

ROUTING FOR FPGA CIRCUITS

Zoltan Baruch1, Octavian Creţ2, Kalman Pusztai3

1Technical University of Cluj-Napoca, Romania, E-mail: Zoltan.Baruch@cs.utcluj.ro
2Technical University of Cluj-Napoca, Romania, E-mail: Octavian.Cret@cs.utcluj.ro

3Technical University of Cluj-Napoca, Romania, E-mail: Kalman.Pusztai@cs.utcluj.ro

Abstract - In this paper we present a specific routing algorithm for the Atmel
6002 FPGA circuit. We define a specific cost function and a specific way of
handling the connectivity list, sorting it by two main criteria: the number of
stored links and the competition's cost. We implemented a routing algorithm
which simultaneously treats the global and local routing. One of the
advantages of considering the global routing and the detailed routing
simultaneously is that the preliminary estimation of the global routing can be
immediately and appropriately corrected. The algorithm may consider the side
effects of the routing decisions made for one connection on the others, thus
resolving the routing conflicts. According to the sorting of the connection list,
we can have two kinds of optimizations: area optimization and speed
optimization.

Key Words: Digital Design, FPGA, Routing.

 1. INTRODUCTION

 1.1 The FPGA Design Process

 Field-Programmable Gate Arrays (FPGA’s) are flexible circuits that can be easily
reconfigured by the designer, reducing considerably the design cycle [5]. There are
many commercial FPGA’s. The RAM-based FPGA’s, such as Xilinx’s XC3000 and
XC4000, or Atmel’s 6000 series [6], are a widely used class of them. The architecture of
a RAM-based FPGA consists of an array of user configurable logic blocks, and a set of
programmable interconnection resources used for routing [4]. Each logic block imple-
ments a part of the design logic, and the routing resources are used to interconnect the
logic blocks.
 In computer-aided logic design for FPGA circuits, the main operations to be
performed by the software are the following:

• Generating an internal representation. The design specification in a hardware
description language (HDL) must be compiled into an internal representation
(usually a graph), which will be used by all the subsequent programs.

• Technology mapping. The intermediate form is adapted for the logic blocks
inside the FPGA, considering the restrictions introduced by their architecture
(number of inputs, number and type of the functions inside each block).

• Placement. Placement is the operation of assigning each vertex of the Boolean
network to a specific logic block in the FPGA device. Every vertex of logical
network is assigned to a logic block of the FPGA circuit.

 1

• Routing. The routing achieves the interconnection of the logic blocks. This
operation is usually performed in two steps. In the global routing step,
interconnection paths at the global level are chosen, according to certain
restrictions which are effective at the global level. In the detailed routing, the
starting point is the result of the global routing, the goal being to establish the
routing paths at the detailed level. The result of this step is a list of
interconnection segments for each group of terminals.

 In this paper we focus on the routing phase of FPGA design, particularly for the
Atmel 6002 circuit. We specify a routing algorithm which simultaneously performs the
global and local routing. The advantage of this algorithm is that the preliminary
estimation of the global routing can be immediately and appropriately corrected. The
algorithm may consider the side effects of the routing decisions made for one
connection on the others, thus resolving the routing conflicts. We can have two kinds of
optimizations: area optimization and speed optimization.

 1.2 Previous Work

 There are only a few published routers for RAM-based FPGA’s: CGE [3], SEGA
[2] and TRACER-fpga [1].
 CGE (Coarse Graph Expansion) [3] first uses a global routing to decompose
each net into a number of two-terminal connections. Its primary goal is to distribute the
connections among the channels in order to balance the channel densities. It then
chooses for each two-terminal connection exact wiring segments to implement the path
assigned during the global routing. A cost function is used to iteratively select among all
exact paths the best one. This iteration halts when no more uncompleted exact paths are
left.
 SEGA (SEGment Allocator) [2] is intended for FPGA’s with variable-length
wiring segments. It addresses the allocation of wiring segments to connections with the
goal to match the length of the wiring segments to the length of the connections. SEGA
uses the same strategy as CGE; the main difference comes from the cost function.
 TRACER-fpga [1] consists of two stages: initial router, and rip-up and rerouter.
During the first stage, nets are routed sequentially and independently of one another,
ignoring the existence of any previously routed nets. Inevitably, there will be conflicts
over the usage of routing resources among nets. During the second stage, conflicts are
resolved iteratively. Within an iteration, some nets are ripped-up and rerouted. The
selection of nets for ripping-up is guided by a simulated evolution-based optimization
technique. The rerouting is done with the expansion router, except that the presence of
other already routed nets is no longer ignored.

 2. GENERAL APPROACH OF THE ROUTING PROBLEM

 The solution to the general routing problem usually requires a division strategy.
Then the routing can be solved in three steps [3]:

1. Partitioning the routing resources.

2. Using a global router for assigning a set of routing areas to each net, creating
a new set of restrictions.

3. Using a local router for selecting the specific wire segments and the routing
switches for each connection, inside the restrictions set by the global router.

 2

 This approach has the advantage that each routing tool can solve better a little
part of the routing problem. To be more specific, while the global router does not
require to be related to the wire segment or the routing switches allocation, it can focus
on more global points, balancing the use of the routing channels.
 Similarly, having a reduced number of available routing alternatives for each
connection (because of the restrictions imposed by the global router), the detailed router
can focus on the effective connection implementation.
 Placement and routing are interdependent because the FPGA cells can be used
both for implementing logic functions and for routing. The relation between placement
and routing creates a number of compromises, affecting the circuit speed. For example,
the placement of one cell may interfere with the routing by locking the cell, making the
net unroutable. Generally, because the number of logic cells is higher than the number
of buses, on small distances the cells can be used instead of the buses. The placement
interconnects adjacent or neighbor locations, avoiding the routing delays and facilitating
simultaneous routing of the signals.
 It is preferable that bus resources are saved for routing long distance signals
(more than five cells) in the FPGA array. When a number of signals contain entries for
more than one function, grouping the signals permits their parallel routing.

 3. THE ROUTING ALGORITHM

The first step of the routing program consists of constructing a graph, and then
selecting the specific routing segments for each graph. Therefore the allocation of
routing resources is strongly dependent of the path chosen by the global router. Given
that the FPGA device used here is not of high structural complexity (it includes only
local buses, express buses, repeaters and logic cells), the chosen routing algorithm
includes the detailed routing inside the global routing at each hierarchical level.
 After the global routing, the connections assigned to each sub-channel are
known. If the detailed router fails to route all the connections assigned to a sub-channel,
then the channel's capacity is correspondingly reduced and the global routing at this
level is redone. The advantage of this approach is that the preliminary estimation in the
global routing can be corrected immediately.
 It is recommended for the algorithm to reserve the bus resources for signals that
go over longer distances (more than five cells), so that for these signals the advantages
of the express bus become visible. The express buses are not directly connected to the
cells, thus they have small capacities, are faster than the local buses, and it is indicated
to use them as often as possible for increasing design performance. Also, by using an
express bus instead of the local bus, the local bus is released for other necessary
routings.
 Substituting a local bus by an express bus is not possible in the following si-
tuations [6]:

• when directly connecting two cells
• when using a bidirectional signal
• when making 90° turns

 For increasing design performance, it is indicated to limit the number of local
bus segments which carry a signal and to go beyond the limit of the repeater only if it is
necessary. Branching the express bus signal to the local bus at each repeater may be
beneficial when using more than 8 signals or when the signal passes over more than one
repeater. Figure 1 presents an example of ramification.

 3

Figure 1. Example of signal ramification inside the FPGA structure.

 Signal X is routed over the express bus and the branching to the repeaters of the
local bus segment are leading to the Z and Y cells. If signal X would have been routed
over the local bus to the Y1, Y2 and Y3 cells and over the repeaters (local bus to local
bus) to the Z1, Z2 and Z3 cells, the load of the Y cells would have affected the speed of
the signals which are branched to the Z cells.
 Another key problem of the routing is the selection of the connection. Where
two or more connections pass over a common routing channel, there may appear compe-
titions for the routing resources in that channel. Because of the limited connectivity in
the Atmel 6002 FPGA, it is essential to resolve these conflicts.
 The main problem of FPGA routing is that the choice made for one connection
may block another connection [3]. Figure 2 shows two positions of the same section of
an FPGA device. Each section offers routing options for either A or B connection. In the
figure, the logic cell is denoted by L, the connectivity points by ×, the wire segment
(local bus) by a solid line and the possible routing by a dashed line.

Figure 2. Routing conflicts.

Let us assume that the router first performs the connection A. If the wire segment

number 1 is chosen for A, then connection B cannot be routed because B relies on the
single left option, that is the wire segment number 1. The correct solution for the router
is to select the wire segment number 2 for connection A; then connection B can also be
routed. This is a simple example which illustrates the essence of the problem which
appears because of the limited routing resources inside the FPGA device.
 The algorithm cannot consider all the connecting possibilities inside the FPGA
in a single phase because it has to save memory and execution time. This is the reason
why it uses an iterative approach. In the first step it considers only those possible paths
for a connection which correspond to the minimal cost (Cd) necessary to the algorithm
to find out connecting paths. If these paths fail (are in conflict with the connections
already routed), the algorithm continues its search starting with this failed path cost.

The routing algorithm
1. Build the connectivity graph based on the FPGA device structure. Divide the network

in two-point connections, building in this way the routing graph.

 4

2. Find the minimal distance of the path over the routing channels for each connection
which could not be directly linked or broken in direct links, and with this minimal
distance store all the linking alternatives in a connection list.

3. while (the connection list is not empty) do
 Sort the connection list by the number of linking alternatives;
 Select the connection from the head of the list;
 Sort the possible paths by Sc;
 if (the paths list is not empty) do
 Route the selected connection, using the minimal cost path;
 Mark the connection in the connectivity graph;
 Find all the paths which are in conflict with the selected path (for

example all the paths which use one of the connectivity points
of the selected path) and delete them;

 else do
Reroute the selected connection starting from the connection's distance;

 if (it cannot be routed)
 Mark the circuit as unroutable;
 endif
 endif
 endwhile

 In the first step, the connectivity graph is built on the Atmel 6002 FPGA device
structure, and the routing graph is built from the results obtained after the technology
mapping and placement steps. By direct links we denote here those links which do not
imply the use of any bus.
 In the second step, the connection list contains all the connections to be routed
with the respective linking paths, corresponding to the shortest distance possible. There
may exist more than one routing possibility with the same cost. This minimal distance is
used as a cost which is computed according to the FPGA structure. The algorithm tries
to break the connections in direct links if it does not have to pass over more than five
cells, using the fact that the FPGA cells can also be used for routing.
 In the third step, the algorithm sorts the connection list by two criteria:

• the number of stored links
• the cost of the competition

 Each wire segment has two associated costs: the distance cost (Cd), which
reflects the routing delays associated with the wire segment, and the competition cost
(Cc), which counts the links' competition to the same wire segment.
 Each path in the connection list has also two associated costs: the sum of the
distances cost (Sd) of the wire segments in the path, and the sum of the competition cost
(Sc) of the wire segments in the path.
 The connection list is sorted by the number of stored links to determine what
connection is essential. The essential connection must be identified for making the
selection for a connection which has a minimal number of Sd-cost connecting alter-
natives.
 The algorithm first sorts the connection list by the Cd cost (also because it tries
to make an area and speed optimization). By first choosing the connections with
minimal Sd cost, it forces the long lines to choose the express buses, which are much
faster. From all possible connections, the one with minimal Sc cost is chosen.
 At the routing step, the algorithm selects the linking alternatives with minimal Sc
cost. At the rerouting step, it tries to find other possible paths starting from the minimal

 5

distance, based on the updated connectivity graph. In the connectivity graph, at this step,
the connectivity points used by the connections already routed are marked. The driving
cell (the one which generates the signal on the connection) is also marked in the
connectivity graph, because we need signal branching in the local bus to become
possible. Therefore at the rerouting phase the linking alternatives starting from a
connectivity point which is used for other connections are already taken into consi-
deration (but which contains the necessary signal for the connection which is currently
rerouted).
 With this algorithm other architectures can also be routed, if we isolate step 1
which is FPGA device structure-dependent.

 4. CONCLUSIONS

 Efficiently solving the routing problem is essential for any CAD system for
designing with reconfigurable FPGA logic devices. The complexity of the problem is
increased by the fact that routing and placing are strongly inter-dependent. Any routing
algorithm is also dependent on the internal structure of the FPGA device.
 In this paper we examined the general structure of any routing algorithm, and we
presented a specific algorithm for the Atmel 6002 FPGA device. We defined a specific
cost function and a specific way of handling the connectivity list, sorting it by two main
criteria: the number of stored links and the competition's cost. The competition may
occur during routing, when many connections compete for a single routing channel. The
existence of a limited number of routing channels inside the FPGA device increases also
the complexity of the problem, so that rerouting may become necessary at one point.
 The advantage of this algorithm is that the preliminary estimation of the global
routing can be immediately and appropriately corrected. The algorithm may consider the
side effects of the routing decisions made for one connection on the others, thus
resolving the routing conflicts. According to the sorting of the connection list, we can
have two kinds of optimizations: area optimization (when sorting by the sum of distance
cost) and speed optimization (when sorting by the sum of competition cost). The
algorithm is implemented in C programming language, as part of a CAD system for
FPGA circuits.

 5. REFERENCES

[1] C.-D. Chen, Y.-S. Lee, A. C.-H. Wu, Y.-L. Lin [1995]: “TRACER-fpga: A Router

for RAM-based FPGA’s”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 14, No. 3, pp. 371-374.

[2] G. G. Lemieux, S. D. Brown [1993], “A Detailed Routing Algorithm for Allocating
Wire Segments in Field-Programmable Gate Arrays”, Proceedings of ACM/SIGDA
Physical Design Workshop, Lake Arrowhead, CA, pp. 215-226.

[3] S. D. Brown [1992], Routing Algorithms and Architectures for Field-Programmable
Gate Arrays, Ph.D. Thesis, University of Toronto, Canada.

[4] S. M. Trimberger [1994], Field-Programmable Gate Array Technology, Kluwer
Academic, Boston MA.

[5] Y. Sun, T-C. Wang, C. K. Wong, C. L. Liu [1997], “Routing for Symmetric FPGA’s
and FPIC’s”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 16, No. 1, pp. 20-31.

[6] Configurable Logic. PLD, FPGA, Gate Array. Data Book, Atmel Corp., 1995.

 6

