
Arithmetic-Logic Unit 101

The IEEE 754 standard offers four rounding modes, so that the programmer
can use the desired approximation. The rounding modes are the following:

• Round toward plus infinity (always round up);
• Round toward minus infinity (always round down);
• Round toward zero (truncate);
• Round to nearest even.

Two extra bits (guard and round) are always enough for the first three
rounding modes. The last rounding mode is provided for the situations when the ac-
tual number is exactly halfway between two floating-point representations. To always
obtain the correct rounding for the last case, the standard specifies a third bit in addi-
tion to guard and round. This is called sticky bit (s) and it is set whenever there are
non-zero bits to the right of the round bit. Once set, the sticky bit remains set. This
bit might be set, for example, during addition, when the smaller number is shifted to
the right.

Rounding to nearest minimizes the mean error introduced by rounding. If
uniform distribution of digits are assumed, rounding to nearest has a mean error of 0.

3.5. Problems
3.5.1. Design combinational circuits for a half subtracter and a full subtracter. For

each circuit: (a) Derive the truth table; (b) Write the Boolean expression;
(c) Draw the logic diagram.

3.5.2. Design an n-bit subtracter whose operation is analogous to that of a ripple
carry adder.

3.5.3. Illustrate how to connect n half adders to form an n-bit combinational incre-
menter whose function is to add 1 (modulo 2n) to an n-bit number X.

3.5.4. Design a 2’s complement adder-subtracter that computes the values X + Y,
X – Y, and Y – X. The circuit has an overflow flag and a zero flag. First design
a 4-bit adder module using ripple-carry propagation, and then use this module
to construct an 8-bit adder-subtracter.

3.5.5. Table 3.13 describes a procedure for the addition of n-bit sign-magnitude
numbers. Addition and subtraction of sign-magnitude numbers is compli-
cated by the fact that to compute X + Y, the magnitudes |X| and |Y| must
be compared to determine the operation to perform and the order of oper-
ands. Design a circuit to compute the functions X + Y, X – Y, and Y – X for
sign-magnitude numbers. Assume that the word size is 16 bits and that the
standard design components are available, including a 16-bit unsigned adder,
a 16-bit unsigned subtracter, and a 16-bit magnitude comparator.

Structure of Computer Systems102

Table 3.13. Algorithm for the addition of sign-magnitude numbers.

Condition Operations

X > 0, Y > 0 Add X = xn-1xn-2…x0 and Y = yn-1yn-2…y0 (modulo 2n) to form the result
 Z = zn-1zn-2…z0 (n-bit unsigned addition).

X > 0, Y < 0 Let |X| = xn-2xn-3…x0 and |Y| = yn-2yn-3…y0. If |X| < |Y|, subtract X from Y
(modulo 2n). If |X| ≥ |Y|, set yn-1 to 0 and subtract Y from X (modulo 2n).

X < 0, Y > 0 If |Y| < |X|, subtract Y from X (modulo 2n). If |Y| ≥ |X|, set xn-1 to 0 and
subtract X from Y (modulo 2n).

X < 0, Y < 0 Add X and Y (modulo 2n) and set zn-1 to 1.

3.5.6. Suppose that the adder-subtracter circuit of Figure 3.32 has been designed for
2’s complement numbers. The circuit computes the sum Z = X + Y when the
control line SUB = 0 and the difference Z = X – Y when SUB = 1. An over-
flow flag OF is to be added to the circuit, but it is not possible to access in-
ternal lines. That is, only those data and control lines appearing in the figure
can be used to set the overflow flag. Construct a logic circuit for OF.

Figure 3.32. An n-bit adder-subtracter circuit.

3.5.7. Consider the adder-subtracter circuit of Figure 3.32, assuming now that it has
been designed for sign-magnitude numbers. The circuit computes Z = X + Y
when SUB = 0 and Z = X – Y when SUB = 1. Assume that the circuit con-
tains an n-bit ripple carry adder and a similar n-bit ripple borrow subtracter,
and that it is possible to access all the internal lines. Derive a logic equation
that defines an overflow flag OF for this circuit.

3.5.8. Derive a general expression for the carry signal Ck in a carry lookahead adder.

3.5.9. Derive the Boolean expressions for the carry signals C12 and C16 in a carry
lookahead adder that adds two 16-bit numbers. Assume that fan-in is limited
to 4.

3.5.10. Write the equations for the carry logic of a 64-bit carry lookahead adder using
16-bit adders as building blocks.

3.5.11. Design a 4-bit carry select adder using full adders and multiplexers.

Arithmetic-Logic Unit 103

3.5.12. Design a carry save adder for adding four 4-bit numbers. Draw the logic dia-
gram of the adder using full adders. Note that the sum of four n-bit numbers
can take n+2 bits.

3.5.13. Assume that the delay introduced by each full adder is 2T. Calculate the time
of adding four 4-bit numbers using three ripple-carry adders versus the time
using the carry save adder from Problem 3.5.12.

3.5.14. Design a serial adder that adds four unsigned binary numbers instead of two
handled by a conventional serial adder. The adder has four input lines x, y, z,
u and a single output line S. The numbers are presented at the inputs with the
least significant bits first.

3.5.15. Design a serial subtracter analogous to the serial adder. The inputs of the
subtracter are two unsigned binary numbers x and y; the output is the differ-
ence x – y.

3.5.16. Design a sequential circuit that multiplies an unsigned binary number N of
arbitrary length by 3. N is entered serially via the input line x with its least sig-
nificant bit first. The result appears serially on the output line z.

3.5.17. Design a BCD adder by using five full adders, two half adders, three two-
input NAND gates, and one three-input NAND gate.

3.5.18. A faster version of Booth’s multiplication algorithm for 2’s complement
numbers, known as the modified Booth algorithm, examines three adjacent bits
yi+1yiyi-1 of the multiplier Y at a time, instead of two bits. Besides the three
basic actions performed by the original Booth algorithm, which can be ex-
pressed as add 0, X, or –X to the accumulated partial product (A), the modi-
fied algorithm performs two more actions: add +2X or –2X to register A.
These operations have the effect of increasing the radix from 2 to 4 and allow
an n-bit multiplication to be performed in n/2 clock cycles instead of n.
(a) Construct a table that defines the basic actions of the modified Booth al-
gorithm as a function of yi+1yiyi-1. (b) Show the steps of the algorithm for two
8-bit 2’s complement numbers (including the sign bit). (c) Describe the modi-
fied Booth algorithm in VHDL.

3.5.19. Draw the detailed logic diagram of a 4-bit multiplier using a Wallace tree
(Figure 3.15). Use full adders as basic components.

3.5.20. Draw the block diagram of a multiple-operand adder with multiple levels of
carry save adders and one carry lookahead adder, arranged in a Wallace tree.
The adder can receive 10 input numbers, where each number has 4 bits. As-
suming that each carry save adder has a delay of T, and the carry lookahead
adder has a delay of 2T, estimate the total time required to add 100 4-bit
numbers.

Structure of Computer Systems104

3.5.21. Suppose the combinational array multiplier of Figure 3.18 is given the un-
signed integer operands X = 1010 and Y = 1001. Determine the output sig-
nals generated by every adder cell when the array computes X × Y.

3.5.22. Use the multiplier cell of Figure 3.19 to construct a combinational array mul-
tiplier for 5-bit unsigned numbers. Draw the logic diagram of the multiplier
and show all the signals applied to every cell.

3.5.23. Design a basic cell for implementing Booth’s algorithm by a combinational
array. Such a cell must be capable of addition, subtraction, and no operation.
Draw the structure of the array multiplier for 4×4-bit numbers. Suppose the
array multiplier is given the signed integer operands X = 1010 and Y = 1001.
Determine the output signals generated by every cell when the array com-
putes X × Y.

3.5.24. Divider circuits usually include logic to detect a dividend-divisor combination
that will cause the quotient to overflow. Suppose that a divider circuit for n-
bit unsigned integers has a double-word (2n-bit) dividend and a single-word
divisor. (a) What condition must be satisfied for quotient overflow to occur?
(b) How can be modified the divider circuit of Figure 3.23 to introduce an
overflow detector using as little extra logic as possible?

3.5.25. Write a nonrestoring division algorithm using the notation of Figure 3.22.
Show by an example how the algorithm works.

3.5.26. Write the logic equations for the outputs z and u of cell D in Figure 3.25.

3.5.27. Consider the array divider of Figure 3.26 that is designed for a word size of
n = 3, with a double-length (6 bit) dividend. (a) Why there are four rows of D
cells instead of three? (b) Supposing that dividends are restricted to 3 bits in-
stead of 6, which cells can be deleted from the array?

3.5.28. Consider the following 9-bit floating-point format, where the 4-bit exponent
is biased by 8.

 8 7 4 3 0
S Exponent Mantissa

(a) Assume that the exponent base is 2, and consider only normalized repre-
sentations. What are the largest positive value and the smallest negative value
representable in this format? (b) Repeat part (a) when the exponent base is 4.

3.5.29. Add the numbers 6.42 × 101 to 9.51 × 102, assuming that there are only three
significant decimal digits, first with guard and round digits, and then without
them.

3.5.30. Derive the floating-point division algorithm using a format similar to the
multiplication algorithm in Figure 3.31. Then perform the division of num-
bers 1.11010 × 1010 and 1.10010 × 10–5, showing the steps of the operation.

	3.5. Problems

