

Placement Algorithm for FPGA Circuits

ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI

Computer Science Department, Technical University of Cluj-Napoca,
26, Bariţiu St., 3400 Cluj-Napoca, Romania

{Zoltan.Baruch, Octavian.Cret, Kalman.Pusztai}@cs.utcluj.ro

 Abstract. Field-Programmable Gate Arrays (FPGAs) are flexible and reusable circuits that
can be easily reconfigured by the designer. One of the steps involved in the logic design with
FPGA circuits is placement. In this step, the logic functions are assigned to specific cells of
the circuit. In this paper we present a placement algorithm for FPGA circuits. In traditional
min-cut based placement algorithms, the only metric in the cost function is the cut size. The
proposed algorithm not only reduces the cut size and balances the size of the two portions, but
also evenly distributes the connections among them. We also propose another sequence of
slicing lines which reduces the maximum cut size and the total wirelength of the circuit.

1. Introduction

 Field-Programmable Gate Arrays (FPGAs) are flexible and reusable circuits that can
be easily reconfigured by the designer. These circuits represent one of today’s most popular
digital logic implementation options. An important component of the FPGA-based design is
the computer-aided design (CAD) software necessary to efficiently use the circuits. A typical
FPGA design process consists of logic synthesis, technology mapping, placement, and rout-
ing. After the logic synthesis phase, the logic specification is divided in the technology map-
ping phase into logic functions that are directly implemented in the FPGA circuit. In the
placement phase, these logic functions are assigned to specific cells of the circuit. Finally, in
the routing phase, the logic signals are connected by programmable switches. In this paper, we
focus on the placement problem.
 The placement problem, with the objective to minimize the total wirelength, is
NP-complete [1]. Even the simplest case of the problem, i.e., one-dimensional placement, is
hard to solve. For real circuits, the solution space is too large to permit enumerative tech-
niques. Therefore, heuristic algorithms are used, which require relatively short execution
times (a polynomial function of the number of cells), and can find good solutions to the
placement problem, not necessarily the best solutions. Exact algorithms, using techniques like
dynamic programming, are computationally expensive.
 A number of heuristic techniques have been developed for solving the placement prob-
lem. A widely used technique for hard combinatorial optimization problems, including place-
ment, is simulated annealing (SA), introduced by Kirkpatrick, Gelatt and Vecchi [2]. A loga-
rithmic temperature scheduling for the SA is proved to ensure global optimum solution. This

 1

requires a very slow cooling schedule, which can make SA prohibitively slow. Therefore, an
efficient algorithm for the placement problem is desirable.
 A placement is acceptable if 100% routing can be achieved within a given area. This is
not an easy task for FPGA architectures with very limited routing resources, like the Atmel
6000 circuits [3]. A good placement will not only put connected blocks together, but will also
ensure that logic elements are not placed too closely in order to ensure the routability of the
circuit. Our first contribution is an algorithm which not only reduces the cut size and balances
the size of the two portions, but also evenly distributes the connections among them. Our sec-
ond contribution is another sequence of slicing lines which is more adequate for FPGA cir-
cuits than the traditional methods. This sequence reduces the maximum cut size and the total
wirelength of the circuit.
 The rest of this paper is organized as follows. In the next section, we define the place-
ment problem. In Section 3, we briefly describe some related work. In Section 4, we describe
the placement algorithm for the FPGA circuits. Experimental results are presented in Section
5. Finally, conclusions are made in Section 6.

2. The Placement Problem

 Given a collection of cells or modules with ports on the boundaries and a collection of
nets (which are sets of ports that are to be connected together), the process of placement con-
sists of finding suitable physical locations for each cell on the entire layout. The locations are
suitable if they minimize given objective functions, subject to certain constraints imposed by
the designer, the implementation process, or layout style. The cells may be standard-cells,
macro-cells, FPGA logic blocks, etc.
 More formally, the placement problem can be defined as follows. Given a set of m
modules, M = {M1, M2, …, Mm}, a set of n nets N = {N1, N2, …, Nn}, and a set of p primary
input pins and primary output pins R = {R1, R2, …, Rp}, we associate with each module Mi ∈
M a set of nets

i
, where ⊆ N. Similarly, we associate with each net NN M N Mi i ∈ N a set of

modules
i
, where = {MM N M Ni j | Ni ∈ }. We are also given a set of locations L = {LN M j 1, L2,

…, Lk}, where k ≥ n. The placement problem is to assign each Mi ∈ M to a unique location Lj
such that some objective function is optimized. Usually each module is considered to be a
point, and if Mi is assigned to location Lj then its position is defined by the coordinate values
(xj, yj). Sometimes a subset of the modules in M are fixed, i.e., pre-assigned to locations, and
only the remaining modules can be assigned to the remaining unassigned locations.
 Depending on the technology used, different physical placement constraints exist. For
gate-array technology, all modules have the same shape and size and are to be placed into pre-
determined locations on the placement area. For macro-cell technology, modules have differ-
ent shapes and sizes, and the dimensions wi × hi of Mi for all the modules are given in the cir-
cuit specification. The placement area has dimensions W × H and is given in the circuit speci-
fication.
 For performance driven placement, timing specifications are also given. Timing speci-
fications of a circuit include signal arrival times at the primary inputs, the required signal arri-
val times at the primary outputs, internal delay di of a module Mi, and the maximum allowable
signal skew Ci at module Mi for all the modules.

 2

3. Related Work

 Algorithms have been developed specifically for the placement of logic in FPGA cir-
cuits. Ebeling et al. [4] described automatic mapping tools for the Triptych FPGA architec-
ture. These tools include a placement algorithm based on a simulated annealing approach.
Beetem [5] introduced a penalty-driven iterative improvement algorithm for simultaneous
placement and routing of FPGAs. Nag and Roy [6] presented an incremental placement algo-
rithm for row-based FPGAs which analyzes post-layout timing and routability information to
obtain better placements. Togawa et al. proposed a method for the simultaneous place and
route of symmetrical FPGAs based on hierarchical bi-partitioning.
 Gao [7] developed net-based and path-based performance driven placement algorithms
for gate-arrays, macro-cells and Xilinx FPGAs, in order to minimize the signal arrival times at
the primary output pins and the signal skews at the inputs of the modules. In the net-based
placement algorithm, timing delay requirements are first translated into physical design con-
straints, such as net constraints. The placement algorithm then generates a placement under
the guidance of the net constraints. In the path-based placement algorithm, path delays are
considered explicitly during the placement process. This algorithm tries to minimize the total
wire length and the latest arrival times at the primary output pins.

4. Placement Algorithm for FPGA Circuits

 A placement algorithm for FPGA circuits must not only minimize the total wirelength
by grouping the interconnected cells, but must also ensure the routability of the circuit. We
describe a min-cut bi-partitioning based placement algorithm which tries to ensure the routa-
bility by evenly distributing the connections among the two portions. We also propose a new
sequence of applying slicing lines which is more adequate for FPGA circuits than the tradi-
tional sequence.
 The only metric in the cost function in traditional partitioning algorithms, applied for
the placement of FPGA circuits, is the cut size. However, the cut size alone is not a good met-
ric for architectures with limited routing resources, such as FPGA circuits. Since the algorithm
tries to place connected blocks close together, it is likely to generate a placement with con-
gested areas, where a feasible routing is difficult to find. In other words, it is possible to ob-
tain a partition with a small cut size, with one portion being heavily connected and the other
being very sparse. For FPGA applications, min-cut based placement algorithms must be modi-
fied to take into account not only the sizes of the two portions, the size of the network cross-
ing the cut-line, but also the distribution of interconnections within the two portions.
 We consider that multiple terminal nets are represented by a hyper-graph model. In
general, to connect k terminals, max {k-1, 0} connecting paths are needed. We define the un-
balancing number of a net to be the number of connecting paths needed to connect all the ter-
minals in the left portion minus the number of connecting paths needed in the right portion.
The unbalancing number of a bi-partition is defined to be the sum of the unbalancing numbers
of all nets. The absolute value of the unbalancing number of a bi-partition counts the differ-
ence between the number of connecting paths needed in the left portion and the right portion
[8].
 Given an initial bi-partition, we can compute its unbalancing number in O(|T|) time by
examining all the nets, where T is the set of all terminals. We assume that there are more in-
terconnecting paths in the left portion than in the right portion, that is, the unbalancing num-
ber of this bi-partition is positive. If a node v is moved from the left portion to the right por-

 3

tion, we can compute f(v, e), the amount by which the unbalancing number of the net e de-
creases, by examining the set of all neighbors of v, N(v).
 The following cost function is used to incorporate the effect of congestion distribution
in a given partition:

Cut_size + WEIGHT × Unbalancing number

where WEIGHT is a constant. If WEIGHT is set to zero, then the algorithm is the same as the
conventional min-cut partitioning algorithm. By setting the value of WEIGHT appropriately,
we can control the importance of balancing the congestion.
 In conventional min-cut based placement, the layout region is bi-partitioned using slic-
ing lines in a top-down manner, in accordance with the recursive application of the min-cut
bi-partitioning. The sequence in which slicing lines are applied plays an important role. The
conventional hierarchical min-cut placement always chooses the cut-line at the center of the
current region. If we order the slicing lines to be applied in this sequence, Fig. 1 (a)-(d) shows
the sequence of slicing lines to be applied, where slicing lines currently applied are shown as
dashed lines and slicing lines applied earlier are shown as solid lines.

 Assume that the current slicing line l, shown as the dashed line in Fig. 2, is immedi-
ately next to the center slicing line. Slicing line l will cut four regions and their corresponding
sub-networks into halves. In each step of the min-cut bi-partitioning, we can swap a pair of
nodes such that one is in A and the other is in E, one is in B and the other is in F, and so on.
However, in order to take into account the result of the bi-partitioning for the slicing lines ap-
plied earlier, any swapping of nodes that crosses the slicing line applied earlier is not allowed.

 The number of nodes in a region is proportional to the area of that region. Since the
slicing line l is close to the center slicing line, the four regions cut by l are small. Therefore,
the number of nodes that are placed in regions A-H are small. Consequently, the number of
possible pairs that we can choose from for a move in this bi-partitioning process is limited.

Fig. 1. Choosing the slicing line at the center of the current region.

Fig. 2. An example in the traditional min-cut placement.

 4

This usually results in a relatively large cut-size for the slicing lines close to the center due to
a small number of possible moves [8].

 Based on this observation, we propose another sequence of slicing lines in which they
are applied to reduce the congestion near the center. The horizontal slicing lines and vertical
slicing lines are applied alternatively as before. However, for the slicing lines of the same ori-
entation, the slicing lines that are closer to the center are applied earlier, as shown in Fig. 3.

5. Experimental Results

 The placement algorithm was implemented in the C language. The experiments were
performed on an IBM PC computer with a 200 MHz Pentium-MMX processor, under the
Windows NT Version 4.0 operating system. The circuits used are from the MCNC (Microe-
lectronics Center of North Carolina) benchmark suite.
 The experiments were conducted as follows. The standard circuits were converted
from the EDIF format (Electronic Design Interchange Format) to the netlist format used by
the technology mapping program. The circuits were then technology mapped for the Atmel
6002 FPGA circuit. The placement process was applied to the netlists obtained after the tech-
nology mapping.

Table 1. The sum of the cut sizes for the proposed algorithm and the traditional algorithm.

 W = 0 W = 1
Circuit Proposed

Algorithm
Traditional
Algorithm

Reduction Proposed
Algorithm

Traditional
Algorithm

Reduction

b1 13 19 31.5 % 15 17 11.7 %
c17 8 10 20.0 % 8 10 20.0 %
cm138a 23 38 39.4 % 28 38 26.3 %
con1 17 30 43.3 % 17 28 39.2 %
decod 44 69 36.2 % 51 59 13.5 %
majority 11 17 35.2 % 11 15 26.6 %
tcon 45 60 25.0 % 41 51 19.6 %
x2 38 51 25.4 % 42 46 8.6 %

 In Table 1 we compared the sum of the cut sizes for all the slicing lines applied, for the
proposed algorithm and the traditional algorithm. The comparison was made for two cases.
The first case is without balancing the number of connections in the two portions (WEIGHT =
0), indicated in the table by W = 0, and the second case is with balancing the connections
(WEIGHT = 1), indicated in the table by W = 1. The reduction of the total cut sizes ranges
between 20% and 43.3% when W = 0, with an average of 32%, and ranges between 8.6% and
39.2% when W = 1, with an average reduction of 20.6% in this case.

Fig. 3. Proposed sequence to apply slicing lines.

 5

 In Table 2 we compared the maximum cut sizes for all the slicing lines applied, for the
proposed algorithm and the traditional algorithm. The reduction obtained by the proposed al-
gorithm is up to 30% when W = 0, with an average reduction of 17.7%, and up to 35.7%
when W = 1, with an average reduction of 22.8%.

Table 2. The maximum cut sizes for the proposed algorithm and the traditional algorithm.

 W = 0 W = 1
Circuit Proposed

Algorithm
Traditional
Algorithm

Reduction Proposed
Algorithm

Traditional
Algorithm

Reduction

b1 7 9 22.2 % 8 11 27.2 %
c17 4 4 0.0 % 4 6 33.3 %
cm138a 9 12 25.0 % 14 16 12.5 %
con1 9 12 25.0 % 8 10 20.0 %
decod 10 12 16.6 % 15 17 11.7 %
majority 7 10 30.0 % 9 14 35.7 %
tcon 10 11 9.0 % 14 17 17.4 %
x2 12 14 14.2 % 12 16 25.0 %

6. Conclusions

 In this paper we presented a min-cut bi-partitioning based placement algorithm for
FPGA circuits. The algorithm was implemented for the Atmel 6002 FPGA circuits. The pro-
posed algorithm not only reduces the cut size and balances the size of the two portions, but
also evenly distributes the connections among them, in order to ensure the routability of the
circuit. We also proposed another sequence of slicing lines which is more adequate for FPGA
circuits than the traditional sequence. The proposed sequence reduces the maximum cut size
and the total wirelength of the circuit. The experimental results show the efficiency of the al-
gorithm.

7. References

[1] S.M. Sait and H. Youssef, “VLSI Physical Design Automation”, McGraw-Hill
Book Company, 1995
[2] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by Simulated Anneal-
ing”, Science, No. 220, pp. 671-680, May 1983
[3] Atmel Corp., “Configurable Logic. PLD, FPGA, Gate Array Data Book”, San Jose,
1995
[4] C. Ebeling, L. McMurchie, S.A. Hauck and S. Burns, “Placement and Routing
Tools for the Triptych FPGA”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 3, No. 4, pp. 473-482, December 1995
[5] J. Beetem, “Simultaneous Placement and Routing of the LABYRINTH Recon-
figurable Logic Array”, The International Workshop of Field-Programmable Logic and
Applications, Oxford, U.K., pp. 232-243, 1991
[6] S. Nag and K. Roy, “Iterative Wireability and Performance Improvement for
FPGAs”, Proceedings of the 30th Design Automation Conference, pp. 321-325, 1993
[7] T. Gao, “Performance Driven Placement and Routing Algorithms”, Ph.D. Thesis,
University of Illinois at Urbana-Champaign, 1994
[8] Z. Baruch, “Contributions to the Computer Aided Design of Digital Systems”,
Ph.D. Thesis, Computer Science Department, Technical University of Cluj-Napoca,
1998

 6

	Placement Algorithm for FPGA Circuits
	Cut_size + WEIGHT (Unbalancing number
	Circuit
	Reduction
	Reduction
	Circuit
	Reduction
	Reduction

