

PARTITIONING FOR FPGA CIRCUITS

Zoltan Baruch1, Octavian Creţ2, Kalman Pusztai3
1 Lecturer, Technical University of Cluj-Napoca, Romania
2 Assistant, Technical University of Cluj-Napoca, Romania

3 PhD, Professor, Technical University of Cluj-Napoca, Romania

1. INTRODUCTION

 In computer-aided design, partitioning is the task of clustering objects into groups so
that a given objective function is optimized with respect to a set of design constraints. Par-
titioning is used frequently in physical design; for example, at the layout level it is used to
find strongly connected components that can be placed together in order to minimize the
layout area and propagation delay. In the layout synthesis process of FPGA circuits, the
partitioning is used in the placement step, which assigns each node of the Boolean network
to a specific logic block in the FPGA device. Partitioning can also be used to divide a large
design into several chips to satisfy packaging constraints.
 The partitioning techniques are based on a graph model of the design. Application of
these basic partitionig methods requires the mapping of design structures into graph mo-
dels. Each node in the graph represents a physical component, and each edge represents a
physical connection between two components. The main objective of partitioning is to de-
compose a graph into a set of subgraphs to satisfy the given constraints, such as the size of
the subgraph, while minimizing an objective function, such as the number of edges con-
necting two subgraphs.
 The graphs can be partitioned for performance or for physical size. When partitioning
for performance, we cluster graph nodes on critical paths while minimizing communica-
tion defined by the number of times control or data is passed between clusters. When parti-
tioning for physical cost, we cluster graph nodes by the type of operations they perform
while minimizing the number of wires between different clusters [1]. The difference be-
tween partitioning for performance and for physical cost can be explained by its efficiency
in time and space. Partitioning for performance optimizes time utilization, while partition-
ing for physical cost optimizes component utilization.
 In general, there are two basic partitioning techniques: constructive methods and itera-
tive improvement methods. The constructive method partitions the graph by starting with
one or more seed nodes and adding nodes to the seeds one at a time. The iterative im-
provement method starts with an initial partition, and then succesively improves the results
by moving objects between partitions. We describe in the following section an iterative
improvement method: min-cut partitioning.

2. THE MIN-CUT PARTITIONING

 The min-cut partitioning algorithm (also known as the Kernighan-Lin algorithm) parti-
tions a given graph G = (V, E) of 2n nodes into two equal subgraphs of n nodes minimiz-
ing the connections between the two subgraphs. The algorithm starts with an arbitrary par-
tition of V into two subsets V1 and V2. On each iteration the algorithm interchanges k pairs
(k ≤ n) of vertices between two sets. It stops when no further improvement is possible.
 Consider the partitioning of a graph G = (V, E) with 2n vertices into two subgraphs G1
and G2 of n vertices each. The cost of each edge eij∈E is denoted by cij. For each vertex

 1

vi∈V1, we define the external cost as:

EC ci
v Vk

=
∈

ik∑
2

 (1)

and the internal cost as:

IC ci
v Vm

=
∈

im∑
1

 (2)

 The difference between external and internal costs is denoted by Di = ECi - ICi. Simi-
larly, we can define ECj, ICj and Dj for each vertex vj∈V2.
 Let cij define the number of edges between vi and vj. For any two vertices vi∈V1 and
vj∈V2, we define the gain of interchanging vi and vj as:

gain_cut (vi, vj) = Di + Dj - 2cij. (3)

 The cost cij contributes to both external costs ECi and ECj. After interchanging vi and
vj, the contribution of those edges to the external cost remains the same.
 The Kernighan-Lin algorithm interchanges a favorable group of vertices instead of in-
terchanging one pair of vertices at a time. The algorithm first arbitrarily partitions vertices
into two groups of equal size. Then it computes the external costs, internal costs and the
differences between these costs for all vertices. The algorithm finds a pair of vertices, one
from each group, that generates the maximal gain through interchange. It stores the gain,
readjusts the cost and locks the selected pair to prevent it from being interchanged again.
This procedure continues until all n vertices in each subset are paired and a sequence of
gains, gain_cut1, ..., gain_cutn, is generated. The total gain of interchanging the first k pair
of vertices, where 1≤ k ≤ n, is calculated as:

GAIN CUT k gain cuti
i

k
_ () _=

=
∑

1
 (4)

 The algorithm interchanges in reality only the first k pairs of vertices for which
GAIN_CUT(k) is maximal. If for all k, GAIN_CUT(k) is equal to or less than zero, the al-
gorithm stops.
 This two-way partitioning algorithm can be extended to implement multi-way partitio-
ning. Given the problem of partitioning a set S into m subsets, the multi-way partitioning
algorithm executes two-way partitionings repeatedly to produce m subsets.

3. CONGESTION-BALANCED PARTITIONING

 The only metric in the cost function in traditional partitioning algorithms, applied for
the placement of FPGA circuits, is the cut size. However, the cut size alone is not a good
metric for architectures with limited routing resources, such as FPGAs and CPLDs. Since
the algorithm tries to place connected blocks close together, it is likely to generate a place-
ment with congested areas, where a feasible routing is difficult to find. In other words, it is
possible to obtain a partition with a small cut size, with one portion being heavily
connected and the other being very sparse. For FPGA applications, min-cut based

 2

placement algorithms must be modified to take into account not only the sizes of the two
portions, the size of the network crossing the cut-line, but also the distribution of intercon-
nections within the two portions.
 We describe a modified min-cut bi-partitioning algorithm, that not only balances the
size of the two portions, but also evenly distributes the connections among them. We con-
sider that multiple terminal nets are represented by a hyper-graph model. In general, to
connect k terminals, max{k-1, 0} connecting paths are needed. We define the unbalancing
number of a net to be the number of connecting paths needed to connect all the terminals
in the left portion minus the number of connecting paths needed in the right portion. The
unbalancing number of a bi-partition is defined to be the sum of the unbalancing numbers
of all nets. The absolute value of the unbalancing number of a bi-partition counts the dif-
ference between the numbers of connecting paths needed in the left portion and the right
portion [2].
 Given an initial bi-partition, we can compute its unbalancing number in O(|T|) time by
examining all the nets, where T is the set of all terminals. We assume that there are more
interconnecting paths in the left portion than in the right portion, that is, the unbalancing
number of this bi-partition is positive. If a node v is moved from the left portion to the
right portion, we can compute f(v, e), the amount by which the unbalancing number of the
net e decreases, by examining the set of all neighbors of v, N(v).
 The following cost function is used to incorporate the effect of congestion distribution
in a given partition:

Cut_size + WEIGHT × Unbalancing number

where WEIGHT is a constant. If WEIGHT is set to zero, then the algorithm is the same as
the conventional min-cut partitioning algorithm. By setting the value of WEIGHT appro-
priately, we can control the importance of balancing the congestion.
 We consider a graph G = (V, E) with 2n vertices. The array Locked stores the value 0 if
a vertex is available for interchange and 1 if the vertex is locked. Procedure PART_INIT
(G, n) selects a subgraph of size n. Procedure EXCHANGE (V1, V2, vi, vj) interchanges ver-
tices vi∈V1 and vj∈V2 in two subgraphs G1 and G2 respectively. The array gain stores the
gain for each pair of vertices, and arrays max1 and max2 store the indices of these vertices.
Array GAIN stores the accumulated gain for a sequence of n interchanges. Variables bestk
and bestGAIN store the index and value of the maximal accumulated gain, respectively.

 Algorithm 1. Congestion-balanced partitioning.

 G1 = PART_INIT (G, n);
 G2 = G - G1;
 bestGAIN = ∞;
 while bestGAIN > 0 do
 unb_nr = UNB_NUMBER (n)
 bestGAIN = 0; bestk = 0;
 for i = 1 to 2n do Locked (i) = 0; endfor
 for k = 1 to n do
 gain (k) = 0; GAIN (k) = 0;
 /* Find the best pair of vertices to interchange */
 for all vi ∈ G1 AND Locked (i) = 0 do

 3

 for all vj ∈ G2 AND Locked (j) = 0 do
 gain_cut = Di + Dj - 2 cij;
 unb_nr_new = unb_nr - ECi - ICi + ECj + ICj;
 gain_unb = | unb_nr - unb_nr_new |;
 if (gain_cut + WEIGHT * gain_unb) > gain (k) then
 gain (k) = gain_cut + WEIGHT * gain_unb;
 max1 (k) = i; max2 (k) = j;
 endif
 endfor
 endfor
 Locked (max1 (k)) = Locked (max2 (k)) = 1;
 /* Update the gain after tentative of interchanging */
 for i = 1 to 2n do
 if vi ∈ G1 AND Locked (i) = 0 then
 Di = Di - ci,max2(k) + ci,max1(k);
 endif
 if vi ∈ G2 AND Locked (i) = 0 then
 Di = Di - ci,max1(k) + ci,max2(k);
 endif
 endfor
 /* Compute accumulated gain */
 GAIN (k) = GAIN (k-1) + gain (k);
 if GAIN (k) > bestGAIN then
 bestk = k; bestGAIN = GAIN (k);
 endif
 endfor
 /* Interchange k pairs of vertices */
 for k = 1 to bestk do
 (G1, G2) = EXCHANGE (V1, V2, vmax1(k), vmax2(k));
 endfor
 endwhile

4. CONCLUSIONS

 The presented algorithm has been implemented for the Atmel 6002 FPGA circuit. First,
the description of a system, given in the ABEL-HDL language, has been compiled into a
set of equations. Then, from this set of equations, a graph has been generated. This graph
has been bi-partitioned in a top-down fashion, in accordance with a recursive application
of the congestion balanced bi-partitioning.
 The algorithm produces good results, in small amounts of CPU time. In addition to a
reduction in the maximum cut size, we also observed that the cut sizes are distributed more
uniformly than those in the placement obtained by the traditional min-cut algorithm.

REFERENCES

[1] Gajski, D. D., Dutt, N. D.: High-Level Synthesis. Kluwer Academic Publishers, 1992.
[2] Sun, Y.: Algorithmic Results on Physical problems in VLSI and FPGA. University
of Illinois, 1994.

 4

