

Genetic Algorithm for FPGA Placement

Zoltan Baruch, Octavian Creţ, and Horia Giurgiu

Computer Science Department, Technical University of Cluj-Napoca,
26, Bariţiu St., 3400 Cluj-Napoca, Romania

{Zoltan.Baruch, Octavian.Cret, Horia.Giurgiu}@cs.utcluj.ro

 Abstract – Field-Programmable Gate Arrays
(FPGAs) are flexible circuits that can be
(re)configured by the designer. The efficient use
of these circuits requires complex CAD tools.
One of the steps of the design process for FPGAs
is represented by placement. In this paper we pre-
sent a genetic algorithm for the FPGA placement
problem, in particular for the Atmel FPGA cir-
cuits. Because of the limited routing resources of
these circuits, the algorithm allocates a number
of empty cells as part of the placement process,
in order to use these cells for routing. The cost
function used optimizes several different metrics,
which include wirelength as well as measures of
the routability of the placement. The experiments
performed on a set of standard benchmark cir-
cuits are promising.

 Keywords: VLSI Design, Placement, Genetic
Algorithms

1. INTRODUCTION

 Field-Programmable Gate Arrays (FPGAs) are
flexible circuits that can be easily reconfigured
by the designer. These circuits represent one of
today’s most popular digital logic implementa-
tion options. An important component of the
FPGA-based design is the CAD software neces-
sary to efficiently use the circuits. A typical
FPGA design process consists of logic synthesis,
technology mapping, placement, and routing. Af-
ter the logic synthesis phase, the logic specifica-
tion is divided in the technology mapping phase
into logic functions that are directly implemented
in the FPGA circuit. In the placement phase,
these logic functions are assigned to specific

cells of the circuit. Finally, in the routing phase,
the logic signals are connected by programmable
switches. In this paper, we focus on the place-
ment problem.
 The placement problem, with the objective to
minimize the total wirelength, is NP-complete
[8]. For real circuits, the solution space is too
large to permit enumerative techniques. There-
fore, heuristic algorithms are used, which require
relatively short execution times (a polynomial
function of the number of cells), and can find
good solutions to the placement problem, not
necessarily the best solutions. Exact algorithms,
using techniques like dynamic programming, are
computationally expensive [3].
 A number of heuristic techniques have been
developed for solving the placement problem. A
widely used technique for hard combinatorial
optimization problems, including placement, is
simulated annealing (SA), introduced by Kirk-
patrick, Gelatt and Vecchi [6]. A logarithmic
temperature scheduling for the SA is proved to
ensure global optimum solution. This requires a
very slow cooling schedule, which can make SA
prohibitively slow. Therefore, an efficient algo-
rithm for the placement problem is desirable.
 An efficient paradigm for solving hard optimi-
zation problems is the genetic algorithm (GA).
Genetic algorithms work with a population of
solutions. By the simulated evolution process of
GA, over a number of generations, the candidate
solutions retain the better characteristics of mul-
tiple solutions of earlier generations. This intrin-
sic parallelism provides the GA with an
advantage over simulated annealing [6], which
uses one single solution.
 Because of such advantages, we are motivated
to attempt a solution to the placement of FPGA

 2

circuits by GA. To the best of our knowledge,
there is no published GA targeted towards the
placement problem for FPGA circuits. Hence,
our first contribution is a GA for the placement
of FPGA circuits. This algorithm was imple-
mented for the Atmel 6000 circuits.
 A placement is acceptable if 100% routing can
be achieved within a given area. This is not an
easy task for FPGA architectures with very lim-
ited routing resources, like the Atmel 6000 cir-
cuits [1]. A good placement will not only put
connected blocks together, but will also ensure
that logic elements are not placed too closely in
order to ensure the routability of the circuit. This
is not an easy task for FPGA architectures with
very limited routing resources. Our second con-
tribution is an algorithm which allocates a num-
ber of empty cells as part of the placement
process, in order to use these cells for routing.
The cost function used optimizes several differ-
ent metrics. These metrics include wirelength as
well as measures of the routability of the place-
ment.
 The rest of this paper is organized as follows.
In the next section, we define the placement
problem. In Section 3, we briefly describe some
related work. In Section 4, we describe the ge-
netic algorithm for the Atmel FPGA circuits. Ex-
perimental results are presented in Section 5.
Finally, conclusions are made in Section 6.

2. THE PLACEMENT PROBLEM

 Given a collection of cells or modules with
ports on the boundaries and a collection of nets
(which are sets of ports that are to be connected
together), the process of placement consists of
finding suitable physical locations for each cell
on the entire layout. The locations are suitable if
they minimize given objective functions, subject
to certain constraints imposed by the designer,
the implementation process, or layout style. The
cells may be standard-cells, macro-cells, FPGA
logic blocks, etc.
 More formally, the placement problem can be
defined as follows. Given a set of m modules, M
= {M1, M2, …, Mm}, a set of n nets N = {N1, N2,
…, Nn}, and a set of p primary input pins and
primary output pins R = {R1, R2, …, Rp}, we as-

sociate with each module Mi ∈ M a set of nets
i
, where

i
⊆ N. Similarly, we associate

with each net Ni ∈ N a set of modules ,
where = {Mj | N

N M N M

M Ni

M Ni i ∈
j
}. We are also given

a set of locations L = {L

N M

1, L2, …, Lk}, where k ≥
n. The placement problem is to assign each Mi ∈
M to a unique location Lj such that some objec-
tive function is optimized. Usually each module
is considered to be a point, and if Mi is assigned
to location Lj then its position is defined by the
coordinate values (xj, yj).
 Depending on the technology used, different
physical placement constraints exist. For gate-
array technology, all modules have the same
shape and size and are to be placed into pre-
determined locations on the placement area. For
macro-cell technology, modules have different
shapes and sizes, and the dimensions wi × hi of
Mi for all the modules are given in the circuit
specification. The placement area has dimensions
W × H and is given in the circuit specification.
 For performance driven placement, timing
specifications are also given. Timing specifica-
tions of a circuit include signal arrival times at
the primary inputs, the required signal arrival
times at the primary outputs, internal delay di of a
module Mi, and the maximum allowable signal
skew Ci at module Mi for all the modules.

3. RELATED WORK

 As mentioned before, to the best of our knowl-
edge, there is no reported work which uses ge-
netic algorithms for the placement of FPGA
circuits. However, a number of placement tools
for FPGA’s have been described in the literature,
which employ “traditional” methods.
 Ebeling et al. [4] described automatic mapping
tools for the Triptych FPGA architecture. These
tools include a placement algorithm based on a
simulated annealing approach. Beetem [2] intro-
duced a penalty-driven iterative improvement
algorithm for simultaneous placement and rout-
ing of FPGAs. Nag and Roy [7] presented an
incremental placement algorithm for row-based
FPGAs which analyzes post-layout timing and
routability information to obtain better place-

 3

ments. Togawa et al. [9] proposed a method for
the simultaneous place and route of symmetrical
FPGAs based on hierarchical bi-partitioning.
 Gao [5] developed net-based and path-based
performance driven placement algorithms for
gate-arrays, macro-cells and Xilinx FPGAs, in
order to minimize the signal arrival times at the
primary output pins and the signal skews at the
inputs of the modules. In the net-based placement
algorithm, timing delay requirements are first
translated into physical design constraints, such
as net constraints. The placement algorithm then
generates a placement under the guidance of the
net constraints. In the path-based placement algo-
rithm, path delays are considered explicitly dur-
ing the placement process. This algorithm tries to
minimize the total wire length and the latest arri-
val times at the primary output pins.

4. FPGA PLACEMENT USING GENETIC
ALGORITHM

 In this section we describe the genetic algo-
rithm for the placement of FPGA circuits in gen-
eral, and for the Atmel 6000 FPGA in particular.

4.1 Overview of the Algorithm

 The GA is a different approach to the place-
ment problem. While other algorithms iteratively
improve a placement by swapping two cells or
moving a single cell, the GA works with a set of
initial placements representing the initial popula-
tion. Each individual in the population is a string
of symbols. The symbols are known are genes
and the string of genes is called chromosome.
The chromosome represents a solution of the
placement problem. A set of genes that form a
partial solution is called a schema. Each place-
ment of n cells (i.e., an individual) is an instance
of 2n - 1 schema corresponding to the non-empty
subsets of the set of n cells in the placement. The
algorithm tries to combine the partial solutions of
two different placements to form a better place-
ment.
 The basic ideas of the GA were inspired by the
process of biological evolution. The GA repeat-
edly performs the reproduce-evaluate cycle as
follows. During each iteration (known as a gen-

eration) of this cycle the individuals in the cur-
rent population are evaluated using some
measure of fitness. The fitness is related to the
cost function, and in the case of a minimization
problem, is typically the inverse of the cost func-
tion. Based on the fitness value, two individuals
at a time (called parents) are selected from the
population, with the more fit individuals getting
higher probability of being selected. Then, a
number of genetic operators are applied to the
selected parents to generate new individuals
called offsprings, in a process known as repro-
duction. These genetic operators combine the
features of both parents. Common operators are
crossover, mutation, and inversion. After the ge-
netic operators are applied, the new individuals
are evaluated based on the cost function, and a
new population is created for the next generation
by probabilistically selecting individuals from the
entire population, according to their relative fit-
ness. This completes the reproduce-evaluate cy-
cle for one generation or iteration of the GA.

4.2 Genetic Operators

 Crossover is the main genetic operator. It oper-
ates on two parent individuals and generates an
offspring. If Πa and Πb are two candidate indi-
viduals, representing valid placements, the cross-
over operation is defined as Πa × Πb → Πo,
where Πo, the offspring, is another valid place-
ment. The crossover combines schemata from
both parents, and therefore the offspring inherits
some of the characteristics of the parents. The
simplest form of crossover consists of choosing a
random cut point in the gene strings of the par-
ents and generating the offspring by combining
the segment of one parent to the left of the cut
point with the segment of the other parent to the
right of the cut.
 This simple form of crossover cannot be ap-
plied here, as it can create strings that have no
physical representation. For example, a simple
crossover between two strings ABCD and BDCA
could produce two new strings ABCA and BDCD.
If each character corresponds to a cell in the
placement problem, then a valid string should
have one and only one instance of each character.
Consequently, crossover operators that preserve

 4

the correctness of the placement are needed. We
use a modified crossover operator known as par-
tially mapped crossover (PMX).
 The PMX crossover is performed as follows.
Two parents (1 and 2) are selected and a random
cut point is chosen. The entire right substring of
parent 2 is copied to the offspring. Next, the left
substring of parent 1 is scanned from the left,
gene by gene, to the point of the cut. If a gene
does not exist in the offspring then it is copied
here. However, if it already exists in the off-
spring, then its position in parent 2 is determined
and the gene from parent 1 in the determined po-
sition is copied.
 Consider the following two parents:

 Parent 1: BIDEF.GCHA
 Parent 2: AGHCB.IDEF

 Let the cut point after position 4. The right sub-
string in parent 2, which is IDEF, is copied into
the offspring. Then the first parent is scanned
from the left, and since gene B (position 0) is not
in the offspring, it is copied to position 0. The
next gene, I (position 1) exists in the offspring at
position 5. The gene in position 5 in parent 1 is
G, and this does not exist in the offspring, there-
fore gene G is copied to the offspring in position
1. The scanning of the first parent is continued in
the same way, and the offspring generated is
BGCHAIDEF.
 It is relevant to mention which individuals
would participate in crossover in every genera-
tion. It is essential that better fitting individuals
participate in reproduction more often. If a cer-
tain individual reproduces for a large number of
times in the early stages of the GA, it is likely
that all solutions in the population would inherit
some features of this individual and so tend to be
the same. Hence, the parent selection strategy
employed should avoid this premature conver-
gence of the GA to a local optimum. We
achieved this by not permitting any better fit par-
ent to reproduce more than once in a single gen-
eration.
 Mutation produces incremental random chan-
ges in the offspring generated by the crossover.
The mutation operator generates new cell-
coordinate triples. If the new triples perform
well, then the configurations containing them are

retained. The mutation is controlled by a parame-
ter referred to as the mutation rate Mr. The muta-
tion process would permit population diversity to
be maintained in later stages of the GA. Mutation
also helps the GA to avoid any local optimum.
 The mutation is controlled by a parameter re-
ferred to as the mutation rate Mr. A low Mr
means that the infusion of new genes is very low.
Such low level mutation would disturb the solu-
tion structure by only a small amount, and yet it
remains a favorable process for adaptation. A
high Mr will cause the offsprings to lose the re-
semblance to their parents. The mutation process
would permit population diversity to be main-
tained in later stages of the GA. Mutation also
helps the GA to avoid any local optimum.
 Inversion changes the effective length of a
schema without altering the fitness of the indi-
vidual, in order to increase the survival probabil-
ity of longer schema. The inversion operator
changes the positions of cell records in the string
representing a placement but does not change the
physical locations of the cell in the circuit. This
operator takes a chromosome and two randomly
chosen cut points along the length of the chromo-
some, and reverses the substring between the in-
version points. For example, given the string
BID.EFGCH.A, with the randomly chosen in-
version points shown as dots, the result of the
inversion operation is BID.HCGFE.A. The cell
position in the records is not updated in this
stage, so the new string still represents the same
placement.

4.3 Next Generation Population Selection

 The conventional GA employs the approach of
generating two offsprings from two parents and
replacing the parents by the two offsprings for
the next generation process. However, we em-
ployed a different evolution strategy. In our ap-
proach, all offsprings replace an equivalent
number of worst solutions in the current popula-
tion. This strategy helps the survival of any better
solution over many generations. The solutions
generated by the genetic operators compete for at
least one generation. This approach to next popu-
lation selection provides an efficient performance
for the GA.

 5

4.4 Specific Issues for the Atmel FPGA
Circuits

 The cost function used optimizes several dif-
ferent metrics. These metrics include wirelength
as well as measures of the routability of the
placement. For wirelength calculation we use the
semi-perimeter method. Minimizing the wire-
length will generally have the effect of placing
the cells tightly in the center of the array, which
almost certainly results in unroutable nets. In or-
der to ensure the routability of the placement, a
number of empty cells in the array are used for
routing. These cells must be allocated as part of
the placement process.
 While minimizing wirelength reduces the num-
ber of routing resources required globally, it can-
not ensure that signals can be routed locally
given the limited routing resources. We have
added two components to the cost function which
address this problem. The local routability com-
ponent attaches a penalty to those situations
where it can be determined that a net cannot be
routed using local routing resources. Each func-
tion requires two or three inputs, only one of
which can be supplied by a local or express bus
[1]. Thus two-input functions must receive one
of their signals from the neighbors, and three-
input functions must receive two. There are four
adjacent cells which can provide these inputs,
and the local routability function checks to make
sure that the required input signals are either pre-
sent in these cells or that there are sufficient rout-
ing resources available so that they could be
routed. Local routability finds only illegal place-
ments that can be determined from the immediate
context.
 The density balance component is designed to
prevent routing congestion due to a high concen-
tration of functions in one part of the array. The
metric consists of looking at small windows of
cells and counting the number of used inputs in
this region. To ensure that the empty cells are
evenly spread, the penalty is the square of the
number of used inputs above a threshold in a
window, summed across all windows. The squar-
ing is necessary to penalize the situations when
the used inputs are highly concentrated. The
threshold is required so that a small circuit

mapped onto an array will not be spread
throughout the array.
 We examine every unique window in the
FPGA, so that the windows overlap. Windows
are also allowed to move beyond the chip
boundaries, with the virtual cells beyond the chip
edge assumed to have as many used inputs as the
overall average. If we either did not allow win-
dows to move beyond the chip boundaries, or
assumed that the virtual cells had no used inputs,
large number of cells would gather at the edge.
Similarly, if we assumed that the virtual cells
were completely filled with used inputs, these
inputs would avoid the edge.

5. EXPERIMENTAL RESULTS

 The experiments were performed on an IBM
PC computer with a 200 MHz Pentium-MMX
processor, under the Windows NT Version 4.0
operating system. The circuits used are from the
MCNC (Microelectronics Center of North Caro-
lina) benchmark suite.
 The effect of population size and mutation rate
on result quality was observed in order to deter-
mine optimum values for these parameters. Table
1 shows the final total wirelength as a function of
population size (the mutation rate being constant,
Mr = 0.05). The results were obtained for the
daio circuit. Similar results were obtained for
other circuits.

Table 1. Effect of population size on the total wirelength.

Population size Total wirelength
20 436
40 321
60 349
80 269

100 311
120 346
140 293

 Based on these experiments, the following val-
ues were used for the main parameters of the
GA: population size Np = 80, mutation rate Mr =
0.05, inversion rate Ir = 0.15, number of genera-
tions Ng = 2000.
 The experiments were conducted as follows.
The standard circuits were converted from the

 6

EDIF format (Electronic Design Interchange
Format) to the netlist format used by the tech-
nology mapping program. The circuits were then
technology mapped for the Atmel 6002 FPGA
circuit. The placement process was applied to the
netlists obtained after the technology mapping.
Some results are shown in Table 2, which indi-
cates the initial and the final wirelengths using
the Manhattan metric, and the running time in
seconds.

Table 2. The total wirelength and run-time of the GA for a
set of benchmark circuits.

Circuit No.
of

Total wirelength Time

 cells Initial Final (seconds)
b1 28 726 245 42
c17 23 363 103 26
cm138a 43 1154 495 72
con1 33 889 320 50
daio 30 734 269 46
decod 75 2485 1265 168
majority 21 339 138 32
tcon 82 2264 1210 153
x2 58 2192 1126 129

6. CONCLUSIONS

 We presented a genetic algorithm for the Atmel
FPGA circuits. The algorithm allocates a number
of empty cells as part of the placement process,
in order to use these cells for routing. The cost
function used optimizes several different metrics,
which include wirelength and measures of the
routability of the placement. The parameters of
the GA were determined experimentally. The ex-
periments performed on a set of standard bench-
mark circuits show the efficiency of the
algorithm.
 For comparison purposes, we are currently im-
plementing a placement algorithm using a simu-
lated annealing procedure. An adaptive GA for
the same problem is also investigated.

REFERENCES

[1] Atmel Corporation, Configurable Logic.
PLD, FPGA, Gate Array Data Book, San
Jose, 1995.

[2] J. Beetem, “Simultaneous Placement and
Routing of the LABYRINTH Reconfigur-
able Logic Array”. The International Work-
shop of Field-Programmable Logic and
Applications, Oxford, U.K., 1991, pp. 232-
243.

[3] R. Chandrasekharam, S. Subhramanian, and
S. Chaudhury, “Genetic Algorithm for Node
Partitioning Problem and Applications in
VLSI Design”, IEE Proceedings-E, Vol.
140, No. 5, pp. 255-260, 1993.

[4] C. Ebeling, L. McMurchie, S. A. Hauck, and
S. Burns, “Placement and Routing Tools for
the Triptych FPGA”, IEEE Transactions on
Very Large Scale Integration (VLSI) Sys-
tems, Vol. 3, No. 4, pp. 473-482, 1995.

[5] T. Gao, Performance Driven Placement and
Routing Algorithms, PhD Thesis, University
of Illinois at Urbana-Champaign, 1994.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vec-
chi, “Optimization by Simulated Anneal-
ing”, Science, No. 220, pp. 671-680, 1983.

[7] S. Nag, and K. Roy, “Iterative Wireability
and Performance Improvement for FPGAs”,
Proceedings of the 30th ACM/IEEE Design
Automation Conference, 1993, pp. 321-325.

[8] S. M. Sait, and H. Youssef, VLSI Physical
Design Automation, McGraw-Hill Book
Company, 1995.

[9] N. Togawa, M. Sato, and T. Ohtsuki, “A
Simultaneous Placement and Global Rout-
ing Algorithm for Symmetric FPGAs”, The
2nd International ACM/SIGDA Workshop on
Field-Programmable Gate Arrays, Berkeley,
CA, 1994.

