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Abstract 
 The high-level synthesis is a process of translation from a behavioral de-
scription into a set of connected storage and functional units. The basic operations 
executed in high-level synthesis are partitioning, scheduling and allocation. Parti-
tioning algorithms divide a behavioral description or design structure into subde-
scriptions in order to reduce the size of the problem or to satisfy some external 
constraints. Scheduling algorithms partition the variable assignments and opera-
tions into time intervals, and allocation partition them into storage and functional 
units. 
 In this paper we describe several algorithms for scheduling operations into 
control steps. We present two basic scheduling algorithms, the ASAP and the 
ALAP scheduling. We discuss two types of scheduling problems: time-constrained 
and resource-constrained. Time-constrained scheduling can use three different 
techniques: mathematical programming, constructive heuristics and iterative re-
finement. We present a constructive heuristic, called force-directed scheduling. 
For the resource-constrained scheduling, we describe a list-based scheduling algo-
rithm. 

 

 1. Introduction 

 A behavioral description specifies the sequence of operations to be performed by 
the synthesized hardware. This description is compiled into an internal data representa-
tion such as the control/data flow graph (CDFG). Scheduling algorithms then partition 
the CDFG into subgraphs so that each subgraph is executed in one control step. Each 
control step corresponds to one state of the controlling finite-state machine. 
 Within a control step, a separate functional unit is required to execute each op-
eration assigned to that step. Thus, the total number of functional units required in a 
control step corresponds to the number of operations scheduled in it. If more operations 
are scheduled into each control step, more functional units are necessary, which results 
in fewer control steps for the design implementation. On the other hand, if fewer opera-
tions are scheduled into each control step, fewer functional units are sufficient, but more 
control steps are needed. 
 Scheduling is an important task in high-level synthesis because it impacts the 
compromise between design cost and performance. Scheduling algorithms have to be 
tailored to suit the different target architectures used for implementation. For example, a 
scheduling algorithm designed for a non-pipelined architecture would have to be refor-
mulated for a target architecture with datapath or control pipelining. The types of func-
tional and storage units and of interconnection topologies used in the architecture also 
influence the formulation of the scheduling algorithms. 
 The different language constructs also influence the scheduling algorithms. Be-
havioral descriptions that contain conditional and loop constructs require more complex 
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scheduling techniques since dependencies across branch and loop boundaries have to be 
considered. Similarly, more sophisticated scheduling techniques must be used when a 
description has multidimensional arrays with complex indices. 
 In this paper we discuss issues related to scheduling and present solutions to the 
scheduling problem. We introduce the scheduling problem by discussing some basic 
scheduling algorithms on a simplified target architecture, using a simple design descrip-
tion. 

 2. Basic Scheduling Algorithms 

 In order to simplify the discussion of the basic scheduling algorithms, we assume 
the following restrictions: 

• behavioral descriptions do not contain conditional or loop constructs; 
• each operation takes exactly one control step to execute; 
• each type of operation can be performed by one and only one type of functional 

unit. 

 We can define two different 
goals for the scheduling problem, 
given a library of functional units 
with known characteristics and the 
length of a control step. First, we can 
minimize the number of functional 
units for a fixed number of control 
steps. This is called time-constrained 
scheduling. Second, we can minimize 
the number of control steps for a 
given design cost. The design cost 
can be measured in terms of the num-
ber of functional and storage units, 
the number of NAND gates, or the 
chip-layout area. This approach is 
called resource-constrained schedul-
ing. 
 For the presentation of the 
scheduling algorithms, we introduce a 
few definitions. A data-flow graph 
(DFG) is a directed acyclic graph 
G(V, E), where V is a set of nodes and 
E is a set of edges. Each vi ∈ V repre-
sents an operation oi in the behavioral 
description. A directed edge ei j from 
vi ∈ V to vj ∈ V exists in E if the data 
produced by the operation oi (repre-
sented by vi) is consumed by opera-
tion oj (represented by vj). In this case vi is an immediate predecessor of vj. The set of all 
immediate predecessors of vi is denoted by Predvi. Similarly, vj is an immediate succes-
sor of vi. The set of all immediate successors of vi is denoted by Succvi. 

 
Figure 1. Example for solving a differential equa-

tion: (a) textual description; (b) DFG. 
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 This definitions are illustrated by an example of a circuit for solving numerically 
(by means of the forward Euler method) the following differential equation: 
 y" + 3xy' + 3y = 0 
in the interval [0, a], with step-size dx and initial values x(0) = x; y(0) = y; y'(0) = u. 
Figure 1(a) shows the textual description, and Figure 1(b) shows the DFG, which con-
sists of 11 vertices, V = {v1, v2, ..., v11} and 8 edges, E = {e1,5, e2,5, e5,7, e7,8, e3,6, e6,8, e4,9, 
e10,11}. 
 Each DFG node has some flexibility about the state into which it can be sche-
duled. Many scheduling algorithms require the earliest and latest bounds within which 
operations are to be scheduled. We call the earliest state to which a node can possibly be 
assigned its ASAP value. This value is determined by the simple ASAP scheduling algo-
rithm presented in Figure 2. 

 The ASAP scheduling algorithm assigns an ASAP label (i.e., control-step index) 
Ei, to each node vi of a DFG, thereby scheduling the operation oi into the earliest possi-
ble control step sEi. The function ALL_NODES_SCHED (Predvi, E) returns TRUE if all the  
nodes in set Predvi are scheduled (i.e., all immediate predecessors of vi have a non-zero 
label E). The function MAX (Predvi, E) returns the index of the node with the maximum E 
value from the set of predecessor nodes for vi. 
 The for loop of the algorithm initializes the ASAP value of all the nodes in the 
DFG. It assigns the nodes which do not have any predecessors to state s1 and the other 
nodes to state s0. In each iteration, the while loop determines the nodes that have all 
their predecessors scheduled and assigns them to the earliest possible state. Since we 
assume that the delay of all operations is 1 control step, the earliest possible state is 
calculated using the equation Ei = MAX (Predvi, E) + 1. 

 Figure 3(a) shows the results of the ASAP scheduling algorithm for the example 
shown in Figure 1. Operations o1, o2, o3, o4 and o10 are assigned to control step s1, since 
they do not have any predecessors. Operations o5, o6, o9 and o11 are assigned to control 
step s2, and operations o7 and o8 are assigned to control steps s3 and s4, respectively. 

 for each node vi ∈ V do 
  if Predvi = φ then 
   Ei = 1; 
          V = V - {vi}; 
  else 
   Ei = 0; 
  endif 
 endfor 
 while V ≠ φ  do 
  for each node vi ∈ V do 
   if ALL_NODES_SCHED (Predvi, E) then 
    Ei = MAX (Predvi, E) + 1; 
    V = V - {vi}; 
   endif 
  endfor 
 endwhile 

Figure 2. The ASAP scheduling algorithm. 
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Figure 3. (a) ASAP schedule; (b) ALAP schedule. 

 The ALAP value for a node defines the latest state to which a node can possibly 
be scheduled. This value can be determined using the ALAP scheduling algorithm de-
tailed in Figure 4. Given a time constraint of T control steps, the algorithm determines 
the latest possible control step in which an operation must begin its execution. The 
ALAP scheduling algorithm assigns an ALAP label Li to each node vi of a DFG, thereby 
scheduling the operation oi in the latest possible control step sLi. The function 
ALL_NODES_SCHED (Succvi, L) returns TRUE if all the nodes denoted by Succvi are 
scheduled (i.e., all immediate successors of vi have a non-zero L label). The function 
MIN(Succvi, L) returns the index of the node with the minimum L value from the set of 
successor nodes for vi. 

 for each node vi ∈ V do 
  if Succvi = φ  then 
   Li = T; 
          V = V - {vi}; 
  else 
   Li = 0; 
  endif 
 endfor 
 while V ≠ φ  do 
  for each node vi ∈ V do 
   if ALL_NODES_SCHED (Succvi, L) then 
    Li = MIN (Succvi, L) - 1; 
    V = V - {vi}; 
   endif 
  endfor 
 endwhile 

Figure 4. The ALAP scheduling algorithm. 

 The for loop of the algorithm initializes the ALAP value of all the nodes in the 
DFG. It assigns the nodes which do not have any successors to the last possible state, 
and the other nodes to the state s0. In each iteration, the while loop determines the nodes 
that have all their successors scheduled and assigns them to the latest possible state. 



 

 Figure 3(b) shows the results of the ALAP scheduling algorithm (where T = 4) 
for the example shown in Figure 1. Operations o8, o9 and o11 are assigned to the last 
control step s4, since they do not have any successors. Operations o4, o6, o7 and o10 are 
assigned to control step s3, and operations o3 and o5 are assigned to control step s2. The 
remaining operations o1 and o2 are assigned to control step s1. 
 Given a final schedule, we can easily compute the number of functional units 
that are required to implement the design. The maximum number of operations in any 
state denotes the number of functional units of that particular operation type. In the 
ASAP schedule, the maximum number of multiplication operations scheduled in any 
control step is four (state s1), thus four multipliers are required. In addition, the ASAP 
schedule also requires an adder/subtracter and a comparator. In the ALAP schedule, the 
maximum number of multiplication operations scheduled in any control step is two 
(states s1, s2 and s3), thus two multipliers are sufficient. In addition, the ALAP schedule 
also requires an adder, a subtracter and a comparator. 

 3. Time-Constrained Scheduling 

 Time-constrained scheduling is important for designs targeted towards applica-
tions in a real-time system. For example, in many digital signal processing (DSP) sys-
tems, the sampling rate of the input data stream dictates the maximum time allowed for 
carrying out a DSP algorithm on the present data sample before the next sample arrives. 
Since the sampling rate is fixed, the main objective is to minimize the cost of the hard-
ware. Given the control step length, the sampling rate can be expressed in terms of the 
number of control steps that are required for executing a DSP algorithm. 
 Time-constrained scheduling algorithms can use three different techniques: 
mathematical programming, constructive heuristics and iterative refinement. We will 
present an example of the constructive heuristic methodology, called the force-directed 
scheduling method. 
 The force-directed scheduling (FDS) heuristic is a well known heuristic for 
scheduling with a given timing constraint. We present a simplified version of the FDS 
algorithm. The main goal of the algorithm is to reduce the total number of functional 
units used in the implementation of the design. This objective is achieved by uniformly 
distributing operations of the same type into all the available states. This uniform distri-
bution ensures that functional units allocated to perform operations in one control step 
are used efficiently in all other control steps, which leads to a high unit utilization rate. 
 The FDS algorithm relies on both the ASAP and the ALAP scheduling algorithms 
to determine the range of control steps for every operation (m_range(oi)). It also as-
sumes that each operation oi has a uniform probability of being scheduled into any of the 
control steps in the range, and probability zero of being scheduled in any other control 
steps. Thus, for a given state sj, such that Ei ≤ j ≤ Li, the probability that operation oi will 
be scheduled in that state is given by pj(oi) = 1/(Li - Ei + 1). 
 These probability calculations can be illustrated using the example from Figure 
1, with the ASAP (Ei) and ALAP (Li) values from Figure 3 used in the calculations. The 
operation probabilities for the example are shown in Figure 5(a). Operations o1, o2, o5, 
o7 and o8 have probability values of 1 for being scheduled in steps s1, s1, s2, s3, and s4 
respectively, because the s i  value is equal to the s i  value for these operations. The 
width of a rectangle in this figure represents the probability (1/(Li - Ei + 1)) of an opera-
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tion getting started in that particular control step. For example, operation o3 has a prob-
ability of 0.5 of being assigned to either s1 or s2. Therefore, the value of p1(o3) = p2(o3) = 
0.5. 

 A set of probability distribution graphs (bar graphs) are created from the prob-
ability values of each operation, with a separate bar graph being constructed for each 
operation type. A bar graph for a particular operation type (e.g., multiplication), repre-
sents the expected operator cost (EOC) in each state. The expected operator cost in state 
sj for operation type k is given by: 
 EOCj,k = ck ∗  ∑

∈ )(_,
)(

ij orangemsi
ij op

where oi is an operation of type k and ck is the cost of the functional unit performing the 
operation of type k. 
 Figure 5(b) is a bar graph of expected operation costs for the multiplication ope-
ration in each control step. We can calculate the value for EOC1,mult as EOC1,mult = cm × 
(p1(o1) + p1(o2) + p1(o3) + p1(o4)), which is cmult × (1.0 + 1.0 + 0.5 + 0.33) or 2.83 × cmult. 
 The bar graph in Figure 5(b) shows that the EOC for multiplication in the four 
states are 2.83, 2.33, 0.83 and 0.0. Since the functional units can be shared across states, 
the maximum of the expected operator costs over all states gives a measure of the total 
cost of implementing all operations of that type. Bar graphs similar to Figure 5(b) are 
constructed for all other operation types. 
 Since the main goal of the FDS algorithm is efficient sharing of functional units 
across all states, it attempts to balance the EOC value for each operation type. The 

 
Figure 5. Force-directed scheduling example. 
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algorithm in Figure 6 describes a method to achieve this uniform value of expected ope-
rator costs. During the execution of the algorithm, Scurrent denotes the most recent partial 
schedule. Swork is a copy of the schedule on which temporary scheduling assignments are 
attempted. In each iteration, the variables BestOp and BestStep maintain the best 
operation to schedule and the best control step for scheduling the operation. When 
BestOp and BestStep are determined for for a given iteration, the Scurrent schedule is 
changed appropriately using the function SCHEDULE_OP (Scurrent, oi, sj), which returns 
a new schedule, after scheduling operation oi into state sj on Scurrent. Scheduling a 
particular operation into a control step affects the probability values of other operations 
because of data dependencies. The function ADJUST_DISTRIBUTION scans through 
the set of vertices and adjusts the probability distributions of the successor and 
predecessor nodes in the graph. 

 The function COST (S) evaluates the cost of implementing a partial schedule S 
based on any given cost function. A simple cost function could add the EOC values for 
each operation type: 

 COST (S) =  max ,
11 ≤ ≤≤ ≤

∑
j rk m

j kEOC 

 This cost is calculated using the ASAP (Ei) and ALAP (Li) values for all the 
nodes. 
 During each iteration, the cost of assigning each unscheduled operation to possi-
ble states within its range (i.e., m_range(oi)) is calculated using Swork.The assignment 
that leads to the minimal cost is accepted and the schedule Scurrent is updated. Therefore, 
during each iteration an operation oi gets assigned into control step sk, where Ei ≤ k ≤ Li. 
The probability distribution for operation oi is changed to pk(oi)=1 and pj(oi)=0 for all j 
not equal to k. The operation oi remains fixed and does not get moved in later iterations. 
 For the example presented, from the initial probability distribution for the multi-
plication operation shown in Figure 5(b), the costs for assigning each unscheduled 

 ASAP (V); 
 ALAP (V); 
 while there exists oi such that Ei ≠ Li do 
  MaxGain = – ∞; 
  /* Try scheduling all unscheduled operations */ 
  /* to every state in its range */ 
  for each oi , Ei ≠ Li do 
   for each j, Ei ≤ j ≤ Li do 
    Swork = SCHEDULE_OP (Scurrent, oi, sj); 
    ADJUST_DISTRIBUTION (Swork, oi, sj); 
    if COST (Scurrent) - COST (Swork) > MaxGain then 
     MaxGain = COST (Scurrent) - COST (Swork); 
     BestOp = oi; BestStep = sj; 
    endif 
   endfor 
  endfor 
  Scurrent = SCHEDULE_OP (Scurrent, BestOp, BestStep); 
  ADJUST_DISTRIBUTION (Scurrent, BestOp, BestStep); 
 endwhile 

Figure 6. The force-directed scheduling algorithm. 
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operation into possible control steps are calculated. The assignment of o3 to control step 
s2 results in the minimal expected operator costs for multiplication, because max(pj) 
falls from 2.83 to 2.33. This assignment is accepted. When operation o3 is assigned to 
control step s2, the probability values from operation o6 also change as shown in Figure 
5(c). The operation o3 is never moved while the iterations for scheduling other 
unscheduled operations continue. 
 In each iteration of the FDS algorithm, one operation is assigned to its control 
step based on the minimum expected operator costs. If there are two possible con-
trol-step assignments with close or identical operator costs, then the above algorithm 
cannot estimate the best choice accurately. 
 The method is called "constructive" because a solution is constructed without 
performing any backtracking. The decision to schedule an operation into a control step 
is made on the basis of a partially scheduled DFG; it does not take into account future 
assignments of operators to the same control step. Most likely, the resulting solution 
will not be optimal, due to the lack of a look-ahead scheme and the lack of compromises 
between early and late decisions. The solution can be optimized by rescheduling some 
of the operations in the given schedule. 

 4. Resource-Constrained Scheduling 

 The resource-constrained scheduling problem is encountered in many applica-
tions where we are limited by the silicon area. The constraint is usually given in terms of 
either a number of functional units or the total allocated silicon area. 
 In resource-constrained scheduling, we gradually construct the schedule, one 
operation at a time, so that the resource constraints are not exceeded and data depen-
dencies are not violated. The resource constraints are satisfied by ensuring that the total 
number of operations scheduled in a given control step does not exceed the imposed 
constraints. The dependence constraints can be satisfied by ensuring that all 
predecessors of a node are scheduled before the node is scheduled. Thus, when 
scheduling operation oi into a control state sj, we have to ensure that the hardware 
requirements for oi and other operations already scheduled in sj do not exceed the given 
constraint and that all predecessors of node  oi have already been scheduled. 
 We describe the list-based scheduling method. The algorithm based on this 
method maintains a priority list of ready nodes. A ready node represents an operation 
that has all predecessors already scheduled. During each iteration the operations in the 
beginning of the ready list are scheduled until all the resources get used in that state. The 
priority list is always sorted with respect to a priority function. The priority function re-
solves the resource contention among operations. Whenever there are conflicts over re-
source usage among the ready operations (e.g., three additions are ready but only two 
adders are given in the resource constraint), the operation with higher priority gets 
scheduled. Scheduling an operation may make some other non-ready operations ready. 
These operations are inserted into the list according to the priority function. The quality 
of the results produced by a list-based scheduler depends predominantly on its priority 
function. 
 The algorithm (Figure 7) uses a priority list PList for each operation type (tk ∈ 
T). These lists are denoted by the variables PList , PList , ..., PList . The operations 
in these lists are scheduled into control steps based on N , which is the number of func-
tional units performing operation of type t

t1 t2 tm

tk

k. The function INSERT_READY_OPS scans 
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the set of nodes, V, determines if any of the operations in the set are ready, deletes each 
ready node from the set V and appends it to one of the priority lists based on its opera-
tion type. The function SCHEDULE_OP (Scurrent, oi, sj) returns a new schedule after 
scheduling the operation  oi in control step sj. The function DELETE (PList , otk i) deletes 
the indicated operation oi from the specified list. 

 

 Initially, all nodes that do not have any predecessors are inserted into the appro-
priate priority list by the function INSERT_READY_OPS, based on the priority function. 
The while loop extracts operations from each priority list and schedules them into the 
current step until all the resources are exhausted in that step. Scheduling an operator in 

 INSERT_READY_OPS (V, PList , PList , ..., PList ); t1 2 mt t

 Cstep = 0; 
 while ((PList  ≠ φ  ) or ... or (PList  V ≠ φ )) do t1 tm

  Cstep = Cstep + 1; 
  for k = 1 to m do 
   for f_unit = 1 to Nk do 
    if PList  ≠ φ  then tk

     SCHEDULE_OP (Scurrent, FIRST (PList ), Cstep); tk

     PList = DELETE (PList , FIRST (PList )); tk tk tk

    endif 
   endfor 
  endfor 
  INSERT_READY_OPS (V, PList , PList , ..., PList ); t1 t2 tm

 endwhile 

Figure 7. The list-based scheduling algorithm. 

 
Figure 8. List-based scheduling example. 

 9



 

the current step makes other successor-operations ready. These ready operations are 
scheduled during the next iterations of the loop. These iterations continue until all the 
priority lists are empty. 
 We illustrate the list scheduling process with an example (Figure 8). Suppose 
the available resources are two multipliers, one adder, one subtracter and one compara-
tor (Figure 8(c)). Each operation oi in the DFG in Figure 8(a) is labeled with its mobil-
ity range. Nodes with lower mobility must be scheduled first since delaying their 
assignment to a control step increases the probability of extending the schedule. Conse-
quently, the mobility value is a good priority function. For each operator type, a priority 
list is constructed, in which priority is given to ready nodes with lower mobility. If two 
operations have the same mobility, then the one with a smaller index is given a higher 
priority. 
 The success of a list-scheduler depends mainly on its priority function. Mobility 
is just one of the many priority functions that have been proposed as a priority function. 
An alternative priority function uses the length of the longest path from the operation 
node to a node with no immediate successor. This longest path is proportional with the 
number of additional steps needed to complete the schedule if the operation is not 
scheduled into the current step. Therefore, an operation with a longer path label gets a 
higher priority. Another scheme uses the number of immediate successor nodes for an 
operation as a priority function: an operation node with more immediate successors is 
scheduled earlier because it makes more of these operations ready than a node with 
fewer successors. 

 5. Conclusions 
 We described several algorithms for scheduling operations into control steps. 
The ASAP and the ALAP schedules are basic scheduling algorithms, and the ASAP and 
ALAP values are used by other scheduling algorithms. The force-directed heuristic 
method produces schedules quickly, but the optimality of the solution cannot be guaran-
teed. The design quality of an initial schedule generated by any scheduling algorithm 
can be improved by the iterative refinement approach. 
 In scheduling, work is needed on using more realistic libraries, target architec-
tures and cost functions. Scheduling algorithms that combine both scheduling and mod-
ule selection must be developed. Similarly, scheduling algorithms must be combined 
with allocation, since scheduling and allocation are interdependent. Scheduling algo-
rithms must be extended to incorporate different target architectures, for example a 
RISC architecture with a large register file and a few functional units, for which the 
minimization of load-and-store instructions from the main memory is the primary goal. 
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