

1 Input/Output Systems and Peripheral Devices

2. PCI EXPRESS BUS

 This laboratory work presents the serial variant of the PCI bus, referred to as PCI

Express. After an overview of the PCI Express bus, details about its architecture are present-

ed, including the PCI Express link, bus topology, architectural layers, transactions, and inter-

rupts. The physical layer is presented in more detail and the most important configuration

registers are described. The aim of the applications is to access the PCI configuration space

and to decode the information available in the configuration registers of PCI and PCI Express

devices.

 2.1. Overview of PCI Express Bus

 The PCI Express (PCIe) bus represents the third generation of the PCI (Peripheral

Component Interconnect) bus, with higher performance and reliability compared to the previ-

ous generations PCI and PCI-X. As opposed to these previous versions, which are parallel

buses, PCIe is a serial bus. Due to the serial nature of the PCIe bus, it has several advantages

compared to a parallel bus: lower pin count of the integrated circuits, lower complexity, and

lower cost of the printed circuit boards.

 The PCIe bus specifications originate from the specifications of the 3GIO (Third

Generation I/O) bus, which have been developed by the Arapahoe Work Group. This group

was composed of representatives from the companies Compaq Computer, Dell Computer,

Hewlett-Packard, IBM, Intel, and Microsoft. The specifications have been transferred in 2002

to the PCI-SIG (PCI Special Interest Group), a group of over 900 companies that has devel-

oped and updated the standards of various versions of the previous buses PCI and PCI-X

(www.pcisig.com). The new bus has been renamed PCI Express, a name which reflects the

high speed of the bus, as well as its software compatibility with the previous generations PCI

and PCI-X. Figure 2.1 illustrates the logo of the PCI Express bus.

Figure 2.1. Logo of PCI Express bus.

 The designers of the PCIe bus have maintained the main advantageous features of the

architecture of previous PCI bus generations. For instance, the PCIe bus uses the same com-

munication model as the PCI and PCI-X buses. The same address spaces are retained:

memory, I/O, and configuration. The PCIe bus allows using the same types of transactions as

the previous buses: memory read/write, I/O read/write, and configuration read/write. This

way, compatibility is maintained with existing operating systems and software drivers, which

do not require changes.

 Like previous PCI buses, PCIe supports chip-to-chip interconnection and board-to-

board interconnection via expansion cards and connectors. The expansion cards have a struc-

ture similar to that used by the expansion cards of PCI and PCI-X buses. A PCIe motherboard

has a similar form factor to existing ATX motherboards, used for personal computers.

 In addition to retaining some advantageous features of the PCI and PCI-X buses, the

PCIe bus introduces various improvements for enhancing performance and reducing cost. As

opposed to the previous PCI and PCI-X generations, which are shared parallel buses, the PCIe

bus uses a serial point-to-point interconnect for communication between two peripheral de-

vices. First, a serial interconnect eliminates the disadvantages of a parallel bus, especially the

http://www.pcisig.com/

2 2. PCI Express Bus

difficulty of synchronization between multiple data lines due to the asymmetrical signal prop-

agation (skew). The cause of this skew may be the different length of data paths traveled by

various signals or the propagation on different layers of the printed circuit board. Although

the data signals of a parallel bus are transmitted simultaneously, they may reach the destina-

tion at different times. Increasing the clock frequency of a parallel bus is difficult, since the

clock cycle time may become shorter than the signal skew (which can be of a few nanosec-

onds). For a serial bus the signal skew problem does not arise, because there is no external

clock signal, as the synchronization information is embedded into the transmitted serial sig-

nal. Second, a point-to-point interconnect implies a reduced electrical load of the link, which

enables to increase the frequency of the clock signal used for data transfers.

 The performance of PCIe bus is scalable, which is obtained by implementing a varia-

ble number of communication lanes per interconnect, based on performance requirements for

that interconnect.

 The PCIe bus implements switch-based technology to interconnect a large number of

peripheral devices. For the serial interconnect a packet-based communication protocol is used.

Instead of special signals for various functions, such as interrupt signaling, error handling, or

power management, both data and commands are transmitted in packets. By this the pin count

of devices and their cost are reduced.

 The PCIe bus has several advanced features. For instance, the Quality of Service

(QoS) feature allows to ensure differentiated performance for different applications. The hot

plug and hot swap support enables to build systems that are always available. Advanced

power management features allow to implement mobile applications with low power con-

sumption. The error handling feature makes the PCIe bus suitable for robust systems required

for high-end servers.

 2.2. PCI Express Bus Features

 The main features of the PCIe bus are the following:

• It unifies the I/O architecture for different types of systems, such as desktop comput-

ers, mobile computers, workstations, servers, communication platforms, and embed-

ded systems.

• It enables to interconnect integrated circuits on the motherboard, as well as expansion

cards via connectors or cables.

• The communication is based on packets, with a high transfer rate and efficiency.

• The interface is serial, which enables to reduce the pin count and to simplify the in-

terconnections.

• Performance is scalable, which is obtained through the ability to implement a particu-

lar interconnect via several communication lanes.

• The software model is compatible with the classical PCI architecture, which allows to

configure PCIe devices, loading operating systems, and using existing software driv-

ers, without the need for changes.

• It provides a differentiated quality of service (QoS) through the ability to allocate

dedicated resources for certain data flows, to configure the QoS arbitration policies

for each component, and to use isochronous transfers for real-time applications.

• It provides an advanced power management through the ability to identify power

management capabilities of each peripheral device, to transition a peripheral device

into a state with a specific power consumption, and to receive notifications of the cur-

rent power state of a peripheral device.

• It ensures link-level data integrity for all types of transactions.

3 Input/Output Systems and Peripheral Devices

• It supports advanced error reporting and handling to improve fault isolation and error

recovery.

• It supports hot-plug and hot-swap of peripheral devices, without the need to use addi-

tional signals.

 2.3. PCI Express Bus Architecture

 2.3.1. PCI Express Bus Link

 A minimal PCIe link consists of two unidirectional (simplex) communication chan-

nels between two PCIe peripheral devices, one channel for transmit and one for receive (Fig-

ure 2.2). Data and command packets are sent over these channels. Each channel is imple-

mented physically through a pair of wires over which low-voltage differential signals are

transmitted. Such a minimal PCIe link is called communication lane. To scale bandwidth, a

PCIe link may aggregate multiple communication lanes, denoted by xN, where N is the link

width. The PCIe bus specification indicates the possibility of using link widths of x1, x2, x4,

x8, x12, x16, and x32.

Figure 2.2. PCI Express link.

 During hardware initialization, for each PCIe link the lane width and frequency of

operation are negotiated. The link width and frequency of operation are set automatically by

the devices at each end of the link, without involving the operating system. After initializa-

tion, each link must only operate at the operating frequency that has been set. The first version

of the PCIe specification defined an operating frequency of 2.5 GHz, which corresponds to an

effective bandwidth of 2.5 Gbits/s for each communication lane and direction. In the subse-

quent versions, the operating frequency increased to 5 GHz, and then to 8 GHz.

 2.3.2. PCI Express Bus Topology

 A PCIe system is comprised of PCIe links that interconnect a set of components. An

example topology is illustrated in Figure 2.3. The main components of this topology are a root

complex, multiple endpoints (I/O devices), a switch, and a PCIe-PCI bridge, all interconnect-

ed via PCIe links. All devices and links associated with a root complex, which are connected

to it directly or indirectly (via switches and bridges) represent a hierarchy.

 The root complex is the device that connects one or more processors and the memory

subsystem to the I/O devices. This device represents the root of an I/O hierarchy. The root

complex may support one or more PCIe ports; in Figure 2.3, the root complex contains three

ports. Each port defines a separate hierarchy domain. Each hierarchy domain may be com-

posed of a single endpoint or a sub-hierarchy containing one or more switches and endpoints.

 A root complex implements various resources, such as interrupt controller, power

management controller, error detection and reporting logic. The root complex contains an

internal bus, which represents the bus number 0 in the entire hierarchy. This device initiates

transaction requests on behalf of a processor, transmits packets out of its ports and receives

packets on its ports which it transmits to memory. Optionally, a multi-port root complex may

also route packets from one port to another port.

4 2. PCI Express Bus

Figure 2.3. Example PCI Express topology.

 Endpoints represent peripheral devices that participate to PCIe transactions. There are

two types of endpoints. An initiator (requester) endpoint initiates a transaction in the PCIe

system, while a target (completer) endpoint responds to transactions that are addressed to it.

In a PCIe hierarchy, in addition to PCIe endpoints, legacy endpoints may also exist, which are

compatible with previous generations of the PCI bus. Like with the classical PCI bus, PCIe

devices may have up to eight logical functions, so that an endpoint may be composed of up to

eight functions numbered from 0 through 7. Each endpoint is assigned a device identifier

(ID), which consists of a bus number, device number, and function number.

Figure 2.4. Internal structure of a switch.

 A switch is defined as a logical assembly of multiple virtual PCI-to-PCI bridges, each

bridge associated with a switch port. The switch in Figure 2.4 consists of four virtual bridges.

These bridges are connected via an internal bus. One port of the switch is connected to the

root complex, and the other ports are connected to endpoints or other switches. To configura-

tion software, a switch appears as two or more logical PCI-to-PCI bridges.

5 Input/Output Systems and Peripheral Devices

 A switch forwards packets from any of its input (ingress) ports to one of its output

(egress) ports, in a manner similar to a PCI-to-PCI bridge. The packets are transferred via a

routing mechanism based on either an address or an identifier. An arbitration mechanism is

used, by which the priority with which packets are forwarded from input ports to output ports

is determined.

 2.3.3. PCI Express Architecture Layers

 A PCIe system may be structured into five logical layers, which are described in short

next.

• The configuration/OS layer manages the configuration of PCIe devices by the operat-

ing system based on the Plug-and-Play specifications for initializing, enumerating,

and configuring I/O devices.

• The software layer interacts with the operating system through the same drivers as the

conventional PCI bus.

• The transaction layer manages the transmission and reception of information using a

packet-based protocol.

• The data link layer ensures the integrity of data transfers via error detection using a

Cyclic Redundancy Check (CRC).

• The physical layer performs packet transmission over the PCIe serial links.

Figure 2.5. Layers of a PCIe system and PCIe device.

 The PCIe specification defines the architecture of PCIe devices in terms of three logi-

cal layers, which are the last three layers from those previously listed. Each of these layers

may be divided into two sections, one that processes information to be transmitted and one

that processes information received (Figure 2.5). This logical organization, however, does not

imply a particular implementation of PCIe devices.

 The PCIe bus uses packets for transferring information between pairs of devices con-

nected via a PCIe link. Consider first the transfer of information from device A to device B.

Packets are formed in the transaction layer based on information obtained from the device

core and application. A particular packet is stored in a buffer to be transmitted to the lower

6 2. PCI Express Bus

layers. The data link layer extends the packet with additional information required for error

detection at a receiver device. This packet is then encoded in the physical layer and transmit-

ted through differential signals over the PCIe link by the analog portion of this layer.

 Now consider the reception of information by device B. Packets are decoded in the

physical layer and their contents are forwarded to the upper layers. The data link layer checks

for errors in a received packet, and if there are no errors forwards the packet to the transaction

layer. This layer stores the packet in a buffer and converts the information in the packet to a

representation that can be processed by the device core and application.

 Figure 2.6 illustrates the conceptual information flow that is transferred through the

three logical layers of PCIe devices.

Figure 2.6. Packet flow through the logical layers of PCIe devices.

 The software layer or device core sends to the transaction layer the information re-

quired to create the main section of the packet. This information is the header and data field of

the packet. Optionally, a CRC code is computed and appended to the packet as the ECRC

(End-to-End CRC) field. This field is used by the target device of the packet to detect CRC

errors in the header and data field.

 The packet created by the transaction layer is forwarded to the data link layer, which

appends to this packet a sequence number and another CRC field, LCRC (Link CRC). The

LCRC field is used by the receiver device at the other end of the link to detect CRC errors in

the packet created by the transaction layer and in the sequence number. The resulting packet

is forwarded to the physical layer, which concatenates two Start and End characters of one

byte each that will frame the packet. The packet is then encoded and is transmitted through

differential signals over a PCIe link using the available number of communication lanes.

 2.3.4. PCI Express Transactions

 A transaction is defined as a series of one or more packet transmissions required to

accomplish an information transfer between an initiator and a target device. There are four

categories of PCIe transactions: memory, I/O, configuration, and message. The first three

categories were also supported by the previous PCI and PCI-X buses. Examples of such

transactions are reading and writing the memory, reading and writing the I/O space, reading

and writing the configuration registers. Message transactions are specific to the PCIe bus.

Message transactions, also called messages, are used for interrupt signaling, power manage-

ment, or error signaling.

 On the other hand, in the PCIe architecture there are two types of transactions. The

first type is represented by transactions for which the target device returns a completion pack-

et back to the initiator device, as response to the request packet transmitted by the initiator;

these are called non-posted transactions. These transactions are performed according to the

protocol defined for split transactions supported by the PCI-X bus. With split transactions,

after initiating a transaction, the target device stores the information needed for performing

the transaction and signals a delayed response. The initiator device releases the bus, which

will be available for other transactions. If data have been requested from the target device,

7 Input/Output Systems and Peripheral Devices

such as in the case of a read transaction, the target device gathers these data, obtains bus own-

ership, and returns the requested data. The completion packet returned by the target device

confirms that the request packet has been received by the target device.

 The second type is represented by transactions for which the target device does not

return a completion packet back to the initiator device; these are called posted transactions. In

this way, the time required for completing the transaction is shorter, but the initiator device

does not have knowledge of successful reception of the request packet by the target device.

 2.3.5. PCI Express Interrupts

 Devices connected to the PCIe bus may signal interrupt requests using one of two

available methods. PCIe devices must use the native mechanism of the PCIe bus for interrupt

signaling, that of Message Signaled Interrupts (MSI). Devices compatible with the previous

bus generations PCI and PCI-X may use the dedicated signals of the PCI bus for interrupt

requests.

 The native mechanism of the PCIe bus for interrupt signaling (MSI) has been defined

in version 2.2 of the PCI bus specification as an optional mechanism and became mandatory

for the PCI-X bus. The term “message signaled interrupt” may create confusion in the context

of the PCIe bus because of the existence of PCIe message transactions. A message signaled

interrupt does not represent a PCIe message, instead it is simply a memory write transaction.

A memory write transaction associated with the MSI mechanism can only be distinguished

from other memory write transactions by its target address, the memory addresses for inter-

rupt signaling being reserved by the system.

 The mechanism compatible with the PCI bus for interrupt signaling (legacy mecha-

nism) implies using the interrupt request signals defined for the PCI bus. These signals are

INTA#, INTB#, INTC#, and INTD# (the # symbol denotes an active-low signal). Acknowl-

edgement of an interrupt request is indicated via a certain configuration on the PCI bus con-

trol lines. A PCI-compatible device will assert one of the INTx# lines to signal an interrupt

request. Since the PCIe bus does not include the INTx# interrupt lines, special messages are

used that act as virtual INTx# lines. These messages target the interrupt controller, typically

located within the root complex.

 Figure 2.7 illustrates the signaling of interrupts generated by three types of devices.

The PCIe device uses the native MSI mechanism. The PCI-X device uses INTx messages for

interrupt signaling. The PCI device uses INTx# signals for signaling interrupts to the PCIe-to-

PCI bridge, and this bridge communicates via INTA assertion messages with the interrupt

controller.

Figure 2.7. Interrupt signaling methods in a PCIe system.

8 2. PCI Express Bus

 2.4. Physical Layer

 The physical layer performs the transmission on a PCIe link of packets received from

the data link layer. Also, the physical layer receives packets from a PCIe link and sends them

to the data link layer.

 The physical layer is divided into two portions, the logical physical layer and the

electrical physical layer. The logical physical layer contains digital logic for processing pack-

ets before transmitting them on a PCIe link and for processing packets received from a link

before sending them to the data link layer. The electrical physical layer represents the analog

interface used for connecting to the PCIe link. This layer consists of differential drivers and

receivers for each lane of a PCIe link.

 2.4.1. Transmit Section

 Packets generated by the transaction layer or the data link layer are received by the

physical layer and stored into a buffer. These packets are then framed with a Start character

and an End character of one byte each. These characters are used by a receiver device to de-

tect the start and end of a packet.

 When a packet is sent on a PCIe link containing several communication lanes, the

packet bytes are sent in an interleaved manner, which means that successive bytes of the

packet are sent on successive communication lanes of the PCIe link. Although this data inter-

leaving requires a significant hardware complexity for correctly assemble the bytes received

in a packet, this method significantly reduces the delay with which a particular byte will be

received on a link.

 Each byte of a packet is then scrambled using a linear feedback shift register. By this

operation, repeated bit patterns are eliminated from the transmitted data stream, with the aim

of reducing the electromagnetic interferences. The resultant bytes are then encoded through a

method that ensures to limit the length of streams with successive 1 and 0 bits. The main pur-

pose of this encoding is to create sufficient 1-to-0 and 0-to-1 transitions in the bit stream

transmitted, which will facilitate the recreation of a receive clock signal by the receiver device

with the aid of a PLL (Phase-Locked Loop) circuitry. Hence, there is no need to send a clock

signal for synchronization along the data.

 In the first versions of the PCIe bus (up to version 3.0), the encoding method used is

8b/10b, by which each byte is encoded into a 10-bit symbol. With this method, the effective

bandwidth is reduced by 20%. In version 3.0 of the PCIe bus the 128b/130b encoding method

is used, by which the effective bandwidth is reduced by only about 1.5%.

 The encoded bytes of a packet are then converted into a serial bit stream using a par-

allel-to-serial converter and are sent on the communication lanes of the PCIe link.

 2.4.2. Receive Section

 The receive section of the physical layer collects the serial bit streams arriving on

each communication lane of the link. The bit streams are converted into 10-bit or 130-bit

symbols using a serial-to-parallel converter. The receiver logic also contains a buffer which

compensates for the variation between the transmitter clock frequency and the receiver clock

frequency.

 The 10-bit or 130-bit symbols are converted into bytes with a decoder. The bytes are

then descrambled, and the assembly logic recreates the original packet transmitted by combin-

ing the bytes received on the communication lanes of the PCIe link.

 2.4.3. Link Initialization and Training

 An additional function of the physical layer is the process of PCIe link initialization

and training. This process is automatic and does not involve the software layer. During the

link initialization and training process several operational parameters are determined, such as

9 Input/Output Systems and Peripheral Devices

link width, link data rate, communication lane reversal, polarity inversion, and signal skew

compensation within a multi-lane link.

 Link width. It is possible to connect two devices via ports with a different number of

communication lanes per link. After initialization, the link width will be set to the minimum

lane width of the two connected ports. For instance, a certain device with an x2 PCIe port

may be connected to another device with an x4 PCIe port. For communication between two

devices, the link width will be set to x2.

 Link data rate. Initially, a link’s data rate is set to the minimum value of 2.5 Gbits/s.

During link training, each device advertises its highest data rate that is capable of. The link

will be initialized with the highest common frequency supported by the two devices at oppo-

site ends of the link.

 Communication lane reversal. When a link contains several communication lanes,

these are numbered. When two devices are physically connected, the communication lanes of

the devices’ ports may not be connected correctly. In such a case, link training allows for the

lane numbers to be reversed, so that the lane numbers of adjacent ports on each end of the link

correspond.

 Polarity inversion. The D+ and D- differential wire pairs of two devices may not be

connected correctly. In this case, as the result of link training, the receiver device will invert

the polarity of the receiver circuit’s terminals.

 Skew compensation. In the case of a multi-lane link, due to length variations of physi-

cal wires and different characteristics of driver/receiver circuitry, bit streams on a lane may be

received skewed with respect to other lanes. The receiver circuits must compensate for this

skew by adding delays on some lanes.

 2.5. Versions of the PCI Express Specification

 The first version 1.0a of the PCIe bus specification has been released by the PCI-SIG

organization in 2003. This version specified an operating frequency of 2.5 GHz and a maxi-

mum data bandwidth of 250 MB/s per communication lane.

 Version 1.1 has been released in 2005. This version introduced several bus enhance-

ments but did not specify higher data bandwidths.

 Versions 2.0 and 2.1 have been released in 2007. The operating frequency has been

doubled to 5 MHz, which allows a maximum data bandwidth of 500 MB/s per communica-

tion lane. Therefore, an x32 PCIe link may provide a maximum theoretical data bandwidth of

16 GB/s. The 2.x PCIe specifications introduce enhancements of the point-to-point transfer

protocol and of the software layer architecture. The connectors of PCIe 2.x motherboards are

compatible with PCIe 1.x expansion cards. In general, PCIe 2.x expansion cards are compati-

ble with PCIe 1.x motherboards, operating at their lower frequency.

 Version 3.0 of the PCIe specification has been released by the PCI-SIG organization

in 2010. The operating frequency has been increased to 8 GHz, with a maximum data band-

width of 8 GT/s (Giga Transfers per second) or 985 MB/s per communication lane. The speci-

fication introduced improvements related to the signaling protocol, data integrity, and error

recovery. Also, it introduced the 128b/130b data encoding, which is more efficient than the

8b/10b encoding used by the previous PCIe versions.

 Version 4.0, released in 2017, doubled the data bandwidth provided by version 3.0 to

16 GT/s or 1.97 GB/s per communication lane. Power consumption of devices in their active

and inactive state has been optimized. This version also introduced the OCuLink-2 connector,

which is the second version of the OCuLink (Optical-Copper Link) connector, supporting up

to four lanes over copper wires; a fiber optic version may be developed in the future.

 Version 5.0 has been released in May 2019. This version doubles the maximum data

bandwidth of the previous version again to 32 GT/s per communication lane, and it maintains

backwards compatibility with the previous versions.

 Version 6.0 has been released in January 2022. With this version, the maximum data

bandwidth may reach 64 GT/s per communication lane, so that an x32 PCIe link may provide

a maximum theoretical bandwidth of 256 GB/s.

10 2. PCI Express Bus

 2.6. Configuration Registers

 Each PCIe function (device) implements a set of configuration registers that enable

the software layer to discover the existence of a function and to configure it for normal opera-

tion. At the request of application software, the root complex of the PCIe system initiates

configuration transactions for reading from or writing to configuration registers of PCIe func-

tions.

 2.6.1. PCIe Function Configuration Space

 A PCIe function’s configuration registers are implemented in the configuration space

of the PCIe architecture. Unlike a PCI or PCI-X function, which may have a configuration

space of 256 B, a PCIe function has a configuration space extended to 4 KB. It follows that

the size of PCIe configuration space is 256 MB. This is obtained by multiplying the size of 4

KB by 8 functions for a device, by 32 devices on a bus, and by 256 buses in a PCIe system.

 The structure of a PCIe function’s configuration space is illustrated in Figure 2.8.

Figure 2.8. Structure of a PCIe function’s configuration space.

 A PCIe function’s configuration space is divided into two sections. The first section

represents the PCI-compatible configuration space, and it occupies the first 256 B (64 double-

words of 32 bits) of the 4-KB space. The first 16 double-words of this section represent the

PCI configuration header, while the remaining 48 double-words are reserved for the imple-

mentation of function-specific configuration registers.

 The second section of a PCIe function’s configuration space represents the PCIe ex-

tended configuration space and it occupies 3840 B (960 double-words). This space is used to

implement the PCIe extended capability registers, which are optional. Examples of such regis-

ters are the advanced error reporting capability register set, virtual channel capability register

set, and device serial number capability register set.

11 Input/Output Systems and Peripheral Devices

 The PCI-compatible configuration space may be accessed via two methods, either

through the PCI-compatible configuration mechanism or the PCIe enhanced configuration

mechanism. These access mechanisms are presented in the following sections. A PCIe func-

tion’s extended configuration space can only be accessed through the PCIe enhanced configu-

ration mechanism.

 2.6.2. PCI-Compatible Configuration Mechanism

 For PC-AT compatible systems based on x86 processors, the PCI specification (ver-

sion 2.3) defines a method that uses I/O accesses to request the host-PCI bridge to perform

configuration transactions in order to access the configuration registers of PCI functions. The

specification does not define a configuration mechanism for other systems that are not PC-AT

compatible.

 Due to the limitation of I/O space for x86 processors to 64 KB, the configuration

registers cannot be mapped directly into the processor’s I/O space. Access to these registers

may be performed indirectly via two 32-bit I/O ports implemented in the host-PCI bridge (for

the PCIe bus, this bridge is located in the root complex). These ports are the following:

• The configuration address port, with the I/O address of 0x0CF8.

• The configuration data port, with the I/O address of 0x0CFC.

Access to one of a PCIe function’s PCI-compatible configuration registers is per-

formed in two steps:

1. Write to the configuration address port the PCI bus number, device number, function

number, and configuration register address (double-word number), in the format illus-

trated in Figure 2.9, and set the Enable bit (bit 31) of this port to one.

2. Perform a read from or write to the configuration data port of a double-word (32 bits).

In response to these operations, the host-PCI bridge within the root complex com-

pares the specified bus number to the numbers of the buses connected to that bridge and, if the

specified bus is connected to the bridge, it initiates a configuration read or write transaction

(based on whether the processor is performing a read or write operation with the configuration

data port).

 The configuration address port only latches information written to this port when the

processor performs a 32-bit write to the port. Therefore, latching the information is not possi-

ble through several 8-bit or 16-bit write operations to the port. A 32-bit read from the port

returns its contents. The information written to the configuration address port must be orga-

nized in the manner presented in Figure 2.9.

Figure 2.9. Structure of information written to the configuration address port.

 The meaning of the fields in the configuration address port is presented next.

• Bit 31 represents the enable bit for mapping the configuration space. This bit must be

set to one to enable the translation of a subsequent processor access to the configura-

tion data port into a transaction for accessing the configuration space. If this bit is set

to zero and the processor initiates an access to the configuration data port, the opera-

tion will be translated into a transaction for accessing the I/O space and not the con-

figuration space.

• Bits 30..24 are reserved and must be set to zero.

• Bits 23..16 identify the PCI bus number (0..255).

12 2. PCI Express Bus

• Bits 15..11 identify the device number (0..31).

• Bits 10..8 identify the function number (0..7) within the device.

• Bits 7..2 identify the function’s configuration register by the double-word number

(0..63) within the function’s PCI-compatible configuration space.

• Bits 1..0 are set to zero and cannot be changed.

 2.6.3. PCIe Enhanced Configuration Mechanism

 The PCIe enhanced configuration mechanism performs the mapping of PCIe architec-

ture’s configuration space to the main memory’s address space. Each PCIe controller in a

system is allocated an area in main memory. At system initialization, the BIOS determines the

base address of the area in main memory allocated to a PCIe controller and communicates it

to the root complex and operating system. The communication method is implementation

specific and is not defined in the PCIe specification.

 Each configuration register of a PCIe function is assigned a particular memory ad-

dress in the area allocated to the PCIe controller of that function. The root complex of the

PCIe system monitors the memory accesses, and if it detects an access to the area of 256 MB

allocated to the PCIe controller, initiates a configuration transaction for accessing the PCIe

configuration space.

 The configuration space of each PCIe function starts at a 4-KB aligned address within

the memory area of 256 MB. The structure of the address that has to be specified for access-

ing a particular byte, word, or double-word within the configuration space of a PCIe function

is the following:

• Bits 63..28 represent the base address of the 256 MB memory area allocated as con-

figuration space of the PCIe controller corresponding to the PCIe function.

• Bits 27..20 select the PCI bus (0..255).

• Bits 19..15 select the device (0..31).

• Bits 14..12 select the function (0..7) within the device.

• Bits 11..2 select the double-word (0..1023) within the PCIe function’s configuration

space.

• Bits 1..0 indicate the byte offset (0..3) within the selected double-word.

To access the extended configuration space of a PCIe function, it is necessary to de-

termine the base address of the memory area allocated as configuration space for the PCIe

functions of a PCIe controller. There are several methods that can be used to determine this

base address. For instance, one of the methods is based on searching in memory for certain

system tables and accessing these tables. These methods are not presented in this laboratory

work.

 Note

• The PciBaseAddressUEFI-e.cpp source file, available on the laboratory web page, con-

tains the PciBaseAddressUEFI() function, which returns the base address of the PCIe

extended configuration space as a 64-bit value (DWORD64).

 2.6.4. Mandatory Configuration Header Registers

 As presented in Section 2.6.1, the first 16 double-words of a device’s PCI-compatible

configuration space represent the PCI configuration header. The PCI specifications define

three header formats, referred to as header type zero, one, and two. Header type two is defined

for CardBus bridges, header type one is defined for PCI-to-PCI bridges, and header type zero

is defined for all other devices. In this laboratory work, we only refer to header type zero.

13 Input/Output Systems and Peripheral Devices

 The structure of configuration header type zero is illustrated in Figure 2.8. Part of the

registers in this header must be implemented in every PCI or PCIe device, including bridges.

These mandatory registers are shown in a darker color in Figure 2.8. The mandatory configu-

ration header registers are described next.

 Note

• The PCI-e.h header file, which is used for the applications, defines the configuration

header type zero in a structure called PCI_CONFIG0.

 Vendor ID Register

 This 16-bit register identifies the manufacturer of the device. The vendor identifier is

assigned by the PCI SIG organization. The value 0xFFFF is reserved and is returned by the

host-PCI bridge when an attempt is made to perform a read from a configuration register in a

non-existent PCI function.

 Device ID Register

 This 16-bit register contains an identifier assigned by the device manufacturer that

identifies the type of device. In conjunction with the Vendor ID register and possibly the Re-

vision ID register, the Device ID register can be used to locate a function-specific driver for

the device.

 Revision ID Register

 This 8-bit register contains an identifier that is assigned by the device manufacturer

and identifies the revision number of the device.

 Class Code Register

 The structure of this register is illustrated in Figure 2.10. It is a 24-bit register divided

into three 8-bit fields: class code (the upper byte), sub-class code (the middle byte), and pro-

gramming interface (the lower byte). This register identifies the basic function of the device

(for instance, a mass storage controller), a more specific device sub-class (such as SATA

mass storage controller), and, in some cases, a register-specific programming interface.

Figure 2.10. Structure of Class Code register.

 For many class code/sub-class code combinations, the programming interface byte

returns zero, and therefore it has no meaning. For other combinations, however, the pro-

gramming interface byte does have meaning, as it identifies the exact register set layout of the

function, which can vary from one implementation to another. For instance, there are different

types of USB controllers with the same class code and sub-class code, but with different pro-

gramming interfaces (e.g., UHCI, OHCI, EHCI, and XHCI).

 Note

• The PCI-e.h header file contains the currently defined class codes, sub-class codes, and

programming interfaces, in a structure called PCI_CLASS_TABLE. This structure also

contains pointers to two descriptors (texts) that can be used for decoding the information

contained in the Class Code register: the first is a class and sub-class descriptor, and the

second is a programming interface descriptor.

 Command Register

 This 16-bit register provides basic control over the device’s ability to perform PCI or

PCIe transactions. It contains bits that allow to enable or disable the I/O address space decod-

14 2. PCI Express Bus

er, enable or disable the memory address space decoder, enable or disable the function’s abil-

ity to issue memory access requests or I/O requests, enable or disable the reporting of errors

detected by the function, and enable or disable the function’s ability to generate INTx inter-

rupt messages. The Command register is not described in detail in this laboratory work.

 Status Register

 This 16-bit register traces the status of events related to the PCI or PCIe bus. It con-

tains bits that indicate the interrupt status (whether the function has an interrupt request out-

standing), whether a parity error has been detected, or whether a transaction has been aborted

by the target or the initiator device. The Status register is not described in detail in this labora-

tory work.

 Some bits of this register have RO (Read Only) attribute, while others have R/W

(Read/Write) attribute. A particular feature of the bits that can be written is that they can be

cleared, but not set. A bit can be cleared by writing a one to it; this attribute is denoted as

RW1C (Read/Write 1 to Clear). This method was chosen to simplify programming. After

reading the status and identifying the error bits that are set, the programmer can clear these

bits by writing the value that was read back to the register.

 Header Type Register

 Bits 6..0 of this 8-bit register define the configuration header type. The following

header types are currently defined:

 0: Non-bridge function;

 1: PCI(X)-to-PCI(X) bridge;

 2: CardBus bridge.

 Bit 7 defines the device as a single-function device (if bit 7 is 0) or a multi-function

device (if bit 7 is 1). During configuration, the programmer may test the state of this bit to

determine whether there are any other functions of the device that require configuration.

 Subsystem Vendor ID and Subsystem ID Registers

 The 16-bit Subsystem Vendor ID register contains an identifier assigned by the PCI

SIG organization. The 16-bit Subsystem ID register contains an identifier assigned by the

function vendor. A value of zero read from these registers indicates that there is no subsystem

vendor ID and subsystem ID associated with the function.

 A function may reside on an expansion card or within an embedded device. Functions

that are designed around the same PCI, PCI-X, or PCIe core logic may have the same vendor

ID and device ID assigned by the core logic vendor. In this case, the operating system would

not be able to identify the correct driver to be used for that function. The Subsystem Vendor

ID and Subsystem ID registers are used to uniquely identify the expansion card or subsystem

that the function resides within. Consequently, the operating system can distinguish the dif-

ference between cards or subsystems manufactured by different vendors but designed around

the same core logic.

 2.6.5. Optional Configuration Header Registers

 The most important optional configuration header registers are described next.

 BIST Register

 This register may be implemented by both an initiator and a target function. If a func-

tion supports a Built-In Self-Test (BIST) operation, it must implement this register, with the

structure illustrated in Figure 2.11. If bit 7 of the BIST register is one, it means that the func-

tion supports a BIST operation. If the function does not support a BIST operation, this register

will return the zero value when read. The function’s BIST operation is invoked by setting bit

6 to one. The function should complete the BIST operation in a time limit of two seconds, and

then it should reset bit 6. The test result is indicated in bits 3..0 of the register. A completion

15 Input/Output Systems and Peripheral Devices

code of zero indicates successful completion of the test. A non-zero value represents a func-

tion-specific error code.

Figure 2.11. Structure of BIST register.

 Base Address Registers

 Most functions use a memory address space and/or an I/O address space to implement

a function-specific register set, which is used to control the function and identify its status. On

power-up, the system must be configured such that each function’s memory and I/O spaces

occupy mutually exclusive address ranges. Therefore, the system must be able to detect what

memory and I/O spaces are required by a certain function. In addition, the system must be

able to program the function’s address decoders in order to assign non-conflicting address

ranges to them.

 The Base Address Registers (BARs) are located in double-words 4..9 of the header

space and they are used to implement a function’s programmable memory and/or I/O decod-

ers. Each register is 32-bits wide or 64-bits wide (in the case of a memory decoder whose

associated memory block can be located above the 4 GB space). Bit 0 is a read-only bit and

indicates whether the register is a memory decoder or an I/O decoder:

 Bit 0 = 0: the register is a memory address decoder;

 Bit 0 = 1: the register is an I/O address decoder.

 Decoders may be implemented in any of the Base Address Registers. During configu-

ration, the configuration software must check all six Base Address Registers in a function’s

configuration header to determine which registers are actually implemented.

 Structure of a Memory Base Address Register

 A memory Base Address register might have a size of 32 bits or 64 bits. Figure 2.12

illustrates the structure of a 64-bit memory Base Address register. Bit 0 is zero and indicates a

memory address decoder. Bits 2..1 define the size of the memory decoder:

 00: 32-bit memory decoder;

 10: 64-bit memory decoder.

Figure 2.12. Structure of a 64-bit memory Base Address register.

 For a 32-bit memory decoder, the Base Address register contains a start memory ad-

dress in the first 4 GB of the memory address space. For a 64-bit memory decoder, the Base

Address register contains a start address anywhere in the memory address space of 264 bytes.

In this case, the Base Address register occupies two consecutive double-words in the configu-

ration header space. The first double-word contains the lower 32 bits of the memory start

address and the second double-word contains the upper 32 bits of the memory start address.

16 2. PCI Express Bus

 Bit 3 indicates whether the memory block is prefetchable (bit 3 = 1) or not (bit 3 = 0).

For a prefetchable memory block, it is acceptable for a bridge that resides between an initiator

and a memory target to prefetch data from memory into a buffer in order to yield better per-

formance.

 Bits 31..7 for a 32-bit memory decoder and bits 63..7 for a 64-bit memory decoder

contain the memory base address.

 For each memory Base Address register, the configuration software should determine

whether the register is implemented, what is the size of the register (32 bits or 64 bits), and

what is the size of the memory space corresponding to the register. The size of the memory

space can be determined using the following procedure:

1. Read the contents of the Base Address register into a temporary variable.

2. Write the value consisting of all one bits to the Base Address register.

3. Read back the contents of the Base Address register and then restore its contents from

the temporary variable. If the value read is zero, it indicates that the Base Address

register is not implemented, and the procedure is completed.

4. If the value read is not zero, scan the bits of the value upwards starting with the least

significant bit of the Base Address field (bit 7) until the first bit set to one is found.

The binary-weighted value of the least significant bit set to one represents the size of

the memory space associated with the Base Address register.

 As an example, assume that the value 0xFFFFFFFF is written to a Base Address reg-

ister and the value read back from the register is 0xFFF00000. As the value read back is not

zero, the register is implemented. Since bit 0 is zero and bits 2..1 are 00, the register is a 32-

bit memory address decoder. Bit 20 is the first bit set to one in the Base Address field. The

binary-weighted value of this bit is 220, which means that the size of the memory space corre-

sponding to this register is 1 MB.

 Structure of an I/O Base Address Register

 An I/O Base Address register has a size of 32 bits. Figure 2.13 illustrates the structure

of an I/O Base Address register. Bit 0 is one and indicates an I/O address decoder. Bit 1 is

reserved and always returns zero when read. Bits 31..2 represent the Base Address field.

Figure 2.13. Structure of an I/O Base Address register.

 The upper 16 bits of an I/O Base Address register may be hardwired to zero by the

manufacturer when a function is designed specifically for a PC-compatible computer, since

Intel x86 processors are limited to an I/O space of 64 KB.

 The size of the I/O space corresponding to an I/O Base Address register can be de-

termined using the same procedure used for determining the size of the memory space. The

only difference is that the least significant bit of the Base Address field is bit 2 instead of bit

7. As a second example, assume that the value 0xFFFFFFFF is written to a Base Address

register and the value read back is 0xFFFFFF01. Bit 0 is one, indicating that the register is an

I/O address decoder. Scanning upwards starting with bit 2, bit 8 is the first bit set to one in the

Base Address field. The binary-weighted value of this bit is 28, which means that the size of

the I/O space corresponding to this register is 256 bytes.

17 Input/Output Systems and Peripheral Devices

 2.7. Applications

 2.7.1. Answer the following questions:

a. What are the improvements introduced by the PCIe bus compared to the previous

PCI and PCI-X buses?

b. What are the main components of the PCIe bus topology?

c. What are the methods that can be used by PCIe devices for interrupt signaling?

d. What are the operational parameters determined during link initialization and

training?

e. What are the configuration registers that must be used to uniquely identify a PCIe

function?

 2.7.2. Create a Windows application for identifying each PCIe device in the comput-

er. As template for the Windows application, use the AppScroll-e application, whose source files

are available on the laboratory web page in the AppScroll-e.zip archive. Perform the following

operations to create the application project:

1. In the Visual Studio 2022 programming environment, create a new empty Windows

Desktop project with the Windows Desktop Wizard. Check the Place solution and

project in the same directory option to avoid creating another folder for the solution.

2. Verify that the active solution platform is set to x64.

3. Change the Character Set project property by opening the Properties dialog window.

In this window, expand the Configuration Properties option, expand the Advanced

option, select the Character Set line in the right tab, and choose the Not Set option.

4. Copy to the project folder the files contained in the AppScroll-e.zip archive and add

these files to the project.

5. Copy to the project folder the Hw.h and Hw64.lib files from the folder of a previously

created project.

6. Copy to the project folder the header files and source file from the PCI-e.zip archive,

available on the laboratory web page.

7. Add to the project the Hw.h, PCI-e.h, Pci-vendor-dev.h, and PciBaseAddressUEFI-

e.cpp files.

8. Specify the Hw64.lib file as an additional dependency for the linker.

9. In the AppScroll-e.cpp source file, add #include directives to include the PCI-e.h

and Pci-vendor-dev.h header files. Declare PciBaseAddressUEFI() as a function

that has no parameters and returns a DWORD64 value.

In the AppScroll-e.cpp source file, first call the PciBaseAddressUEFI() function to

determine the base address of the PCIe extended configuration space and store the base ad-

dress in a global variable. If the function returns 0, the base address cannot be successfully

determined, and in this case the application should return with an error code. Otherwise, dis-

play the base address as two double-words. Next, write a function that returns a pointer to a

PCIe function’s configuration header using the PCIe enhanced configuration mechanism. The

function has as input parameters the bus number, device number, and PCIe function number,

and it returns a pointer to a PCI_CONFIG0 structure containing the PCIe function’s configura-

tion header. The enhanced configuration mechanism is described in Section 2.6.3. In this

function, use the global variable containing the base address of the PCIe extended configura-

tion space. Finally, use this function to search for PCIe devices on each bus between 0 and 63,

for each device (0..31), and for each function (0..7) of a device. For each existing PCIe de-

vice, the following information should be displayed (on separate lines):

18 2. PCI Express Bus

• Bus number, device number, function number;

• Class code, sub-class code, programming interface, subsystem vendor ID, subsys-

tem ID;

• Class/sub-class descriptor, programming interface descriptor.

Use the structures defined in the PCI-e.h header file. For displaying the class/sub-

class descriptor and the programming interface descriptor, search in the PciClassTable

array using the class code, sub-class code, and programming interface as search keys.

 Notes

• If the Vendor ID register of a PCIe function returns the value 0xFFFF when read, it

means that the function does not exist. In this case, no message should be displayed

since there are many non-existing functions.

• The configuration registers of a PCIe function should not be accessed directly, but rather

via the Marvin HW driver. For example, assuming that pRegPci is a pointer to a func-

tion’s configuration header, the Vendor ID register can be read into the wVendorID var-

iable as follows:

wVendorID = _inmw((DWORD_PTR)&pRegPci->VendorID);

 2.7.3. Extend Application 2.7.2 to display additional information about the existing

PCIe devices in the computer. The additional information that should be displayed is the fol-

lowing:

• Vendor ID, vendor descriptor;

• Device ID, chip descriptors.

Use the PCI-vendor-dev.h header file that has been added to the project. To display

the vendor descriptor, search in the PciVenTable array using the vendor ID as search key

and display the CONST CHAR *VenFull member of the PCI_VENTABLE structure. To display

the chip descriptors, search in the PciDevTable array using the vendor ID and device ID as

search keys and display the CONST CHAR *Chip and CONST CHAR *ChipDesc members of

the PCI_DEVTABLE structure.

 Notes

• The number of entries in the PciVenTable array is defined as PCI_VENTABLE_LEN.

• The number of entries in the PciDevTable array is defined as PCI_DEVTABLE_LEN.

• When a device ID cannot be found in the PciDevTable array, some information about

that device might be found in the pci.ids file from The PCI ID Repository website

(http://pci-ids.ucw.cz/), also available on the laboratory web page.

 2.7.4. Extend Application 2.7.3 to display the same information specified in Applica-

tion 2.7.2 about the PCIe devices, but this time by using the PCI-compatible configuration

mechanism for accessing the configuration space. This mechanism is described in Section

2.6.2. First, write a function that reads the contents of a single double-word from a PCIe func-

tion’s configuration header using the PCI-compatible configuration mechanism. The function

has the following input parameters: bus number, device number, PCIe function number, and

double-word number. The function returns the contents of the specified double-word. Then,

use this function to retrieve the contents of the registers that were used for Application 2.7.2

by specifying the appropriate double-word number when calling the function (the double-

word numbers are shown in Figure 2.8). Extract the relevant information from these registers

(e.g., class code, sub-class code, programming interface) and display the same information as

displayed for Application 2.7.2.

 2.7.5. Create a Windows application to identify the SMBus (System Management

Bus) controller of the computer and to display the contents of its base address registers. After

http://pci-ids.ucw.cz/

19 Input/Output Systems and Peripheral Devices

creating the project, write a function that searches for a PCIe device with the class code and

sub-class code specified as parameters. The function returns in a double-word the bus num-

ber, device number, and function number of the PCIe device; it returns 0 if the PCIe device

with the specified class code and sub-class code cannot be found. The function searches for

the specified PCIe device on each bus between 0 and 63, each device (0..31), and each PCIe

function (0..7) of a device. The function uses the PCIe enhanced configuration mechanism for

accessing the configuration space. Use this function to identify the SMBus controller, which

has a class code of 0x0C and sub-class code of 0x05. After identifying the controller, display

its bus number, device number, and function number. Then, for each of the six base address

registers of the controller, perform the following operations:

• Display the register type (memory decoder or I/O decoder);

• If the register is a memory decoder, display its size (32 bits or 64 bits) and the cor-

responding memory base address;

• If the register is an I/O decoder, display the corresponding I/O base address.

 Bibliography

[1] Ajanovic, J., “PCI Express (PCIe) 3.0 Accelerator Features”, Intel Corporation, 2008,

http://www.intel.com/content/dam/doc/white-paper/pci-express3-accelerator-white-

paper.pdf.

[2] Bhatt, A. V., “Creating a PCI Express Interconnect”, Intel Corporation, 2002,

http://www.advancedaudiorentals.com/phpkb/admin/attachments/pci_express_white_pap

er.pdf.

[3] Budruk, R., Anderson, D., Shanley, T., PCI Express System Architecture, MindShare

Inc., Addison-Wesley Developer’s Press, 2008, https://www.mindshare.com/files/

ebooks/PCI%20Express%20System%20Architecture.pdf.

[4] PCI-SIG, “PCI Code and ID Assignment Specification”, Revision 1.11, January 24,

2019.

[5] PCI-SIG, “PCI Express Base Specification Revision 3.0”, November 10, 2010.

[6] Shanley, T., Anderson, D., PCI System Architecture, Fourth Edition, MindShare Inc.,

Addison-Wesley Developer’s Press, 1999.

[7] PCI Vendor and Device Lists, http://www.pcidatabase.com.

[8] The PCI ID Repository, https://pci-ids.ucw.cz.

http://www.intel.com/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf
http://www.advancedaudiorentals.com/phpkb/admin/attachments/pci_express_white_paper.pdf
http://www.advancedaudiorentals.com/phpkb/admin/attachments/pci_express_white_paper.pdf
https://www.mindshare.com/files/%20ebooks/PCI%20Express%20System%20Architecture.pdf
https://www.mindshare.com/files/%20ebooks/PCI%20Express%20System%20Architecture.pdf
http://www.pcidatabase.com/
https://pci-ids.ucw.cz/

