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   Abstract – Field-Programmable Gate Arrays 
(FPGAs) are flexible circuits that can be 
(re)configured by the designer. The efficient use 
of these circuits requires complex CAD tools. 
One of the steps of the design process for FPGAs 
is represented by placement. In this paper we pre-
sent a genetic algorithm for the FPGA placement 
problem, in particular for the Atmel FPGA cir-
cuits. Because of the limited routing resources of 
these circuits, the algorithm allocates a number 
of empty cells as part of the placement process, 
in order to use these cells for routing. The cost 
function used optimizes several different metrics, 
which include wirelength as well as measures of 
the routability of the placement. The experiments 
performed on a set of standard benchmark cir-
cuits are promising. 

   Keywords: VLSI Design, Placement, Genetic 
Algorithms 

1. INTRODUCTION 

   Field-Programmable Gate Arrays (FPGAs) are 
flexible circuits that can be easily reconfigured 
by the designer. These circuits represent one of 
today’s  most popular digital logic implementa-
tion options. An important component of the 
FPGA-based design is the CAD software neces-
sary to efficiently use the circuits. A typical 
FPGA design process consists of logic synthesis, 
technology mapping, placement, and routing. Af-
ter the logic synthesis phase, the logic specifica-
tion is divided in the technology mapping phase 
into logic functions that are directly implemented 
in the FPGA circuit. In the placement phase, 
these logic functions are assigned to specific 

cells of the circuit. Finally, in the routing phase, 
the logic signals are connected by programmable 
switches. In this paper, we focus on the place-
ment problem. 
   The placement problem, with the objective to 
minimize the total wirelength, is NP-complete 
[8]. For real circuits, the solution space is too 
large to permit enumerative techniques. There-
fore, heuristic algorithms are used, which require 
relatively short execution times (a polynomial 
function of the number of cells), and can find 
good solutions to the placement problem, not 
necessarily the best solutions. Exact algorithms, 
using techniques like dynamic programming, are 
computationally expensive [3]. 
   A number of heuristic techniques have been 
developed for solving the placement problem. A 
widely used technique for hard combinatorial 
optimization problems, including placement, is 
simulated annealing (SA), introduced by Kirk-
patrick, Gelatt and Vecchi [6]. A logarithmic 
temperature scheduling for the SA is proved to 
ensure global optimum solution. This requires a 
very slow cooling schedule, which can make SA 
prohibitively slow. Therefore, an efficient algo-
rithm for the placement problem is desirable. 
   An efficient paradigm for solving hard optimi-
zation problems is the genetic algorithm (GA). 
Genetic algorithms work with a population of 
solutions. By the simulated evolution process of 
GA, over a number of generations, the candidate 
solutions retain the better characteristics of mul-
tiple solutions of earlier generations. This intrin-
sic parallelism provides the GA with an 
advantage over simulated annealing [6], which 
uses one single solution. 
   Because of such advantages, we are motivated 
to attempt a solution to the placement of FPGA 
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circuits by GA. To the best of our knowledge, 
there is no published GA targeted towards the 
placement problem for FPGA circuits. Hence, 
our first contribution is a GA for the placement 
of FPGA circuits. This algorithm was imple-
mented for the Atmel 6000 circuits. 
   A placement is acceptable if 100% routing can 
be achieved within a given area. This is not an 
easy task for FPGA architectures with very lim-
ited routing resources, like the Atmel 6000 cir-
cuits [1]. A good placement will not only put 
connected blocks together, but will also ensure 
that logic elements are not placed too closely in 
order to ensure the routability of the circuit. This 
is not an easy task for FPGA architectures with 
very limited routing resources. Our second con-
tribution is an algorithm which allocates a num-
ber of empty cells as part of the placement 
process, in order to use these cells for routing. 
The cost function used optimizes several differ-
ent metrics. These metrics include wirelength as 
well as measures of the routability of the place-
ment. 
   The rest of this paper is organized as follows. 
In the next section, we define the placement 
problem. In Section 3, we briefly describe some 
related work. In Section 4, we describe the ge-
netic algorithm for the Atmel FPGA circuits. Ex-
perimental results are presented in Section 5. 
Finally, conclusions are made in Section 6. 

2. THE PLACEMENT PROBLEM 

   Given a collection of cells or modules with 
ports on the boundaries and a collection of nets 
(which are sets of ports that are to be connected 
together), the process of placement consists of 
finding suitable physical locations for each cell 
on the entire layout. The locations are suitable if 
they minimize given objective functions, subject 
to certain constraints imposed by the designer, 
the implementation process, or layout style. The 
cells may be standard-cells, macro-cells, FPGA 
logic blocks, etc. 
   More formally, the placement problem can be 
defined as follows. Given a set of m modules, M 
= {M1, M2, …, Mm}, a set of n nets N = {N1, N2, 
…, Nn}, and a set of p primary input pins and 
primary output pins R = {R1, R2, …, Rp}, we as-

sociate with each module Mi ∈ M a set of nets 
i
, where 

i
⊆ N. Similarly, we associate 

with each net Ni ∈ N a set of modules , 
where = {Mj | N

N M N M

M Ni

M Ni i ∈ 
j
}. We are also given 

a set of locations L = {L

N M

1, L2, …, Lk}, where k ≥ 
n. The placement problem is to assign each Mi ∈ 
M to a unique location Lj such that some objec-
tive function is optimized. Usually each module 
is considered to be a point, and if Mi is assigned 
to location Lj then its position is defined by the 
coordinate values (xj, yj). 
   Depending on the technology used, different 
physical placement constraints exist. For gate-
array technology, all modules have the same 
shape and size and are to be placed into pre-
determined locations on the placement area. For 
macro-cell technology, modules have different 
shapes and sizes, and the dimensions wi × hi of 
Mi for all the modules are given in the circuit 
specification. The placement area has dimensions 
W × H and is given in the circuit specification. 
   For performance driven placement, timing 
specifications are also given. Timing specifica-
tions of a circuit include signal arrival times at 
the primary inputs, the required signal arrival 
times at the primary outputs, internal delay di of a 
module Mi, and the maximum allowable signal 
skew Ci at module Mi for all the modules. 

3. RELATED WORK 

   As mentioned before, to the best of our knowl-
edge, there is no reported work which uses ge-
netic algorithms for the placement of FPGA 
circuits. However, a number of placement tools 
for FPGA’s have been described in the literature, 
which employ “traditional” methods. 
   Ebeling et al. [4] described automatic mapping 
tools for the Triptych FPGA architecture. These 
tools include a placement algorithm based on a 
simulated annealing approach. Beetem [2] intro-
duced a penalty-driven iterative improvement 
algorithm for simultaneous placement and rout-
ing of FPGAs. Nag and Roy [7] presented an 
incremental placement algorithm for row-based 
FPGAs which analyzes post-layout timing and 
routability information to obtain better place-
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ments. Togawa et al. [9] proposed a method for 
the simultaneous place and route of symmetrical 
FPGAs based on hierarchical bi-partitioning. 
   Gao [5] developed net-based and path-based 
performance driven placement algorithms for 
gate-arrays, macro-cells and Xilinx FPGAs, in 
order to minimize the signal arrival times at the 
primary output pins and the signal skews at the 
inputs of the modules. In the net-based placement 
algorithm, timing delay requirements are first 
translated into physical design constraints, such 
as net constraints. The placement algorithm then 
generates a placement under the guidance of the 
net constraints. In the path-based placement algo-
rithm, path delays are considered explicitly dur-
ing the placement process. This algorithm tries to 
minimize the total wire length and the latest arri-
val times at the primary output pins. 

4. FPGA PLACEMENT USING GENETIC 
ALGORITHM 

   In this section we describe the genetic algo-
rithm for the placement of FPGA circuits in gen-
eral, and for the Atmel 6000 FPGA in particular.  

4.1 Overview of the Algorithm 

   The GA is a different approach to the place-
ment problem. While other algorithms iteratively 
improve a placement by swapping two cells or 
moving a single cell, the GA works with a set of 
initial placements representing the initial popula-
tion. Each individual in the population is a string 
of symbols. The symbols are known are genes 
and the string of genes is called chromosome. 
The chromosome represents a solution of the 
placement problem. A set of genes that form a 
partial solution is called a schema. Each place-
ment of n cells (i.e., an individual) is an instance 
of 2n - 1 schema corresponding to the non-empty 
subsets of the set of n cells in the placement. The 
algorithm tries to combine the partial solutions of 
two different placements to form a better place-
ment. 
   The basic ideas of the GA were inspired by the 
process of biological evolution. The GA repeat-
edly performs the reproduce-evaluate cycle as 
follows. During each iteration (known as a gen-

eration) of this cycle the individuals in the cur-
rent population are evaluated using some 
measure of fitness. The fitness is related to the 
cost function, and in the case of a minimization 
problem, is typically the inverse of the cost func-
tion. Based on the fitness value, two individuals 
at a time (called parents) are selected from the 
population, with the more fit individuals getting 
higher probability of being selected. Then, a 
number of genetic operators are applied to the 
selected parents to generate new individuals 
called offsprings, in a process known as repro-
duction. These genetic operators combine the 
features of both parents. Common operators are 
crossover, mutation, and inversion. After the ge-
netic operators are applied, the new individuals 
are evaluated based on the cost function, and a 
new population is created for the next generation 
by probabilistically selecting individuals from the 
entire population, according to their relative fit-
ness. This completes the reproduce-evaluate cy-
cle for one generation or iteration of the GA. 

4.2 Genetic Operators 

   Crossover is the main genetic operator. It oper-
ates on two parent individuals and generates an 
offspring. If Πa and Πb are two candidate indi-
viduals, representing valid placements, the cross-
over operation is defined as Πa × Πb → Πo, 
where Πo, the offspring, is another valid place-
ment. The crossover combines schemata from 
both parents, and therefore the offspring inherits 
some of the characteristics of the parents. The 
simplest form of crossover consists of choosing a 
random cut point in the gene strings of the par-
ents and generating the offspring by combining 
the segment of one parent to the left of the cut 
point with the segment of the other parent to the 
right of the cut. 
   This simple form of crossover cannot be ap-
plied here, as it can create strings that have no 
physical representation. For example, a simple 
crossover between two strings ABCD and BDCA 
could produce two new strings ABCA and BDCD. 
If each character corresponds to a cell in the 
placement problem, then a valid string should 
have one and only one instance of each character. 
Consequently, crossover operators that preserve 
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the correctness of the placement are needed. We 
use a modified crossover operator known as par-
tially mapped crossover (PMX). 
   The PMX crossover is performed as follows. 
Two parents (1 and 2) are selected and a random 
cut point is chosen. The entire right substring of 
parent 2 is copied to the offspring. Next, the left 
substring of parent 1 is scanned from the left, 
gene by gene, to the point of the cut. If a gene 
does not exist in the offspring then it is copied 
here. However, if it already exists in the off-
spring, then its position in parent 2 is determined 
and the gene from parent 1 in the determined po-
sition is copied. 
   Consider the following two parents: 

   Parent 1: BIDEF.GCHA 
   Parent 2: AGHCB.IDEF 

   Let the cut point after position 4. The right sub-
string in parent 2, which is IDEF, is copied into 
the offspring. Then the first parent is scanned 
from the left, and since gene B (position 0) is not 
in the offspring, it is copied to position 0. The 
next gene, I (position 1) exists in the offspring at 
position 5. The gene in position 5 in parent 1 is 
G, and this does not exist in the offspring, there-
fore gene G is copied to the offspring in position 
1. The scanning of the first parent is continued in 
the same way, and the offspring generated is 
BGCHAIDEF. 
   It is relevant to mention which individuals 
would participate in crossover in every genera-
tion. It is essential that better fitting individuals 
participate in reproduction more often. If a cer-
tain individual reproduces for a large number of 
times in the early stages of the GA, it is likely 
that all solutions in the population would inherit 
some features of this individual and so tend to be 
the same. Hence, the parent selection strategy 
employed should avoid this premature conver-
gence of the GA to a local optimum. We 
achieved this by not permitting any better fit par-
ent to reproduce more than once in a single gen-
eration. 
   Mutation produces incremental random chan-
ges in the offspring generated by the crossover. 
The mutation operator generates new cell-
coordinate triples. If the new triples perform 
well, then the configurations containing them are 

retained. The mutation is controlled by a parame-
ter referred to as the mutation rate Mr. The muta-
tion process would permit population diversity to 
be maintained in later stages of the GA. Mutation 
also helps the GA to avoid any local optimum. 
   The mutation is controlled by a parameter re-
ferred to as the mutation rate Mr. A low Mr 
means that the infusion of new genes is very low. 
Such low level mutation would disturb the solu-
tion structure by only a small amount, and yet it 
remains a favorable process for adaptation. A 
high Mr will cause the offsprings to lose the re-
semblance to their parents. The mutation process 
would permit population diversity to be main-
tained in later stages of the GA. Mutation also 
helps the GA to avoid any local optimum. 
   Inversion changes the effective length of a 
schema without altering the fitness of the indi-
vidual, in order to increase the survival probabil-
ity of longer schema. The inversion operator 
changes the positions of cell records in the string 
representing a placement but does not change the 
physical locations of the cell in the circuit. This 
operator takes a chromosome and two randomly 
chosen cut points along the length of the chromo-
some, and reverses the substring between the in-
version points. For example, given the string 
BID.EFGCH.A, with the randomly chosen in-
version points shown as dots, the result of the 
inversion operation is BID.HCGFE.A. The cell 
position in the records is not updated in this 
stage, so the new string still represents the same 
placement. 

4.3 Next Generation Population Selection 

   The conventional GA employs the approach of 
generating two offsprings from two parents and 
replacing the parents by the two offsprings for 
the next generation process. However, we em-
ployed a different evolution strategy. In our ap-
proach, all offsprings replace an equivalent 
number of worst solutions in the current popula-
tion. This strategy helps the survival of any better 
solution over many generations. The solutions 
generated by the genetic operators compete for at 
least one generation. This approach to next popu-
lation selection provides an efficient performance 
for the GA. 
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4.4 Specific Issues for the Atmel FPGA 
Circuits 

   The cost function used optimizes several dif-
ferent metrics. These metrics include wirelength 
as well as measures of the routability of the 
placement. For wirelength calculation we use the 
semi-perimeter method. Minimizing the wire-
length will generally have the effect of placing 
the cells tightly in the center of the array, which 
almost certainly results in unroutable nets. In or-
der to ensure the routability of the placement, a 
number of empty cells in the array are used for 
routing. These cells must be allocated as part of 
the placement process. 
   While minimizing wirelength reduces the num-
ber of routing resources required globally, it can-
not ensure that signals can be routed locally 
given the limited routing resources. We have 
added two components to the cost function which 
address this problem. The local routability com-
ponent attaches a penalty to those situations 
where it can be determined that a net cannot be 
routed using local routing resources. Each func-
tion requires two or three inputs, only one of 
which can be supplied by a local or express bus 
[1]. Thus two-input functions must receive one 
of their signals from the neighbors, and three-
input functions must receive two. There are four 
adjacent cells which can provide these inputs, 
and the local routability function checks to make 
sure that the required input signals are either pre-
sent in these cells or that there are sufficient rout-
ing resources available so that they could be 
routed. Local routability finds only illegal place-
ments that can be determined from the immediate 
context. 
   The density balance component is designed to 
prevent routing congestion due to a high concen-
tration of functions in one part of the array. The 
metric consists of looking at small windows of 
cells and counting the number of used inputs in 
this region. To ensure that the empty cells are 
evenly spread, the penalty is the square of the 
number of used inputs above a threshold in a 
window, summed across all windows. The squar-
ing is necessary to penalize the situations when 
the used inputs are highly concentrated. The 
threshold is required so that a small circuit 

mapped onto an array will not be spread 
throughout the array. 
   We examine every unique window in the 
FPGA, so that the windows overlap. Windows 
are also allowed to move beyond the chip 
boundaries, with the virtual cells beyond the chip 
edge assumed to have as many used inputs as the 
overall average. If we either did not allow win-
dows to move beyond the chip boundaries, or 
assumed that the virtual cells had no used inputs, 
large number of cells would gather at the edge. 
Similarly, if we assumed that the virtual cells 
were completely filled with used inputs, these 
inputs would avoid the edge. 

5. EXPERIMENTAL RESULTS 

   The experiments were performed on an IBM 
PC computer with a 200 MHz Pentium-MMX 
processor, under the Windows NT Version 4.0 
operating system. The circuits used are from the 
MCNC (Microelectronics Center of North Caro-
lina) benchmark suite. 
   The effect of population size and mutation rate 
on result quality was observed in order to deter-
mine optimum values for these parameters. Table 
1 shows the final total wirelength as a function of 
population size (the mutation rate being constant, 
Mr = 0.05). The results were obtained for the 
daio circuit. Similar results were obtained for 
other circuits. 

Table 1. Effect of population size on the total wirelength. 

Population size Total wirelength 
20 436 
40 321 
60 349 
80 269 

100 311 
120 346 
140 293 

 
   Based on these experiments, the following val-
ues were used for the main parameters of the 
GA: population size Np = 80, mutation rate Mr = 
0.05, inversion rate Ir = 0.15, number of genera-
tions Ng = 2000. 
   The experiments were conducted as follows. 
The standard circuits were converted from the 
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EDIF format (Electronic Design Interchange 
Format) to the netlist format used by the tech-
nology mapping program. The circuits were then 
technology mapped for the Atmel 6002 FPGA 
circuit. The placement process was applied to the 
netlists obtained after the technology mapping. 
Some results are shown in Table 2, which indi-
cates the initial and the final wirelengths using 
the Manhattan metric, and the running time in 
seconds. 

Table 2. The total wirelength and run-time of the GA for a 
set of benchmark circuits. 

Circuit No. 
of  

Total wirelength Time 

 cells Initial Final (seconds)
b1 28 726 245 42 
c17 23 363 103 26 
cm138a 43 1154 495 72 
con1 33 889 320 50 
daio 30 734 269 46 
decod 75 2485 1265 168 
majority 21 339 138 32 
tcon 82 2264 1210 153 
x2 58 2192 1126 129 

 

6. CONCLUSIONS 

   We presented a genetic algorithm for the Atmel 
FPGA circuits. The algorithm allocates a number 
of empty cells as part of the placement process, 
in order to use these cells for routing. The cost 
function used optimizes several different metrics, 
which include wirelength and measures of the 
routability of the placement. The parameters of 
the GA were determined experimentally. The ex-
periments performed on a set of standard bench-
mark circuits show the efficiency of the 
algorithm. 
   For comparison purposes, we are currently im-
plementing a placement algorithm using a simu-
lated annealing procedure. An adaptive GA for 
the same problem is also investigated. 
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