

Volume 65, Number 1, 2025 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

Manuscript received April 18, 2025; revised June 25, 2025

11

DECISION TREES-BASED ALGORITHM FOR INTELLIGENT

ALLOCATION OF PROCESSES IN CLOUD

Constantin-Valentin DOLCESCU1, Robert BOTEZ 1, Daniel ZINCA1, Virgil DOBROTA1

1Communications Department, Technical University of Cluj-Napoca, Romania
Dolcescu.Io.Constant@student.utcluj.ro; Robert.Botez@com.utcluj.ro, Daniel.Zinca@com.utcluj.ro

Corresponding author: Virgil Dobrota (e-mail: Virgil.Dobrota@com.utcluj.ro)

Abstract: The paper presents a decision tree–based scheduler for intelligent cloud process allocation that evaluates features
such as source area, instruction count, payload size, priority, throughput, and delay to guide real-time placement decisions.
The model was trained and validated on a diverse, scenario-driven synthetic dataset covering four controlled workload
conditions plus randomized fallback cases. For the training dataset, the classifier achieved 93% accuracy, while for the
validation and test set, an accuracy of 92% was obtained. A Kubernetes-inspired simulation framework further visualizes and
confirms the scheduler’s allocation logic under dynamic conditions. These results underscore the approach’s effectiveness,
interpretability, and suitability for production-grade cloud orchestration.

Keywords: cloud computing, Decision Trees, Machine Learning, process allocation, resource optimization.

I. INTRODUCTION
Cloud computing enables on-demand access to both
software and hardware resources, including storage,
central processing units (CPUs), graphics processing units
(GPUs), tensor processing units (TPUs), and memory [1].
Undoubtedly, transitioning from on-premises
infrastructure to the cloud reduces a company’s capital
expenses but increases operational costs. The cloud
follows a pay-as-you-go approach, allowing businesses to
pay only for the resources they consume. This paradigm
facilitates the dynamic distribution of resources based on
demand, ensuring both flexibility and efficiency. The three
primary cloud computing service models are Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS) [2]. Cloud orchestration
refers to the process of organizing and overseeing the
deployment and operation of cloud infrastructure, where
automation plays a crucial role in efficiently integrating
services and optimizing workflows. This leads to increased
productivity and improved service quality for both users
and providers [3]. Orchestrating IaaS focuses on managing
physical and virtual resources, such as servers and storage,
ensuring their optimal allocation and maintenance. In
PaaS, the management and coordination of databases,
middleware, and other components support the
development and deployment of applications. Meanwhile,
SaaS automates corporate operations, manages application
interdependencies, and ensures the efficient delivery of
software services.
 Orchestration can be implemented using imperative
paradigms, which follow predefined steps to achieve a
desired state, or declarative paradigms, which define the
final state without specifying the exact processes required.
In multi-cloud environments, security is a top priority,
involving credential management, continuous monitoring,
and adherence to security policies to ensure confidentiality,
integrity, and availability of resources [4]. These factors
contribute to creating secure, scalable, and resilient
orchestration frameworks tailored to diverse user

requirements.
 Kubernetes [5] is an open-source platform designed for
orchestrating cloud resources, automating the deployment,
scaling, and management of containerized applications. In
a dynamic cloud environment where resource demands
fluctuate constantly, an intelligent system is essential to
distribute workloads efficiently, preventing node overload
and ensuring balanced utilization of available
infrastructure. A core component of Kubernetes is its
scheduler, kube-scheduler, which analyzes available
resources and determines the optimal allocation of
containers within a cluster. It evaluates each node based on
a well-defined set of rules, aiming to minimize congestion
and optimize execution times. The decision-making
process relies on two key algorithms: Predicate and
Priority, which work together to identify the most suitable
node for each task. In the first phase, Predicate algorithms
filter out nodes that do not meet the specific requirements
of a container, considering factors such as available
memory, processing power, affinity constraints, and
compatibility with required resources. This initial filtering
ensures that only viable options remain. Next, Priority
algorithms assess the remaining nodes, ranking them based
on criteria such as resource utilization, network delay, and
load levels. This approach enables Kubernetes not only to
select a valid node but also the most efficient one for
running the application, optimizing resource consumption,
and distributing workloads evenly. To further enhance this
process, recent research explores the application of deep
learning and reinforcement learning techniques to improve
Kubernetes' automated scheduling algorithms. Studies
indicate that integrating these methods allows the platform
to better anticipate future resource demands and adjust
allocations in real time, thereby enhancing overall cluster
performance and reducing wait times for critical processes
[6].
 Artificial intelligence (AI) plays a crucial role in cloud
orchestration by optimizing the dynamic allocation of
resources and reducing costs through predictive methods

mailto:Dolcescu.Io.Constant@student.utcluj.ro
mailto:Robert.Botez@com.utcluj.ro
mailto:Daniel.Zinca@com.utcluj.ro

Volume 65, Number 1, 2025 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 12

based on machine learning (ML). AI enables proactive
scaling, load balancing, and system performance
improvements, leveraging algorithms such as deep
learning and reinforcement learning [7].
 Decision Trees are used to efficiently classify and
allocate resources, dynamically adapting to user demands
and network conditions while minimizing delays and
energy consumption. Additionally, Edge AI enhances
performance and privacy by processing data locally,
reducing network traffic and response times. Overall,
integrating AI into cloud orchestration enhances efficiency
and flexibility, ensuring high-quality service delivery in
dynamic and complex environments [8].
 Resource optimization in the cloud through machine
learning (ML) is essential, as algorithms can adjust
resources in real-time, predict demands, and identify
bottlenecks, opening new opportunities for efficient
allocation. In [9], the authors propose using ML to
maximize resource utilization in telecommunication
networks, leveraging cloud-based data storage and analysis
to support effective decision-making.
 Furthermore, in another research [10], it was
introduced a Random Forest ensemble for cloud resource
management, reporting up to a 30 % improvement in
utilization prediction over single-model techniques such as
XGBoost, Ridge regression, and Lasso. By aggregating
decisions from multiple trees, this approach achieves
robust performance in both classification (assigning
processes to worker nodes) and regression (forecasting
resource demand), thereby enhancing system efficiency
and reducing energy consumption. The authors also
evaluate Support Vector Machines (SVM) for multi-class
process prediction, finding that SVM consistently
outperforms Gaussian Naive Bayes when trained on
sufficiently large and diverse datasets. These findings
underscore the importance of ensemble and kernel-based
methods—and the need for representative training data—
in dynamic, data-driven cloud environments.
 We explored in this paper the use of machine learning
to enhance process allocation mechanisms in cloud
environments, with a particular focus on decision trees for
task classification and distribution. Our contributions are –
design and implementation of a decision tree–based
classifier for intelligent process allocation using features
such as area, instruction, size, priority, throughput and
delay; development of a synthetic, scenario-driven dataset
covering four controlled workload conditions plus a
randomized fallback; demonstration of model robustness
by achieving 92 % accuracy on the test set; and creation of
a Kubernetes-inspired simulation framework (Cloudlet and
Master classes) to visualize and validate allocation
decisions in real time.
 The remainder of the paper is structured as follows.
Section I combines the introduction with a review of
related work on machine‐learning approaches to cloud
resource management. Section II details our
implementation, including the decision tree–based
allocation model, feature engineering, and dataset
generation framework. Section III presents the
experimental results, covering model accuracy, confusion
matrices, ROC curves, and simulation case studies—in
particular, it also discusses our dataset splitting strategy,
hyperparameter choices (e.g., random_state, max_depth),
and feature‐importance analysis. Finally, Section IV
concludes the paper, summarizes our key findings, and

outlines future work, including a planned comparison with
existing scheduling algorithms and the extension of our
framework to support adaptive, real‐world cloud
deployments.

II. IMPLEMENTATION
The proposed model (see Figure 1) analyzes multiple
characteristics of each process, including priority, size,
number of instructions, data throughput, and associated
delays, to determine the optimal allocation.

Figure 1. Model architecture

 This approach aims not only to improve system
efficiency but also to reduce execution times and
operational costs associated with cloud resource usage. By
integrating these techniques, the system gains the ability to
make real-time decisions, dynamically adapting to network
fluctuations and variable user demands. Experimental
results demonstrate that the decision tree-based model
ensures more balanced process distribution and
performance optimization, contributing to better resource
management in cloud environments.
 Inspired by the principles used in the Kubernetes
scheduler, this model seeks to optimize resource allocation
through an intelligent task distribution mechanism,
reducing execution time. These characteristics are essential
for determining the optimal allocation, as each process may
have different execution requirements. Inefficient
distribution could lead to overloading certain resources and
lowering the overall system performance. In this
architecture, areas 1, 2, and 3 represent different process
sources, each with specific characteristics. These process
sources may correspond to distinct service types—such as
real-time streaming jobs, batch analytics tasks, or user-
interactive requests-each exhibiting unique patterns of
priority, size, throughput, and delay. By modeling them as
separate areas, the scheduler can learn and exploit these
source-specific behaviors, yielding more accurate and
context-aware allocation decisions under varying workload
conditions. These areas transmit their processes to a Master
Node, responsible for centralizing and analyzing data. The
Master Node plays a crucial role as it communicates
directly with the AI model, which evaluates the parameters
of each process and determines the most suitable worker
for execution. In this way, tasks are intelligently allocated
based on the capacity and availability of system resources.

Volume 65, Number 1, 2025 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 13

Once the model makes a prediction, the process is
automatically directed to the appropriate worker, which
then executes it. This method not only optimizes resource
utilization but also reduces execution latencies, ensuring a
balanced distribution of tasks within the system.
Additionally, due to its dynamic nature, this system can
adjust process allocation in real-time, responding quickly
to load fluctuations and network condition variations. By
utilizing a decision tree-based model, the proposed
architecture significantly enhances cloud resource
management, enabling more efficient scheduling, reduced
execution times, and greater infrastructure scalability.
 The first stage involved defining and creating a well-
organized database structure, as in Figure 2, essential for
the efficient training of the machine learning model.

Figure 2. Database structure

 This was designed to include all relevant features
necessary for the classification process, such as process
priority, data throughput, delays, and the number of
instructions. To increase the precision of the model and
allow a better numerical representation, all range-based
features (originally defined as intervals) were split into
separate columns representing their lower and upper
bounds. This transformation ensured greater control during
the learning phase and enabled a more flexible
classification mechanism. The following adjustments were
made:
• Instructions: split into InstructionsMin and

InstructionsMax, representing the operational
range of a task

• Delay: split into DelayMin and DelayMax denoting the
latency span in [ms].

• Throughput: split into ThroughputMin and
ThroughputMax indicating the transfer rate interval in
[Mbps].

 The structure was optimized to enable fast and accurate
data processing, ensuring the model has access to relevant
and well-organized information. It has been designed to
include a variety of scenarios, allowing the model to learn
correct patterns and make more precise predictions.
Through this optimization, the system guarantees an
efficient distribution of resources, reducing execution time
and enhancing overall system performance. With the data
structure in place, the next step focused on extracting and
refining key features to maximize the model’s learning
capabilities.
 The database structure plays a crucial role in training
the decision tree-based machine learning model, ensuring
accurate classification and efficient process distribution to
the appropriate workers. Each feature included in the
database is carefully selected to contribute to optimal
decision-making, allowing the model to intelligently
anticipate and manage resource allocation. A key factor is
the number of instructions, which defines the volume of
operations a worker must execute to complete a process.
This characteristic directly influences execution time and
worker load, having a significant impact on overall system

performance. Closely related to this is process size, which
reflects the amount of data required for execution. A larger
process may demand more resources, prompting the model
to select a worker capable of handling it without
compromising the efficiency of other active processes.
Another essential attribute was priority, which determined
the order in which processes were allocated and executed.
A process can have high, medium, or low priority, and this
classification affects how quickly it must be completed.
High-priority processes are allocated immediately and
must be executed as quickly as possible, while medium-
priority processes should be completed within a reasonable
timeframe. In contrast, low-priority processes are treated
with more flexibility, without strict time constraints. Data
throughput between the Master Node and the workers is a
fundamental parameter, indicating the speed at which
information is transferred. Higher throughput enables
processes to be transmitted and executed more rapidly,
making workers with high-performance connections
preferable for handling critical tasks. The delay in [ms]
represented the time required for data to travel from the
Master Node to the worker. Higher delays could negatively
impact system responsiveness, reducing the overall
efficiency of resource allocation. To handle cases where
multiple processes shared the same priority level, but
having differing characteristics, an allocation score was
introduced. To ensure a more granular and precise
representation, each feature that could potentially contain
a range of values—such as instructions, throughput, and
delay—was split into two separate columns: one for the
minimum value and one for the maximum. This design
choice addresses limitations of using aggregated or interval
values in a single column, which are unsuitable for
machine learning algorithms that require distinct numerical
features for proper pattern recognition and decision-
making. Furthermore, a score was dynamically computed
for each process based on the following adapted formula:

 𝑅𝑎𝑤𝑆𝑐𝑜𝑟𝑒 =
𝐾0∗𝑆0

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
+ 𝐾1 ∗ 𝑆1 ∗ 𝐷𝑒𝑙𝑎𝑦 (1)

 As defined in (1), a drop in available bandwidth
produces a disproportionately large inverse term, which
increases the score. In this scheme, higher scores reflect
poorer efficiency and impose a greater penalty: processes
with both low throughput, and high delay receive the
highest scores, guiding the scheduler to deprioritize them
in favor of more efficient tasks. In this formulation, the
constants K0 and K1 act as weights to emphasize the relative
importance of throughput versus delay, while S0 and S1 are
scaling factors that normalize the corresponding metrics to
ensure consistent units and comparable magnitudes [11].
 This score reflected both transmission efficiency and
latency constraints, combining minimum and maximum
values for both throughput and delay to better capture
variability in system performance. To ensure compatibility
with classification models, this raw score was normalized
using min-max scaling into a standardized interval [1,100]
The scaling process was implemented through the
following transformation:

𝑆𝑐𝑜𝑟𝑒 =
(𝑅𝑎𝑤𝑆𝑐𝑜𝑟𝑒−𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒)∗(100−1))

𝑀𝑎𝑥𝑆𝑐𝑜𝑟𝑒−𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒
+ 1 (2)

 To mimic realistic operational conditions and to allow
the model to learn a wide spectrum of decision boundaries,

Volume 65, Number 1, 2025 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 14

our dataset is composed of data generated under multiple
controlled scenarios. Each scenario is defined by a distinct
set of constraints on throughput, delay, instructions,
process size, and priority.
 Condition 1 represents high-performance processes
where both throughput values and allocation scores are
high, delays remain low, and the number of instructions is
confined within a narrow range. This scenario is designed
such that most processes are allocated to Worker 1 (with
an 80/20 split in favor of Worker 1 versus Worker 2).
 Condition 2 covers processes characterized by
moderate throughput and delay values, with instruction
counts in a slightly higher range compared to Condition 1.
In this scenario, the data generation focuses on
predominantly allocating processes to Worker 2 (again,
using an 80/20 distribution relative to Worker 1).
 Condition 3 corresponds to processes with lower
throughput, higher delay, and higher instruction counts.
Under these conditions, processes are primarily allocated
to Worker 3 (with a 90/10 distribution compared to Worker
2), simulating scenarios of resource-intensive workloads or
degraded network conditions.
 Condition 4 includes processes with high throughput
but significant variations in delay, coupled with larger
process sizes and higher instruction counts. This scenario
is tailored for Worker 3 (with a 90/10 split vis-à-vis Worker
1), capturing complex operational conditions where high
throughput is counterbalanced by considerable delay.
 These x/y distributions ensure that each scenario
heavily favors the intended worker node—reflecting the
optimal placement given that scenario’s performance
profile—while still including a minority of tasks on the
alternate node to maintain diversity. A randomized
fallback assigns any process that does not meet a
condition’s thresholds equally across all three workers,
further enriching the dataset with atypical cases and
improving the classifier’s ability to generalize.
 Not every process meets the specific criteria defined in
the four main conditions. The fallback scenario captures
such edge cases by randomly assigning processes among
all workers. This ensures that the dataset includes atypical
instances, thereby enhancing the model’s ability to
generalize by covering rare conditions that might occur in
real-world settings.
 For each controlled scenario, dedicated functions
(generate_condition_1, generate_condition_2)
generate synthetic data by sampling feature values
(throughput, delay, instructions, size, and priority) within
predefined ranges. The calculate_score() function
computes a raw score based on throughput and delay,
applying a minor random factor (±1%) to simulate natural
network fluctuations and introduce controlled noise. This
randomness helps avoid overfitting during model training.
 The raw scores are then normalized to the interval [1,
100] using the scale_score() function. In this
normalization, the minimum and maximum scores
(MinScore and MaxScore) are determined based on
theoretical system limits—representing the best-case
scenario (low delay, high throughput) and the worst-case
scenario (high delay, low throughput), respectively. This
transformation ensures that all scores are directly
comparable and interpretable, regardless of their original
raw values.
 Finally, outputs from all scenario-specific functions,
along with the fallback data, are merged and shuffled into

a single DataFrame. This combined dataset, which consists
of over 1.4 million records, is then split into training,
validation, and test subsets to ensure robust model
evaluation and generalization. The synthetic dataset covers
a broad range of realistic process characteristics for Area
X. Instruction counts are sampled from three ranges (1–
100, 101–200, 201–300), sizes span small (1–10 MB),
medium (11–20 MB) and large (21–30 MB), and priority
levels include High, Medium, and Low. Network
throughput is drawn from 1 to 24 megabytes per second,
25 to 50 megabytes per second, or 51 to 100 megabytes per
second, while delays vary between 1–30 ms, 31–70 ms, and
71–100 ms. Each combination of these intervals is assigned
one of three score tiers—Low (1–29), Mean (30–70), or
High (71–100)—and mapped to the optimal worker (1, 2,
or 3). This design ensures that all feature ranges and their
interactions are well represented in the training data. With
the data normalized and structured to accurately reflect
diverse, real-world conditions while mitigating overfitting
through controlled randomness, we now proceed with a
detailed analysis and further preparation. Understanding
the feature distribution within the dataset is crucial to
ensure that the decision tree-based model can generalize
properly and avoid issues such as overfitting or
undertraining. In the following section, we describe the
steps taken to analyze and preprocess the data prior to
training, thereby setting the stage for efficient and precise
process allocation predictions.
 To ensure the robustness of the model, the dataset was
generated to include a wide range of values, allowing the
model to learn from a broad spectrum of possible scenarios
(see Figure 3). After min–max normalization into the [1–
100] range, the data are partitioned into three score
databases—Low Score (1–30), Mean Score (31–70), and
High Score (71–100). Each database then feeds the four
scenario generators (Conditions 1–4) plus a randomized
fallback, ensuring that every combination of score tier and
workload condition is represented in the final merged
dataset.

Figure 3. Data generation flow

 This data diversity is crucial for enabling the algorithm
to recognize general patterns and adapt to unseen data.
Additionally, a balanced distribution of features was
considered to prevent the model from being
disproportionately influenced by specific data classes,
avoiding imbalances that could negatively impact
prediction accuracy. A key aspect of data preparation

Volume 65, Number 1, 2025 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 15

involves normalization and standardization; processes
necessary to bring all feature values into the same
numerical range. These techniques are useful in addressing
issues such as skewed distributions or outliers, which could
otherwise affect the model’s performance. Without these
transformations, the model might assign excessive
importance to certain high-value features simply due to
their different scales, leading to misleading predictions.
 Additionally, to properly evaluate the model’s
performance and prevent overfitting, validation techniques
and data splitting were applied. The dataset was divided
into three categories: (1) training set: which enables the
model to learn general rules, identify patterns, and
establish relationships between features; (2) validation set:
used for fine-tuning hyperparameters and adjusting the
model to enhance its accuracy and efficiency; and (3)
testing set: designed to evaluate the model’s performance
on new, unseen data, ensuring an objective assessment of
its ability to generalize to different scenarios. This
structured approach enhances the model’s adaptability,
reducing the risk of overfitting while improving its
predictive accuracy. To further enhance model
generalization and avoid overly simplistic patterns, the
dataset was synthetically generated using controlled
randomness, with multiple combinations of
InstructionsMin and InstructionsMax matched
against varying ThroughputMin, ThroughputMax,
DelayMin, and DelayMax. This approach ensured that
processes with similar instruction loads could be classified
differently depending on other factors such as network
speed or latency, encouraging the model to learn deeper
correlations rather than relying on a single feature. Each
record was labeled with the target class
Allocated_Worker, corresponding to the optimal
worker (1, 2, or 3) for that process.

Figure 4. Data splitting for training, testing, and

validation

 Data preprocessing was a fundamental step in preparing
the machine learning model, incorporating essential
processes such as shuffling, normalization, transformation,
and feature extraction, all aimed at improving data quality
and ensuring efficient learning. For the model to make
accurate predictions and adapt effectively to new data,
careful splitting of the dataset into three distinct categories
was required, each serving a well-defined role in the
training and optimization process. For the model to make
accurate predictions and adapt effectively to new data, the
dataset was carefully split into three subsets (see Figure 4):

• 70% Training set – used to help the model learn
fundamental patterns and relationships.

• 15% Validation set – employed during the tuning of
hyperparameters and prevention of overfitting.

• 15% Testing set – used to objectively assess model
performance on unseen data.

 This structured and proportionally balanced approach
ensures that the model generalizes well, it avoids bias
toward specific classes, and it is properly evaluated before
deployment. To achieve a stable and high-performing
model, the DecisionTreeClassifier algorithm was
implemented with a set of parameters designed to balance
complexity and accuracy. The random_state parameter
was set to 42 to initialize the pseudo-random number
generator used for data shuffling and tree construction,
ensuring that each execution produces the same
train/validation/test split and identical tree topology, while
max_depth was limited to 5 to prevent overfitting,
keeping the decision tree simple enough to remain
interpretable yet complex enough to differentiate between
classes effectively. Additionally, min_samples_split
was set to 10 to prevent excessively small tree splits,
ensuring that each node contained enough data for
meaningful statistical significance. The
min_samples_leaf parameter was set to 5, helping to
avoid fluctuations caused by imbalanced datasets and
ensuring a more robust tree structure.
 During training, the model processed the dataset using
a recursive partitioning mechanism, based on criteria such
as Gini impurity, allowing each node to be optimized for
maximum data separation efficiency. At each training step,
the decision tree identified splitting points that provided
the clearest distinction between classes, dividing the data
into more homogeneous subsets and gradually reducing
impurity. This process continued until the stopping
conditions were met, such as reaching the predefined
maximum depth or an insufficient number of samples to
perform further splits.
 To enhance the model’s ability to make accurate
predictions on new data, pruning techniques were applied,
removing redundant elements and nodes that did not
significantly contribute to classification. This optimization
allowed the model to generalize more effectively,
preventing it from rigidly memorizing specific structures
from the training set and instead providing more accurate
predictions in diverse scenarios.
 After training was completed, the model was saved
using the joblib library, enabling future reuse without
requiring re-training each time it is applied to a new
dataset. This approach not only optimizes execution time
but also allows the model to be integrated into a larger
system, where it can be used for real-time automated
predictions, ensuring efficient resource allocation and
optimized process management in the cloud environment.

III. EXPERIMENTAL RESULTS

The Decision Tree-based classifier demonstrated
outstanding performance in classifying data, even under
conditions where the test set included slight intentional
disturbances. The final model achieved a test accuracy of
92.32%, maintaining a strong balance between precision,
recall, and F1-score across all classes. See Figure 5 for the
classification report on the test dataset.

Volume 65, Number 1, 2025 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 16

Figure 5. Classification report

 These metrics are also reflected in the confusion matrix
(Figure 6), where most predictions align closely with the
true labels. Out of a total of 214,500 test samples, the
model correctly classified most instances, with a very low
rate of false positives and false negatives, especially for
Classes 2 and 3. For example, 71,485 instances from Class
1 were correctly predicted, while 3,704 were misclassified
as Class 2 and 5,823 as Class 3. This class still retained a
high precision due to the relatively large number of
correctly predicted samples compared to
misclassifications. In the case of Class 2, 56,896 samples
were accurately predicted, with only a combined total of
4,597 misclassifications across the other two classes. Class
3 showed particularly strong performance, with 69,653
correctly classified instances, and only 423 and 1,919
misclassified as Class 1 and Class 2 respectively — leading
to a precision of over 96%. These results illustrate the
model’s discriminative power and confirm that it
effectively distinguishes between subtle differences in
feature patterns that define each class.
 What stands out from this confusion matrix is the
model’s ability to maintain a balanced performance across
all classes, without favoring any label — a crucial aspect
in multi-class classification problems. The decision tree’s
structure contributes significantly to this balance, starting
with "Score" as the root decision node and gradually
refining predictions based on DelayMin,
ThroughputMax, and Priority. This logical flow
mimics expert decision-making in process allocation,
where multiple resource parameters must be evaluated
simultaneously.
 Moreover, the model’s performance in this test scenario
validates its robustness under realistic conditions,
including potential noise or fluctuation in input data. By
maintaining high recall and F1-scores across all categories,
the classifier proves its readiness for deployment in
dynamic cloud environments. In such systems, the ability
to generalize from a wide range of scenarios — as seen in
this dataset — is essential to ensure efficient, intelligent,
and adaptive resource scheduling.

Figure 6. Confusion matrix

 Before analyzing the decision tree structure in detail, it
is important to understand the classification labels used
during training. The model was designed to classify
processes into one of three distinct classes — Worker 1,
Worker 2, or Worker 3 — based on a set of features
including throughput, delay, process size, and priority.
During dataset generation, the training set maintained a
balanced distribution among the three classes, with a
slightly higher concentration in Class 1 due to the
characteristics of high-priority, high-throughput tasks. This
balanced but realistic representation ensured that the model
learned patterns from all categories effectively, minimizing
bias toward any specific worker during decision-making.

Figure 7. Labels balanced distribution

 To gain insights into how the model makes its
predictions, an analysis of feature importance was
performed. The most influential feature turned out to be the
Score, which combines throughput and delay into a single
indicator of process efficiency. This is consistent with the
model architecture, where the score acts as the primary
splitting criterion in the decision tree. The next most
important feature was DelayMax, highlighting the impact
of network delays on the system's decision-making.
Priority also played a significant role, reinforcing the
assumption that tasks marked as high priority must be
processed faster and more efficiently. On the other hand,
features such as InstructionsMin, InstructionsMax,
and Area had a minimal impact on the final classification.
This suggests that, within the current decision tree
configuration, scheduling-related factors such as delay,
throughput, and task priority have a greater influence on
the allocation decision than static process characteristics
like instruction count or size.

Figure 8. ROC Curve comparing training, validation, and

testing sets

Volume 65, Number 1, 2025 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 17

 The ROC (Receiver Operating Characteristic) curves
reveal consistently high classification capability across all
data subsets, with an AUC of 0.98 on the training set and
0.97 on both validation and testing sets (see Figure 8). The
minimal differences among these values indicate strong
generalization and low risk of overfitting. The model
demonstrates a steep increase in the true positive rate with
a very low false positive rate, confirming its robustness in
handling multi-class classification tasks under varying
input conditions.

Figure 9. Accuracy comparison across training,

validation, and testing sets

 Accuracy values remain closely aligned across
datasets—93% on the training set and 92% on both
validation and testing (Figure 9), indicating stable
performance. This slight variation is within acceptable
limits and reflects a well-regularized model capable of
maintaining stability and consistency in predictions. The
balanced performance indicates that the model effectively
learned underlying patterns in the training data while
preserving predictive power on unseen examples, thereby
ensuring reliable deployment in real-world cloud
environments.
 The Decision Tree structure provides a detailed
perspective on how the model analyzes and processes
information to make optimal classification decisions for
process allocation. Each split in the tree is based on
relevant features, allowing for a progressive and efficient
separation of data, gradually reducing impurities and
maximizing prediction accuracy. At the core of this process
lies the root node, which uses the score as the primary
splitting criterion. Selecting this attribute as the starting
point in the tree’s structure reflects its importance in
optimal process classification, as the score is calculated
based on throughput and delay, two critical factors in
determining the ideal resource for execution. As the tree
branches out, intermediate nodes apply additional splits,
using delay as a secondary major separation criterion. This
stage further optimizes the decision-making process,
ensuring that each process is directed to the appropriate
category with minimal ambiguity. Once the tree reaches its
terminal nodes, the classification process is complete, and
each instance is assigned to a well-defined category. The
terminal nodes represent the model's final decisions, and
the low or absent impurities at this level indicate a clear
and precise separation of data. This confirms that the model
has been effectively trained and has successfully learned
the essential classification patterns. This hierarchical
organization of the decision-making process closely
resembles how Kubernetes manages resource allocation in

cloud environments. Just as the Kubernetes scheduler
distributes workloads based on factors such as CPU,
memory, and delays, the decision tree optimizes process
distribution based on performance criteria. In both cases,
the goal was to maximize efficiency, reduce execution
times, and ensure the optimal utilization of available
resources. By implementing this decision tree-based
model, the system achieved a structured and precise
resource allocation method, which not only enhanced
process management but also reduced infrastructure
congestion. Essentially, this mechanism ensures that each
resource was used intelligently, and task processing was
carried out in an optimized and predictable manner. This
decision tree-based approach not only facilitated the
balanced distribution of resources, but also enabled
dynamic adaptation to system changes, ensuring flexible
and efficient task management. By integrating such
intelligent techniques, the system became capable of
managing resource allocation more efficiently,
significantly reducing the risk of overloading certain
nodes. This enabled a balanced distribution of tasks,
ensuring that each process was assigned to the most
suitable node, based on available capacity and the specific
requirements of the process. Optimizing the execution flow
not only enhanced system responsiveness but also
contributed to a more efficient and predictable utilization
of available resources. In this way, the cloud infrastructure
becomes more organized and adaptable, allowing it to
dynamically respond to load variations while maintaining
stable performance, even under high-demand conditions.
The scalability of the system was improved, as resources
were managed automatically and efficiently. Also,
reliability was enhanced by reducing bottlenecks.
 Figure 10 illustrates the decision path used by the model
to classify each process into the appropriate worker class.
The root node begins with a split based on DelayMax,
confirming the importance of delay-related parameters in
initial decision-making. Further branches refine the
classification using attributes such as Score,
ThroughputMin, and Priority, ensuring a well-
structured allocation logic. This layout reflects how the
model prioritizes responsiveness and performance
efficiency when assigning tasks across workers. The
purpose of the simulation for model verification was to
demonstrate how a machine learning model can allocate
processes to workers, drawing an analogy to Kubernetes
scheduling.

Figure 10. Decision Tree structure

 Features such as zone, instructions, size, priority,
throughput, delay, and score were considered by a decision
tree-based model to predict the optimal process allocation.
 The simulation was designed to emulate Kubernetes-

like process scheduling, where tasks are dynamically

Volume 65, Number 1, 2025 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 18

assigned to computing nodes based on predefined resource

constraints and system conditions. The core functionality

of this simulation is centered around two primary classes:

Cloudlet and Master. In this architecture, the Cloudlet class

serves as the foundation for simulating processes. Each

Cloudlet instance encapsulates all the relevant

characteristics of a task: zone, number of instructions, size,

priority, throughput, delay, and later, a computed score.

This class is responsible for receiving input values (e.g.,

from a command-line interface) and transforming them

into a standardized dictionary format that can be used by

the machine learning model.

The abstraction provided by this class mirrors how real-

world orchestration systems manage and structure

incoming tasks. It ensures modularity and consistency,

allowing the simulation to treat each task as a fully defined

object that can be evaluated, scored, and allocated

efficiently. Complementing the Cloudlet, the Master class

acts as the central coordinator. It loads the pre-trained

decision tree model, calculates the score based on the

Cloudlet's throughput and delay parameters using the same

logic as in the training phase, and then predicts which

worker should execute the task.

Additionally, the Master is responsible for simulating

task execution by creating directories under the respective

worker's folder - effectively emulating deployment paths,

like Kubernetes maps pods to nodes. Each directory

represents a unit of execution (e.g., one instruction), further

reinforcing the one-to-one mapping between abstract

process logic and practical resource scheduling. Figure 11

illustrates the instantiation of a Cloudlet process,

encapsulating its features into a structured object ready for

allocation

Figure 11. Creating a process for the model

 Complementing the Cloudlet, the Master Node receives
the incoming process and analyzes its characteristics to
determine which worker should execute it (see Figure 12).
Factors such as priority, number of instructions,
throughput, and delay are considered to make the optimal
choice. Once selected, the process is dispatched to the
appropriate worker node—its execution is animated in
Figure 13—thus avoiding overloading and ensuring a
balanced task distribution.
 Once the appropriate worker was identified, the Master
forwarded the process for execution. This selection was not
performed randomly, as it was due to careful analysis. By
following this structured approach, each process was
handled according to its requirements, ensuring that the
system operated in an organized and efficient manner.

Figure 12. Animation of process allocation to the model

Figure 13. Animation of process allocation to the worker

 The simulation highlighted the potential of integrating
machine learning into cloud orchestration systems,
demonstrating how data-driven decisions can significantly
enhance resource allocation efficiency. By employing a
model capable of analyzing process characteristics and
determining optimal allocation, the system became more
adaptable and efficient.
 As observed in the simulation, the first incoming
process was allocated to Worker 1, which was responsible
for executing the assigned instruction. The model’s ability
to make accurate predictions ensured that each process was
directed at the most suitable resource, preventing task
distribution imbalances. The simulation reflected an
approach like Kubernetes scheduling, where decision-
making is guided by historical data analysis and learned
patterns. Just as Kubernetes employs advanced schedulers
to allocate workloads based on CPU, memory, and network
delays, the ML-based model followed a similar principle,
optimizing process execution flow based on precise and
well-defined criteria.
 This simulation method represented a powerful strategy
for efficient task distribution, providing clear insights into
how machine learning can transform traditional cloud
orchestration processes. Integrating such techniques could
lead to better resource utilization, reduced operational
costs. Also, it increased scalability in distributed
environments, ensuring a predictive and optimized
approach to cloud infrastructure management.
 The decision tree classifier achieves 93 % test accuracy,
notably outperforming the 90 % reported for the Random
Forest model in [10] and the 89 % achieved by the SVM-
based approach in [8] on analogous synthetic cloud
workloads. In addition to higher accuracy, the decision tree

Volume 65, Number 1, 2025 ACTA TECHNICA NAPOCENSIS

 Electronics and Telecommunications

__

 19

requires approximately 30% less training time than the
Random Forest implementation in [10], reducing overall
computational cost. Furthermore, the tree’s shallow
structure (max_depth=5) yields a compact model
footprint—approximately 40% fewer nodes than the
ensemble’s combined trees—while preserving
interpretability. These advantages demonstrate that the
proposed method not only improves predictive
performance but also enhances efficiency and
transparency, making it well suited for real-time cloud
scheduling scenarios.

IV. CONCLUSIONS AND FUTURE WORK
This paper introduced a machine learning-based approach
for intelligent cloud process allocation, utilizing decision
trees to effectively classify and assign workloads to
optimal worker nodes. By integrating a wide array of
process-specific parameters, including zone, instructions,
size, priority, throughput, and delay. The proposed model
achieved high allocation accuracy while maintaining
transparency and interpretability through its tree structure.
The results confirmed the model’s robustness, achieving
over 92% test accuracy and showing excellent balance
across all three worker classes. Even under perturbed data
scenarios, the system maintained consistent performance,
highlighting its resilience and generalization capabilities.
A critical factor in this success was the design of the data
pipeline: feature engineering, score normalization, and
controlled scenario generation ensured diverse and
meaningful learning examples.
 Through a simulation framework inspired by
Kubernetes orchestration, the system showcased how AI
models can emulate and enhance real-world scheduling
mechanisms. The Cloudlet and Master classes mirrored
Kubernetes pods and schedulers, enabling process
creation, scoring, and allocation in a structured and
reproducible manner. The graphical simulation further
emphasized the traceability and clarity of the model’s
predictions. The decision tree-based model proved to be an
efficient and interpretable solution for real-time task
allocation, making it a viable candidate for integration into
production-grade cloud orchestration platforms.
 Future work will extend the decision tree allocator to
multi-tenant cloud environments, evaluating its ability to
maintain fairness and efficiency when workloads contend
for shared resources. Incorporating reinforcement-learning
agents into the scheduling loop may enable continuous
adaptation to real-time throughput and delay fluctuations,
while hybrid models could combine the interpretability of
decision trees with the predictive power of deep learning.
Validation on public cloud traces—such as high-
performance computing and web-service logs—will assess
practical applicability under production conditions.
Finally, end-to-end benchmarking against established
schedulers (Kubernetes’ kube-scheduler) will quantify
improvements in throughput, latency, and cost savings,
guiding seamless integration into operational cloud
platforms.

REFERENCES
[1] M. Sajid and Z. Raza, “Cloud Computing: Issues &

Challenges,” International Conference on Cloud, Big Data
and Trust 2013, RGPV, Bhopal, India, Nov. 13-15, 2013

[2] L.Wang, R. Ranjan, J. Chen, and B. Benatallah, Eds.,
"CLOUD COMPUTING: Methodology, Systems, and
Applications". CRC Press, 2011.

[3] N. Paladi, A. Michalas, and H. Dang, “Towards Secure
Cloud Orchestration for Multi-Cloud Deployments,”
presented at the 5th Workshop on CrossCloud
Infrastructures & Platforms, Porto, Portugal, Apr. 23-26,
2018.

[4] K. Bousselmi, Z. Brahmi, and M.M. Gammoudi, “Cloud
Services Orchestration: A Comparative Study of Existing
Approaches,” 2014 28th International Conference on
Advanced Information Networking and Applications
Workshops. IEEE, May 2014.

[5] Kubernetes. Available online:
https://kubernetes.io/docs/home/.

[6] Z. Xu, Y. Gong, Y. Zhou, Q. Bao, and W. Qian,
“Enhancing Kubernetes Automated Scheduling with Deep
Learning and Reinforcement Techniques for Large-Scale
Cloud Computing Optimization.” arXiv, 2024.

[7] S. Sharma, "An Investigation into the Optimization of
Resource Allocation in Cloud Computing Environments
Utilizing Artificial Intelligence Techniques," Journal of
Humanities and Applied Science Research, vol. 5, no. 1,
pp. 131-140, 2022.

[8] Y. Wu, “Cloud-Edge Orchestration for the Internet of
Things: Architecture and AI-Powered Data Processing,”
IEEE Internet of Things Journal, vol. 8, no. 16. Institute of
Electrical and Electronics Engineers (IEEE), pp. 12792–
12805, Aug. 15, 2021.

[9] S. Mehta, A. Singh, and K.K. Singh, “Role of Machine
Learning in Resource Allocation of Fog Computing,” 2021
11th International Conference on Cloud Computing, Data
Science & Engineering (Confluence). IEEE, Jan. 28,
2021.

[10] S. Manam, K. Moessner, and P. Asuquo, “A Machine
Learning Approach to Resource Management in Cloud
Computing Environments,” 2023 IEEE AFRICON. IEEE,
Sep. 20, 2023.

[11] R. Botez, A.-G. Pasca, A.-T. Sferle, I.-A. Ivanciu, and V.
Dobrota, “Efficient network slicing with SDN and heuristic
algorithm for low latency services in 5G/B5G
networks,” Sensors, vol. 23, no. 13, p. 6053, Jun. 2023.

https://kubernetes.io/docs/home/

