AN EFFICIENT SEQUENCE TO APPLY SLICING LINES
IN FPGA PLACEMENT

Zoltan Baruch, Octavian Cret, Kalman Pusztai

Computer Science Department, Technical University of Cluj-Napoca,
26, Baritiu St., 3400 Cluj-Napoca, Romania
Zoltan.Baruch@cs.utcluj.ro, Octavian.Cret@cs.utcluj.ro, Kalman.Pusztai(@cs.utcluj.ro

Abstract. One of the steps involved in the computer-aided design for FPGA (Field-
Programmable Gate Array) circuits is placement. In this step, the logic functions are assigned
to specific cells of the circuit. In conventional hierarchical min-cut based placement algorithms,
the layout region is bi-partitioned using slicing lines in a top-down manner. In these placement
algorithms, the cut-line is always chosen at the center of the current region. In this paper we
propose another sequence of slicing lines which reduces the maximum cut size and the total
wirelength of the circuit.

Keywords: FPGA circuits, Placement.

1. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) represent one of today’s most popu-
lar digital logic implementation options. They are flexible and reusable circuits that can
be easily reconfigured by the designer. A typical FPGA design process consists of logic
synthesis, technology mapping, placement, and routing. After the logic synthesis phase,
the logic specification is divided in the technology mapping phase into logic functions
that are directly implemented in the FPGA circuit. In the placement phase, these logic
functions are assigned to specific cells of the circuit. Finally, in the routing phase, the
logic signals are connected by programmable switches. In this paper, we focus on the
placement problem.

The placement problem, with the objective to minimize the total wirelength, is
NP-complete [1]. Even the simplest case of the problem, i.e., one-dimensional place-
ment, is hard to solve. For real circuits, the solution space is too large to permit enu-
merative techniques. Therefore, heuristic algorithms are used, which require relatively
short execution times (a polynomial function of the number of cells), and can find good
solutions to the placement problem, not necessarily the best solutions. Exact algorithms,
using techniques like dynamic programming, are computationally expensive.

A number of heuristic techniques have been developed for solving the placement
problem. A widely used technique for hard combinatorial optimization problems, in-
cluding placement, is simulated annealing (SA), introduced by Kirkpatrick, Gelatt and
Vecchi [2]. A logarithmic temperature scheduling for the SA is proved to ensure global
optimum solution. This requires a very slow cooling schedule, which can make SA pro-
hibitively slow. Therefore, an efficient algorithm for the placement problem is desirable.

A placement is acceptable if 100% routing can be achieved within a given area.
This is not an easy task for FPGA architectures with very limited routing resources, like
the Atmel 6000 circuits [3]. A good placement will not only put connected blocks to-
gether, but will also ensure that logic elements are not placed too closely in order to en-
sure the routability of the circuit. Our contribution in this paper is another sequence of
slicing lines which is more adequate for FPGA circuits than the traditional methods.
This sequence reduces the maximum cut size and the total wirelength of the circuit.

The rest of this paper is organized as follows. In the next section, we define the
placement problem. In Section 3, we briefly describe some related work. In Section 4,
we describe the placement algorithm for FPGA circuits which uses the proposed se-
quence of slicing lines. Experimental results are presented in Section 5. Finally, conclu-
sions are made in Section 6.

2. THE PLACEMENT PROBLEM

Given a collection of cells or modules with ports on the boundaries and a collec-
tion of nets (which are sets of ports that are to be connected together), the process of
placement consists of finding suitable physical locations for each cell on the entire lay-
out. The locations are suitable if they minimize given objective functions, subject to cer-
tain constraints imposed by the designer, the implementation process, or layout style.
The cells may be standard-cells, macro-cells, FPGA logic blocks, etc.

More formally, the placement problem can be defined as follows. Given a set of
m modules, M = {M,, M>, ..., M}, a set of n nets N = {N;, N», ..., N,}, and a set of p
primary input pins and primary output pins R = {Ry, R,, ..., R,}, we associate with each
module M; € M a set of nets N,, , where N,, < N. Similarly, we associate with each net

N; € N aset of modules M, , where M, = {M;|N; e N u, }. We are also given a set of

locations L = {Li, Lo, ..., L}, where k > n. The placement problem is to assign each M;
€ M to a unique location L; such that some objective function is optimized. Usually
each module is considered to be a point, and if M; is assigned to location L; then its posi-
tion is defined by the coordinate values (x;, ;). Sometimes a subset of the modules in M
are fixed, i.e., pre-assigned to locations, and only the remaining modules can be as-
signed to the remaining unassigned locations.

Depending on the technology used, different physical placement constraints ex-
ist. For gate-array technology, all modules have the same shape and size and are to be
placed into pre-determined locations on the placement area. For macro-cell technology,
modules have different shapes and sizes, and the dimensions w; x h; of M; for all the
modules are given in the circuit specification. The placement area has dimensions W x
H and is given in the circuit specification.

For performance driven placement, timing specifications are also given. Timing
specifications of a circuit include signal arrival times at the primary inputs, the required
signal arrival times at the primary outputs, internal delay d; of a module M;, and the
maximum allowable signal skew C; at module M; for all the modules.

3. RELATED WORK

Ebeling et al. [4] described automatic mapping tools for the Triptych FPGA ar-
chitecture. These tools include a placement algorithm based on a simulated annealing
approach. Beetem [5] introduced a penalty-driven iterative improvement algorithm for

simultaneous placement and routing of FPGAs. Nag and Roy [6] presented an incre-
mental placement algorithm for row-based FPGAs which analyzes post-layout timing
and routability information to obtain better placements. Togawa et al. proposed a
method for the simultaneous place and route of symmetrical FPGAs based on hierarchi-
cal bi-partitioning.

Gao [7] developed net-based and path-based performance driven placement al-
gorithms for gate-arrays, macro-cells and Xilinx FPGAs, in order to minimize the signal
arrival times at the primary output pins and the signal skews at the inputs of the mod-
ules. In the net-based placement algorithm, timing delay requirements are first trans-
lated into physical design constraints, such as net constraints. The placement algorithm
then generates a placement under the guidance of the net constraints. In the path-based
placement algorithm, path delays are considered explicitly during the placement proc-
ess. This algorithm tries to minimize the total wire length and the latest arrival times at
the primary output pins.

4. THE PROPOSED SEQUENCE TO APPLY SLICING LINES

A placement algorithm for FPGA circuits must not only minimize the total wire-
length by grouping the interconnected cells, but must also ensure the routability of the
circuit. We describe a min-cut bi-partitioning based placement algorithm which uses a
new sequence of applying slicing lines which is more adequate for FPGA circuits than
the traditional sequence.

In conventional min-cut based placement, the layout region is bi-partitioned us-
ing slicing lines in a top-down manner, in accordance with the recursive application of
the min-cut bi-partitioning. The sequence in which slicing lines are applied plays an im-
portant role. The conventional hierarchical min-cut placement always chooses the cut-
line at the center of the current region. If we order the slicing lines to be applied in this
sequence, Figure 1 (a)-(d) shows the sequence of slicing lines to be applied, where slic-
ing lines currently applied are shown as dashed lines and slicing lines applied earlier are
shown as solid lines.

(a) (b) (c) (d)

Figure 1. Choosing the slicing line at the center of the current region.

Assume that the current slicing line /, shown as the dashed line in Figure 2, is
immediately next to the center slicing line. Slicing line / will cut four regions and their
corresponding sub-networks into halves. In each step of the min-cut bi-partitioning, we
can swap a pair of nodes such that one is in 4 and the other is in E, one is in B and the
other is in F, and so on. However, in order to take into account the result of the
bi-partitioning for the slicing lines applied earlier, any swapping of nodes that crosses
the slicing line applied earlier is not allowed.

Figure 2. An example in the traditional min-cut placement.

The number of nodes in a region is proportional to the area of that region. Since
the slicing line / is close to the center slicing line, the four regions cut by / are small.
Therefore, the number of nodes that are placed in regions 4-H are small. Consequently,
the number of possible pairs that we can choose from for a move in this bi-partitioning
process is limited. This usually results in a relatively large cut-size for the slicing lines
close to the center due to a small number of possible moves [8].

Based on this observation, we propose another sequence of slicing lines in which
they are applied to reduce the congestion near the center. The horizontal slicing lines
and vertical slicing lines are applied alternatively as before. However, for the slicing
lines of the same orientation, the slicing lines that are closer to the center are applied
earlier, as shown in Figure 3.

11

(a) (b) (c) (d)

Figure 3. Proposed sequence to apply slicing lines.

5. EXPERIMENTAL RESULTS

The placement algorithm was implemented in the C language. The experiments
were performed on an IBM PC computer with a 200 MHz Pentium-MMX processor,
under the Windows NT Version 4.0 operating system. The circuits used are from the
MCNC (Microelectronics Center of North Carolina) benchmark suite.

The experiments were conducted as follows. The standard circuits were con-
verted from the EDIF format (Electronic Design Interchange Format) to the netlist
format used by the technology mapping program. The circuits were then technology
mapped for the Atmel 6002 FPGA circuit. The placement process was applied to the
netlists obtained after the technology mapping.

Table 1. The sum of the cut sizes for the proposed algorithm and the traditional algorithm.

WwW=0 w=1
Circuit Prop(.)sed Tradit.ional Reduction Prop(.)sed Tradit.ional Reduction
Algorithm [Algorithm Algorithm Algorithm
bl 13 19 31.5% 15 17 11.7%
cl7 8 10 20.0 % 8 10 20.0 %
cml38a 23 38 39.4 % 28 38 26.3 %
conl 17 30 433 % 17 28 39.2 %
decod 44 69 36.2 % 51 59 13.5%
majority 11 17 352 % 11 15 26.6 %
tcon 45 60 25.0 % 41 51 19.6 %
x2 38 51 25.4 % 42 46 8.6 %

In Table 1 we compared the sum of the cut sizes for all the slicing lines applied,
for the proposed algorithm and the traditional algorithm. The comparison was made for
two cases. The first case is without balancing the number of connections in the two por-
tions (WEIGHT = 0), indicated in the table by W = 0, and the second case is with bal-
ancing the connections (WEIGHT = 1), indicated in the table by W = 1. The reduction
of the total cut sizes ranges between 20% and 43.3% when W = 0, with an average of
32%, and ranges between 8.6% and 39.2% when W = 1, with an average reduction of
20.6% in this case.

In Table 2 we compared the maximum cut sizes for all the slicing lines applied,
for the proposed algorithm and the traditional algorithm. The reduction obtained by the
proposed algorithm is up to 30% when W = 0, with an average reduction of 17.7%, and
up to 35.7% when W = 1, with an average reduction of 22.8%.

Table 2. The maximum cut sizes for the proposed algorithm and the traditional algorithm.

WwW=0 w=1
Circuit Prop(.)sed Tradit.ional Reduction Prop(.)sed Tradit.ional Reduction
Algorithm [Algorithm Algorithm Algorithm
bl 7 9 222 % 8 11 272 %
cl7 4 4 0.0 % 4 6 333 %
cmli38a 9 12 25.0% 14 16 12.5%
conl 9 12 25.0 % 8 10 20.0 %
decod 10 12 16.6 % 15 17 11.7 %
majority 7 10 30.0 % 9 14 35.7%
fcon 10 11 9.0 % 14 17 17.4 %
x2 12 14 14.2 % 12 16 25.0 %

6. CONCLUSIONS

In this paper we presented a min-cut bi-partitioning based placement algorithm
for FPGA circuits. The algorithm uses a different sequence of slicing lines than the tra-
ditional min-cut based algorithms, which is more adequate for FPGA circuits than the
traditional sequence.

The proposed sequence reduces the maximum cut size and the total wirelength
of the circuit. The algorithm was implemented for the Afmel 6002 FPGA circuits. The
experimental results show the efficiency of the algorithm.

REFERENCES

[1] Sait, S. M., and Youssef, H. (1995): VLSI Physical Design Automation, McGraw-
Hill Book Company.

[2] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., Optimization by Simulated
Annealing, Science, No. 220, pp. 671-680.

[3] Atmel Corporation (1995): Configurable Logic. PLD, FPGA, Gate Array Data
Book, San Jose.

[4] Ebeling, C., McMurchie, L., Hauck, S. A., and Burns, S. (1995): Placement and
Routing Tools for the Triptych FPGA, IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, Vol. 3, No. 4, pp. 473-482.

[5] Beetem, J. (1991): Simultaneous Placement and Routing of the LABYRINTH Re-
configurable Logic Array, The International Workshop of Field-Programmable
Logic and Applications, Oxford, U.K., pp. 232-243.

[6] Nag, S., and Roy, K. (1993): Iterative Wireability and Performance Improvement for
FPGAs, Proceedings of the 30th Design Automation Conference, pp. 321-325.

[7] Gao, T. (1994): Performance Driven Placement and Routing Algorithms, Ph.D. The-
sis, University of Illinois at Urbana-Champaign.

[8] Baruch, Z. (1998): Contributions to the Computer Aided Design of Digital Systems,
Ph.D. Thesis, Computer Science Department, Technical University of Cluj-Napoca.

	AN EFFICIENT SEQUENCE TO APPLY SLICING LINES
	IN FPGA PLACEMENT
	
	Circuit
	Reduction
	Reduction
	Circuit
	Reduction
	Reduction

