
Structure of Computer Systems20

Table 1.3. Real versus normalized floating-point (FP) operations.

Real FP operations Normalized FP operations

ADD, SUB, COMP, MULT 1

DIV, SQRT 4

EXP, SIN,… 8

MIPS and MFLOPS are useful for comparing members of the same archi-
tectural family. They cannot be used to compare computers with different instruction
sets and different clock cycles. This is because programs may be translated into differ-
ent numbers of instructions on different computers.

1.3.5. Other Performance Measurements

Besides execution time, MIPS and MFLOPS, other measurements are often
used to obtain a better characterization of a computer system. The most commonly
used are throughput, utilization, memory bandwidth, memory access time.

• Throughput of a processor is a measure that indicates the number of pro-
grams (tasks or requests) that the processor can execute per unit of time.

• Utilization of a processor refers to the fraction of time the processor is busy
executing programs. It is the ratio of busy time and total elapsed time over a
given period.

• Memory bandwidth indicates the number of memory words that can be ac-
cessed per unit of time.

• Memory access time is the average time that it takes the processor to access
the memory, usually expressed in terms of nanoseconds.

1.3.6. Benchmark Programs

One of the most utilized measures of computer performance is the time of
executing a set of representative programs on that computer. This time can be the
total execution time of the programs from the set, the arithmetic mean or the geomet-
ric mean of the execution times, or other similar measure. A set of actual programs
that are representative for a particular computing environment can be used for per-
formance evaluation. Such programs are called benchmarks and are run by the user on
the computer being evaluated.

The best type of programs to use for benchmarks are real applications. These
may be applications that the user employs regularly or applications that are typical. For
example, if the users are primarily engineers, one might use a set of benchmarks con-
taining several typical engineering or scientific applications.

Introduction 21

1.3.6.1. Comparing and Summarizing Performance

After selecting the programs to use as benchmarks, the problem is how to
summarize the performance of a group of benchmarks. The users often prefer to have
a single number to compare performance. Table 1.4 illustrates a situation when it is
difficult to compare the performance of two machines.

Table 1.4. Execution times of two programs on two different computers.

Computer A Computer B

Program 1 (s) 1 10

Program 2 (s) 1000 100

Total time (s) 1001 110

For program 1, computer A is 10 times faster than B. For program 2, com-
puter B is 10 times faster than A. Using these measurements, the relative performance
of computers A and B is unclear.

The simplest method to summarize relative performance is to use total exe-
cution time of the two programs. Thus, computer B is 1001/110 = 9.1 times faster
than A for programs 1 and 2.

The average of the execution times is the arithmetic mean (AM):

∑
=

=
n

i
iEtn

AM
1

1 (1.19)

where tEi is the execution time for the ith program of a total of n in the benchmark set.
A smaller mean indicates a smaller average execution time and thus improved per-
formance.

The arithmetic mean indicates execution time by assuming that the bench-
mark programs from the set are each run an equal number of times. If it is not the
case, we can assign a weighting factor wi to each program to indicate the frequency of
the program execution in the set. This is called the weighted arithmetic mean. One method
of weighting programs is to choose weights so that the execution time of each
benchmark is equal on a reference machine.

Other method of presenting machine performance is to normalize execution
times to a reference machine, and then take the average of the normalized execution
times. However, if we compute the arithmetic mean of the normalized execution time
values, the result will depend on the choice of the machine we use as a reference. For
example, in Table 1.5 the execution times from Table 1.4 are normalized to both A
and B, and the arithmetic mean is computed.

Structure of Computer Systems22

Table 1.5. Execution times of two programs on machines A and B, normalized to each
machine, the arithmetic mean and geometric mean of the execution times.

Normalized to A Normalized to B
Time on A Time on B A B A B

Program 1 1 10 1 10 0.1 1

Program 2 1000 100 1 0.1 10 1

Arithmetic mean 500.5 55 1 5.05 5.05 1

Geometric mean 31.6 31.6 1 1 1 1

When we normalize to machine A, the arithmetic mean indicates that A is
faster than B by 5.05/1. When we normalize to B, the arithmetic mean indicates that
B is faster than A by 5.05. Only one of these results can be correct. The difficulty
arises from the use of the arithmetic mean of execution times.

Instead of using the arithmetic mean, the normalized execution times should
be combined with the geometric mean (GM). The formula for the geometric mean is:

n
n

i
iEtGM ∏

=
=

1
(1.20)

where tEi is the execution time, normalized to the reference machine, for the ith pro-
gram of a total of n in the benchmark set.

The geometric mean is independent of which data series we use for normali-
zation, because it has the following property:

=

i

i

i

i

Y
XGM

YGM
XGM

)(
)((1.21)

meaning that taking either the ratio of the means or the means of the ratios produces
the same results.

Thus the geometric mean produces the same result whether we normalize to
machine A or B, as we can see in Table 1.5. When execution times are normalized,
only a geometric mean can be used to combine the normalized results.

The advantage of the geometric mean is that it is independent of the running
times of the individual programs, and it doesn’t matter which machine is used for
normalization. However, the disadvantage of using geometric means of execution
times is that they do not predict execution time. The geometric means in Table 1.5
suggest that for programs 1 and 2 the performance is the same for machines A and B.
The arithmetic mean of the execution times suggests that machine B is 9.1 times faster
then machine A.

Introduction 23

1.3.6.2. The Evolution of Benchmark Programs

While it seems obvious today that the best solution is to develop a set of real
applications that can be used as standard benchmarks, this was a difficult task until
relatively recent times. Variations in operating systems and language standards made it
hard to create large programs that could be moved from one machine to another sim-
ply by recompiling. Instead, after creating the MIPS and MFLOPS metrics, the next
step was the development of artificial or synthetic benchmark programs. The goal was to
create a single benchmark program where the execution frequency of instructions
matches the instruction frequency in a large set of benchmarks. Whetstone and Dhrystone
are the most popular synthetic benchmarks.

The Whetstone synthetic benchmark was created based on measurements of
scientific and engineering applications written in ALGOL. This program was later
converted to FORTRAN, and was widely used to characterize scientific program per-
formance. Dhrystone, which was inspired by Whetstone, was created more recently as a
benchmark for systems programming, and was based on a set of published frequency
measurements. Dhrystone was originally written in Ada and later converted to C, after
which it became popular.

Because synthetic benchmarks are not real programs, they usually do not re-
flect programs behavior. Furthermore, compiler and hardware optimizations can am-
plify the performance of these benchmarks, beyond what the same optimizations
would achieve on real programs. For example, optimizing compilers can easily discard
25% of the Dhrystone code.

Kernel benchmarks are small, time-intensive pieces extracted from real pro-
grams. They were developed primarily for benchmarking high-end machines, espe-
cially supercomputers. Livermore Loops and Linpack are the best known examples. The
Livermore Loops benchmark consists of a series of 21 small loop fragments. Linpack
consists of a portion of a linear algebra subroutine package. Kernels are best used to
isolate the performance of individual characteristics of a machine and to explain the
reasons for differences in the performance of real programs. They are mostly used to
characterize performance of scientific applications.

An important step in performance evaluation was the formation of the SPEC
(Standard Performance Evaluation Corporation) group in 1988. SPEC is a non-profit corpo-
ration which develops and maintains standardized sets of benchmarks based on real
programs. The benchmark suites contain source code and tools for generating per-
formance reports, and are extensively tested for portability before release.

The first benchmark set (called SPEC89) was released in 1989. It contained
six floating-point benchmarks and four integer benchmarks. A single metric was com-
puted, SPECMark, using the geometric mean of execution times normalized to the
VAX-11/780 computer. This measure favored machines with strong floating-point
performance.

In 1992, a new benchmark set (called SPEC92) was introduced. It incorpo-
rated additional benchmarks, and provided separate metrics (SPECINT and SPECFP)
for integer and floating-point programs.

Structure of Computer Systems24

Today, the SPEC organization consists of three groups, each with their own
benchmarks:

• Open Systems Group (OSG): Component- and system-level benchmarks in an
UNIX / NT / VMS environment.

• High Performance Group (HPG): Benchmarking for high-performance numeric
computing.

• Graphics Performance Characterization Group (GPCG): Benchmarks for graphical
subsystems, OpenGL and Xwindows.

1.3.6.3. CPU95

The CPU95 benchmarks were introduced by SPEC in 1995 as a replacement
for the older CPU92 benchmarks. They were developed by the Open Systems Group,
which includes more than 30 computer vendors, systems integrators, publishers and
consultants. These benchmarks measure the performance of CPU, memory system,
and compiler code generation. They normally use UNIX as the portability vehicle, but
they have been ported to other operating systems as well. The percentage of time
spent to execute operating system functions and I/O operations is generally negligible.

The CPU95 benchmarks are internally composed of two collections:

• CINT95: integer programs, representing the CPU-intensive part of system or
commercial application programs;

• CFP95: floating-point programs, representing the CPU-intensive part of nu-
meric-scientific application programs.

The CPU benchmarks can be used for two types of measurement:

• Speed measurement;
• Rate (throughput) measurement.

Speed Measurement

The result of each individual benchmark, called “SPEC ratio”, is expressed as
the ratio of the time to execute one single copy of the benchmark, compared to a
fixed SPEC reference time. For the CPU95 benchmarks, a Sun SPARCstation 10/40
with 128 MB of memory was chosen as the reference machine.

The different SPEC ratios for a given machine can vary widely. Users should
consider those benchmarks that best approximate their applications. SPEC has also
defined the following averages for speed measurements with the CPU95 benchmarks:

• SPECint_base95: geometric mean of the 8 SPEC ratios from CINT95 when
compiled with conservative optimization for each benchmark;

Introduction 25

• SPECfp_base95: geometric mean of the 10 SPEC ratios from CFP95 when
compiled with conservative optimization for each benchmark;

• SPECint95: geometric mean of the 8 SPEC ratios from CINT95 when com-
piled with aggressive optimization for each benchmark;

• SPECfp95: geometric mean of the 10 SPEC ratios from CFP95 when com-
piled with aggressive optimization for each benchmark.

SPEC CPU95 incorporates run and reporting rules that permit both “base-
line” and optimized results for the CINT95 and CFP95 suites. The “baseline” results
are obtained by conservative optimization, and the optimized results are obtained by
aggressive optimization. The “baseline” rules restrict the number of compiler optimi-
zations that can be used for performance testing.

Rate Measurement
With this measurement method, several copies of a given benchmark are exe-

cuted. This method is particularly suitable for multiprocessor systems. The result of a
benchmark, called “SPEC rate”, express how many jobs of a particular type can be
executed in a given time. The SPEC reference time is one 24-hour day. The execution
times are normalized with respect to the SPEC reference machine. The SPEC rates
therefore characterize the capacity of a system for compute-intensive jobs of similar
characteristics.

Similar as with the speed metric, SPEC has defined the following averages:

• SPECint_rate_base95: geometric mean of the 8 SPEC rates from CINT95
when compiled with conservative optimization for each benchmark;

• SPECfp_rate_base95: geometric mean of the 10 SPEC rates from CFP95 when
compiled with conservative optimization for each benchmark;

• SPECint_rate95: geometric mean of the 8 SPEC rates from CINT95 when
compiled with aggressive optimization for each benchmark;

• SPECfp_rate95: geometric mean of the 10 SPEC rates from CFP95 when
compiled with aggressive optimization for each benchmark

1.3.6.4. CPU2000
CPU2000 is the latest version of the standard for evaluating computer system

performance, released at the end of 1999. The new benchmarks can be used across
several versions of UNIX and Microsoft operating systems. They reflect the advances in
microprocessor technologies, compilers and applications that have taken place over
the last five years.

The new release replaces SPEC CPU95, which was phased out in July 2000,
when SPEC stopped publishing CPU95 results. Performance results from CPU2000

Structure of Computer Systems26

cannot be compared to those from CPU95, since new benchmarks have been added
and existing ones changed.

SPEC CPU2000 comprises two sets of benchmarks: CINT2000 for measur-
ing compute-intensive integer performance, and CFP2000 for compute-intensive
floating point performance. Improvements to the new sets include longer run times
and larger problems for benchmarks, more application diversity, and standard devel-
opment platforms that will allow SPEC to produce additional releases for other oper-
ating systems.

SPEC CPU2000 provides performance measurements for system speed and
throughput. The speed metrics, SPECint2000 and SPECfp2000, measures how fast a
machine completes running all of the benchmarks from the CINT2000 and CFP2000
sets, respectively. The throughput metrics, SPECint_rate2000 and SPECfp_rate2000,
measures how many tasks a computer can complete in a given amount of time.

SPEC selected the Sun Microsystems Ultra 5/10 workstation with a 300-MHz
SPARC processor and 256 MB of memory as a reference machine. All benchmark
results are computed as ratios against the reference machine, which has a SPE-
Cint2000 and SPECfp2000 score of 100. Each benchmark was run and measured on
the Ultra 5/10 to establish a reference time.

SPEC considered the following criteria in the process of selecting applications
to use as benchmarks:

• Portability to all SPEC hardware architectures (32-bit and 64-bit architectures
including Alpha, Intel Architecture, Rxx00, SPARC, etc.);

• Portability to various operating systems, particularly UNIX and Windows;

• Benchmarks should not include measurable I/O, networking or graphics ac-
tivities;

• Benchmarks should run in 256 MB of RAM memory without swapping;

• No more than five percent of benchmarking time should be spent processing
code not provided by SPEC.

1.3.7. Quality Factors

In addition to the performance measurements, a number of quality factors
also have influence over the success of a computer. Some of these factors are generality,
ease of use, expandability, compatibility, and reliability.

• Generality is a measure that determines the range of applications for an ar-
chitecture. Some architectures are good for scientific purposes and some for
business applications. The architecture is more profitable when it supports a
variety of applications.

• Ease of use is a measure of how easy it is for the system programmer to de-
velop software for the architecture.

	Real FP operations
	1.3.5. Other Performance Measurements
	1.3.6. Benchmark Programs
	1.3.6.1. Comparing and Summarizing Performance
	1.3.6.2. The Evolution of Benchmark Programs
	1.3.6.3. CPU95
	Speed Measurement
	Rate Measurement

	1.3.6.4. CPU2000

	1.3.7. Quality Factors

