functions (logic sub-trees) into
the configurations or sub-configurations of the logic cells from the Atmel 6002 library. After
that comes an optimization phase in the sense that the mapped structure is scanned and the
program merges together the sub-configurations of the same cell, if possible. For example, we
can merge together the cluster functions g1 = A ⊕ B and h = /(A ∗ B) into the logic cell from
Figure 3.b, but we could not do the same with the cluster functions g2 = A ⊕ C and h = /(A ∗ B),
because the signal C is not shared by the two sub-configurations of the cell, so g2 and h will be
mapped in two different instances of this type of cell.

 Every cluster functions can be mapped in several sub-configurations. Every time a configuration
is chosen, the program stores all the other possible mappings of that cluster function. For example,
the cluster function f = A ∗ B will be mapped into the cell of Figure 3.a (the right-hand-side sub-
configuration), but the program will also store the cell of Figure 3.c as an alternative for mapping the
AND function. After the first mapping, the optimization phase will try to merge cells and if two clus-

a) b) c)

Figure 3. Three examples of Atmel logic cells with
sub-configurations

 7

ter functions can not be merged together in the same cell, then there will be taken into consideration
the alternatives for each cluster function, and the merging process is restarted. That ensures that we
obtain the best possible fit for the given library of components.
 A very important aspect is that the mapped structure will has to be routable. It is not
enough to determine which pairs of cells must be connected, we must supply more informa-
tion. For example, simply saying that the cell of Figure 3.a must be connected to the cell of
Figure 3.b does not provide enough information, because we must know also which sub-
configurations are in fact connected, otherwise the routing program will be able to route those
signals correctly. In order to satisfy these requirements, the output file format generated by
our program contains in addition the following information: for each vertex in the newly gen-
erated cell graph (each vertex is a cell from the Atmel library) the used sub-configurations are
specified; for each edge in the cell graph, the start sub-configuration and the destination sub-
configuration are explicitly stored. That allows the following programs in the design process
(the placement and the routing ones) to properly do their job.
 A simple example: suppose we have to map the following cluster functions:

f = A ∗ B
g = A ⊕ C (4)
h = /(A ∗ C)
k = C ∗ / B

 After the first pass, the mappings will be: f – in the cell of Figure 3.a, g and h – in the cell
of Figure 3.b, k – in the cell of Figure 3.c. But after the optimization phase, the mappings will
be: f and k - in the cell of Figure 3.c, g and h - in the cell of Figure 3.b, because f and k share
the B signal, and g and h share both A and C signals just the way the cell structure requires it.
This way we reduced the number of necessary cells from three to two.
 Following is the description of the technology mapping algorithm.

Algorithm 1. Technology mapping.

 forall input nodes
 map nodes to input pads;
 endfor;

 forall tri-state output buffers
 find successor (node);
 map tri-state output buffer to an output pad;
 endfor;

 forall remaining output nodes
 map node to an output pad;
 endfor;

 forall D flip-flops
 map node to one cell;

assign cell to the same column; /* the clock is distributed on columns */
 endfor;
 forall mapped output pads

 8

 recurse (sub-tree (node))
boolean_match (node, library_element); /* based on node’s label and*/

 /* library_element’s label */
 node = current_node;
 endfor;

 forall nodes in the graph /* now all the nodes are mapped – this is the optimization */

 /* phase */
 forall other_nodes in the graph

merge(node, alternatives, other_node) /* attempts to merge the nodes into the*/
 /* same cell */
endfor;

 endfor;

 5. CONCLUSIONS

 Technology mapping is a major step in design automation. It has a considerable influence
on the placement and routing steps, which may be infeasible if the technology mapping step is
not appropriately completed.
 The technology mapping step's complexity may be considerably reduced if the internal
representation generation is very well conceived. We implemented our own program for the
internal representation generation, which leads to a very favorable starting point for the tech-
nology mapping program, eliminating the need for the partitioning and decomposition steps.
In fact, we can consider the internal representation generation as a part of the technology
mapping step.
 Our algorithm has two phases: in the first one, the graph is recursively traversed and a first
mapping is done (the cluster functions are assigned to cells sub-configurations). In the second
phase, an optimization is done, by merging together into the same cell the cluster functions
which have been mapped in sub-configurations of the same cell, if possible – the condition is
that the sub-configurations share a given number of signals, depending on the type of the
logic cell).
 The generated output file contains not only the technology mapping information, but also
indispensable information for the programs that will follow in the automatic design flow (the
placement and the routing programs).

 6. REFERENCES

[1] Atmel Corp., (1995) “Configurable Logic. PLD, FPGA, Gate Array”, Data Book”.
[2] Baruch, Z., Creţ, O., Pusztai, K., (1997) “Partitioning for FPGA Circuits”, in Proceedings

of MicroCAD'97 International Computer Science Conference, p113-116, Miskolc, Hun-
gary.

[3] Chang, S. C., Marek-Sadowska, M., Hwang, T., (1996) “Technology Mapping for LUT
FPGA's Based on Decomposition of Binary Decision Diagrams”, in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 10/96, p1226-1235.

 9

[4] Chang, S. C., Tsay, Y. W., Hwang, T., Wu, A. C. H., Lin, Y. L., (1995) ‘Technology
Mapping for LUT FPGA's Based on Decomposition of Binary Decision Diagrams”, in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9/95,
p1076-1083.

[5] Francis, R. J., (1993) “Technology Mapping for Lookup-Table Based Field Programmable
Gate Arrays”, Ph.D. Thesis, University of Toronto, Canada.

[6] Mailhot, F., de Micheli, G., (1993) “Algorithms for Technology Mapping Based on Binary
Decision Diagrams and on Boolean Operations”, in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 5/93, p599-620.

[7] Micheli, G., (1994) “Synthesis and Optimization of Digital Circuits”, McGraw-Hill, New
York.

 10

