

RUN-TIME RECONFIGURABLE IMPLEMENTATION OF DSP
ALGORITHMS USING DISTRIBUTED ARITHMETIC

Zoltan Baruch

Computer Science Department, Technical University of Cluj-Napoca,
26-28, Bariţiu St., 3400 Cluj-Napoca, Romania

Tel. 0264-194834/165, E-mail: Zoltan.Baruch@cs.utcluj.ro

Abstract: This paper describes the reconfigurable implementation of a digital filter in an
FPGA device. The filter implemented is a Laplacian filter which is used in DSP and im-
age processing applications. For an efficient FPGA implementation of the filter, distrib-
uted arithmetic techniques were used. For a run-time reconfigurable implementation,
the JBits SDK was used, which allows partial reconfiguration of the Xilinx Virtex
FPGA devices.

Keywords: Reconfigurable computing, DSP, FPGA, distributed arithmetic, Laplacian
filter, JBits.

1. INTRODUCTION

DSP (Digital Signal Processing) applications are
usually implemented using general-purpose DSP
processors or special-purpose DSP chipsets and
ASICs (Application Specific Integrated Circuits).
Although the DSP processors and chipsets are opti-
mized for mathematical operations, their architecture
is serial. Multiply and accumulate (MAC) operations,
typically found in DSP applications, are implemented
using shared resources.

Many applications such as telecommunications,
video/image processing, and networking require to
process signals at very high rates. These rates may be
beyond the capabilities of conventional DSPs avail-
able today or in the near future. Therefore, often sev-
eral DSP chips are necessary to meet the perform-
ance required by these applications.

Field Programmable Gate Arrays (FPGAs) represent
an alternative to implement DSP applications. These
devices are suitable for arithmetic intensive DSP
functions. By implementing a DSP application in an

FPGA device, the design can take advantage of dis-
tributed resources (look-up tables, registers, multipli-
ers, memory) and parallel processing to exceed the
performance of single or multiple DSP processors
(Goslin, 1995).

Another advantage of FPGA devices is that they can
be partially or completely reconfigured during sys-
tem operation (however, not all devices can be par-
tially reconfigured). This feature means that multiple
functions can be performed using a minimal configu-
ration. For example, an FPGA device could be used
in a system that performs one of several DSP func-
tions, and the device can be reconfigured during op-
eration to switch from one function to another.

This paper presents several techniques that can be
used for the reconfigurable implementation of DSP
and image processing applications, as well as an ex-
ample application implemented in an FPGA device.
Section 2 presents background information related to
reconfigurable computing, the JBits SDK, and dis-
tributed arithmetic. Section 3 describes the recon-

figurable implementation of a Laplacian filter. Con-
cluding remarks follow in Section 4.

2. BACKGROUND

2.1 Reconfigurable Computing

Reconfigurable computing (also called custom com-
puting) allows to define the computing resources
required by each application and to dynamically con-
figure these resources onto a programmable logic
device, usually a Field Programmable Gate Array.
The reconfiguration of the target device is performed
under software control. In this way, applications that
are computationally demanding can be executed effi-
ciently by allocating more hardware resources.

The capacity of today’s FPGA devices has increased
significantly in the last few years. However, the per-
formance requirements have also increased, which
require the use of parallel processing and distributed
resources. Due to the limited configurable hardware
available in a device, there is a need to swap the con-
figurations in and out of the device upon demand and
in real-time. FPGA devices require a relatively long
reconfiguration time. To achieve run-time reconfigu-
ration, a very high reconfiguration data rate is needed
if the configuration has to be changed at a high fre-
quency.

The attempts to reduce the reconfiguration data rates
led to different reconfigurable architectures, such as
multiple-context and partially reconfigurable. A mul-
tiple-context architecture stores multiple layers of
configuration information, referred to as contexts.
Only one context is active at a time, but a very fast
context switch is possible. Each layer of the configu-
ration memory can be independently written, so that
the circuit defined by the active layer may continue
its operation. A partially reconfigurable architecture
allows a selective reconfiguration of the target de-
vice. The parts of the architecture which are not be-
ing configured may continue execution.

Usually, reconfigurable architectures are imple-
mented using FPGA devices. These devices were
originally designed as user-programmable alterna-
tives to mask-configured gate arrays. An FPGA de-
vice is an array of logical blocks whose function and
interconnection can be configured by the user. Most
FPGA devices use small look-up tables as program-
mable computational elements. These tables are
wired together with programmable interconnects.

Like processors, FPGA devices are “programmed”
(configured) after fabrication to solve a particular
computational task. In traditional processors, opera-
tions are temporally composed by sequencing them
in time, using registers or memory to store intermedi-
ate results. In contrast, in configurable devices tasks
are implemented by spatially composing primitive
operators (DeHon, 2000). Because computations are
performed using spatial pipelines composed of a

large number of active computing elements, rather
than sequentially reusing a small number of comput-
ing elements, higher performance can be achieved.
However, this performance can only be obtained
when the device performs the same operation from
cycle to cycle.

Another advantage of FPGA devices is that they can
control operations at the bit level, as opposed to
processors which can control the operators only at
the word level (DeHon, 2000). As a result, processors
often waste part of their computational power when
operating on custom data widths.

Reconfigurable computing has shown its effective-
ness in several areas, such as video image processing,
microprocessor emulation, encryption/decryption, or
signal processing. The performance achieved by sev-
eral reconfigurable architectures is often with one or
two orders of magnitude greater than that of pro-
grammable processors (Vemuri and Harr, 2000).

2.2 The JBits SDK

The JBits SDK is a set of Java classes which provide
an Application Program Interface (API) for generat-
ing and modifying configuration bitstreams for the
Xilinx Virtex FPGA devices. This interface operates
either on configuration bitstreams generated by Xil-
inx synthesis tools, or on bitstreams read back from
the actual device. Using the JBits SDK, all configur-
able resources of the device can be individually set
under software control. Therefore, a dynamic and
partial reconfiguration of the Xilinx Virtex FPGA
devices is possible from a Java application.

The JBits SDK provides access to all the resources of
a Virtex FPGA device, including the Look-Up Tables
(LUTs) inside each Configurable Logic Blocks
(CLBs) and the routing resources adjacent to the
CLBs. The device architecture is represented as a
two-dimensional array of CLBs, and each CLB is
referenced by a row and column. The JBits SDK al-
lows to develop run-time reconfigurable (RTR) sys-
tems in a high-level language. This SDK can also be
used to produce or modify traditional static design
bitstream files for Virtex FPGA devices.

Figure 1 illustrates the JBits design flow (Xilinx Inc.,
2001). The user-written Java application configures
the FPGA device by communicating with the board
containing the device. The bitstream input to the Java
application can be a null bitstream or a bitstream for
an existing design. The application may use the bit-
level interface provided by the JBits API, which al-
low to set or clear a single bit or a group of bits in the
bitstream. This is a low-level interface responsible
for knowing the bit location in the bitstream of a
given configuration data for the devices supported in
the Virtex FPGA family. The bit-level interface in-
teracts with the Bitstream class, which manages the
device bitstream and provides support for reading
and writing bitstreams from and to files. This class

can also read back the existing configuration data
from the operating device, which is necessary for
dynamic reconfiguration.

Figure 1. The JBits design flow.

The user application may also use the Run-Time Pa-
rameterizable Core (RTPCore) library provided by
the JBits SDK. This library is a collection of Java
classes defining macrocells or cores that can be dy-
namically parameterized and relocated within a de-
vice. Examples of cores are registers, counters, ad-
ders, multipliers and other standard Xilinx Unified
Library logic and computation functions. In addition
to these primitive cores, other non-primitive RTP
cores can be used, which are created by instantiating
primitive or non-primitive subcores connected with
nets and buses.

The Xilinx Hardware Interface (XHWIF) provides a
portable layer to connect JBits applications to recon-
figurable hardware. By using this layer, JBits
applications can run without recompilation on
various hardware platforms. For example, the host
computer executes the JBits application and
configures a Virtex FPGA device located in the PCI
slot using the XHWIF API. This enables run-time
configuration and reconfiguration of the Virtex

PGA device. F

2.3 Distributed Arithmetic

Distributed arithmetic (DA) is one of the techniques
that can be used to reduce the hardware resources
required to implement DSP algorithms in FPGA de-
vices. DA differs from conventional arithmetic in the
order in which it performs operations. This technique
targets the sum of products (also referred to as the
vector dot product) computation that is essential in
many DSP filtering and frequency transforming func-
tions. DA rearranges the multiplication and addition
operations in a sum of products to take advantage of
small tables containing precomputed sums. These
tables can be implemented using the look-up tables
(LUTs) that are contained in most FPGA devices
(Goslin, 1995).

The arithmetic sum of products that defines the re-
sponse of linear networks can be expressed as:

∑
=

⋅=
N

i
ii txCty

1
)()((1)

where y(t) is the response of the network at time t,
xi(t) is the ith input variable at time t, and Ci is a
weighting factor of the ith input variable that is time-
invariant. In filtering applications the constants Ci are
the filter coefficients, and the variables xi are the
prior samples of a single data source (such as an ana-
log-to-digital converter). In frequency transforming
the constants are the sine/cosine basis functions and
the variables represent a block of samples from a
single data source. In image processing the Ci coeffi-
cients are usually the components of a filtering op-
erator and the variables are pixels of the image.

The computation described by Equation (1) implies a
large number of multiplications, since a single output
response requires the accumulation of N product
terms, and usually a large number of outputs are to be
generated in each second. With DA the operations of
generating and summing the product terms are re-
placed by table look-up procedures that are easily
implemented in FPGA devices.

Consider a four-product MAC function that uses a
sequential shift-and-add technique to multiply four
pairs of numbers and sum the results. This is shown
in Figure 2, where SREG represents a shift register.
Each multiplier forms partial products by multiplying
a coefficient Ci by 1-bit of the data xi at a time in an
AND operation. That is, the coefficient is taken in
parallel form and the data is taken serially. Each par-
tial product is then iteratively shifted and accumu-
lated with the previous result. The serial multiplier
which contains an AND gate, an 1-bit adder, a regis-
ter and a shifter is called a scaling accumulator.
Therefore, the complex multiplier circuitry is reduced
significantly. The four multiplications are performed
simultaneously and the resulting products are
summed in an adder tree. This process requires n
clock cycles for data samples of n bits. The process-
ing clock rate is therefore equal to the data rate di-
vided by the number of data bits.

Figure 2. Four-product MAC operation using a shift-and-

add technique.

Using distributed arithmetic, the order in which the
partial products are summed is changed. Instead of
individually accumulating each partial product and
then adding the results, the partial products are added

first, and then the accumulate function is performed
(Figure 3). This simple rearrangement replaces N
multiplications followed by an N-input addition with
a series of N-input additions followed by a multipli-
cation. The number of scaling accumulators is re-
duced to one, which is an important saving in the
case of a large number of product terms.

Figure 3. Four-product MAC operation using serial

distributed arithmetic.

The coefficients Ci in many filtering applications are
constants. Therefore, the outputs of the AND gates
and the three adders in Figure 3 depend only on the
four input bits from the shift registers. These AND
gates and the three adders can be replaced with a 4-
input (16-word) look-up table (Figure 4). The 16 en-
tries in the table are sums of the constant coefficients
for all the possible serial input combinations. The
size of each word is wide enough to accommodate
the largest sum without overflow. Negative values
are sign-extended to the width of the table (Goslin,
1995).

Figure 4. LUT-based four-product MAC operation using

serial distributed arithmetic.

The structure in Figure 4 represents a completely
serial DA technique. The serial processing limits the
performance of such a circuit. Depending on the per-
formance required and the resources available, the
implementation can be optimized in several ways. A
fully parallel DA technique can be used to achieve
the fastest sample rates, while a serial technique can
be used when the hardware resources should be re-
duced to the minimum and when lower sample rates
are acceptable. In practice, often a combination be-
tween the two techniques is used.

3. IMPLEMENTATION OF A LAPLACIAN
FILTER

3.1 Laplacian Operator

Filter operations are commonly used in DSP applica-
tions. One-dimensional DSP operations are widely

used in image processing or video systems to per-
form resampling or filtering. In video systems, one-
dimensional operations are typically performed in the
horizontal dimension, because video images are sam-
pled horizontally in real time. Two-dimensional op-
erations are used for various graphic effects or to
change the size and shape of the image. Such filter
operations include high-pass filters, which sharpen
edges in all directions, or low-pass filters, which sof-
ten edges or limit high-frequency noise (Kreuger,
2000).

Most filters are based on a square convolution opera-
tor (or kernel), which is simultaneously superim-
posed on a group of pixels. Typical operators range
from 3 x 3 pixels to 15 x 15 pixels. Improved results
may be obtained with larger operators (up to 63 x 63
pixels) in applications such as medical imaging. Fig-
ure 5 shows a Laplacian operator that may be used
for edge enhancement in image processing. The op-
erator is represented by 25 weights arranged in a
5 x 5 matrix. To convolve it with an image, the op-
erator is moved over the image pixel by pixel and
line by line. The filter examines the center pixel and
modifies it according to the surrounding pixels. Each
pixel is multiplied by the corresponding coefficient
of the operator and the 25 products are summed. This
operation results in one pixel of the new image. The
operator then moves one pixel to the right, and the
operation is repeated until the entire image is proc-
essed.

Figure 5. Example Laplacian operator for edge

enhancement in image processing.

3.2 Parallel Implementation

As an example application, a run-time reconfigurable
filter based on the Laplacian operator of Figure 5 was
implemented in several variants. First, a parallel im-
plementation of the Laplacian filter was carried out
using an FPGA device. Five lines of the image are
accessible simultaneously, providing five data
streams. Four line buffers are used of 1 KB each, and
each pixel is represented on 8 bits (grayscale im-
ages). Five consecutive pixels in each line are stored
in five parallel shift registers. The array of 5 x 5 shift
registers stores a window from the image. Instead of
loading the entire window from the buffers for each
pixel that is processed, the registers are shifted to the
right to form a sliding window. Only five registers
are loaded at each new pixel.

Figure 6. Implementation of the Laplacian filter using serial distributed arithmetic.

The pixel values in the registers are then multiplied
with the filter constants using constant coefficient
multipliers (KCMs). These multipliers are provided
by the JBits SDK as RTP cores and they correspond
to the Xilinx Unified Library primitives (Xilinx Inc.,
2001). The results are then summed using an adder
tree. In addition to the line buffers and the associated
multiplexers, this implementation requires 25 shift
registers of 8 bits each, 25 KCM multipliers and 24
parallel adders.

Another implementation is based on serial distributed
arithmetic and look-up tables (Figure 6). For this
implementation, each data stream is serialized using
a parallel to serial shift register (PS) and passed
through four serial shift registers (SR), each of which
delay the data by one pixel. This provides simultane-
ous bit-serial access to five adjacent pixels from five
adjacent lines of the image. For the serial multiplica-
tion and accumulation of the 25 pixel values with the
filter constants, a LUT with 225 words would be re-
quired, with its output connected to a scaling accu-
mulator.

Several techniques can be used to reduce the size of
the LUT. A possibility is to partition the circuit into
smaller groups and to add the outputs of each LUT. If
the FPGA architecture contains four-input LUTs, the
optimum partition is to combine four products with a
LUT. However, for the particular operator used more
efficient techniques can be employed. The coeffi-

cients that are used several times can be combined
with serial adders before they address the LUT, as
shown in Figure 7. In this figure, SA represents a
serial adder. The pixel values are therefore added and
then weighted, instead of being weighted and added
subsequently. Since the coefficient 160 (correspond-
ing to pixel x33) is used once, the pixel value only
needs to be delayed in order to enter the LUT at the
right time.

The size of the LUT has been reduced to 27 words,
and this LUT can be implemented by two 16-word
LUTs and an 8-bit adder. Therefore, the implementa-
tion using serial distributed arithmetic requires 18
serial adders, two 16-word LUTs, an 8-bit adder and
a scaling accumulator.

3.3 RTR Implementation

The parallel and serial versions of the Laplacian filter
were described in the Java language, using the RTP
cores provided by the JBits SDK, version 2.8. The
partial reconfiguration API of JBits was used to ob-
tain run-time reconfigurable implementations of the
filter. The partial reconfiguration model of JBits al-
lows to only make the changes necessary to a device
that will bring it into a desired configuration. This
model determines changes made between the last
configuration sent to the device and the present con-
figuration in memory. Then it creates a sequence of
packets that will partially reconfigure the device.

Figure 7. Combining the pixel values with serial adders

before weighting.

After configuring the device, the model marks the
device and memory as synchronized. The partial re-
configuration API of the JBits tool performs the syn-
chronization functions automatically (Xilinx Inc.,
2001).

The implementations of the filter were tested using
the BoardScope interactive debug tool and the
VirtexDS device simulator, which are provided with
the JBits SDK. BoardScope allows to graphically
examine the operation of FPGA devices on a recon-
figurable computing board. VirtexDS allows to test
Xilinx Virtex bitstream files without the need for an
actual device. The bitstream generated by the appli-
cation program was not downloaded to a Virtex
FPGA device, due to several limitations of the cur-
rent JBits version. For example, a complete design
rule check (DRC) can not be performed with the
JBits SDK, and an inappropriate configuration can
damage the device.

The image was sent to the filter simulated by the
VirtexDS tool from a file by a Java application pro-
gram. The processed image was read back from the
filter and was displayed on the screen. By changing

the coefficients of the filter and partially reconfigur-
ing the simulation model of the device, the effects on
the processed image were visible.

4. CONCLUSIONS

This paper presented several techniques which can be
used for the implementation of DSP operations in
FPGA devices. The reconfigurable computing para-
digm has been introduced, and the advantages of us-
ing FPGA devices as reconfigurable architectures
have been illustrated. The main features of the JBits
SDK were presented. Distributed arithmetic has been
described as a useful technique which can signifi-
cantly reduce the hardware resources required for the
implementation of DSP operations.

As examples of implementations for DSP algorithms,
a parallel and a serial version of a Laplacian filter
were presented. For the run-time reconfigurable im-
plementation of this filter, the JBits SDK has been
used. This tool allows access to the configuration
data of the Virtex FPGA devices and provides RTP
cores that can be used to implement RTR systems.
Currently, the JBits SDK has several limitations due
to which it is difficult to use it for complex designs.

REFERENCES

DeHon, A. (2000). The Density Advantage of Con-
figurable Computing. Computer, Vol. 33, No. 4, pp.
41-49.

Goslin, G. R. (1995). A Guide to Using Field Pro-
grammable Gate Arrays (FPGAs) for Application-
Specific Digital Signal Processing Performance. Xil-
inx Application Note,
http://www.xilinx.com/appnotes/dspguide.pdf

Kreuger, R. (2000). Virtex-EM FIR Filter for Video
Applications. Xilinx Application Note XAPP241
(v1.1), http://www.xilinx.com/xapp/xapp241.pdf.

Vemuri, R. R. and Harr, R. E. (2000). Configurable
Computing: Technology and Applications. Com-
puter, Vol. 33, No. 4, pp. 39-40.

Xilinx Inc. (2001). JBits Tutorial. JBits SDK Ver-
sion 2.8, JBits@xilinx.com.

