

1 Input/Output Systems and Peripheral Devices

4. UNIVERSAL SERIAL BUS

 This laboratory work presents the Universal Serial Bus and the interface based on this

bus. The following topics are presented: basic concepts of the USB, connectors and cables

used, transfer types, communication model, bus protocol, packet structure, USB descriptors,

and USB commands. In addition, the laboratory work introduces the USB HID class and de-

scribes how the communication between the computer and devices from this class can be

performed.

 4.1. Overview of USB

 The development of the Universal Serial Bus (USB) started in 1995 by a group of

companies which included Compaq, Digital, IBM, Intel, Microsoft, NEC, and Northern Tele-

com. These companies have later joined into the USB Implementers Forum (USB-IF,

http://www.usb.org), which published the first version of the USB standard. This forum,

which has been extended with a large number of companies, continues to update the USB

standards for USB controllers and various categories of devices that can be connected to the

USB.

 One of the motivations for developing the USB was to simplify the interconnections

between the computer and peripherals by reducing the number of cables that are connected to

the computer and by using the same type of connector for various categories of peripherals. In

a system containing a USB, the peripherals can be connected in series or in a star topology on

several tiers, a single peripheral being connected to a USB port of the host computer. Another

motivation for developing the USB was to provide a higher transfer rate than those allowed

by the serial and parallel ports. Although with the first versions (1.0 and 1.1) of the USB the

maximum transfer rate was only 12 Mbits/s, this rate has been increased up to 480 Mbits/s

with version 2.0 of USB and to 5 Gbits/s or 10 Gbits/s with versions 3.0 and 3.1 of USB. An-

other aim was to offer the possibility for adding peripherals to the computer in a simple way,

without opening its case, without switching off the power and without having to reboot the

operating system.

 The computer equipped with a USB port detects the attachment of a new peripheral

and automatically determines the resources it needs, including the software driver and transfer

rate. One of the computer’s peripherals, e.g., the keyboard or the monitor, is attached to a

USB port of the computer. Other peripherals may attach to a distributor (hub) located within

the keyboard or monitor, being possible to make tree-like connections. Peripherals can be

located at up to 5 m one to the other or to a hub. In total, up to 127 USB peripherals can be

connected to a computer, and these are powered with a voltage of +5 V via the USB cable. All

USB peripherals use a standard connector, eliminating the need to use different connectors for

different types of peripherals.

 The main components of a system that uses the USB are USB devices, USB cables, and

the system software. The devices on the USB are physically connected to the host computer

using a star topology on several tiers, as illustrated in Figure 4.1.

 There are two categories of USB devices: hubs and functions. A hub represents a

special category of USB device, which provides additional attachment points for other USB

devices. These attachment points are referred to as ports. The host computer contains a root

hub, which provides one or more attachment points. In addition, this hub contains the USB

bus controller; each bus has a single bus controller.

http://www.usb.org/

2 4. Universal Serial Bus

Figure 4.1. USB topology.

 Figure 4.2 presents a typical USB hub. The upstream port of the hub allows connec-

tion to the host computer or to a hub on the higher topology tier. Each of the downstream

ports allows connection to a hub or to a function on the lower tier. Hubs can be cascaded up to

five levels. The hub detects dynamic attachment and detachment of a peripheral and provides

a power of at least 0.5 W for each peripheral during initialization. Under control of the system

software, the hub can provide an additional power for the operation of peripherals, up to 2.5

W, 4.5 W, or 9 W (depending on the USB version). Some peripherals, such as the keyboard or

light pen, can be supplied only with the voltage provided by the bus cable, while others can

have their own power supply.

Figure 4.2. Ports of a typical USB hub.

 A hub consists of two parts: a controller and a repeater. The controller contains inter-

face registers for communication with the host computer. The status and control commands

enable the host to configure the hub, to monitor and control its ports. The repeater is a proto-

col-controlled switch between the upstream port and downstream ports. Also, the repeater

monitors the signals on the ports and manages the transactions that are addressed to it. All the

other transactions are repeated to the attached devices. Each downstream port can be individ-

ually enabled and attached to either high-speed or low-speed devices. The low-speed ports are

isolated from the high-speed signals.

 Figure 4.3 illustrates how the USB hubs provide connectivity in a computer system.

 A function is a USB device that is able to send or receive data or control information

over the bus. This device must respond to transaction requests sent by the host computer. A

function is usually implemented as a separate peripheral connected through a cable to a port

of a hub. However, a single physical device may contain multiple functions. For instance, a

keyboard and a tracking device may be combined into a single physical device. Within such a

compound device, individual functions are attached to a hub, and this internal hub is connect-

ed to the USB.

3 Input/Output Systems and Peripheral Devices

Figure 4.3. Using the USB hubs in a computer system.

 Each function contains configuration information that describes its capabilities and

resources required. This information is sent to the host computer as answer to a control trans-

action. Before using a function, it must be configured by the host computer. This configura-

tion implies allocating USB bandwidth and selecting specific configuration options.

 The system software ensures a uniform handling of the I/O system by all the applica-

tion programs. By hiding hardware implementation details, the portability of application pro-

grams is ensured. The system software manages the dynamic attachment and removal of pe-

ripherals. The attachment phase, referred to as enumeration, implies communicating with a

peripheral to determine the device driver that should be loaded and assigning a unique address

to it. During operation, the host computer initiates transactions with some peripherals. The

information is sent over the bus in the form of packages, which are received by every periph-

eral. The packages contain the address of the target peripheral; only that peripheral will accept

a particular transaction and will answer accordingly.

 The USB controller, located on the motherboard of the host computer, has its own

specifications. With the fist USB versions, there were two specifications for these controllers.

The first of these, Universal Host Controller Interface (UHCI), was developed by Intel and

allowed simplifying the circuitry, the more complex part being the software. The second spec-

ification, Open Host Controller Interface (OHCI), was developed by Compaq, Microsoft, and

National Semiconductor; this specification allowed simplifying the software, the more com-

plex part being the hardware. With the introduction of USB version 2.0, developing a new

specification for the bus controllers was required. This specification, called Enhanced Host

Controller Interface (EHCI), was developed by several companies, such as Intel, Compaq,

NEC, Microsoft, and Lucent Technologies. The Extensible Host Controller Interface (xHCI)

has been defined by Intel with contribution from many companies. This specification supports

all USB speeds, including the higher speeds enabled by USB version 3.0 and later versions,

under a single protocol stack. Compared to the previous specifications, the xHCI specification

improves the power efficiency, provides support for virtualization, and simplifies the driver

architecture.

 There are separate specifications for various categories (classes) of USB peripherals.

A USB class represents a group of peripherals or interfaces with similar attributes or services.

For instance, two peripherals or interfaces are included into the same class if they use data

streams with the same format for communication with the host computer. Among the USB

peripheral classes, the following are mentioned: audio devices, communication devices (mo-

dems, analog and digital phones, network adapters), human interface devices (HID), still-

image capture devices (digital cameras), printers, mass storage devices, and video devices.

 4.2. USB Versions

 Version 1.0 of the USB standard was published in 1996, this being followed by ver-

sion 1.1, adopted in 1998. The maximum transfer rate specified by these versions is 12

Mbits/s. This transfer rate is enough for peripherals such as telephones or digital speakers

4 4. Universal Serial Bus

(which contain a digital-to-analog converter). For slow peripherals, such as keyboards or light

pens, a low-speed channel has been provided, with a transfer rate of 1.5 Mbits/s.

 Version 2.0 of the USB standard was published in 2000. This version (also called Hi-

Speed USB) allows increasing the transfer rate with a factor of 40 compared to version 1.1,

from 12 Mbits/s up to 480 Mbits/s. This extension of the USB specifications allows using the

same cables, connectors, and software drivers. However, users can benefit of an additional

variety of peripherals, e.g., digital video cameras, scanners, printers, network adapters, hard

disk drives, or optical disc drives. Figure 4.4 illustrates the USB 2.0 logo.

Figure 4.4. USB 2.0 logo.

 USB 2.0 peripherals with higher transfer rates are connected to a USB 2.0 hub. A

USB 2.0 hub accepts high-speed transactions and supplies the data with the rates correspond-

ing to the USB 2.0 and USB 1.1 peripherals. The possibility to use high-speed transfers is

negotiated with each peripheral, and if a peripheral does not support these transfers, the con-

nection with this peripheral will operate at a lower speed of 12 Mbits/s or 1.5 Mbits/s. This

involves a higher complexity of the hubs and requires storing temporarily the data received. A

USB 2.0 hub has output ports for high-speed transfers and output ports for full-speed trans-

fers.

 The USB “On-The-Go” (OTG) specifications have been developed as a supplement

to the USB 2.0 specifications with the aim to allow direct connections between mobile devic-

es, without using a computer. The standard USB uses a master/slave architecture, where the

host computer has the master role, and a peripheral has the slave role. Only the host computer

can initiate data transfers over the bus. Peripherals can only respond to transfer requests initi-

ated by the host computer. With the USB OTG version, a peripheral can have either the mas-

ter role or the slave role. The master and slave roles can be exchanged dynamically during

operation with a protocol called Host Negotiation Protocol (HNP). Thus, any peripheral com-

patible with the USB OTG specifications can initiate data transfers over the bus. The condi-

tion is that the two devices that communicate be connected directly and not through a hub.

 An example of using the USB OTG version is that of a tablet computer or mobile

phone, which can have the default slave role for a PC (for data synchronization) or the default

master role for a printer. Another example is that of a printer, which can have the slave role

for a tablet computer and the master role for a digital camera, if it allows reading files from

the camera to print them. Figure 4.5 illustrates the USB OTG logo.

Figure 4.5. USB OTG logo.

 The specifications of version 3.0 of the USB standard have been completed by the

USB 3.0 Promoter Group in 2008 and have been transferred to the USB Implementers Forum.

This version introduces the SuperSpeed bus, which allows a new transfer mode with the

maximum speed of 5 Gbits/s. In the SuperSpeed mode, two simplex differential channels are

used in addition to the existing differential channel for the conventional mode. The techno-

logy is similar to that of version 2.0 of the PCI Express bus. The same 8b/10b encoding is

used, which allows a maximum transfer rate of 500 MB/s; it is possible to achieve a transfer

rate of 400 MB/s if the data encoding method is considered. Figure 4.6 illustrates the USB

SuperSpeed logo.

5 Input/Output Systems and Peripheral Devices

Figure 4.6. USB SuperSpeed logo.

 The specifications of USB version 3.1 have been released in 2013. This version intro-

duces a faster transfer mode called “SuperSpeed+ USB 10 Gbps”, which increases the data rate

up to 10 Gbits/s in the USB 3.1 Gen 2 mode, double that of USB 3.0 (which has been renamed

USB 3.1 Gen 1). The data encoding method has been changed from 8b/10b to 128b/132b, which

reduces the encoding overhead to just 3%. The USB 3.1 specifications ensure compatibility with

the previous versions USB 3.0 and USB 2.0. Figure 4.7 illustrates the USB SuperSpeed+ 10

Gbps logo.

Figure 4.7. USB SuperSpeed+ 10 Gbps logo.

 The specifications of USB version 3.2, released in 2017, introduce a transfer mode called

“SuperSpeed+ USB 20 Gbps” using existing USB 3.1 connectors and cables. Doubling of the

data rate is achieved by operation on two lanes instead of on a single lane, using the existing

wires intended to offer flipping capabilities to the Type-C connector (this connector is presented

in Section 4.3). The same 128b/132b data encoding method is used as in version 3.1. Compatibil-

ity with the previous versions is ensured by using one of the following transfer modes: USB 3.2

Gen 1x1 (one lane, SuperSpeed at 5 Gbits/s), USB Gen 1x2 (two lanes, SuperSpeed at 10

Gbits/s), or USB Gen 2x1 (one lane, SuperSpeed+ at 10 Gbits/s).

 The USB Power Delivery specification has been developed as an extension of the

USB standards. This extension specifies using certified USB cables with standard USB con-

nectors to deliver increased power to certain devices. Devices can request higher currents and

supply voltages from host computers that comply with this specification, up to 2 A at 5 V (10

W). Optionally, the current consumption can be increased up to 3 A or 5 A at either 12 V (36

W or 60 W) or 20 V (60 W or 100 W). This allows laptop computers to be charged similarly

with tablets and smartphones, via their USB ports, which may eliminate in the future the vari-

ous proprietary charging ports.

 4.3. Connectors and Cables

 The original specifications of the USB defined two types of plugs, placed at the two

ends of a USB cable, and two types of sockets, placed in a hub or peripheral. The plugs and

sockets are designated as Type-A and Type-B.

Figure 4.8. Type-A plug and socket (left); Type-B plug and socket (right).

6 4. Universal Serial Bus

 Hubs (e.g., those of a host computer) contain a Type-A rectangular socket. Peripherals

connect to this socket through a Type-A rectangular plug (Figure 4.8). Cables permanently at-

tached to peripherals contain a Type-A plug. Usually though, peripherals are connected through a

detachable cable. Peripherals contain a Type-B square socket, and the cable that connects the

peripherals to a hub contains a Type-B plug at the end that connects to the peripheral and a Type-

A plug at the end that connects to the hub. Therefore, it is not possible to incorrectly connect the

cable.

 The USB 2.0 specifications were modified after their release to include a Type-B plug

and socket with smaller sizes. These connectors, called mini-B, contain five pins, and are used

for mobile devices such as tablet computers, mobile phones, and digital cameras. These de-

vices contain a mini-B socket, and the cables used for connecting these devices to a computer

contain a mini-B plug at one end and a Type-A plug at the other end. The size of mini-B con-

nectors is approximately 7x3 mm. Later, a mini-A connector was also defined. Figure 4.9

illustrates a mini-B plug near a Type-A plug.

Figure 4.9. Mini-B USB plug near a Type-A plug.

 In 2007, Type-A and Type-B connectors with even smaller sizes were defined, called

micro-A and micro-B. These connectors have the same width as the mini-B connectors, but

the thickness is reduced to approximately half. The new connectors are intended to replace the

mini-A and mini-B connectors, which are no longer used with new mobile devices.

 The USB OTG specifications describe new socket types, mini-AB, and micro-AB.

These sockets allow, through an adequate mechanical design, to connect either a Type-A plug

or a Type-B plug with the appropriate size. The type of plug inserted is detected by means of

an additional pin ID, which is grounded in a Type-A connector and is unconnected in a Type-

B connector. When a Type-A connector is inserted into an AB socket, the socket will supply

voltage to the cable and the device with the AB socket will have the master role. When a

Type-B connector is inserted into an AB socket, the socket will be powered with the cable

voltage and the device with the AB socket will have the slave role. The USB OTG specifica-

tions also describe various cable types that use small-size connectors or a combination be-

tween a small-size connector and a regular-size one. Figure 4.10 illustrates a micro-AB socket

and a micro-B socket.

Figure 4.10. Micro-AB and micro-B USB OTG sockets.

 USB version 3.0 defines new Type-A, Type-B, and micro-B connectors. Figure 4.11

illustrates, from left to right, a Type-A plug, a Type-B plug, and a micro-B plug. USB 3.0

Type-A plugs have the same shape as USB 2.0 Type-A plugs and are compatible with USB

2.0 Type-A receptacles. However, the USB 3.0 plugs contain five additional pins used by the

two additional differential channels. The USB 3.0 specifications require that the inner part of

7 Input/Output Systems and Peripheral Devices

the connectors be colored in blue (Pantone 300C). USB 3.0 Type-B plugs have a different

shape to include five new pins corresponding to the five additional pins in the Type-A con-

nectors. These plugs are not backwards compatible with USB 2.0 Type-B receptacles. A USB

3.0 micro-B plug consists of two connectors, a USB 2.0 micro-B connector and an additional

connector attached next to it. The USB 3.0 micro-B connectors are mostly used for external

hard drives.

Figure 4.11. Type-A, Type-B, and micro-B USB 3.0 plugs.

 USB Type-C is a new connector whose specifications have been developed and pub-

lished by the USB Implementers Forum in 2014; they have been updated in 2015 and 2017.

The Type-C plug connects to both host computers and USB devices, and is intended to re-

place various Type-A and Type-B plugs. The Type-C connector is reversible and contains 24

pins (Figure 4.12), which include four power pins, four ground pins, four pins for two USB

2.0 differential channels (though only one channel is implemented in a Type-C cable), eight

pins for four SuperSpeed channels, and two configuration pins for cable orientation detection.

Figure 4.12. USB Type-C connector pins.

 The size of a Type-C port is 8.4 x 2.6 mm, so it can even be used for small devices.

The connector supports a current of 1.5 A or 3 A at 5 V (7.5 W or 15 W), or it may comply

with the USB Power Delivery specification to deliver a power of up to 100 W. If a device

contains a Type-C port, it does not necessarily support USB version 3.1 or 3.0 (for instance, it

may only support USB version 2.0) or the USB Power Delivery specification. To connect an

older device to a host computer with a Type-C receptacle, an adapter or a cable is required

with a Type-A or Type-B plug on one end, and a Type-C plug on the other end. Type-C con-

nectors and cables are also used by version 3 of Intel’s proprietary technology, Thunderbolt,

and this version is compatible with USB 3.1. Therefore, the same device can use both USB

3.1 and Thunderbolt operating modes.

 Figure 4.13 illustrates a Type-C plug next to a Type-A plug.

Figure 4.13. USB Type-C and Type-A plugs.

 To carry the signals and the supply voltage, USB 2.0 uses a cable with four wires,

illustrated in Figure 4.14. The differential data signals are transmitted on the D+ and D- lines,

consisting of two twisted wires. The clock signal is encoded along with the data. The encod-

8 4. Universal Serial Bus

ing method used is called NRZI (Non-Return to Zero Inverted). With this method, a bit of 1 is

represented by no change in the voltage level, and a bit of 0 is represented by a change in the

voltage level, without returning to the reference voltage (zero) between the encoded bits. Ex-

tra bits are inserted into the data sent to ensure sufficient signal transitions to guarantee cor-

rect synchronization. A bit of 0 is inserted after every six consecutive bits of 1 before the data

are encoded, to force a transition in the data stream. Each data packet is preceded by a syn-

chronization field to allow receivers to synchronize their receive clocks.

Figure 4.14. USB 2.0 cable.

 A USB 2.0 cable also carries the supply voltage for the peripherals on the VBUS and

GND lines. The voltage on the VBUS line is +5 V at source. To ensure correct voltage levels at

peripheral inputs and adequate termination impedance, bus terminators are used at each end of

the cable. Bus terminators also allow to detect attachment and removal of a peripheral and to

differentiate between full-speed (12 Mbits/s) and low-speed (1.5 Mbits/s) peripherals. At the

hub end of the cable, resistor terminators of 15 K are used, through which the D+ and D–

lines of the cable are connected to the ground. At the peripheral end of the cable, a resistor of

1.5 K is used as terminator, through which one of the D+ or D– lines is connected to a volt-

age source between 3 V and 3.6 V. For a full-speed peripheral the resistor is connected to the

D+ line, while for a low-speed device the resistor is connected to the D– line.

 For simple identification of the wires within USB 2.0 cables, the standard specifies to

use the colors indicated in Table 4.1 for these wires. The table also indicates the assignment of

connector pins to the bus signals.

Table 4.1. Connector pin assignment to the USB 2.0 signals and the colors of cable wires.

Pin No. Signal Color

1 VBUS Red

2 D- White

3 D+ Green

4 GND Black

 USB 3.0, USB 3.1, and USB 3.2 cables contain eight wires. Two wires are used for

the power and ground signals, two wires are used for the differential channel of the conven-

tional mode, and four wires are used for the two simplex differential channels of the Super-

Speed or SuperSpeed+ mode.

 Note

• It is not possible to interconnect two computers through a regular USB cable. Even if

a cable with two Type-A connectors would be used, by interconnecting the computers

two USB controllers would exist in a system, which is not allowed. However, there

are special cables that contain a USB bridge as an integrated circuit, through which

the communication between two host computers is possible.

 4.4. Transfer Types

 The USB architecture allows four types of data transfers: control, interrupt, bulk data,

and isochronous.

 Control transfers are used by the host computer drivers to configure devices that are

attached to the system. Other drivers can use control transfers in implementation-specific ways.

9 Input/Output Systems and Peripheral Devices

 Interrupt transfers are used for data that must be transferred with a limited delay. The

transfer of such data may be requested by a device at any time, and the transfer rate over the

bus cannot be lower than that specified by the device. Data for which interrupt transfers are

used consist of event notification, characters, or coordinates that are organized as one or sev-

eral bytes. An example is represented by the coordinates of a pointing device (mouse,

graphics tablet). Interactive data may have certain limits of the response time that must be

guaranteed by the bus.

 Bulk data transfers are used with peripherals such as mass storage devices, printers,

or scanners. Bulk data are sequential. The reliability of transfers is ensured at the hardware

level by using an error detecting code and retrying an erroneous transfer a certain number of

times. The transfer rate may vary depending on other bus activities.

 Isochronous transfers (isos – equal, chronos – time) are used for data that must be

delivered at a certain constant transfer rate and whose synchronization must be guaranteed.

Isochronous has the meaning “with equal duration” or “that occurs at regular intervals”.

Isochronous data are generated in real time and must be delivered at the rate received to main-

tain their synchronization. In addition to the imposed transfer rate, for isochronous data the

maximum delivery delay must also be ensured. The timely delivery of isochronous data is

ensured at the expense of potential losses in the data stream. Hence, transmission errors are

not corrected by hardware mechanisms, such as by their retransmission. In conclusion, isoch-

ronous transfers are characterized by timely data delivery and lack of retries in case of errors,

because late data are no longer useful. Unlike isochronous transfers, asynchronous transfers

are characterized by the fact that the reliability of data transmission is more important than

ensuring synchronization. Therefore, retransmission of data is used in case of errors, even if

delays occur for this reason.

 A typical example of isochronous data is represented by video images. If the transfer

rate of these data streams is not maintained, data losses will occur due to buffer capacity over-

runs. Even if the data are delivered by the USB at the appropriate rate, delays introduced by

software may negatively affect applications that use these data, such video-conferencing ap-

plications.

 Isochronous data streams are allocated a dedicated portion of USB bandwidth. The

USB is also designed for minimal delay of isochronous data transfers.

 4.5. USB Communication Model

 A USB system allows the communication between an application program (client)

running on a host computer and one or more USB devices attached to that computer. A USB

physical device contains an interface with the bus, a USB logical device, and a function. A

USB function can have different communication flow requirements for different interactions

between that function and the host computer. By separating the different communication

flows with a USB function, the USB system provides more efficient bus utilization. The

communication flows use the bus to accomplish communication between the application pro-

gram and the USB function. Each communication flow is terminated at an endpoint on a USB

device.

 An endpoint is a part of a USB device, representing the terminus of the communica-

tion flow between the host computer and device. Each USB logical device is composed of

several independent endpoints. Each logical device has a unique address, which is assigned by

the system when the device is attached to the bus. Each endpoint on a USB device is identi-

fied by a unique number, which is given at the device design time. Also, each endpoint has a

certain direction of data flow: input (IN) for data transfers from the USB device to the host

computer, or output (OUT) for data transfers from the host computer to the USB device. The

combination of the device address, endpoint number, and direction allows the unique identifi-

cation of each endpoint.

 Endpoints contain input or output buffers through which the communication between

the host computer and USB device is achieved. For instance, if the application program run-

ning on the host computer sends a packet addressed to a particular USB device, this packet

10 4. Universal Serial Bus

will be placed into the buffer of an output endpoint on the device. Later, the device controller

will read the received packet from the buffer. If the device must send data to the host comput-

er, it cannot place the data directly on the bus, because all the transactions are initiated by the

host computer. The device will place the data into the buffer of an input endpoint, and these

data will be transferred to the host computer when the host will send an input packet to re-

quest the transfer of data, if they are available.

 Each device must contain at least the endpoints with number 0 (both the input and the

output endpoint). These endpoints are used to transfer control and status information during

the enumeration phase and as long as the device is operational and connected to the bus. Low-

speed (1.5 Mbits/s) devices may contain only two more endpoints, besides those with number

0. Full-speed (12 Mbits/s) or high-speed devices may contain maximum 15 input endpoints

and 15 output endpoints, besides the two endpoints with number 0.

 A collection of endpoints on a USB device implements an interface. Such an interface

indicates the USB device class, and this class will determine the generic device driver that

will be used by the operating system for communication with the endpoints that implement

the particular interface.

 Communication between the application program on the host computer and an end-

point on a USB device is achieved through a logical connection called pipe. A pipe represents

a link between a memory buffer on the host computer and an endpoint on the USB device.

Each pipe is assigned some information, such as the required transfer rate, the transfer type,

and the associated endpoint’s characteristics, such as direction and buffer size.

 There are two pipe communication modes: stream or message. In stream mode, data

has no USB-defined structure. Data are transferred sequentially and have a predefined direc-

tion, input or output. Stream pipes support interrupt, bulk data, or isochronous transfers.

These pipes are controlled either by the host computer or the USB device. In message mode,

data have some USB-defined structure. Nevertheless, the content of the data transferred

through a message pipe is not interpreted by the USB controller. These pipes are controlled by

the host computer and only support control transfers, in both directions.

 Communication between the input and output endpoints with number 0 and the host

computer is achieved through a special pipe, called default control pipe. This message pipe is

available immediately after the USB device is attached and reset, providing a bidirectional

link to interrogate the device by the host computer’s system software and to send the configu-

ration information from the device to the host computer. After the USB device has been con-

figured, other pipes required for the data transfers will be available; the default control pipe

will be used afterwards by the host computer’s system software for the control transfers.

 4.6. USB Protocol

 Similar to other more recent interfaces, the USB interface uses a packet-based proto-

col. All the transfers are initiated by the USB controller of the host computer. Bus transac-

tions involve the transmission of four packet types:

• Token packet;

• Data packet;

• Handshake packet;

• Special packet.

Each transaction starts when the USB controller sends, based on a scheduling, a token

packet that describes the type of transaction, its direction, the address of USB device, and the

endpoint number. The transaction source then sends a data packet containing the data to be

transferred, or it may indicate that it has no data to send by the fact that the data packet does not

contain useful information. In general, the destination responds by a handshake packet indicating

if the transfer has been completed successfully or if the endpoint is not available.

11 Input/Output Systems and Peripheral Devices

 4.6.1. USB Packet Fields

 The main fields of USB packets are described next.

 Synchronization Field

 All packets begin with a synchronization (SYNC) field, which is used by the receiver

circuitry for synchronization with the transmitter clock. The synchronization field is 8 bits in

length for full/low speed and 32 bits for high-speed. It contains a number of 6 or 30 succes-

sive transitions from 1 to 0 or vice versa, followed by a marker of two bits that is used to

identify the end of the synchronization field.

 Packet Identifier Field

 The packet identifier (PID) field immediately follows the synchronization field. The

PID field contains four bits that indicates the packet type followed by four check bits that

ensures reliable decoding of the PID field. The check bits contain the 1’s complement of the

bits that represents the packet type. The PID field format is illustrated next, where nPIDi rep-

resents the 1’s complement of the PIDi bit.

 7 6 5 4 3 2 1 0

nPID3 nPID2 nPID1 nPID0 PID3 PID2 PID1 PID0

 The host computer and all USB functions perform a complete decoding of all re-

ceived bits of the PID field. If a PID field is received with incorrect values of the check bits or

with undefined values of the packet type, it is assumed to be corrupted, and the remainder of

the packet is ignored by the receiver.

 Table 4.2 indicates the packet types, their coding and description. For simplicity,

special packets are not detailed.

Table 4.2. Coding and description of USB packet types.

Packet Type Packet Subtype PID [3..0] Description

Token

OUT 0001
Address and endpoint number in an output
transaction

IN 1001
Address and endpoint number in an input
transaction

SOF 0101 Start of frame marker and frame number

SETUP 1101
Address and endpoint number in a control
transaction in the setup stage

Data

DATA0 0011 Identifier for data packets with even number

DATA1 1011 Identifier for data packets with odd number

DATA2 0111
Identifier for data packets in high-speed
isochronous input transactions with high bandwidth

MDATA 1111
Identifier for data packets in high-speed
isochronous output transactions with high
bandwidth

Handshake

ACK 0010
Acknowledgement of error-free receive of data
packet

NAK 1010
Receiving device cannot accept data or
transmitting device cannot send data

STALL 1110 Endpoint is halted

NYET 0110 No response received yet from the receiver

Special XY00
Identifier of a special packet; XY can be 01, 10, or
11

 Address Field

 The address (ADDR) field specifies the address of the USB function that is the source

or destination of a data packet. This field is 7 bits in length, allowing to specify up to 128

addresses. Each address defines a single function. Address 0 is reserved as the default address

and may not be assigned explicitly to a function. Upon power-up and reset of a function, its

12 4. Universal Serial Bus

address will have the default address of 0. The host computer must set the function’s address

during the enumeration process.

 Endpoint Field

 The endpoint (ENDP) field allows more flexible addressing of functions in which

several endpoints are required. This field is 4 bits in length, which allows addressing of up to

16 endpoints. Low-speed devices may only have two additional endpoints beyond the end-

point with number 0.

 Data Field

 The data field may contain between zero and 1024 bytes, depending on the transfer

type. Data bits within each byte are sent over the bus with the least significant bit first.

 Cyclic Redundancy Check Fields

 These fields contain the cyclic redundancy check (CRC) codes used to verify the in-

tegrity of various fields in the token and data packets. The PID field is not included in the

CRC code of a packet. The CRC codes for token and data packets ensure detection of all sin-

gle-bit and double-bit errors. If the CRC code computed by the receiver differs from the code

sent in a CRC field, the receiver will ignore the protected fields and, in most cases, the entire

packet. The USB standard specifies the generator polynomials used for computing CRC

codes. For token packets a five-bit CRC field (CRC5) is used, and for data packets a 16-bit

CRC field (CRC16) is used.

 End-of-Packet Field

 The end-of-packet (EOP) field indicates the end of a packet by the value 0 during a

two-bit period, followed by the value 1 during a one-bit period.

 4.6.2. USB Packet Formats

 This section presents the format of token, SOF, data, and handshake packets.

 Token Packets

 These packets are sent only by the host computer. The structure of a token packet is

illustrated in Figure 4.15.

Figure 4.15. USB token packet structure.

 The packet identifier field, PID, can specify a token packet with the IN, OUT, or

SETUP subtype. Packets with the IN or OUT subtype inform the USB device on the direction

of transfer that follows, input (reading by the host computer), or output (writing by the host

computer), respectively. A packet with the SETUP subtype is used at the beginning of control

transfers. For packets with the OUT or SETUP subtype, the ADDR and ENDP fields uniquely

identify the endpoint that will receive the next data packet. For a packet with the IN subtype,

the ADDR and ENDP fields identify the endpoint that will send a data packet. The CRC5 field

contains the CRC code for the ADDR and ENDP fields.

 SOF Packets

 For synchronization of the entire USB system, the host computer sends a SOF (Start

Of Frame) packet at each and every period corresponding to the beginning of a frame or mi-

cro-frame. A frame represents a time interval of 1 ms 0.0005 ms and is defined for the full-

13 Input/Output Systems and Peripheral Devices

speed bus (12 Mbits/s). A micro-frame represents a time interval of 125 s 0.0625 s and is

defined for the high-speed bus (480 Mbits/s). A SOF packet consists of a synchronization

field, a PID field, and a field of 11 bits representing the frame number, as illustrated in Figure

4.16. For the high-speed bus, the frame number will be the same for eight consecutive SOF

packets, for a period of 1 ms.

Figure 4.16. USB SOF packet structure.

 All the USB functions and hubs receive the SOF packets. The reception of these

packets will not initiate the generation of handshake packets by the receiver.

 Data Packets

 The actual information is sent over the bus in the data packets. A data packet consists

of the synchronization field SYNC, a packet identifier field PID, a data field, a 16-bit CRC

field, and the end-of-packet field EOP (Figure 4.17). The CRC code is computed only from

the data field. The data are sent in integral number of bytes. For low-speed devices the maxi-

mum length of the data field is 8 bytes. For full-speed devices (12 Mbits/s) the maximum

length of the data field is 1023 bytes, and for the high-speed devices (480 Mbits/s) the maxi-

mum length is 1024 bytes.

Figure 4.17. USB data packet structure.

 Handshake Packets

 Handshake packets only consist of the synchronization field SYNC, a packet identifi-

er field PID, and the end-of-packet field EOP (Figure 4.18). These packets are used to report

the status of a data transaction by the subtype returned in the PID field. The subtype of a

handshake packet can be ACK (Acknowledge), NAK (Negative Acknowledge), STALL (Stall),

or NYET (No Response Yet). These subtypes are described in Table 4.2.

Figure 4.18. USB handshake packet structure.

 4.7. USB Descriptors

 USB devices have a hierarchy of descriptors which describe their attributes. These

descriptors are used to report the device attributes to the host computer. A descriptor repre-

sents a data structure with a format defined by the USB standards. Each descriptor begins

with a byte that contains the total number of bytes of the descriptor, followed by a byte that

indicates the descriptor type. In addition to the standard descriptors, USB devices may also

return descriptors that are specific to a device class or a vendor.

 The main types of standard descriptors are the following:

• Device descriptors;

• Configuration descriptors;

• Interface descriptors;

• Endpoint descriptors;

14 4. Universal Serial Bus

• String descriptors.

The descriptor hierarchy has as root at the highest level the device descriptor. At the

next level, the configuration descriptors are located; there is one such descriptor for each con-

figuration of the device. For each configuration there might be one or more interface de-

scriptors, depending on the number of interfaces of the particular configuration. Finally, for

each endpoint of each interface there is an endpoint descriptor (Figure 4.19).

Figure 4.19. Descriptor hierarchy of a USB device.

 The device descriptor contains general information about the USB device; this infor-

mation applies to all the device’s configurations. A USB device can only have one device

descriptor. The device descriptor includes information such as the USB standard’s revision

the device complies with, the class the device belongs to, the device subclass, the vendor

identifier (assigned by the USB-IF organization), the product identifier (assigned by the ven-

dor), the number of possible configurations of the device.

 A USB device can have several configurations, characterized by different attributes.

A configuration descriptor characterizes a certain configuration of the device. This descriptor

contains information such as the number of interfaces of the configuration, whether the device

is powered from the bus or from its own power supply, and the maximum current drawn by

the device when it is powered from the bus.

 During the enumeration phase, the host computer reads the configuration descriptors

and based on them enables a certain configuration of the device. Only one configuration can

be enabled at a time. For example, a device might have a bus powered configuration and a

self-powered configuration. If the device is connected to a computer with a mains power sup-

ply, the device driver may select the first configuration, enabling the device to be powered

without connecting it to a separate power supply. If the device is connected to a portable

computer, the driver may select the second configuration, which requires connecting the de-

vice to its own power supply.

 An interface descriptor characterizes a set of endpoints within a configuration, which

are grouped into an interface. For example, consider a multifunctional device consisting of a

fax, a scanner, and a printer. One of the interface descriptors could characterize the fax func-

tion of the device, a second interface descriptor could characterize the scanner function, and a

third interface descriptor could characterize the printer function. A device could have several

interface descriptors enabled simultaneously. An interface descriptor is not directly accessi-

ble, but rather is returned as part of a configuration descriptor.

 An interface may contain alternate settings, which enable to modify the endpoints

associated with the interface or their characteristics after the device has been configured. By

default, for an interface the alternate setting with number zero is used. Alternate settings allow

15 Input/Output Systems and Peripheral Devices

modifying an interface of the device while other interfaces remain in operation, which is more

advantageous than using different configurations. If a configuration contains alternate settings

for one or more of its interfaces, for each setting a separate interface descriptor and its associ-

ated endpoint descriptors must be included into the configuration descriptor.

 An interface descriptor contains information such as interface number, alternate set-

ting number for the interface, number of endpoints used by the interface, class code, and sub-

class code (assigned by the USB-IF organization). The number of endpoints used by the inter-

face does not include endpoint zero.

 Each endpoint used by an interface has its own descriptor. In principle, an endpoint

descriptor contains the information required by the host computer to determine the bandwidth

requirements for the endpoint. An endpoint descriptor contains information such as the num-

ber (address) of the endpoint, its direction, type of transfer used for communication with the

endpoint, maximum packet size the endpoint can send or receive, and time interval for polling

the endpoint by the host computer for data transfers. Endpoint descriptors are not directly

accessible, being returned as part of a configuration descriptor. Endpoint zero does not have

its own descriptor.

 String descriptors are optional. These descriptors provide information about the USB

device in a form that can be displayed directly. Reference to string descriptors is made

through index values in the device, configuration, and interface descriptors. If string de-

scriptors are not used for a USB device, all references to such descriptors must be set to zero

in the device, configuration, and interface descriptors.

 String descriptors have a standard structure. The first byte in each descriptor indicates

the size of the descriptor in bytes, and the second byte indicates the descriptor type. Within a

descriptor, the character string starts at offset 2. Each character string is encoded in the

UNICODE format, as defined by the Unicode Consortium (http://www.unicode.com). The

character strings are not NULL-terminated. The size (in bytes) of a string can be determined

as L–2, where L is the size of the descriptor in bytes. Descriptors may contain character

strings in various languages. When requesting a string descriptor, the desired language must

be specified by a 16-bit language identifier (LANGID).

 4.8. Enumeration Process

 When a USB device is attached to the USB or is detached from the bus, the host

computer executes a process referred to as enumeration to determine the changes occurred in

the USB system’s configuration. When a USB device is attached to the bus, the following

operations are performed:

1. The hub to which the device is attached detects its attachment by means of the resis-

tor used as bus termination at the device end. The hub informs the host computer on

the change occurred. At this point, the USB device is powered from the bus and the

port to which is attached is disabled.

2. The host computer determines the type of the change and the port at which the change

occurred by querying the hub.

3. The host computer waits for a time of at least 100 ms for the supply voltage of the

device to become stable, and then it issues a port enable and reset command to the

port. In case of a high-speed device (480 Mbits/s), the device initiates a special elec-

trical protocol to establish a link at this speed. If this electrical protocol is not initiated

or it does not complete successfully, the communication will occur at full speed (12

Mbits/s).

4. After the reset procedure finishes, the port is enabled. The device is now in the de-

fault state and may draw a current of maximum 100 mA from the VBUS line of the bus.

The device will answer the transactions with the default address of zero.

5. The host computer requests the device descriptor, and the device sends this descriptor

through the default pipe.

http://www.unicode.com/

16 4. Universal Serial Bus

6. The host computer assigns a unique address to the device.

7. The host computer requests the configuration descriptors, and the device sends these

descriptors to the host computer.

8. Based on the configuration information, the host computer assigns a certain configu-

ration to the device. The device is now in the configured state and all the endpoints of

this configuration are configured according to the characteristics specified in their de-

scriptors. The device is ready for use and may draw from the VBUS line of the bus the

amount of current specified for the selected configuration.

 Note

• The details of operations performed during the enumeration process may vary de-

pending on the operating system.

When a USB device is removed from a USB port, the hub informs the host computer

on the change occurred. The host computer disables the particular port and updates its infor-

mation on the bus topology.

 4.9. USB Requests

 Each USB device must respond to USB requests issued by the host computer. The

requests are sent by the host computer on the default control pipe, and the answer is sent by

the device on the same pipe. The USB specifications define several standard requests that

must be implemented by every USB device. In addition, there might be requests that are spe-

cific to various device classes. Also, device vendors can define their own requests.

 The transmission and execution of a USB request may require two or three transfer

stages. In the first stage, the host computer sends the request and its parameters in a SETUP

packet using a control transfer. In the second stage, which is optional, data are transferred

from the host computer to the USB device or vice versa. In the third stage, status information

is transferred from the USB device to the host computer or vice versa. The direction of trans-

fer in the status stage is opposite to the direction of transfer in the data stage. If the data stage

is missing, in the status stage the direction of transfer is from the USB device to the host

computer.

 Each SETUP packet contains eight bytes. The structure of a SETUP packet is illus-

trated in Table 4.3. The field sizes are indicated in bytes. The bits within the byte that de-

scribes the characteristics of the request are denoted by b7..b0.

Table 4.3. Structure of a SETUP packet.

Offset Field Size Description

0 bmRequestType 1 Characteristics of request:
 b7: Data transfer direction
 0 = From the host to the device
 1 = From the device to the host
 b6..b5: Request type
 0 = Standard
 1 = Class-specific
 2 = Vendor-defined
 3 = Reserved
 b4..b0: Request destination
 0 = Device
 1 = Interface
 2 = Endpoint
 3 = Other destination
 4..31 = Reserved

1 bRequest 1 Request code

2 wValue 2 Parameter; varies according to request

4 wIndex 2 Parameter; typically, the interface or endpoint
number

6 wLength 2 Number of bytes to transfer in the data stage

17 Input/Output Systems and Peripheral Devices

 USB requests can be destined to devices, interfaces, or endpoints. Depending on the

destination, the same request can have different effects.

 4.9.1. Standard Device Requests

 Standard device requests are presented synthetically in Table 4.4. The Data column

indicates the data transferred in the data stage.

 The Get_Status request directed to a device returns a status word from the device to

the host computer during the data stage. The structure of the returned word is illustrated be-

low.

 15 2 1 0

Reserved
Remote
Wakeup

Self
Powered

Table 4.4. Standard device requests.

bmRequestType bRequest wValue wIndex wLength Data

1000 0000
GET_STATUS

(0x00)
0 0 2

Device
status

0000 0000
CLEAR_FEATURE

(0x01)
Feature
selector

0 0 –

0000 0000
SET_FEATURE

(0x03)
Feature
selector

0 0 –

0000 0000
SET_ADDRESS

(0x05)
Device
address

0 0 –

1000 0000
GET_DESCRIPTOR

(0x06)

Descriptor
type and

index

0 or
LANGID

Descriptor
length

Descriptor

0000 0000
SET_DESCRIPTOR

(0x07)

Descriptor
type and

index

0 or
LANGID

Descriptor
length

Descriptor

1000 0000
GET_CONFIGURATION

(0x08)
0 0 1

Configuratio
n number

0000 0000
SET_CONFIGURATION

(0x09)
Configuration

number
0 0 –

 The Self Powered bit indicates by value 1 that the device is self-powered. If this bit is

0, the device is powered from the bus. The Self Powered bit may not be changed by the

Set_Feature or Clear_Feature requests. The Remote Wakeup bit indicates by value 1 that the

device has the Remote Wakeup feature enabled. When this feature is enabled, the device can

cause the host computer to pass from the inactive state (Suspend) into the active state. When

the Remote Wakeup bit is 0, the Remote Wakeup feature of the device is disabled. The Re-

mote Wakeup bit can be modified by the Set_Feature and Clear_Feature requests using the

DEVICE_REMOTE_WAKEUP selector (with the value 0x01).

 The Clear_Feature and Set_Feature requests directed to a device allow to disable or

enable specific features of the device. The wValue field of the requests must contain the selec-

tor of the particular feature. The features that can be disabled or enabled are Remote Wakeup,

with the DEVICE_REMOTE_WAKEUP (0x01) selector, and Test Mode, with the TEST_MODE

(0x02) selector. The Test Mode feature is only implemented by high-speed USB devices and

by hubs, allowing them to perform the various tests of conformity with the USB standard at

the electrical interface level. The Test Mode feature may not be disabled by the

Clear_Feature request.

 The Set_Address request is used during the enumeration process to assign a unique

address to the USB device. The address must be specified in the wValue field and may have

the maximum value of 127. The device address will be set only after the status stage of the

Set_Address request is completed successfully.

 The Get_Descriptor request returns a specified descriptor if it exists. The wValue

field must specify the descriptor type in the high byte and the descriptor index in the low byte.

The descriptor type may specify a device descriptor (0x01), a configuration descriptor (0x02),

18 4. Universal Serial Bus

or a string descriptor (0x03). The descriptor index selects a specific descriptor when the de-

vice implements several descriptors of the same type. This index is only used for a configura-

tion descriptor or string descriptor. For a device descriptor, the index must be set to 0. For

string descriptors, the wIndex field must specify the language identifier (LANGID), and for

other descriptors this field must be set to 0. The wLength field must contain the number of

bytes to return. If the descriptor is longer than the value in the wLength field, the device re-

turns only the specified number of bytes.

 If a configuration descriptor is specified in the wValue field of the Get_Descriptor

request, the device will return the configuration descriptor, all the interface descriptors for

that configuration, and all the endpoint descriptors for all the interfaces. After the configura-

tion descriptor, the first interface descriptor will be returned. After this descriptor, the end-

points descriptors for the first interface will follow. If there are other interfaces, their interface

descriptor will be returned, followed by their endpoint descriptors.

 The Set_Descriptor request is optional and can be used to update existing descriptors

or to add new descriptors. The meaning of the request’s fields is the same as for the

Get_Descriptor request.

 The Get_Configuration request returns the number of the current device configura-

tion. The value is returned on a byte during the data stage. If the value returned is 0, the de-

vice is not configured.

 The Set_Configuration request allows to enable a certain configuration of the device.

The number of the desired configuration must be specified in the low byte of the wValue field.

This number must match a configuration number from a configuration descriptor. The high

byte of the wValue field is reserved.

 4.9.2. Standard Interface Requests

 Table 4.5 presents the standard interface requests.

Table 4.5. Standard interface requests.

bmRequestType bRequest wValue wIndex wLength Data

1000 0001
GET_STATUS

(0x00)
0 Interface 2

Interface
status

0000 0001
CLEAR_FEATURE

(0x01)
Feature
selector

Interface 0 –

0000 0001
SET_FEATURE

(0x03)
Feature
selector

Interface 0 –

1000 0001
GET_INTERFACE

(0x0A)
0 Interface 1

Alternate
setting

0000 0001
SET_INTERFACE

(0x0B)
Alternate
setting

Interface 0 –

 For all interface requests, the wIndex field must contain in the low byte the number of

the interface the request refers to.

 The Get_Status request directed to an interface returns two bytes of 0 during the data

stage. These bytes are reserved for future versions of the USB standard.

 The Clear_Feature and Set_Feature requests directed to an interface allow disabling

or enabling specific features of the interface. Version 2.0 of the USB standard does not allow

disabling or enabling any of the interface features.

 The Get_Interface request returns the alternate setting selected for the specified inter-

face. The alternate setting is returned on a byte during the data stage. The principle of alter-

nate settings has been described in Section 4.7.

 The Set_Interface request allows to select an alternate setting for the specified inter-

face. The wValue field must contain the alternate setting that should be selected.

 4.9.3. Standard Endpoint Requests

 The standard endpoint requests are presented in Table 4.6.

19 Input/Output Systems and Peripheral Devices

Table 4.6. Standard endpoint requests.

bmRequestType bRequest wValue wIndex wLength Data

1000 0010
GET_STATUS

(0x00)
0 Endpoint 2

Endpoint
status

0000 0010
CLEAR_FEATURE

(0x01)
Feature
selector

Endpoint 0 –

0000 0010
SET_FEATURE

(0x03)
Feature
selector

Endpoint 0 –

1000 0010
SYNCH_FRAME

(0x0C)
0 Endpoint 2

Frame
number

 For endpoint requests, the wIndex field must contain the number of the endpoint the

request refers to and its direction. The format of the wIndex field is illustrated below.

 15 8 7 6 4 3 0

Reserved Dir Reserved Endpoint Number

 The Dir bit indicates by value 0 an output endpoint and by value 1 an input endpoint.

For a control endpoint, the Dir bit must be set to 0. Bits 3..0 specifies the endpoint number.

 The Get_Status request directed to an endpoint returns two status bytes during the

data stage. Bit 0 of the low byte returned indicates by value 1 that the endpoint is halted (the

Halt feature set to 1).

 The Clear_Feature and Set_Feature requests directed to an endpoint allow disabling

or enabling specific features of the particular endpoint. The wValue field of the requests must

contain the selector of the particular feature. Version 2.0 of the USB standard allows disabling

(reset to 0) and enabling (set to 1) only one endpoint feature, namely the Halt feature, for

which the ENDPOINT_HALT (0x00) selector must be used. This feature will be reset to 0 auto-

matically after a Set_Configuration or Set_Interface request.

 The Synch_Frame request causes an endpoint to return the number of a synchroniza-

tion frame. When an endpoint supports isochronous transfers, it may be necessary for the

transfers to vary in size according to a repetitive pattern. By this request, the endpoint returns

to the host computer the number of the frame in which the repetitive pattern begins.

 4.10. The USB HID Class

 4.10.1. Overview of the HID Class

 The USB HID (Human Interface Device) class consists mainly of devices used by

operators to control the operation of a computer system. Typical examples of devices from

this class are the following:

• Keyboards and pointing devices: mouse, trackball;

• Controls on front panels: switches, buttons, sliders;

• Controls located on devices such as games or simulators: steering wheels, pedals;

• Display devices: LEDs, alphanumeric displays;

• Medical instruments: ultrasound devices;

• Devices that do not require human intervention, but which can send data in a format

similar to HID-class devices: barcode readers, thermometers, measuring instruments.

Hence, the HID class consists of a large category of devices, with various characteris-

tics. Many devices that are not provided with a human interface can also be included into this

class. By using the HID-class model, it is possible to communicate in a unitary way between

the host computer and various devices, which allows for a simpler development of a diversity

of applications. Various operating systems and, in particular, Windows operating systems,

provide drivers for HID-class devices, which can be used for communication with these de-

vices. Using these drivers is advantageous, because this way the need to write drivers for

communication with those devices is eliminated.

20 4. Universal Serial Bus

 As any USB device, a HID-class device can be the source or destination of a transac-

tion in each frame (1 ms) or micro-frame (125 s). A transaction can contain multiple packets

but is limited in size to 8 bytes for low-speed devices, 64 bytes for full-speed devices, and

1024 bytes for hi-speed devices. For hi-speed devices, it is possible to execute two or three

transactions in each micro-frame. A transfer represents several transactions that create a data

set with a particular structure and meaning for the device. With HID-class devices, a transfer

is called report. The report data have a certain structure, which is specified in the report de-

scriptors (Section 4.10.2).

 There are three types of reports: input, output, and feature. An input report is sent by

a device and contains data intended for applications ran on the host computer. Such data are,

for instance, the x and y coordinates from a pointing device. An output report is sent by the

host computer to a device and contains application data intended for controls or displays. A

feature report contains data intended for a device or data representing the status of a device.

Unlike the data in the input or output reports, data in a feature report are intended for use by

the device configuration tools and not by the applications. For instance, the value of a key

repeat rate can be a datum in a feature report.

 Some devices may have multiple report structures. For instance, a keyboard with an

integrated pointing device may independently report data referring to keys pressed and data

referring to coordinates over the same endpoint. To differentiate these structures, a report

identifier is used, which is a one-byte value preceding each report. For the previous example,

the identifier allows the HID-class driver to distinguish key data from coordinate data.

 The disadvantage of using the HID class is that typical drivers of this class support

only interrupt transfers and the maximum transfer rate is limited below the USB bandwidth.

The transfer rate is limited to 8,000 B/s (8 B/msec) for low-speed devices and 64,000 B/s (64

B/msec) for full-speed devices. For hi-speed devices, assuming that three transactions are

executed in each micro-frame, the transfer rate is limited to approximately 23.4 MB/s

(3*1024 B/micro-frame, or 3*1024*8 = 24,576 B/msec).

 4.10.2. HID-Class Specific Descriptors

 Besides the standard descriptors used for all USB device classes, there are specific

descriptors used for the HID class. Such descriptors are the HID descriptor, the report de-

scriptor, and the physical descriptor. Figure 4.20 illustrates the position of these descriptors in

the standard USB descriptor hierarchy.

Figure 4.20. Position of HID-class specific descriptors in the standard USB descriptor hierarchy.

21 Input/Output Systems and Peripheral Devices

 A HID descriptor contains the number, length, and type of subordinate HID-class

specific descriptors for a device. The number of subordinate descriptors of a HID descriptor

must be at least 1, since a report descriptor must always exist. The HID descriptor also con-

tains information such as the HID class specification version the device complies with and

code of the country the device is localized for.

 A report descriptor contains articles that describe the size and structure of the data

reported. Such a descriptor provides information about the data reported by the device for

each of its functions and about the data intended for the device’s functions. Examples of in-

formation are the size of data returned, whether the data are absolute or relative, and the min-

imum and maximum values of the individual data items. Also, a report descriptor indicates

the nature of the data reported, e.g., whether they represent the x and y coordinates.

 Physical descriptors are optional. These descriptors provide information about the

specific part or parts of the human body used to activate the device controls. In addition, a

physical descriptor may contain values that quantify the effort the user must employ to acti-

vate various controls.

 4.10.3. HID-Class Specific USB Requests

 HID-class devices must implement the Get_Descriptor and Set_Descriptor standard

USB requests. In addition to these requests, HID-class devices may implement some requests

that are specific to this class. These requests initiate transactions that allow the host computer

to determine the capabilities and state of a device and to set the state of output and feature

articles. The main HID-class specific requests are Get_Report and Set_Report. Implementa-

tion of the Get_Report request is mandatory.

 Table 4.7 presents the Get_Report and Set_Report requests.

Table 4.7. The Get_Report and Set_Report requests specific to HID-class devices.

bmRequestType bRequest wValue wIndex wLength Data

1010 0001
GET_REPORT

(0x01)
Report type

and Report ID
Interface

Report
length

Report

0010 0001
SET_REPORT

(0x09)
Report type

and Report ID
Interface

Report
length

Report

 The Get_Report request allows the host computer to receive a report from a device

via the default control pipe. The wValue field must contain the report type in the high byte

and the report identifier (report ID) in the low byte. The report type specifies an input report

(0x01), an output report (0x02), or a feature report (0x03). If report identifiers are not used,

the low byte of the wValue field must be set to 0.

 The Get_Report request is useful at device initialization time for determining the state

of its features. The request is not intended for polling the device state at regular intervals. For

repeated input reports, an interrupt IN pipe should be used. Optionally, for output reports an

interrupt OUT pipe may be used (Section 4.10.4).

 The Set_Report report allows the host computer to send a report to a device for set-

ting the state of some controls. The meaning of the request fields is the same as for the

Get_Report request.

 4.10.4. Interfacing with HID-Class Devices

 A HID-class device communicates with the driver of this class either via the default

control pipe or via an interrupt pipe. The device uses the default control pipe for the following

operations:

• Receiving USB requests sent by the host computer and sending the answer to these

requests;

• Sending data when the device is polled by the HID-class driver via the Get_Report

request;

22 4. Universal Serial Bus

• Receiving data from the host computer.

The HID-class driver uses an interrupt pipe for the following operations:

• Receiving data asynchronously from a device (data that have not been requested ex-

plicitly);

• Sending data to a device with low latency.

Using an interrupt OUT pipe is optional. If a device initializes an interrupt endpoint

to the output direction, then the output reports are sent by the host computer to the device via

this pipe. If an interrupt endpoint with the output direction is not available, then the output

reports are sent by the host computer via the control endpoint, using Set_Report requests.

 4.11. Communication with HID-Class Devices

 When a HID-class device is connected to a USB port of the computer, the operating

system performs the enumeration process, as described in Section 4.8. This process does not

imply using HID class-specific or device-specific drivers. During the first part of the enumer-

ation process, the USB driver requests the device to send the device descriptor, and then re-

trieves the descriptor and assigns a unique address to the device. Next, the USB driver re-

quests the device to send the configuration descriptor and retrieves this descriptor (which

includes the interface descriptors and endpoint descriptors). From the interface descriptor, the

USB driver determines the device class, and if this class is HID, the USB driver hands over

the control to the HID-class driver. If the interface descriptor does not specify a particular

class, then the USB driver selects an appropriate driver for the device based on the vendor

identifier (VID) and product identifier (PID), or requests the user to specify a device-specific

driver.

 After the device is recognized by the operating system as a HID-class device, system

functions can be employed to write a communication application with the device. These func-

tions use the HID-class device driver, so that there is no need to write a device-specific driver.

This section describes the operations required to communicate with a HID-class device for a

Windows operating system. These operations are different for other operating systems, such as

Linux or MacOS.

 Before using a HID-class device, it is necessary to establish the communication with

that device, which implies several steps. These steps are described next.

1. Call the HidD_GetHidGuid() function to obtain the Globally Unique Identifier

(GUID) for HID-class devices. The parameter of this function is a pointer to a struc-

ture of type _GUID, representing a buffer into which the GUID will be returned. This

function is declared in the hidsdi.h file, which is part of Microsoft’s Windows Driver

Kit (WDK). For static linking, the hid.lib library file should be used. For calling the

HidD_GetHidGuid() function, add the following lines to the source file:

struct _GUID GUID;

HidD_GetHidGuid(&GUID);

2. Call the SetupDiGetClassDevs() function to get information about all HID-class

devices attached to the system. This function returns a handle (variable of type

HANDLE) to the information set about the device list. The first parameter of this

function is a pointer to the global identifier GUID obtained in the previous step. This

function is declared in the SetupAPI.h file, and for static linking the SetupAPI.lib

library file should be used. For calling the SetupDiGetClassDevs() function, add

the following lines:

HANDLE PnPHandle;

PnPHandle = SetupDiGetClassDevs(&GUID, NULL, NULL,

 DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);

23 Input/Output Systems and Peripheral Devices

If the function returns the value INVALID_HANDLE_VALUE, display an error message. In

this case, the communication with the device cannot be established and the operation is

completed.

3. Steps 3-9 must be repeated in a loop for each HID-class device; the iteration count

may be set, for instance, to 30. Call the SetupDiEnumDeviceInterfaces() func-

tion to get information about the interface of a device from the list of HID-class de-

vices. The first parameter of this function is the handle to the information set contain-

ing the devices for which interface information is requested; this handle has been ob-

tained in Step 2. The second parameter is optional and can be NULL. The third param-

eter is the pointer to the global identifier GUID. The device for which information is

requested is specified by the fourth parameter representing the index (starting with 0)

in the device list. The fifth and last parameter is a pointer to a variable representing a

structure of type SP_DEVICE_INTERFACE_DATA that will be completed by the func-

tion with information about the device interface. Before calling the function, the

cbSize member of this structure must be set to sizeof (SP_DEVICE_INTERFACE

_DATA). In case of success, the function returns the value TRUE.

 Note

• After calling the SetupDiEnumDeviceInterfaces() function, determine the code

of the last error by calling the GetLastError() function. If the code of the last error

is ERROR_NO_MORE_ITEMS, exit the loop with a break instruction and continue with

Step 10.

4. If the function call in Step 3 has been successful, call the SetupDiGetDevice-

InterfaceDetail() function to retrieve detailed information about the interface of

the device selected in Step 3. The first parameter of this function is the handle to the

information set, which has been obtained in Step 2. The second parameter is a pointer

to the structure with information about the device interface, structure that has been

completed in Step 3. The third parameter is a pointer to a variable representing a

structure of type SP_DEVICE_INTERFACE_DETAIL_DATA that will be completed by

the function with detailed information about the device interface. This structure con-

tains two members, cbSize and DevicePath, the second member being a variable-

length character string terminated with a byte of zero. Before calling the function, the

cbSize member of this structure must be set to sizeof (SP_DEVICE_INTERFACE

_DETAIL_DATA). The DevicePath member will be filled up by the called function

with the access path to the device. The fourth parameter must specify the total size of

the structure mentioned previously. The fifth parameter, RequiredSize, is a pointer to

a variable of type DWORD into which the function will store the required size of the

buffer that will contain the structure with the detailed information. The sixth and last

parameter is optional and can be NULL.

 Note

• The function SetupDiGetDeviceInterfaceDetail() should be called twice, as

described in the function’s documentation page. The first call is made to determine the

required size of the buffer into which the function will store detailed information about

the interface of the device; for this call, set the third parameter to NULL and the fourth

parameter to zero. After the first call, memory with the appropriate size should be al-

located for this buffer and the function should be called again with the parameters set

normally.

In case of success, the function returns the value TRUE. If the function returns FALSE,

display an error message, free the memory allocated for the buffer to store detailed in-

formation, and continue with the next iteration from Step 3.

24 4. Universal Serial Bus

5. Call the CreateFile() function to open the communication with the device. The

first parameter of this function is the device name, represented by the access path that

has been obtained in Step 4 (the DevicePath member of the structure filled up by

the SetupDiGetDeviceInterfaceDetail() function). The second parameter is

the access mode, which can be set to GENERIC_READ | GENERIC_WRITE. The third

parameter is the share mode of the device, which can be set to FILE_SHARE_READ |

FILE_SHARE_WRITE. The fourth parameter is a pointer to a structure with the security

attributes; this parameter is optional and can be NULL. The fifth parameter represents the

action to take on a device that exists or does not exist; this parameter can be set to

OPEN_EXISTING. The sixth parameter represents the device attributes and can be zero,

and the seventh and last parameter is optional and can be NULL. If the CreateFile()

function returns the value INVALID_HANDLE_VALUE, display an error message, free the

memory allocated for the buffer to store detailed information, and continue with the

next iteration from Step 3.

 Note

• For some devices (e.g., mouse), the access mode should be set to 0, and the share

mode should be set to FILE_SHARE_READ|FILE_SHARE_WRITE.

6. Free the memory allocated in Step 4 for the detailed information about the device in-

terface.

7. If the CreateFile() function returned a valid file handle, determine the identifier

string of the HID-class device by calling the HidD_GetProductString() function.

The parameters of this function are the handle returned by the CreateFile() func-

tion, the pointer to a buffer allocated by the user into which the function will place the

identifier string, and the length in bytes of the allocated buffer. Add the following

lines for calling the HidD_GetProductString() function:

CHAR cBuffer [256];

bRet = HidD_GetProductString(hFile, cBuffer, sizeof(cBuffer));

where hFile is the handle returned by the CreateFile() function, and bRet is a

Boolean variable.

8. Compare the identifier string obtained in Step 7 with the identifier string of the device

the communication must be established with. Take into account that the device identi-

fier string is represented in Unicode. If the strings match, exit the loop with a break

instruction and continue with Step 10. If the strings do not match, continue with Step

9.

9. Close the file opened in Step 5 by calling the CloseHandle() function, increment

the device index, and continue with Step 3 to get information about the interface of

the next device.

10. Call the SetupDiDestroyDeviceInfoList() function to release the memory al-

located for the information about the devices. At this point, the operation to establish

the communication with the device is completed.

After establishing the communication with the device, the application may retrieve

input reports from the device by calling the ReadFile() or ReadFileEx() function and

may send output reports to the device by calling the WriteFile() function. For calling these

functions, the handle to file returned by the CreateFile() function should be used.

 The ReadFile() and ReadFileEx() functions retrieve input reports from the de-

vice using interrupt transfers. This means that the device must send these reports using inter-

rupt transfers via an input endpoint. The first byte in each report represents the report identifi-

er. It is also possible to retrieve input reports using control transfers. For this purpose, the

25 Input/Output Systems and Peripheral Devices

HidD_GetInputReport() function may be used, which will send a Get_Report request to

the device.

 The WriteFile() function sends output reports through Set_Report requests. If the

device does not have an interrupt endpoint with the output direction, this function uses control

transfers, and otherwise it uses interrupt transfers. The first byte in each report represents the

report identifier. It is also possible to use the HidD_SetOutputReport() function to send

an output report through a control transfer.

 4.12. Applications

 4.12.1. Answer the following questions:

a. What are the functions of USB terminators?

b. What is the difference between asynchronous transfers and isochronous transfers on

the USB?

c. What information contains a device descriptor and a configuration descriptor?

d. What are the advantages and disadvantages of using the HID-class model for com-

munication with peripherals?

 4.12.2. Create a Windows application for displaying the identifier strings of HID-class

devices attached to the system. As model for the Windows application, use the AppScroll-e ap-

plication available on the laboratory web page in the AppScroll-e.zip archive. Perform the fol-

lowing operations to create the application project:

1. In the Visual Studio 2022 programming environment, create a new empty Windows

Desktop project with the Windows Desktop Wizard. Check the Place solution and

project in the same directory option to avoid creating another folder for the solution.

2. Verify that the active solution platform is set to x64.

3. Change the Character Set project property by opening the Properties dialog window.

In this window, expand the Configuration Properties option, expand the Advanced

option, select the Character Set line in the right tab, and choose the Not Set option.

4. Copy to the project folder the files contained in the AppScroll-e.zip archive and add all

the files to the project.

5. Copy to the project folder the files from the HID8.1.zip archive, available on the labora-

tory web page. Add to the project the SetupAPI.h and hidsdi.h header files.

6. Specify the SetupAPI.lib and hid.lib files as additional dependencies for the linker.

7. Open the AppScroll-e.cpp source file, delete the #include "Hw.h" directive and add

#include directives to include the SetupAPI.h and hidsdi.h header files.

8. In the AppScroll() function, delete the sequences for initializing the HW library

with the HwOpen() function and for closing the HW library with the HwClose()

function.

9. Select Build → Build Solution and make sure that the application builds without er-

rors.

In the AppScroll-e.cpp source file, write a function to display the identifier strings of

HID-class devices attached to the system. The input parameter of the function is the handler

to the application window hWnd; the function returns an integer value. For writing the

function, follow the steps described in Section 4.11, with the following change: in Step 8,

display the identifier string obtained in Step 7 and then continue with Step 9. For details on

the parameters of a function, access the Windows Hardware Developer documentation by

placing the cursor inside the function name and pressing the F1 key.

 After writing the function, include the call to this function in the AppScroll() func-

tion and then verify its operation.

26 4. Universal Serial Bus

 4.12.3. Extend Application 4.12.2 by writing a function to establish communication

with the STM32L496 Discovery development board through the USB. The input parameter of

the function is the handler to the application window hWnd. The function is similar to the

function written for Application 4.12.2, except that in Step 8 it compares the identifier string

obtained in Step 7 with the identifier string of the development board rather than displaying

the identifier string. The board is configured as a HID-class device with the identifier string

“Keil MCB2140 HID”.

 Notes

• In Step 5, when calling the CreateFile() function, the second parameter represent-

ing the access mode should be set to GENERIC_READ | GENERIC_WRITE, and the

third parameter representing the share mode should be set to FILE_SHARE_READ |

FILE_SHARE_WRITE.

• Change the hFile variable representing the handle returned by the CreateFile()

function to a global variable, to be used by the functions that will be written for the next

applications.

 The function returns the value TRUE if the communication with the board has been

established and the value FALSE otherwise. After writing the function, include the call to this

function in the AppScroll() function and display a message indicating whether communi-

cation with the board has been established. Run the application without the STM32L496 Dis-

covery development board attached to the computer. Then attach the board to the computer

through two USB cables. Run the application again and verify whether communication with

the development board has been established.

 4.12.4. Extend Application 4.12.3 by writing a function to read and display the status

of the buttons on the STM32L496 Discovery development board through the USB. The func-

tion has no input parameters and uses the handle returned by the CreateFile() function in

Application 4.12.3 to call the HidD_GetInputReport() or ReadFile()function to re-

trieve a two-byte input report. The first byte of the input report is the report identifier (0x00),

and the second byte contains the status of the joystick buttons on the board. The board repeat-

edly sends the status byte using interrupt transfers. The five joystick buttons are assigned as

follows to the bits of the status byte:

 Bit 0: Left button;

 Bit 1: Right button;

 Bit 2: Select (central) button;

 Bit 3: Up button;

 Bit 4: Down button.

 When a button is pressed, its status bit is 1. The function displays the status byte of

the buttons and returns the value 0 if the operation completed successfully or the value 1 if the

HidD_GetInputReport() or ReadFile() function completed with an error.

 After writing the function, include the call to this function in the AppScroll() func-

tion and verify its operation by connecting the STM32L496 Discovery development board to

the computer.

 4.12.5. Extend Application 4.12.4 by writing a function to set the state of the two

user-controlled LEDs, LD1 and LD2, on the STM32L496 Discovery development board via

the USB. The input parameter of the function is a byte representing the desired state of the

LEDs. The function uses the handle returned by the CreateFile() function in Application

4.12.3 to call the HidD_SetOutputReport() or WriteFile()function in order to send a

two-byte output report. The first byte of the output report should be the report identifier

(0x00), and the second byte should be the desired state for the LEDs on the board. The LD1

(orange) LED is assigned to bit 0, and the LD2 (green) LED is assigned to bit 1 of the byte

representing the desired state. To light up an LED, the corresponding bit should be set to 1.

27 Input/Output Systems and Peripheral Devices

The function returns the value 0 if the operation completed successfully or the value 1 if the

HidD_Set OutputReport() or WriteFile() function completed with an error.

 After writing the function, include the call to this function in the AppScroll() func-

tion, with the desired state of the LEDs defined as a constant.

 4.12.6. Extend the function for displaying the identifier strings of HID-class devices,

written for Application 4.12.2, to display additional information about these devices. Perform

the operations described next to determine and display the additional information. Refer to the

Windows Hardware Developer pages for details about the functions that should be called.

 Note

• The following operations should be performed for each HID-class device detected, af-

ter displaying its identifier string.

1. Call the HidD_GetAttributes() function to retrieve the attributes of the device.

Before calling the function, declare a variable of type HIDD_ATTRIBUTES and initial-

ize its Size member with the size of this variable. The first parameter of the function

is the handle returned by the CreateFile() function, and the second parameter is a

pointer to the variable of type HIDD_ATTRIBUTES. The function will fill up the re-

maining members of this variable (VendorID, ProductID, and VersionNumber)

with the vendor ID, product ID, and revision number of the device. In case of success,

when the function returns the value TRUE, display the device’s vendor ID, product ID,

and revision number.

2. Call the HidD_GetPreparsedData() function to obtain a pointer to a function-

allocated buffer containing data from the device’s report descriptor. Before calling the

function, declare a variable of type PHIDP_PREPARSED_DATA; this is a pointer to a

buffer that will be written by the function with the report descriptor data. The first pa-

rameter of the function is the handle returned by the CreateFile() function, and

the second parameter is the address of the pointer of type PHIDP_PREPARSED_DATA.

The function will initialize the pointer to the buffer containing the descriptor data. In

case of success, the function returns the value TRUE.

3. If the call to the HidD_GetPreparsedData() function has been successful, call the

HidP_GetCaps() function to retrieve information about the capabilities of the de-

vice. Before calling the function, declare a variable of type HIDP_CAPS; this is a

structure that will be filled up by the function with the capabilities of the device. The

first parameter of the function is the pointer of type PHIDP_PREPARSED_DATA that

has been defined in Step 2, and the second parameter is a pointer to the variable of

type HIDP_CAPS. In case of success, when the function returns the value

HIDP_STATUS_SUCCESS of type NTSTATUS, display the following information from

the HIDP_CAPS structure: usage page (the UsagePage member); usage ID (the Us-

age member); length of input reports; length of output reports; length of feature re-

ports.

4. Call the HidD_FreePreparsedData() function to release the memory allocated for

the buffer containing the device’s report descriptor data. The parameter of this func-

tion is the pointer of type PHIDP_PREPARSED_DATA that has been defined in Step 2.

 Bibliography

[1] Allman, S., “Using the HID class eases the job of writing USB device drivers”, EDN,

September 19, 2002, http://m.eet.com/media/1138623/18538-243218.pdf.

[2] Axelson, J., USB Complete. The Developer’s Guide, Fifth Edition, 2015,

http://janaxelson.com/usbc.htm.

http://m.eet.com/media/1138623/18538-243218.pdf
http://janaxelson.com/usbc.htm

28 4. Universal Serial Bus

[3] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, Philips, “Universal Serial Bus

Specification”, Revision 2.0, 2000,

http://www.usb.org/developers/docs/usb20_docs/usb_20_0702115.zip.

[4] Crider, M., “USB 3.1 have you confused? Here’s everything you need to know about the

standard”, Digital Trends, 2015, http://www.digitaltrends.com/computing/what-is-usb-3-

1-when-will-it-be-released-and-what-will-it-do-for-pcs/.

[5] DataPro International Inc., “USB 3.0 Explained”, 2015,

http://www.datapro.net/techinfo/usb_3_explained.html.

[6] Dong, N., “USB Type-C: One cable to connect them all”, CNET, 2015,

http://www.cnet.com/news/usb-type-c-one-cable-to-connect-them-all/.

[7] Hyde, J., “Learning USB by Doing”, Intel Corporation.,

http://www.devasys.com/PD11x/JHWP.pdf.

[8] Microsoft Corp., MSDN Library, 2015, http://msdn.microsoft.com/library/.

[9] Microsoft Corp., WDK and WinDbg downloads, 2015, https://msdn.microsoft.com/en-

us/windows/hardware/hh852365.

[10] Peacock, C., “On-The-Go Supplement – Point-to-Point Connectivity for USB”, Beyond

Logic, 2005, http://retired.beyondlogic.org/usb/otghost.htm.

[11] Peacock, C., “USB in a Nutshell – Making Sense of the USB Standard”, Beyond Logic,

2010, http://www.beyondlogic.org/usbnutshell/.

[12] Rosch, W. L., Hardware Bible, Sixth Edition, Que Publishing, 2003.

[13] USB Implementers Forum, Inc., “A Technical Introduction to USB 2.0”,

http://www.usb.org/developers/usb20/developers/whitepapers/usb_20g.pdf.

[14] USB Implementers Forum, Inc., “Device Class Definition for Human Interface Devices

(HID)”, Version 1.11, 2001, http://www.usb.org/developers/hidpage/HID1_11.pdf.

[15] USB Implementers Forum, Inc., “HID Usage Tables”, Version 1.12, 2004,

http://www.usb.org/developers/hidpage/Hut1_12v2.pdf.

[16] USB Implementers Forum, Inc., “Introduction to USB On-The-Go”,

http://www.usb.org/developers/onthego/USB_OTG_Intro.pdf.

[17] USB Implementers Forum, Inc., “On-The-Go and Embedded Host Supplement to the

USB 2.0 Specification”, Revision 2.0, 2009,

http://www.usb.org/developers/onthego/USB_OTG_and_EH_2-0.pdf.

[18] USB Implementers Forum, Inc., “SuperSpeed USB”,

http://www.usb.org/developers/ssusb.

[19] USB Implementers Forum, Inc., “USB 2.0 Specification Engineering Change Notice

(ECN) #1: Mini-B Connector”, 2000, http://www.usb.org/developers/docs/ecn1.pdf.

[20] USB Implementers Forum, Inc., “USB Frequently Asked Questions”,

http://www.usb.org/developers/usbfaq/.

[21] USB Implementers Forum, Inc., “USB On-The-Go”,

http://www.usb.org/developers/onthego/.

http://www.usb.org/developers/docs/usb20_docs/usb_20_0702115.zip
http://www.digitaltrends.com/computing/what-is-usb-3-1-when-will-it-be-released-and-what-will-it-do-for-pcs/
http://www.digitaltrends.com/computing/what-is-usb-3-1-when-will-it-be-released-and-what-will-it-do-for-pcs/
http://www.datapro.net/techinfo/usb_3_explained.html
http://www.cnet.com/news/usb-type-c-one-cable-to-connect-them-all/
http://www.devasys.com/PD11x/JHWP.pdf
http://msdn.microsoft.com/library/
https://msdn.microsoft.com/en-us/windows/hardware/hh852365
https://msdn.microsoft.com/en-us/windows/hardware/hh852365
http://retired.beyondlogic.org/usb/otghost.htm
http://www.beyondlogic.org/usbnutshell/
http://www.usb.org/developers/usb20/developers/whitepapers/usb_20g.pdf
http://www.usb.org/developers/hidpage/HID1_11.pdf
http://www.usb.org/developers/hidpage/Hut1_12v2.pdf
http://www.usb.org/developers/onthego/USB_OTG_Intro.pdf
http://www.usb.org/developers/onthego/USB_OTG_and_EH_2-0.pdf
http://www.usb.org/developers/ssusb
http://www.usb.org/developers/docs/ecn1.pdf
http://www.usb.org/developers/usbfaq/
http://www.usb.org/developers/onthego/

