
Pipelining 263

the register file occur in the next stage. Instructions then enter the execution pipelines
in the functional units. The results are written to the register file in the write-back
stage. Within a functional unit, the results are bypassed to the next instructions as
soon as available. The results of unit FU0 are forwarded to units FU2 and FU3 with
one clock cycle delay and are visible to the unit FU1 in the next clock cycle. Similarly,
the results of unit FU1 are forwarded to unit FU0 without any delay.

5.4.8.4. Explicitly Parallel Instruction Computing

The Explicitly Parallel Instruction Computing (EPIC) architecture was developed
at Hewlett-Packard Laboratories, starting in 1989, to enable higher levels of instruc-
tion-level parallelism without unacceptable hardware complexity. The EPIC architec-
ture is an evolution of the VLIW architecture, which has also assimilated many con-
cepts of the superscalar technique. EPIC provides a philosophy to build ILP proces-
sors, along with a set of architectural features that support this philosophy. The first
commercial implementation of an EPIC architecture is Intel’s IA-64 architecture.

EPIC Philosophy

One of the goals of the EPIC project was to retain the VLIW concept of
statically constructing the plan of execution of the program by the compiler, but to
enhance it with features specific to superscalar processing, that use the advantages of
dynamic factors. To accomplish these goals, the EPIC philosophy has three main
principles:

• The compiler should have the key role in constructing the plan of execution
for the program, and the architecture should provide the required support for
the compiler.

• The architecture should provide features that assist the compiler in using the
advantages of ILP.

• The architecture should provide mechanisms to communicate the compiler’s
plan of execution to the processor.

The EPIC philosophy assigns the charge of constructing the plan of execu-
tion to the compiler. EPIC processors provide features that assist the compiler in
successfully constructing the plan of execution. A basic requirement is that the be-
havior of EPIC processors be predictable and controllable from the compiler's view-
point. The essence of constructing the plan of execution at compile time is to reorder
the original sequential code to take advantage of the application's parallelism and to
use in an optimal way the hardware resources, thereby minimizing the execution time.
Without suitable architectural support, reordering can affect program correctness. For
this reason, EPIC processors provide architectural features that allow extensive code
reordering at compile time.

Structure of Computer Systems264

An EPIC compiler faces a major problem in constructing the plan of execu-
tion at compile time, because certain types of information can only be known at run-
time. For example, the compiler cannot know the destination of each conditional
branch. It is often impossible to construct a static schedule that optimizes all paths
within the program. Ambiguity also results when the compiler is unable to resolve
whether two memory references are to the same location. If they are, they need to be
executed sequentially. If not, they can be scheduled in any order. In such circum-
stances, the compiler constructs and optimizes the plan of execution for the likely
case. However, EPIC provides architectural features, such as control and data specu-
lation, to ensure program correctness even when the guess is incorrect. Sometimes, a
performance reduction results, but these situations should be infrequent.

Having constructed a plan of execution, the compiler needs to communicate
this plan to the processor. In order to do so, the instruction set architecture must be
able to express the compiler's decisions about the moment when to issue each opera-
tion and which resources to use. In particular, it should be possible to specify which
operations are to be issued simultaneously. The alternative would be to create a se-
quential program which is presented to the processor and re-organized dynamically.
When communicating the plan of execution to the processor, it is important to pro-
vide critical information at the appropriate time. An example is the branch operation
which, if it is going to be taken, requires that instructions start being fetched from the
branch target well in advance of the branch being issued. Rather than providing a
branch target buffer to indicate what the target address is, the EPIC philosophy is to
provide this information to the processor, explicitly and at the correct time, via the
code.

There are other problems which must be solved by the microarchitecture that
are not directly concerned with the execution of the code, but which do affect the
execution time. One example is the management of the cache memory hierarchy and
the associated decisions of what data to replace. The replacement policies are typically
built into the cache memory hardware. EPIC allows the compiler to also manage
these mechanisms of the microarchitecture. In conclusion, EPIC provides architec-
tural features that permit programmatic control of the mechanisms which normally
are controlled by the microarchitecture.

EPIC simplifies two major run-time responsibilities of the processor. First,
the EPIC philosophy permits the elimination of run-time dependency checks for op-
erations that the compiler has already demonstrated as independent. Second, EPIC
permits the elimination of complex logic for issuing operations out of order by relying
upon the issue order specified by the compiler. EPIC enhances the compiler’s ability
to statically generate a plan of execution by supporting various forms of compile-time
code motion that would be illegal in a conventional architecture. Some of the archi-
tectural features of EPIC are described next.

Multiple Operations per Instruction (MultiOp)
A MultiOp instruction specifies a set of operations that are intended to be

issued for execution simultaneously, each operation being the equivalent of an in-

Pipelining 265

struction of a conventional sequential processor. The compiler identifies operations
scheduled to be issued for execution simultaneously and packages them into a Mul-
tiOp instruction. When issuing a MultiOp instruction, the processor does not need to
perform dependence checking between its constituent operations. In addition, each
MultiOp instruction has a notion of virtual time associated with it; a single MultiOp
instruction is issued in each cycle of virtual time. Virtual time differs from actual time
when the processor inserts run-time stalls, that the compiler did not anticipate.

In constructing a plan of execution, the compiler must take into account the
number of resources of each type available in the processor, and it must perform re-
source allocation. The EPIC philosophy is to communicate these decisions to the
processor via the code, so that the processor need not perform again the resource
allocation at run-time. One way of achieving this is by using a positional instruction
format, i.e., the position of an operation within the MultiOp instruction specifies the
functional unit upon which the operation will execute. Alternatively, this information
can be specified as part of each operation's opcode.

Architecturally Visible Latencies

Traditional sequential architectures define execution as a sequence of atomic
operations; each operation completes before a subsequent operation begins. Such ar-
chitectures do not allow the possibility of one operation’s reads and writes being in-
terleaved in time with those of other operations. With MultiOp instructions, opera-
tions are no longer atomic. When the operations within a single MultiOp instruction
are executed, multiple operations may read their inputs before any operation writes its
results. Thus, the non-atomicity and the latencies of operations are both architectur-
ally visible.

The primary motivation for architecturally non-atomic operations is hardware
simplicity for operations that, in reality, take more than one clock cycle to complete. If
an operation will not attempt to use a result before it has been produced, the hard-
ware does not need interlocks or a stall capability.

A non-atomic operation which produces at least one result with an architec-
turally assumed latency that is greater than one cycle is termed a non-unit assumed latency
(NUAL) operation. A non-atomic operation which has architecturally assumed laten-
cies of one clock cycle for all of its results is termed a unit assumed latency (UAL) opera-
tion. Assumed latencies can be specified as constants recognized by the EPIC com-
piler and the EPIC processor, or they may be specified dynamically by the program
prior to or during execution. The processor then uses the assumed latency specifica-
tion to ensure correct program interpretation. If, for any reason, the processor’s actual
latencies differ from the assumed latencies, the processor must ensure correct pro-
gram execution, using specific techniques.

Resolving the Branch Problem
Many applications use a large number of branches. Branch latency as meas-

ured in processor cycles grows as clock frequency increases. Branch operations have a

Structure of Computer Systems266

hardware latency which extends from the time when the branch begins execution to
the time when the instruction at the branch target begins execution. During this time,
several actions occur: a branch condition is computed, a target address is formed, in-
structions are fetched from either the sequential or the target path, and the next in-
struction is decoded and issued for execution.

The fundamental problem is that although conventional instruction sets
specify a branch as a single, atomic operation, its actions must actually be performed
at different times, which increases the latency of the branch. When an insufficient
number of operations are overlapped with branch execution, unsatisfactory perform-
ance results. EPIC’s philosophy is to eliminate stall cycles by achieving a better over-
lap between branch processing and other computation. Rather than relying on hard-
ware alone to solve the problem, EPIC provides architectural features which facilitate
the following three capabilities:

• Separate branch component operations, by an explicit specification in the
code when each of the actions of the branch must take place;

• Elimination of branches, especially those for which accurate prediction is dif-
ficult;

• Static motion of operations across multiple branches.

EPIC does not treat a branch as an atomic operation. Rather than viewing a
branch as an single high-latency operation, EPIC unbundles branches into three dis-
tinct operations: a prepare-to-branch operation determines the target address and
provides it to the branch unit; a compare computes the branch condition; and finally
the actual branch marks the location in the instruction stream where control flow is
conditionally transferred.

The unbundling of branches allows the compiler to move the prepare-to-
branch and the compare operations sufficiently in advance of the actual branch so
that the processor can finish computing the branch condition and prefetching the
appropriate instructions by the time that the actual branch is reached. On executing
the prepare-to-branch operation, the processor can speculatively – before the branch
condition is known – prefetch instructions at the branch target. After executing the
compare, the processor can determine whether the branch will be taken, dismiss un-
necessary instructions prefetched speculatively, and also initiate non-speculative pre-
fetches of instructions. These techniques permit overlapped processing of branch
components, while using only the static motion of branch components.

EPIC reduces the branch penalty by eliminating branches using predicated exe-
cution. Predicated execution refers to the conditional execution of operations based on
a Boolean-valued input, called a predicate, associated with the basic block containing
the operation. Compare operations compute the predicates such that they are true if
the program would reach the corresponding basic block in the control flow graph;
predicates are false otherwise. The semantics of the following generic operation
guarded by predicate p,

r1 = op (r2, r3) if p

Pipelining 267

are that the operation executes normally if p is true and the operation is nullified (i.e.,
has no effect on the architectural state) if p is false. In particular, the nullified opera-
tion does not modify any destination register or memory location, it does not signal
any exceptions, and it does not branch. Predicated execution is often a more efficient
method for controlling execution than branching and it provides additional freedom
for static code motion.

Predicated execution is used by the compiler for a technique known as if-
conversion. A simple example of if-conversion is shown in Figure 5.23. Figure 5.23(a)
shows the control flow graph for an if-then-else construct, while Figure 5.23(b) shows
the resulting converted code. A single compare computes complementary predicates,
each of which guards operations in one of the conditional clauses. The code for which
if-conversion was applied contains no branches and is easily scheduled in parallel with
other code, often substantially enhancing the instruction-level parallelism.

Figure 5.23. Use of predicated execution to perform if-conversion.

Branches represent obstacles to the static reordering of operations needed to
perform efficient schedules. In addition to predicated execution, EPIC provides an-
other technique that increases operation mobility across branches: control speculation.
Consider the program fragment shown in Figure 5.24(a), which consists of two basic
blocks. Control speculation is shown in Figure 5.24(b); OP1 has been moved from
the second basic block into the first to reduce the length of the path which is depend-
ent upon the branch. The label OP1* is attached to the operation to indicate that it
needs a speculative operation code.

While static speculation enhances instruction-level parallelism, it also requires
hardware assistance to handle exceptions. If an operation reports a speculative excep-
tion immediately, the exception may be false. This would occur if OP1* reports an
exception, and the subsequent branch is taken. The exception is false because it is
reported even though OP1 would not have been executed in the original program of
Figure 5.24(a).

Structure of Computer Systems268

Figure 5.24. Example of code motion above one or more branches.

EPIC avoids false exceptions using speculative opcodes and tagged operands.
When a speculative operation such as OP1* in Figure 5.24(b) causes an exception, the
operation does not report the exception immediately, but it generates an operand that
is tagged as erroneous. The exception is reported later, when a non-speculative opera-
tion uses the erroneous operand. If the branch is not taken, OP2 correctly reports the
exception generated by OP1*. If the branch is taken, the erroneous operand is ignored
and the exception is not reported.

An EPIC processor does not execute operations like branches or stores to
memory speculatively, because these can cause side effects that are not easily elimi-
nated. Instead, EPIC uses predicated execution to allow operations to move across
branches non-speculatively. Figure 5.24(c) shows again the motion of OP1 across a
branch. However, in this case, OP1 remains non-speculative because it is guarded
using a predicate corresponding to the complement of the branch exit condition
(pbpf =). As in the original program, OP1 executes only if the branch is not taken.

EPIC allows non-speculative code motion across multiple branches. The
compiler can cascade compare operations that compute predicates across multiple
branches, as shown in Figure 5.24(d). Each compare evaluates an exit condition and
computes predicates for a branch (pbi) and for the basic block reached when the
branch is not taken (pfi). A branch predicate (pbi) is true when its basic block predi-
cate is true (pfi-1) and its exit condition is true. A subsequent basic block predicate (pfi)
is true when the previous basic block’s predicate is true (pfi-1) and the branch exit
condition is false. Such a predicate, which is computed over a multiblock region, is
called a fully resolved predicate (FRP). Using FRPs, branches and other non-speculative
operations are easily reordered to optimize the schedule.

Pipelining 269

Resolving the Memory Access Problem

Memory accesses can also reduce performance. Since the processor’s clock
period is decreasing faster than the memory access time, the memory access time
(measured in processor cycles) is increasing. Data cache memories can reduce per-
formance degradation due to increasing main memory latency. However, hardware-
managed cache memories sometimes degrades performance even below that of a sys-
tem without a cache memory. EPIC provides architectural mechanisms that allow
compilers to explicitly control the motion of data through the cache memory hierar-
chy.

Unlike other operations, a load operation can introduce several different la-
tencies, depending on the cache memory level at which the referenced datum is
found. For NUAL loads, the compiler must communicate to the processor the spe-
cific latency that is assumed for each load. For this purpose, EPIC architectures pro-
vide load operations with a source cache memory specifier that the compiler uses to in-
form the processor of where within the cache memory hierarchy it can expect to find
the referenced datum and, implicitly, the assumed latency. In order to generate a high
quality schedule, the compiler must perform a correct prediction of the latency of
each load operation and then communicate this to the processor using the cache
memory specifier.

EPIC architectures also provide the load and store operations with a target
cache memory specifier that the compiler uses to indicate the cache memory level to
which the load or store operation should promote or demote the referenced data for
use by subsequent memory operations. The target cache memory specifier reduces
misses in the cache memories by controlling their contents. The compiler can exclude
data with insufficient temporal locality from a certain level of cache memory, and can
remove data from this cache memory on last use.

5.4.8.5. Comparison of Throughput Improvement Methods

A comparison of the throughput improvement methods presented earlier
shows a few interesting differences. For example, the superscalar and VLIW ap-
proaches are more sensitive to resource conflicts than the superpipelined approach. In
a superscalar or VLIW processor, a resource must be duplicated to reduce the chance
of conflicts, while the superpipelined technique avoids any resource conflicts. An
EPIC architecture tries to avoid resource conflicts using the compiler.

To prevent a superpipelined processor from being slower than a superscalar
processor, the technology used in the superpipelined processor must reduce the delay
of the lengthy instruction pipeline. Therefore, in general, superpipelined processors
require faster transistor technology such as GaAs (gallium arsenate), while superscalar
processors require a higher number of transistors to allow the duplication of hardware
resources. The superscalar approach often uses CMOS technology, since this tech-
nology provides high circuit density. Existing technology generally favors an increas-
ing circuit density over an increasing circuit speed. Historically, circuit density has in-

	5.4.8.4. Explicitly Parallel Instruction Computing
	EPIC Philosophy
	Multiple Operations per Instruction (MultiOp)
	Architecturally Visible Latencies
	Resolving the Branch Problem
	Resolving the Memory Access Problem

	5.4.8.5. Comparison of Throughput Improvement Methods

