
High Performance DES Encryption in VirtexTM FPGAs using JBitsTM

Cameron Patterson

Xilinx, Inc.

2300 55th Street

Boulder, Colorado 80301

Cameron.Patterson@xilinx.com

Abstract

A JBits implementation of the Data Encryption
Standard (DES) algorithm in a Virtex FPGA is de-
scribed. The Virtex architecture eÆciently implements
the DES primitive operations, and permits a high de-
gree of pipelining. JBits provides a Java-based Ap-
plication Programming Interface (API) for the run
time creation and modi�cation of the con�guration
bitstream. This allows dynamic circuit specialization
based on a speci�c key and mode (encrypt or decrypt).
The key schedule is computed entirely in software, and
is part of the bitstream. As a result, all cryptographic
key input and subkey generation logic are removed
from the fully unrolled datapath. When combined with
a speed eÆcient layout, the result is a throughput of
over 10 Gigabits per second. This is suÆcient band-
width for SONET OC-192c (optical) networks, and ex-
ceeds the speed reported for a recently announced DES
ASIC.

1 Introduction

Cryptographic algorithms such as the Data Encryp-
tion Standard (DES) are frequently implemented in
Field-Programmable Gate Arrays [1]. Orders of mag-
nitude speedup over software implementations are due
to the following attributes of DES:

� It is a pure datapath.

� The primitive operations used are bit-level sub-
stitutions and permutations, which are ineÆcient
in software. Fixed permutations are essentially
free in hardware.

� DES has 16 rounds, which can be unrolled and
pipelined in hardware.

The fastest software throughput reported in [2] is 13
Megabits/sec. Some speeds reported for recent aca-

demic and commercial FPGA implementations are
given in Table 1. Note that only the �rst entry uses
key-speci�c optimization of the circuitry.

It is generally assumed that ASIC implementations
of DES provide the highest speed. The fastest DES
ASIC known to the author was recently announced by
Sandia National Laboratories [8]. It fully unrolls and
pipelines the 16 rounds, and has been tested at 105
MHz (6.7 Gigabits/sec). Power consumption at 105
MHz is 6.5 watts. Simulation predicts a maximum
speed of 145 MHz (9.28 Gigabits/sec).

A fully unrolled and pipelined FPGA implemen-
tation of the DES algorithm has been developed for
which timing analysis predicts a maximum speed of
168 MHz, or 10.7 Gigabits/sec. This comfortably
meets the bandwidth requirements for SONET OC-
192c optical networks. Power consumption at 168
MHz is 3.2 watts. The remainder of this paper de-
scribes the technology, techniques and tools that en-
able this performance.

2 The DES Algorithm

In 1973, the U.S. National Bureau of Standards
(now called the National Institute of Standards and
Technology or NIST) solicited proposals for a stan-
dard cryptographic algorithm. IBM submitted a vari-
ant of their Lucifer algorithm, which utilized a 16-
round substitution-permutation network. The U.S.
National Security Agency evaluated the design, and
recommended changes such as reducing the key size
from 128-bits to 56-bits. In 1977, the Data Encryp-
tion Standard was adopted as a Federal Information
Processing Standard for unclassi�ed government com-
munication [10].

DES encrypts 64-bit blocks with a 56-bit key1. The
use of triple encryption with two di�erent keys allevi-

1The key is transmitted as 64-bits, but this includes a parity

bit for each byte.



FPGA(s) Clock Rate Throughput Loop Design Reference
Used (MHz) (Megabits/sec) Unrolling Capture

Xilinx 4013-4 7 26 none VHDL [3]
Xilinx 6216 23 57 none schematics [4]
Xilinx 4010E 43 172 none VHDL/Verilog [5]
Xilinx 4028EX-3 25 384 partial VHDL [6]
Xilinx V150-6 101 404 none VHDL/Verilog [7]
4 Altera 10K100-3 20 1280 full AHDL [8]
Xilinx V400-6 60 3656 full VHDL [9]

Table 1: Previous FPGA Implementations of DES

ates concerns of cryptanalysis using an exhaustive key
search. The algorithm has 16 rounds or iterations,
where each round consists of swapping the left and
right 32-bits, as well as permutation, substitution and
XOR operations. This is shown in Figure 1. Note that
all permutation and expansion operations are imple-
mented with wire crossings and fanout. A di�erent
subset of the key bits is used in each round. Decryp-
tion is identical to encryption, except that the subkeys
are generated in the reverse order.

DES is a private or symmetric key algorithm, in
which the same key is used for both encryption and
decryption. A public key algorithm such as RSA may
be used to encrypt and exchange this private key. Pri-
vate key algorithms are generally much faster than
public key algorithms (e.g. a hardware implementa-
tion of DES is about 1000 times faster than a hardware
implementation of RSA). Programs such as PGP [11]
typically use public key algorithms for key manage-
ment, and private key algorithms for data encryption.

2.1 Implementing DES in the Virtex Ar-
chitecture

In 1998, Xilinx introduced the Virtex architecture
as the successor to the XC4000 family [12]. It uses a
2.5 volt, 0.22 micron, 5 metal layer process. Like the
XC4000, it can be characterized as a symmetric array
of CLBs surrounded by IOBs. Each CLB contains
two slices, where each slice is roughly equivalent to
an XC4000 CLB (i.e. it contains two 4-input LUTs,
two ip ops, and a vertical carry path). System-level
resources such as block RAM and delay-locked loops
have also been added to Virtex.

Two features of the Virtex CLB make it especially
well-suited to the DES algorithm:

� Each of the eight S-Boxes is speci�ed as a ta-
ble with a 6-bit input and a 4-bit output. Logic

minimization algorithms �nd little structure in
the S-Boxes, so it is reasonable to implement
each S-Box as four independent 6-input single-
output lookup tables. A single Virtex CLB can
implement a 6-input LUT by combining four
4-input LUTs with CLB-resident multiplexers.
The XC4000 implementation of a 6-input LUT
is slower, since it requires two CLBs.

� A Virtex 4-input LUT can provide a 1 to 16-bit
shift register function (SRL16). The LUT in-
puts de�ne the position of the output tap on the
SRL16. Beyond 3 bits, SRL16 power consump-
tion is lower than connecting a series of ip ops.
SRL16s allow a high degree of pipelining to be
used in the DES datapath.

3 Run Time Recon�guration

The run time recon�guration (RTR) of FPGAs al-
lows the customization of circuits to the problem in-
stance at hand. This can have considerable speed and
area advantages. For example, if one of the inputs to a
multiplier is �xed for a given problem instance, then a
general multiplier can be replaced with multiplication
by a constant. The recon�guration overhead must be
acceptable to the application, however.

Xilinx SRAM-based FPGAs have always been re-
con�gurable. What has been missing, however, is
software support for dynamic recon�guration. The
XACT, M1 and M2 products provide static (i.e.
ASIC) design ows. Schematics and mainstream
HDLs do not provide a way of specifying dynamic
circuitry. The time and memory required by synthe-
sis and implementation tools precludes their use in a
run-time recon�guration environment. The XC6200
family addressed partial and rapid recon�guration at



Expansion
Permutation

S-Box
Substitution

P-Box
Permutation

L
i-1

R
i-1

(32 bits) (32 bits)

L R
i i

Key (56 bits)

Shift Shift

Compression
Permutation

Key

48 2-input
XORs

32 6-input
LUTs

32 2-input
XORs

Figure 1: A Single DES Round

the architectural level, but the associated design ow
started with EDIF input.

Netlist-based design and implementation ows are
unsuited to the dynamic portion of RTR applications.
An alternative model is to take a software-centric ap-
proach. A microprocessor-based application can di-
rectly create or modify the FPGA's con�guration, pro-
vided an Application Programming Interface (API) is
available for this purpose. The FPGA's con�guration
is not treated as data, but as state that is modi�ed
and queried by function calls. This abstraction is inde-
pendent of whether the FPGA architecture supports
partial recon�guration, and works even if the entire
FPGA bitstream must be rewritten when it is modi-
�ed (as in the case of the XC4000).

This model also supports system level design, hard-

ware/software co-design, and design reuse. The con-
ventional approach is for the system architect to par-
tition the design between software and hardware engi-
neers. Integration of the hardware and software occurs
late in the development e�ort, and may reveal inter-
face problems. On the other hand, the con�guration-
API approach permits the software designer to incre-
mentally de�ne and test hardware functions using a
library of run-time parameterized (RTP) FPGA cores.

3.1 JBits

JBits supports the con�guration-API model in the
Java programming language [13]. Currently, JBits is
available from Xilinx for the XC4000 and Virtex ar-
chitectures. JBits classes de�ne the tiles used in the



architecture. For example, one of the tiles is a Con�g-
urable Logic Block and the associated General Rout-
ing Matrix. Each CLB instance is index by a row
and column, and the con�guration bits for the CLB
can be queried or modi�ed. Symbolic values are used
to reference con�gurable structures (e.g. multiplex-
ers) and their states. Figure 2 illustrates the JBits
calls required to con�gure a CLB at (row,col) as a
6-input registered LUT. The code essentially de�nes
paths through the CLB. Many of the multiplexer set-
tings used are the power-up defaults.

For comparison, code which de�nes a netlist for a
6-input LUT in terms of Virtex primitive components
(LUT4, MUXF5, MUXF6 and FD) is shown in Fig-
ure 3. The placePrimitivemethod speci�es the CLB
and slice coordinates for each component. Note that
the netlist code is roughly equivalent in size to the
JBits code. However, there is considerable time and
memory overhead to map the netlist to the CLB con-
�guration settings.

The JBits design approach clearly has run time ad-
vantages, which may be essential for the application.
JBits coding requires a detailed knowledge of the ar-
chitecture, though, and is not easily ported to other
architectures. The netlist approach permits the use
of mainstream simulation and implementation tools.
However, there may not be complete control over map-
ping, placement and routing, which can make it diÆ-
cult to exchange one logic block with another at run
time. Our solution to this dilemma is to implement a
DES core that generates a fully placed netlist. This
netlist can be written out as EDIF for functional ver-
i�cation and processing by the M2 tools. In addition,
part of the netlist is translated to JBits calls. This is
done in the following situations:

� Whenever M2 does not permit the required de-
gree of physical control (e.g. which LUT or ip
op is used in a slice, or the assignment of nets
to LUT inputs).

� For portions of the circuit that are de�ned or
modi�ed at run time (e.g. LUT or block RAM
contents, and connections to swapped in logic).

� For critical nets or logic that have no freedom of
implementation.

The conversion of nets to JBits calls is assisted by
a new utility called JRoute [14]. This will route a net
with fanout that is speci�ed in terms of endpoint lo-
cations. Prior to the development of JRoute, JBits
users were required to specify the sequence of routing
segments used for each net. For the regular connec-
tions arising in datapath circuits, JRoute provides a

good trade o� between run time and optimality. JBits
calls can instead be used whenever JRoute does not
produce the desired results.

4 DES Implementation

The objective was to �nd the maximum speed that
can be obtained using a combination of Virtex and
JBits technology. To this end, the 16 rounds of the
DES algorithm were completely unrolled, and the op-
timal number of pipeline stages per round was in-
vestigated. The degree of pipelining must consider
power consumption, since this may limit the maxi-
mum clock frequency. Several oorplans were also
evaluated. Each of these aspects will be considered
in turn.

4.1 Dynamic Circuit Specialization Using
JBits

JBits permits computations to be easily partitioned
between hardware and software. In DES, an obvious
candidate for migration to software is precomputing
the 48-bit subkey for each round. As shown in Fig-
ure 1, a subkey is XORed with the expanded right
half of the data bits. Let d be a data bit and k be a
subkey bit. Since k is a constant for a given encryp-
tion key, XOR(d; k) is either d or d. An inversion on an
S-Box input is equivalent to reordering the LUT con-
tents. For example, inverting the least signi�cant bit
is the same as swapping adjacent entries in the LUT,
and inverting the most signi�cant bit can be achieved
by swapping the two halves of the LUT.

The results of this optimization are shown in Fig-
ure 4. When compared with Figure 1, we see that the
following have been removed:

� 48 XORs per round,

� all key input IOBs,

� all subkey generation and control logic.

The subkeys are now represented by permutations of
the S-Box contents. The overall e�ect of this opti-
mization is to make the S-Boxes both key and round
speci�c.2

2Normally, the S-Box contents are independent of the key,

and are the same in each round.



public void configureLUT6(int row, int col) {

try {

jBits.set(row, col, S0Control.BxInvert, S0Control.OFF);

jBits.set(row, col, S0Control.ByInvert, S0Control.OFF);

jBits.set(row, col, S0RAM.DUAL_MODE, S0RAM.ON);

jBits.set(row, col, S0RAM.LUT_MODE, S0RAM.ON);

jBits.set(row, col, S1Control.BxInvert, S1Control.OFF);

jBits.set(row, col, S1Control.ByInvert, S1Control.OFF);

jBits.set(row, col, S1RAM.DUAL_MODE, S1RAM.ON);

jBits.set(row, col, S1RAM.LUT_MODE, S1RAM.ON);

jBits.set(row, col, S1Control.Y.Y, S1Control.Y.F6);

jBits.set(row, col, S1Control.YDin.YDin, S1Control.YDin.BY);

jBits.set(row, col, S1Control.LatchMode, S1Control.ON);

jBits.set(row, col, S1Control.Sync, S1Control.ON);

} catch (ConfigurationException ce) {

System.out.println("ERROR: unable to configure 6-input LUT at R" +

"row + "C" + col);

System.out.println(ce);

}

}

Figure 2: Implementing a 6-input Registered LUT with JBits

4.2 Pipelining

Two obvious places for the insertion of registers in
Figure 4 are after the S-Box and XOR operations.
This requires balancing of the left and right paths,
as shown in Figure 5. Note that three pipeline stages
are required in the left half, since that is the number of
registers that the right half passes through before the
two paths reconverge at the XOR of the next round.
Prior to the �rst round, the left half requires an ad-
ditional register. In the last round, the left half only
requires two pipeline stages.

In terms of both density and power, the Virtex
SRL16 primitives eÆciently implement the three ad-
jacent pipeline stages in the left path. A total of 32
SRL16s are needed, which utilizes 8 CLBs. If ip ops
were used, then 24 CLBs would be required. Flip ops
pipeline the right path.

The input and output IOBs are registered, and a
pipeline stage is inserted prior to the �rst round. IOB
nets that are single fanout connections from a register
to a register permit greater freedom in placing the
IOBs. Since the left half already required a pipeline
stage before the �rst round, it will have two stages
before the �rst round, and the right half will have one
stage. The total number of pipeline stages from input
to output pins is 35.

4.3 Floorplan

For each round, the resources required are:

� 8 CLBs for the 32 SRL16s.

� 8 CLBs for the 32 registered XORs.

� 32 CLBs for the 8 S-Boxes. Each S-Box consists
of four 6-input LUTs with registered outputs.

The chosen arrangement for these CLBs is shown in
Figure 6. This aspect ratio permits all sixteen rounds
to �t within the 24�36 CLB array of an XCV150 de-
vice. Every LUT is used in the 768 CLBs that imple-
ment the 16 rounds.

An EPIC ratsnest view of the complete design is
shown in Figure 7. All 64 connections between rounds
are through the center 8 CLBs. These connections are
equally eÆcient in either a left-to-right or right-to-left
dataow. The initial pipeline registers form the \han-
dle" of the left. Slice utilization is 91% (1584 slices
used from the 1728 available). The design requires
2560 combinatorial LUTs, 512 shift register LUTs,
1248 ip ops, and 129 IOBs (64 data input, 64 data
output, and the clock input). There is no control logic;
a useful purpose could not even be found for a reset
signal. CLB and IOB resources are available for addi-
tional interface circuitry.



public void configureLUT6(int row, int col) {

Net lut4aOut = addNet("lut4aOut");

Net lut4bOut = addNet("lut4bOut");

Net lut4cOut = addNet("lut4cOut");

Net lut4dOut = addNet("lut4dOut");

Net muxf5aOut = addNet("muxf5aOut");

Net muxf5bOut = addNet("muxf5bOut");

Net muxf6Out = addNet("muxf6Out");

LUT4 lut4a = new LUT4(lut6In0, lut6In1, lut6In2, lut6In3, lut4aOut);

LUT4 lut4b = new LUT4(lut6In0, lut6In1, lut6In2, lut6In3, lut4bOut);

LUT4 lut4c = new LUT4(lut6In0, lut6In1, lut6In2, lut6In3, lut4cOut);

LUT4 lut4d = new LUT4(lut6In0, lut6In1, lut6In2, lut6In3, lut4dOut);

MUXF5 muxf5a = new MUXF5(lut4aOut, lut4bOut, lut6In4, muxf5aOut);

MUXF5 muxf5b = new MUXF5(lut4cOut, lut4dOut, lut6In4, muxf5bOut);

MUXF6 muxf6 = new MUXF6(muxf5aOut, muxf5bOut, lut6In5, muxf6Out);

FD fd = new FD(clock, muxf6Out, lut6Out);

placePrimitive(lut4a, row, col, "S0");

placePrimitive(lut4b, row, col, "S0");

placePrimitive(lut4c, row, col, "S1");

placePrimitive(lut4d, row, col, "S1");

placePrimitive(muxf5a, row, col, "S0");

placePrimitive(muxf5b, row, col, "S1");

placePrimitive(muxf6, row, col, "S1");

placePrimitive(fd, row, col, "S1");

}

Figure 3: De�ning a Netlist for a 6-input Registered LUT

4.4 Validation and Performance

Functional veri�cation was performed with the
Model Technology VHDL simulator. An EDIF �le
with the S-Box LUTs con�gured for a particular key
is �rst generated. This is converted to an NGD �le us-
ing ngdbuild. The ngd2vhdl program creates a struc-
tural VHDL netlist and testbench. Encryption and
decryption results were identical to the output from
Schneier's DES software [2] and a second independent
DES program.

When targeting an XCV150-6, static timing anal-
ysis indicates a maximum clock rate of 168 MHz, or
10.7 Gigabits/sec. Using a Virtex AFX board [15]
with the data outputs connected to the data inputs,3

less than 1 watt is consumed at 50 MHz. The power
consumption at 168 MHz should therefore be about
3.2 watts.4 For comparison, the Sandia Lab's DES

3This con�guration forces many of the inputs to toggle every

clock cycle.
4Power = fcV 2C=2, where fc is the clock frequency, V is the

ASIC, which is implemented in a 0.6 micron 5 volt
process, consumes 6.5 watts at 105 MHz [8]. This
demonstrates how the Virtex advanced process (i.e.
0.22 micron, 2.5 volt) more than compensates for the
routing overheads associated with FPGAs. Only the
highest volume ASICs may be able to justify using a
process technology similar to Virtex.

The time required to switch keys or operating mode
depends upon the speed of the host processor, op-
erating system overheads and bus bandwidth to the
FPGA. Assuming a 600 MHz Pentium III PC running
NT 4.0 with the Virtex chip on a 33 MHz 32-bit PCI
card, JBits can calculate and recon�gure the S-Box
LUTs in tens of milliseconds. This is roughly equiv-
alent to the time required for other system activities
such as disk I/O. An embedded systems environment
could use the Virtex SelectMapTM con�guration inter-
face directly, which is 8 bits wide and can run at up
to 50 MHz (66 MHz if handshaking is used).

power supply voltage, and C is the capacitive load.



S-Box
Substitution

P-Box
Permutation

L R
i i

32 6-input
LUTs

32 2-input
XORs

Expansion
Permutation

L
i-1

R
i-1

(32 bits) (32 bits)

Figure 4: A JBits Optimized DES Round

5 Future Work

Additional functional veri�cation and performance
characterization is planned, including the use of Xil-
inx's production test equipment that can apply test
vectors at the maximum clock rate. Independent val-
idation will be performed prior to commercial avail-
ability.

The time required to recon�gure the S-Box LUTs
when the key or operating mode is changed can be
reduced by using partial recon�guration of the Virtex
device. Unlike the XC4000 family, Virtex does not re-
quire the entire con�guration bit stream to be rewrit-
ten [16]. The existing S-Box oorplan minimizes the
number of con�guration frames that must be modi�ed.
Current JBits development includes the automatic de-
termination and writing of partial bitstreams.

The DES design will be migrated to Virtex-E,
which uses a 1.8 volt, 0.18 micron, 6 layer metal pro-
cess. Maximum speed should be improved by about
20%. Alternatively, power consumption will be re-
duced at the same speed. No changes are required

to the DES hardware or software. All that is needed
is a port of JBits from Virtex to Virtex-E, which is
straightforward.

Several candidates have been proposed for the Ad-
vanced Encryption Standard (AES), which is the suc-
cessor to DES [17]. Some of the design requirements
for AES that di�er from DES are:

� A block size of 128 bits.

� A key size of 128 bits, 192 bits, or 256 bits.

� EÆcient implementation in both hardware and
software.

The majority of the AES candidates use the same
primitive operations as DES, such as substitutions,
permutations, and XORs. Most tables used to per-
form substitutions �t in the Virtex Block or LUT
RAM. The algorithms have from 6 to 48 rounds, which
can be partially or completely unrolled and pipelined.
As with DES, the subkey for each round can be pre-
computed in software.



L
i

Ri

P-Box
Permutation

S-Box
Substitution

Expansion
Permutation

L
i-1

R
i-1

(32 bits) (32 bits)

Pipeline
Register

Pipeline
Register

Pipeline
Register

Pipeline
Register

Pipeline
Register

32 SRL16s
(8 CLBs)

32 LUT6s
(32 CLBs)

32 XOR2s
(8 CLBs)

Figure 5: A Pipelined JBits DES Round

Virtex and JBits implementations of AES candi-
dates such as Two�sh [18] are underway. These algo-
rithms are amenable to the same hardware / software
partitioning as DES, and with comparable improve-
ments in speed, density and power. The implemen-
tation results will add valuable information for the
selection process [19].

Acknowledgements

Steve Guccione's development of JBits has made
this work possible. Advice and assistance from the
other members of the JBits project is greatly appre-

ciated. This work was supported by the U.S. Defense
Advanced Research Projects Agency, under contract
DABT63-99-3-0004.

References

[1] Stephen Charlwood and Philip James-Roxby.
Evaluation of the XC6200-series architecture
for cryptographic applications. In Reiner W.
Hartenstein and Andres Keevallik, editors, Eighth
International Workshop on Field-Programmable
Logic and Applications (FPL'98), pages 218{227.



Springer-Verlag Lecture Notes in Computer Sci-
ence, Volume 1482, Aug 1998.

[2] Bruce Schneier. Applied Cryptography. John Wi-
ley & Sons, Inc., second edition, 1996.

[3] Jason Leonard and William H. Mangione-Smith.
A case study of partially evaluated hardware cir-
cuits: Key-speci�c DES. In Wayne Luk, Pe-
ter Y.K. Cheung, and Manfred Glesner, edi-
tors, Seventh International Workshop on Field-
Programmable Logic and Applications (FPL'97),
pages 151{160. Springer-Verlag Lecture Notes in
Computer Science, Volume 1304, Sep 1997.

[4] Tom Kean and Ann Duncan. DES key break-
ing, encryption and decryption on the XC6216.
In Kenneth L. Pocek and Je�rey M. Arnold, ed-
itors, IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM'98), pages
310{311, Apr 1998.

[5] http://www.memecdesign.com/product.

[6] Jens-Peter Kaps. High speed FPGA architec-
tures for the Data Encryption Standard. Mas-
ter's thesis, Department of Electrical Engineer-
ing, Worcester Polytechnic Institute, May 1998.

[7] http://www.cast-inc.com/cores/xdes.

[8] D. Craig Wilcox, Lyndon G. Pierson, Perry J.
Robertson, Edward L. Witzke, and Karl Gass. A
DES ASIC suitable for network encryption at 10
Gbps and beyond. In C�etin K. Ko�c and Christof
Paar, editors, First International Workshop on
Cryptographic Hardware and Embedded Systems
(CHES'99), pages 37{48. Springer-Verlag Lecture
Notes in Computer Science, Volume 1717, Aug
1999.

[9] http://www.free-ip.com/DES/index.htm.

[10] National Bureau of Standards. FIPS PUB 46,
The Data Encryption Standard. U.S. Department
of Commerce, Jan 1977.

[11] P.R. Zimmermann. PGP Source Code and Inter-
nals. MIT Press, Boston, 1995.

[12] Xilinx, Inc., 2100 Logic Drive, San Jose, Califor-
nia. Virtex 2.5V FPGA Series Data Sheet, Oct
1999.

[13] Steve Guccione, Delon Levi, and Prasanna Sun-
dararajan. JBits: Java based interface for recon-
�gurable computing. In Second Annual Military

S-Box 8

S-Box 6

S-Box 4

S-Box 2

24 CLBs
high

32
XOR2s

S-Box 7

S-Box 5

S-Box 3

S-Box 1

2 CLBs
wide

32
SRL16s

Figure 6: JBits DES Round Floorplan

and Aerospace Applications of Programmable De-
vices and Technologies (MAPLD'99), The Johns
Hopkins University, Laurel, Maryland, Sep 1999.

[14] Eric Keller. JRoute: a run-time routing API
for FPGA hardware. In Seventh Recon�gurable
Architectures Workshop (RAW 2000), Cancun,
Mexico, May 2000. to appear.

[15] http://www.xilinx.com/products/virtex.htm.

[16] Steve Kelem. Virtex Con�guration Architecture
Advanced User's Guide. Xilinx, Inc., 2100 Logic
Drive, San Jose, California, Jun 1999. Applica-
tion Note 151.

[17] National Institute of Standards and Technol-
ogy. Announcing request for candidate algorithm
nominations for the Advanced Encryption Stan-
dard (AES). Federal Register, 62(117):48051{
48058, Sep 1997.

[18] Bruce Schneier, John Kelsey, Doug Whiting,
David Wagner, Chris Hall, and Niels Ferguson.
The Two�sh Encryption Algorithm. John Wiley
& Sons, Inc., 1999.

[19] http://www.nist.gov/aes.



Figure 7: EPIC Ratsnest View of the 16 Rounds


