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Abstract: This paper describes the reconfigurable implementation of a digital filter in an 
FPGA device. The filter implemented is a Laplacian filter which is used in DSP and im-
age processing applications. For an efficient FPGA implementation of the filter, distrib-
uted arithmetic techniques were used. For a run-time reconfigurable implementation, 
the JBits SDK was used, which allows partial reconfiguration of the Xilinx Virtex 
FPGA devices. 
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1. INTRODUCTION 

DSP (Digital Signal Processing) applications are 
usually implemented using general-purpose DSP 
processors or special-purpose DSP chipsets and 
ASICs (Application Specific Integrated Circuits). 
Although the DSP processors and chipsets are opti-
mized for mathematical operations, their architecture 
is serial. Multiply and accumulate (MAC) operations, 
typically found in DSP applications, are implemented 
using shared resources. 

Many applications such as telecommunications, 
video/image processing, and networking require to 
process signals at very high rates. These rates may be 
beyond the capabilities of conventional DSPs avail-
able today or in the near future. Therefore, often sev-
eral DSP chips are necessary to meet the perform-
ance required by these applications. 

Field Programmable Gate Arrays (FPGAs) represent 
an alternative to implement DSP applications. These 
devices are suitable for arithmetic intensive DSP 
functions. By implementing a DSP application in an 

FPGA device, the design can take advantage of dis-
tributed resources (look-up tables, registers, multipli-
ers, memory) and parallel processing to exceed the 
performance of single or multiple DSP processors 
(Goslin, 1995). 

Another advantage of FPGA devices is that they can 
be partially or completely reconfigured during sys-
tem operation (however, not all devices can be par-
tially reconfigured). This feature means that multiple 
functions can be performed using a minimal configu-
ration. For example, an FPGA device could be used 
in a system that performs one of several DSP func-
tions, and the device can be reconfigured during op-
eration to switch from one function to another. 

This paper presents several techniques that can be 
used for the reconfigurable implementation of DSP 
and image processing applications, as well as an ex-
ample application implemented in an FPGA device. 
Section 2 presents background information related to 
reconfigurable computing, the JBits SDK, and dis-
tributed arithmetic. Section 3 describes the recon-

 



 

 

figurable implementation of a Laplacian filter. Con-
cluding remarks follow in Section 4. 

2. BACKGROUND 

2.1 Reconfigurable Computing 

Reconfigurable computing (also called custom com-
puting) allows to define the computing resources 
required by each application and to dynamically con-
figure these resources onto a programmable logic 
device, usually a Field Programmable Gate Array. 
The reconfiguration of the target device is performed 
under software control. In this way, applications that 
are computationally demanding can be executed effi-
ciently by allocating more hardware resources. 

The capacity of today’s FPGA devices has increased 
significantly in the last few years. However, the per-
formance requirements have also increased, which 
require the use of parallel processing and distributed 
resources. Due to the limited configurable hardware 
available in a device, there is a need to swap the con-
figurations in and out of the device upon demand and 
in real-time. FPGA devices require a relatively long 
reconfiguration time. To achieve run-time reconfigu-
ration, a very high reconfiguration data rate is needed 
if the configuration has to be changed at a high fre-
quency. 

The attempts to reduce the reconfiguration data rates 
led to different reconfigurable architectures, such as 
multiple-context and partially reconfigurable. A mul-
tiple-context architecture stores multiple layers of 
configuration information, referred to as contexts. 
Only one context is active at a time, but a very fast 
context switch is possible. Each layer of the configu-
ration memory can be independently written, so that 
the circuit defined by the active layer may continue 
its operation. A partially reconfigurable architecture 
allows a selective reconfiguration of the target de-
vice. The parts of the architecture which are not be-
ing configured may continue execution. 

Usually, reconfigurable architectures are imple-
mented using FPGA devices. These devices were 
originally designed as user-programmable alterna-
tives to mask-configured gate arrays. An FPGA de-
vice is an array of logical blocks whose function and 
interconnection can be configured by the user. Most 
FPGA devices use small look-up tables as program-
mable computational elements. These tables are 
wired together with programmable interconnects. 

Like processors, FPGA devices are “programmed” 
(configured) after fabrication to solve a particular 
computational task. In traditional processors, opera-
tions are temporally composed by sequencing them 
in time, using registers or memory to store intermedi-
ate results. In contrast, in configurable devices tasks 
are implemented by spatially composing primitive 
operators (DeHon, 2000). Because computations are 
performed using spatial pipelines composed of a 

large number of active computing elements, rather 
than sequentially reusing a small number of comput-
ing elements, higher performance can be achieved. 
However, this performance can only be obtained 
when the device performs the same operation from 
cycle to cycle. 

Another advantage of FPGA devices is that they can 
control operations at the bit level, as opposed to 
processors which can control the operators only at 
the word level (DeHon, 2000). As a result, processors 
often waste part of their computational power when 
operating on custom data widths. 

Reconfigurable computing has shown its effective-
ness in several areas, such as video image processing, 
microprocessor emulation, encryption/decryption, or 
signal processing. The performance achieved by sev-
eral reconfigurable architectures is often with one or 
two orders of magnitude greater than that of pro-
grammable processors (Vemuri and Harr, 2000). 

2.2 The JBits SDK 

The JBits SDK is a set  of Java classes which provide 
an Application Program Interface (API) for generat-
ing and modifying configuration bitstreams for the 
Xilinx Virtex FPGA devices. This interface operates 
either on configuration bitstreams generated by Xil-
inx synthesis tools, or on bitstreams read back from 
the actual device. Using the JBits SDK, all configur-
able resources of the device can be individually set 
under software control. Therefore, a dynamic and 
partial reconfiguration of the Xilinx Virtex FPGA 
devices is possible from a Java application. 

The JBits SDK provides access to all the resources of 
a Virtex FPGA device, including the Look-Up Tables 
(LUTs) inside each Configurable Logic Blocks 
(CLBs) and the routing resources adjacent to the 
CLBs. The device architecture is represented as a 
two-dimensional array of CLBs, and each CLB is 
referenced by a row and column. The JBits SDK al-
lows to develop run-time reconfigurable (RTR) sys-
tems in a high-level language. This SDK can also be 
used to produce or modify traditional static design 
bitstream files for Virtex FPGA devices. 

Figure 1 illustrates the JBits design flow (Xilinx Inc., 
2001). The user-written Java application configures 
the FPGA device by communicating with the board 
containing the device. The bitstream input to the Java 
application can be a null bitstream or a bitstream for 
an existing design. The application may use the bit-
level interface provided by the JBits API, which al-
low to set or clear a single bit or a group of bits in the 
bitstream. This is a low-level interface responsible 
for knowing the bit location in the bitstream of a 
given configuration data for the devices supported in 
the Virtex FPGA family. The bit-level interface in-
teracts with the Bitstream class, which manages the 
device bitstream and provides support for reading 
and writing bitstreams from and to files. This class 



 

 

can also read back the existing configuration data 
from the operating device, which is necessary for 
dynamic reconfiguration. 

 
Figure 1. The JBits design flow. 

The user application may also use the Run-Time Pa-
rameterizable Core (RTPCore) library provided by 
the JBits SDK. This library is a collection of Java 
classes defining macrocells or cores that can be dy-
namically parameterized and relocated within a de-
vice. Examples of cores are registers, counters, ad-
ders, multipliers and other standard Xilinx Unified 
Library logic and computation functions. In addition 
to these primitive cores, other non-primitive RTP 
cores can be used, which are created by instantiating 
primitive or non-primitive subcores connected with 
nets and buses. 

The Xilinx Hardware Interface (XHWIF) provides a 
portable layer to connect JBits applications to recon-
figurable hardware. By using this layer, JBits 
applications can run without recompilation on 
various hardware platforms. For example, the host 
computer executes the JBits application and 
configures a Virtex FPGA device located in the PCI 
slot using the XHWIF API. This enables run-time 
configuration and reconfiguration of the Virtex 

PGA device. F 

2.3 Distributed Arithmetic 

Distributed arithmetic (DA) is one of the techniques 
that can be used to reduce the hardware resources 
required to implement DSP algorithms in FPGA de-
vices. DA differs from conventional arithmetic in the 
order in which it performs operations. This technique 
targets the sum of products (also referred to as the 
vector dot product) computation that is essential in 
many DSP filtering and frequency transforming func-
tions. DA rearranges the multiplication and addition 
operations in a sum of products to take advantage of 
small tables containing precomputed sums. These 
tables can be implemented using the look-up tables 
(LUTs) that are contained in most FPGA devices 
(Goslin, 1995). 

The arithmetic sum of products that defines the re-
sponse of linear networks can be expressed as: 
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where y(t) is the response of the network at time t, 
xi(t) is the ith input variable at time t, and Ci is a 
weighting factor of the ith input variable that is time-
invariant. In filtering applications the constants Ci are 
the filter coefficients, and the variables xi are the 
prior samples of a single data source (such as an ana-
log-to-digital converter). In frequency transforming 
the constants are the sine/cosine basis functions and 
the variables represent a block of samples from a 
single data source. In image processing the Ci coeffi-
cients are usually the components of a filtering op-
erator and the variables are pixels of the image. 

The computation described by Equation (1) implies a 
large number of multiplications, since a single output 
response requires the accumulation of N product 
terms, and usually a large number of outputs are to be 
generated in each second. With DA the operations of 
generating and summing the product terms are re-
placed by table look-up procedures that are easily 
implemented in FPGA devices. 

Consider a four-product MAC function that uses a 
sequential shift-and-add technique to multiply four 
pairs of numbers and sum the results. This is shown 
in Figure 2, where SREG represents a shift register. 
Each multiplier forms partial products by multiplying 
a coefficient Ci by 1-bit of the data xi at a time in an 
AND operation. That is, the coefficient is taken in 
parallel form and the data is taken serially. Each par-
tial product is then iteratively shifted and accumu-
lated with the previous result. The serial multiplier 
which contains an AND gate, an 1-bit adder, a regis-
ter and a shifter is called a scaling accumulator. 
Therefore, the complex multiplier circuitry is reduced 
significantly. The four multiplications are performed 
simultaneously and the resulting products are 
summed in an adder tree. This process requires n 
clock cycles for data samples of n bits. The process-
ing clock rate is therefore equal to the data rate di-
vided by the number of data bits. 

 
Figure 2. Four-product MAC operation using a shift-and-

add technique. 

Using distributed arithmetic, the order in which the 
partial products are summed is changed. Instead of 
individually accumulating each partial product and 
then adding the results, the partial products are added 



 

 

first, and then the accumulate function is performed 
(Figure 3). This simple rearrangement replaces N 
multiplications followed by an N-input addition with 
a series of N-input additions followed by a multipli-
cation. The number of scaling accumulators is re-
duced to one, which is an important saving in the 
case of a large number of product terms. 

 
Figure 3. Four-product MAC operation using serial 

distributed arithmetic. 

The coefficients Ci in many filtering applications are 
constants. Therefore, the outputs of the AND gates 
and the three adders in Figure 3 depend only on the 
four input bits from the shift registers. These AND 
gates and the three adders can be replaced with a 4-
input (16-word) look-up table (Figure 4). The 16 en-
tries in the table are sums of the constant coefficients 
for all the possible serial input combinations. The 
size of each word is wide enough to accommodate 
the largest sum without overflow. Negative values 
are sign-extended to the width of the table (Goslin, 
1995). 

 
Figure 4. LUT-based four-product MAC operation using 

serial distributed arithmetic. 

The structure in Figure 4 represents a completely 
serial DA technique. The serial processing limits the 
performance of such a circuit. Depending on the per-
formance required and the resources available, the 
implementation can be optimized in several ways. A 
fully parallel DA technique can be used to achieve 
the fastest sample rates, while a serial technique can 
be used when the hardware resources should be re-
duced to the minimum and when lower sample rates 
are acceptable. In practice, often a combination be-
tween the two techniques is used. 

3. IMPLEMENTATION OF A LAPLACIAN 
FILTER 

3.1 Laplacian Operator 

Filter operations are commonly used in DSP applica-
tions. One-dimensional DSP operations are widely 

used in image processing or video systems to per-
form resampling or filtering. In video systems, one-
dimensional operations are typically performed in the 
horizontal dimension, because video images are sam-
pled horizontally in real time. Two-dimensional op-
erations are used for various graphic effects or to 
change the size and shape of the image. Such filter 
operations include high-pass filters, which sharpen 
edges in all directions, or low-pass filters, which sof-
ten edges or limit high-frequency noise (Kreuger, 
2000). 

Most filters are based on a square convolution opera-
tor (or kernel), which is simultaneously superim-
posed on a group of pixels. Typical operators range 
from 3 x 3 pixels to 15 x 15 pixels. Improved results 
may be obtained with larger operators (up to 63 x 63 
pixels) in applications such as medical imaging. Fig-
ure 5 shows a Laplacian operator that may be used 
for edge enhancement in image processing. The op-
erator is represented by 25 weights arranged in a 
5 x 5 matrix. To convolve it with an image, the op-
erator is moved over the image pixel by pixel and 
line by line. The filter examines the center pixel and 
modifies it according to the surrounding pixels. Each 
pixel is multiplied by the corresponding coefficient 
of the operator and the 25 products are summed. This 
operation results in one pixel of the new image. The 
operator then moves one pixel to the right, and the 
operation is repeated until the entire image is proc-
essed. 

 
Figure 5. Example Laplacian operator for edge 

enhancement in image processing. 

3.2 Parallel Implementation 

As an example application, a run-time reconfigurable 
filter based on the Laplacian operator of Figure 5 was 
implemented in several variants. First, a parallel im-
plementation of the Laplacian filter was carried out 
using an FPGA device. Five lines of the image are 
accessible simultaneously, providing five data 
streams. Four line buffers are used of 1 KB each, and 
each pixel is represented on 8 bits (grayscale im-
ages). Five consecutive pixels in each line are stored 
in five parallel shift registers. The array of 5 x 5 shift 
registers stores a window from the image. Instead of 
loading the entire window from the buffers for each 
pixel that is processed, the registers are shifted to the 
right to form a sliding window. Only five registers 
are loaded at each new pixel. 



 

 
Figure 6. Implementation of the Laplacian filter using serial distributed arithmetic.

The pixel values in the registers are then multiplied 
with the filter constants using constant coefficient 
multipliers (KCMs). These multipliers are provided 
by the JBits SDK as RTP cores and they correspond 
to the Xilinx Unified Library primitives (Xilinx Inc., 
2001). The results are then summed using an adder 
tree. In addition to the line buffers and the associated 
multiplexers, this implementation requires 25 shift 
registers of 8 bits each, 25 KCM multipliers and 24 
parallel adders. 

Another implementation is based on serial distributed 
arithmetic and look-up tables (Figure 6). For this 
implementation, each data stream is serialized using 
a parallel to serial shift register (PS) and passed 
through four serial shift registers (SR), each of which 
delay the data by one pixel. This provides simultane-
ous bit-serial access to five adjacent pixels from five 
adjacent lines of the image. For the serial multiplica-
tion and accumulation of the 25 pixel values with the 
filter constants, a LUT with 225 words would be re-
quired, with its output connected to a scaling accu-
mulator. 

Several techniques can be used to reduce the size of 
the LUT. A possibility is to partition the circuit into 
smaller groups and to add the outputs of each LUT. If 
the FPGA architecture contains four-input LUTs, the 
optimum partition is to combine four products with a 
LUT. However, for the particular operator used more 
efficient techniques can be employed. The coeffi-

cients that are used several times can be combined 
with serial adders before they address the LUT, as 
shown in Figure 7. In this figure, SA represents a 
serial adder. The pixel values are therefore added and 
then weighted, instead of being weighted and added 
subsequently. Since the coefficient 160 (correspond-
ing to pixel x33) is used once, the pixel value only 
needs to be delayed in order to enter the LUT at the 
right time. 

The size of the LUT has been reduced to 27 words, 
and this LUT can be implemented by two 16-word 
LUTs and an 8-bit adder. Therefore, the implementa-
tion using serial distributed arithmetic requires 18 
serial adders, two 16-word LUTs, an 8-bit adder and 
a scaling accumulator. 

3.3 RTR Implementation 

The parallel and serial versions of the Laplacian filter 
were described in the Java language, using the RTP 
cores provided by the JBits SDK, version 2.8. The 
partial reconfiguration API of JBits was used to ob-
tain run-time reconfigurable implementations of the 
filter. The partial reconfiguration model of JBits al-
lows to only make the changes necessary to a device 
that will bring it into a desired configuration. This 
model determines changes made between the last 
configuration sent to the device and the present con-
figuration in memory. Then it creates a sequence of 
packets that will partially reconfigure the device. 

 



 

 

 
Figure 7. Combining the pixel values with serial adders 

before weighting. 

After configuring the device, the model marks the 
device and memory as synchronized. The partial re-
configuration API of the JBits tool performs the syn-
chronization functions automatically (Xilinx Inc., 
2001). 

The implementations of the filter were tested using 
the BoardScope interactive debug tool and the 
VirtexDS device simulator, which are provided with 
the JBits SDK. BoardScope allows to graphically 
examine the operation of FPGA devices on a recon-
figurable computing board. VirtexDS allows to test 
Xilinx Virtex bitstream files without the need for an 
actual device. The bitstream generated by the appli-
cation program was not downloaded to a Virtex 
FPGA device, due to several limitations of the cur-
rent JBits version. For example, a complete design 
rule check (DRC) can not be performed with the 
JBits SDK, and an inappropriate configuration can 
damage the device. 

The image was sent to the filter simulated by the 
VirtexDS tool from a file by a Java application pro-
gram. The processed image was read back from the 
filter and was displayed on the screen. By changing 

the coefficients of the filter and partially reconfigur-
ing the simulation model of the device, the effects on 
the processed image were visible. 

4. CONCLUSIONS 

This paper presented several techniques which can be 
used for the implementation of DSP operations in 
FPGA devices. The reconfigurable computing para-
digm has been introduced, and the advantages of us-
ing FPGA devices as reconfigurable architectures 
have been illustrated. The main features of the JBits 
SDK were presented. Distributed arithmetic has been 
described as a useful technique which can signifi-
cantly reduce the hardware resources required for the 
implementation of DSP operations. 

As examples of implementations for DSP algorithms, 
a parallel and a serial version of a Laplacian filter 
were presented. For the run-time reconfigurable im-
plementation of this filter, the JBits SDK has been 
used. This tool allows access to the configuration 
data of the Virtex FPGA devices and provides RTP 
cores that can be used to implement RTR systems. 
Currently, the JBits SDK has several limitations due 
to which it is difficult to use it for complex designs. 

REFERENCES 

DeHon, A. (2000). The Density Advantage of Con-
figurable Computing. Computer, Vol. 33, No. 4, pp. 
41-49. 

Goslin, G. R. (1995). A Guide to Using Field Pro-
grammable Gate Arrays (FPGAs) for Application-
Specific Digital Signal Processing Performance. Xil-
inx Application Note,  
http://www.xilinx.com/appnotes/dspguide.pdf 

Kreuger, R. (2000). Virtex-EM FIR Filter for Video 
Applications. Xilinx Application Note XAPP241 
(v1.1), http://www.xilinx.com/xapp/xapp241.pdf. 

Vemuri, R. R. and Harr, R. E. (2000). Configurable 
Computing: Technology and Applications. Com-
puter, Vol. 33, No. 4, pp. 39-40. 

Xilinx Inc. (2001). JBits Tutorial. JBits SDK Ver-
sion 2.8, JBits@xilinx.com. 

 
 


