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Abstract: The paper presents a decision tree–based scheduler for intelligent cloud process allocation that evaluates features 
such as source area, instruction count, payload size, priority, throughput, and delay to guide real-time placement decisions. 
The model was trained and validated on a diverse, scenario-driven synthetic dataset covering four controlled workload 
conditions plus randomized fallback cases. For the training dataset, the classifier achieved 93% accuracy, while for the 
validation and test set, an accuracy of 92% was obtained. A Kubernetes-inspired simulation framework further visualizes and 
confirms the scheduler’s allocation logic under dynamic conditions. These results underscore the approach’s effectiveness, 
interpretability, and suitability for production-grade cloud orchestration. 
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I. INTRODUCTION 
Cloud computing enables on-demand access to both 
software and hardware resources, including storage, 
central processing units (CPUs), graphics processing units 
(GPUs), tensor processing units (TPUs), and memory [1]. 
Undoubtedly, transitioning from on-premises 
infrastructure to the cloud reduces a company’s capital 
expenses but increases operational costs. The cloud 
follows a pay-as-you-go approach, allowing businesses to 
pay only for the resources they consume. This paradigm 
facilitates the dynamic distribution of resources based on 
demand, ensuring both flexibility and efficiency. The three 
primary cloud computing service models are Infrastructure 
as a Service (IaaS), Platform as a Service (PaaS), and 
Software as a Service (SaaS) [2]. Cloud orchestration 
refers to the process of organizing and overseeing the 
deployment and operation of cloud infrastructure, where 
automation plays a crucial role in efficiently integrating 
services and optimizing workflows. This leads to increased 
productivity and improved service quality for both users 
and providers [3]. Orchestrating IaaS focuses on managing 
physical and virtual resources, such as servers and storage, 
ensuring their optimal allocation and maintenance. In 
PaaS, the management and coordination of databases, 
middleware, and other components support the 
development and deployment of applications. Meanwhile, 
SaaS automates corporate operations, manages application 
interdependencies, and ensures the efficient delivery of 
software services. 
 Orchestration can be implemented using imperative 
paradigms, which follow predefined steps to achieve a 
desired state, or declarative paradigms, which define the 
final state without specifying the exact processes required. 
In multi-cloud environments, security is a top priority, 
involving credential management, continuous monitoring, 
and adherence to security policies to ensure confidentiality, 
integrity, and availability of resources [4]. These factors 
contribute to creating secure, scalable, and resilient 
orchestration frameworks tailored to diverse user 

requirements. 
 Kubernetes [5] is an open-source platform designed for 
orchestrating cloud resources, automating the deployment, 
scaling, and management of containerized applications. In 
a dynamic cloud environment where resource demands 
fluctuate constantly, an intelligent system is essential to 
distribute workloads efficiently, preventing node overload 
and ensuring balanced utilization of available 
infrastructure. A core component of Kubernetes is its 
scheduler, kube-scheduler, which analyzes available 
resources and determines the optimal allocation of 
containers within a cluster. It evaluates each node based on 
a well-defined set of rules, aiming to minimize congestion 
and optimize execution times. The decision-making 
process relies on two key algorithms: Predicate and 
Priority, which work together to identify the most suitable 
node for each task. In the first phase, Predicate algorithms 
filter out nodes that do not meet the specific requirements 
of a container, considering factors such as available 
memory, processing power, affinity constraints, and 
compatibility with required resources. This initial filtering 
ensures that only viable options remain. Next, Priority 
algorithms assess the remaining nodes, ranking them based 
on criteria such as resource utilization, network delay, and 
load levels. This approach enables Kubernetes not only to 
select a valid node but also the most efficient one for 
running the application, optimizing resource consumption, 
and distributing workloads evenly. To further enhance this 
process, recent research explores the application of deep 
learning and reinforcement learning techniques to improve 
Kubernetes' automated scheduling algorithms. Studies 
indicate that integrating these methods allows the platform 
to better anticipate future resource demands and adjust 
allocations in real time, thereby enhancing overall cluster 
performance and reducing wait times for critical processes 
[6]. 
 Artificial intelligence (AI) plays a crucial role in cloud 
orchestration by optimizing the dynamic allocation of 
resources and reducing costs through predictive methods 
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based on machine learning (ML). AI enables proactive 
scaling, load balancing, and system performance 
improvements, leveraging algorithms such as deep 
learning and reinforcement learning [7]. 
 Decision Trees are used to efficiently classify and 
allocate resources, dynamically adapting to user demands 
and network conditions while minimizing delays and 
energy consumption. Additionally, Edge AI enhances 
performance and privacy by processing data locally, 
reducing network traffic and response times. Overall, 
integrating AI into cloud orchestration enhances efficiency 
and flexibility, ensuring high-quality service delivery in 
dynamic and complex environments [8].   
 Resource optimization in the cloud through machine 
learning (ML) is essential, as algorithms can adjust 
resources in real-time, predict demands, and identify 
bottlenecks, opening new opportunities for efficient 
allocation. In [9], the authors propose using ML to 
maximize resource utilization in telecommunication 
networks, leveraging cloud-based data storage and analysis 
to support effective decision-making. 
 Furthermore, in another research [10], it was 
introduced a Random Forest ensemble for cloud resource 
management, reporting up to a 30 % improvement in 
utilization prediction over single-model techniques such as 
XGBoost, Ridge regression, and Lasso. By aggregating 
decisions from multiple trees, this approach achieves 
robust performance in both classification (assigning 
processes to worker nodes) and regression (forecasting 
resource demand), thereby enhancing system efficiency 
and reducing energy consumption. The authors also 
evaluate Support Vector Machines (SVM) for multi-class 
process prediction, finding that SVM consistently 
outperforms Gaussian Naive Bayes when trained on 
sufficiently large and diverse datasets. These findings 
underscore the importance of ensemble and kernel-based 
methods—and the need for representative training data—
in dynamic, data-driven cloud environments. 
 We explored in this paper the use of machine learning 
to enhance process allocation mechanisms in cloud 
environments, with a particular focus on decision trees for 
task classification and distribution. Our contributions are – 
design and implementation of a decision tree–based 
classifier for intelligent process allocation using features 
such as area, instruction, size, priority, throughput and 
delay; development of a synthetic, scenario-driven dataset 
covering four controlled workload conditions plus a 
randomized fallback; demonstration of model robustness 
by achieving 92 % accuracy on the test set; and creation of 
a Kubernetes-inspired simulation framework (Cloudlet and 
Master classes) to visualize and validate allocation 
decisions in real time.  
 The remainder of the paper is structured as follows. 
Section I combines the introduction with a review of 
related work on machine‐learning approaches to cloud 
resource management. Section II details our 
implementation, including the decision tree–based 
allocation model, feature engineering, and dataset 
generation framework. Section III presents the 
experimental results, covering model accuracy, confusion 
matrices, ROC curves, and simulation case studies—in 
particular, it also discusses our dataset splitting strategy, 
hyperparameter choices (e.g., random_state, max_depth), 
and feature‐importance analysis. Finally, Section IV 
concludes the paper, summarizes our key findings, and 

outlines future work, including a planned comparison with 
existing scheduling algorithms and the extension of our 
framework to support adaptive, real‐world cloud 
deployments. 
 

II. IMPLEMENTATION 
The proposed model (see Figure 1) analyzes multiple 
characteristics of each process, including priority, size, 
number of instructions, data throughput, and associated 
delays, to determine the optimal allocation. 
  

 
Figure 1. Model architecture 

  
 This approach aims not only to improve system 
efficiency but also to reduce execution times and 
operational costs associated with cloud resource usage. By 
integrating these techniques, the system gains the ability to 
make real-time decisions, dynamically adapting to network 
fluctuations and variable user demands. Experimental 
results demonstrate that the decision tree-based model 
ensures more balanced process distribution and 
performance optimization, contributing to better resource 
management in cloud environments. 
 Inspired by the principles used in the Kubernetes 
scheduler, this model seeks to optimize resource allocation 
through an intelligent task distribution mechanism, 
reducing execution time. These characteristics are essential 
for determining the optimal allocation, as each process may 
have different execution requirements. Inefficient 
distribution could lead to overloading certain resources and 
lowering the overall system performance. In this 
architecture, areas 1, 2, and 3 represent different process 
sources, each with specific characteristics. These process 
sources may correspond to distinct service types—such as 
real-time streaming jobs, batch analytics tasks, or user-
interactive requests-each exhibiting unique patterns of 
priority, size, throughput, and delay. By modeling them as 
separate areas, the scheduler can learn and exploit these 
source-specific behaviors, yielding more accurate and 
context-aware allocation decisions under varying workload 
conditions. These areas transmit their processes to a Master 
Node, responsible for centralizing and analyzing data. The 
Master Node plays a crucial role as it communicates 
directly with the AI model, which evaluates the parameters 
of each process and determines the most suitable worker 
for execution. In this way, tasks are intelligently allocated 
based on the capacity and availability of system resources. 
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Once the model makes a prediction, the process is 
automatically directed to the appropriate worker, which 
then executes it. This method not only optimizes resource 
utilization but also reduces execution latencies, ensuring a 
balanced distribution of tasks within the system. 
Additionally, due to its dynamic nature, this system can 
adjust process allocation in real-time, responding quickly 
to load fluctuations and network condition variations. By 
utilizing a decision tree-based model, the proposed 
architecture significantly enhances cloud resource 
management, enabling more efficient scheduling, reduced 
execution times, and greater infrastructure scalability. 
 The first stage involved defining and creating a well-
organized database structure, as in Figure 2, essential for 
the efficient training of the machine learning model. 
 

 
Figure 2. Database structure 

 
 This was designed to include all relevant features 
necessary for the classification process, such as process 
priority, data throughput, delays, and the number of 
instructions. To increase the precision of the model and 
allow a better numerical representation, all range-based 
features (originally defined as intervals) were split into 
separate columns representing their lower and upper 
bounds. This transformation ensured greater control during 
the learning phase and enabled a more flexible 
classification mechanism. The following adjustments were 
made: 
• Instructions: split into InstructionsMin and 

InstructionsMax, representing the operational 
range of a task 

• Delay: split into DelayMin and DelayMax denoting the 
latency span in [ms]. 

• Throughput: split into ThroughputMin and 
ThroughputMax indicating the transfer rate interval in 
[Mbps]. 
 

 The structure was optimized to enable fast and accurate 
data processing, ensuring the model has access to relevant 
and well-organized information. It has been designed to 
include a variety of scenarios, allowing the model to learn 
correct patterns and make more precise predictions. 
Through this optimization, the system guarantees an 
efficient distribution of resources, reducing execution time 
and enhancing overall system performance. With the data 
structure in place, the next step focused on extracting and 
refining key features to maximize the model’s learning 
capabilities. 
 The database structure plays a crucial role in training 
the decision tree-based machine learning model, ensuring 
accurate classification and efficient process distribution to 
the appropriate workers. Each feature included in the 
database is carefully selected to contribute to optimal 
decision-making, allowing the model to intelligently 
anticipate and manage resource allocation. A key factor is 
the number of instructions, which defines the volume of 
operations a worker must execute to complete a process. 
This characteristic directly influences execution time and 
worker load, having a significant impact on overall system 

performance. Closely related to this is process size, which 
reflects the amount of data required for execution. A larger 
process may demand more resources, prompting the model 
to select a worker capable of handling it without 
compromising the efficiency of other active processes. 
Another essential attribute was priority, which determined 
the order in which processes were allocated and executed. 
A process can have high, medium, or low priority, and this 
classification affects how quickly it must be completed. 
High-priority processes are allocated immediately and 
must be executed as quickly as possible, while medium-
priority processes should be completed within a reasonable 
timeframe. In contrast, low-priority processes are treated 
with more flexibility, without strict time constraints. Data 
throughput between the Master Node and the workers is a 
fundamental parameter, indicating the speed at which 
information is transferred. Higher throughput enables 
processes to be transmitted and executed more rapidly, 
making workers with high-performance connections 
preferable for handling critical tasks. The delay in [ms] 
represented the time required for data to travel from the 
Master Node to the worker. Higher delays could negatively 
impact system responsiveness, reducing the overall 
efficiency of resource allocation. To handle cases where 
multiple processes shared the same priority level, but 
having differing characteristics, an allocation score was 
introduced. To ensure a more granular and precise 
representation, each feature that could potentially contain 
a range of values—such as instructions, throughput, and 
delay—was split into two separate columns: one for the 
minimum value and one for the maximum. This design 
choice addresses limitations of using aggregated or interval 
values in a single column, which are unsuitable for 
machine learning algorithms that require distinct numerical 
features for proper pattern recognition and decision-
making. Furthermore, a score was dynamically computed 
for each process based on the following adapted formula: 
 

 𝑅𝑎𝑤𝑆𝑐𝑜𝑟𝑒 =  
𝐾0∗𝑆0

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 
+  𝐾1 ∗ 𝑆1 ∗ 𝐷𝑒𝑙𝑎𝑦  (1)

  
 As defined in (1), a drop in available bandwidth 
produces a disproportionately large inverse term, which 
increases the score. In this scheme, higher scores reflect 
poorer efficiency and impose a greater penalty: processes 
with both low throughput, and high delay receive the 
highest scores, guiding the scheduler to deprioritize them 
in favor of more efficient tasks. In this formulation, the 
constants K0 and K1 act as weights to emphasize the relative 
importance of throughput versus delay, while S0 and S1 are 
scaling factors that normalize the corresponding metrics to 
ensure consistent units and comparable magnitudes [11]. 
 This score reflected both transmission efficiency and 
latency constraints, combining minimum and maximum 
values for both throughput and delay to better capture 
variability in system performance. To ensure compatibility 
with classification models, this raw score was normalized 
using min-max scaling into a standardized interval [1,100] 
The scaling process was implemented through the 
following transformation: 
 

𝑆𝑐𝑜𝑟𝑒 =
(𝑅𝑎𝑤𝑆𝑐𝑜𝑟𝑒−𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒 )∗(100−1))

𝑀𝑎𝑥𝑆𝑐𝑜𝑟𝑒−𝑀𝑖𝑛𝑆𝑐𝑜𝑟𝑒
+ 1          (2) 

 
 To mimic realistic operational conditions and to allow 
the model to learn a wide spectrum of decision boundaries, 
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our dataset is composed of data generated under multiple 
controlled scenarios. Each scenario is defined by a distinct 
set of constraints on throughput, delay, instructions, 
process size, and priority.  
 Condition 1 represents high-performance processes 
where both throughput values and allocation scores are 
high, delays remain low, and the number of instructions is 
confined within a narrow range. This scenario is designed 
such that most processes are allocated to Worker 1 (with 
an 80/20 split in favor of Worker 1 versus Worker 2). 
 Condition 2 covers processes characterized by 
moderate throughput and delay values, with instruction 
counts in a slightly higher range compared to Condition 1. 
In this scenario, the data generation focuses on 
predominantly allocating processes to Worker 2 (again, 
using an 80/20 distribution relative to Worker 1). 
 Condition 3 corresponds to processes with lower 
throughput, higher delay, and higher instruction counts. 
Under these conditions, processes are primarily allocated 
to Worker 3 (with a 90/10 distribution compared to Worker 
2), simulating scenarios of resource-intensive workloads or 
degraded network conditions. 
 Condition 4 includes processes with high throughput 
but significant variations in delay, coupled with larger 
process sizes and higher instruction counts. This scenario 
is tailored for Worker 3 (with a 90/10 split vis-à-vis Worker 
1), capturing complex operational conditions where high 
throughput is counterbalanced by considerable delay. 
 These x/y distributions ensure that each scenario 
heavily favors the intended worker node—reflecting the 
optimal placement given that scenario’s performance 
profile—while still including a minority of tasks on the 
alternate node to maintain diversity. A randomized 
fallback assigns any process that does not meet a 
condition’s thresholds equally across all three workers, 
further enriching the dataset with atypical cases and 
improving the classifier’s ability to generalize. 
 Not every process meets the specific criteria defined in 
the four main conditions. The fallback scenario captures 
such edge cases by randomly assigning processes among 
all workers. This ensures that the dataset includes atypical 
instances, thereby enhancing the model’s ability to 
generalize by covering rare conditions that might occur in 
real-world settings. 
 For each controlled scenario, dedicated functions 
(generate_condition_1, generate_condition_2) 
generate synthetic data by sampling feature values 
(throughput, delay, instructions, size, and priority) within 
predefined ranges. The calculate_score() function 
computes a raw score based on throughput and delay, 
applying a minor random factor (±1%) to simulate natural 
network fluctuations and introduce controlled noise. This 
randomness helps avoid overfitting during model training. 
 The raw scores are then normalized to the interval [1, 
100] using the scale_score() function. In this 
normalization, the minimum and maximum scores 
(MinScore and MaxScore) are determined based on 
theoretical system limits—representing the best-case 
scenario (low delay, high throughput) and the worst-case 
scenario (high delay, low throughput), respectively. This 
transformation ensures that all scores are directly 
comparable and interpretable, regardless of their original 
raw values. 
 Finally, outputs from all scenario-specific functions, 
along with the fallback data, are merged and shuffled into 

a single DataFrame. This combined dataset, which consists 
of over 1.4 million records, is then split into training, 
validation, and test subsets to ensure robust model 
evaluation and generalization. The synthetic dataset covers 
a broad range of realistic process characteristics for Area 
X. Instruction counts are sampled from three ranges (1–
100, 101–200, 201–300), sizes span small (1–10 MB), 
medium (11–20 MB) and large (21–30 MB), and priority 
levels include High, Medium, and Low. Network 
throughput is drawn from 1 to 24 megabytes per second, 
25 to 50 megabytes per second, or 51 to 100 megabytes per 
second, while delays vary between 1–30 ms, 31–70 ms, and 
71–100 ms. Each combination of these intervals is assigned 
one of three score tiers—Low (1–29), Mean (30–70), or 
High (71–100)—and mapped to the optimal worker (1, 2, 
or 3). This design ensures that all feature ranges and their 
interactions are well represented in the training data. With 
the data normalized and structured to accurately reflect 
diverse, real-world conditions while mitigating overfitting 
through controlled randomness, we now proceed with a 
detailed analysis and further preparation. Understanding 
the feature distribution within the dataset is crucial to 
ensure that the decision tree-based model can generalize 
properly and avoid issues such as overfitting or 
undertraining. In the following section, we describe the 
steps taken to analyze and preprocess the data prior to 
training, thereby setting the stage for efficient and precise 
process allocation predictions. 
 To ensure the robustness of the model, the dataset was 
generated to include a wide range of values, allowing the 
model to learn from a broad spectrum of possible scenarios 
(see Figure 3). After min–max normalization into the [1–
100] range, the data are partitioned into three score 
databases—Low Score (1–30), Mean Score (31–70), and 
High Score (71–100). Each database then feeds the four 
scenario generators (Conditions 1–4) plus a randomized 
fallback, ensuring that every combination of score tier and 
workload condition is represented in the final merged 
dataset.  

 
Figure 3. Data generation flow 

 
 This data diversity is crucial for enabling the algorithm 
to recognize general patterns and adapt to unseen data. 
Additionally, a balanced distribution of features was 
considered to prevent the model from being 
disproportionately influenced by specific data classes, 
avoiding imbalances that could negatively impact 
prediction accuracy. A key aspect of data preparation 
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involves normalization and standardization; processes 
necessary to bring all feature values into the same 
numerical range. These techniques are useful in addressing 
issues such as skewed distributions or outliers, which could 
otherwise affect the model’s performance. Without these 
transformations, the model might assign excessive 
importance to certain high-value features simply due to 
their different scales, leading to misleading predictions. 
 Additionally, to properly evaluate the model’s 
performance and prevent overfitting, validation techniques 
and data splitting were applied. The dataset was divided 
into three categories: (1) training set: which enables the 
model to learn general rules, identify patterns, and 
establish relationships between features; (2) validation set: 
used for fine-tuning hyperparameters and adjusting the 
model to enhance its accuracy and efficiency; and (3)  
testing set: designed to evaluate the model’s performance 
on new, unseen data, ensuring an objective assessment of 
its ability to generalize to different scenarios. This 
structured approach enhances the model’s adaptability, 
reducing the risk of overfitting while improving its 
predictive accuracy. To further enhance model 
generalization and avoid overly simplistic patterns, the 
dataset was synthetically generated using controlled 
randomness, with multiple combinations of 
InstructionsMin and InstructionsMax matched 
against varying ThroughputMin, ThroughputMax, 
DelayMin, and DelayMax. This approach ensured that 
processes with similar instruction loads could be classified 
differently depending on other factors such as network 
speed or latency, encouraging the model to learn deeper 
correlations rather than relying on a single feature. Each 
record was labeled with the target class 
Allocated_Worker, corresponding to the optimal 
worker (1, 2, or 3) for that process. 
 

 
Figure 4. Data splitting for training, testing, and 

validation 
 
 Data preprocessing was a fundamental step in preparing 
the machine learning model, incorporating essential 
processes such as shuffling, normalization, transformation, 
and feature extraction, all aimed at improving data quality 
and ensuring efficient learning. For the model to make 
accurate predictions and adapt effectively to new data, 
careful splitting of the dataset into three distinct categories 
was required, each serving a well-defined role in the 
training and optimization process. For the model to make 
accurate predictions and adapt effectively to new data, the 
dataset was carefully split into three subsets (see Figure 4): 
 

  

• 70% Training set – used to help the model learn 
fundamental patterns and relationships. 

• 15% Validation set – employed during the tuning of 
hyperparameters and prevention of overfitting. 

• 15% Testing set – used to objectively assess model 
performance on unseen data. 

 This structured and proportionally balanced approach 
ensures that the model generalizes well, it avoids bias 
toward specific classes, and it is properly evaluated before 
deployment. To achieve a stable and high-performing 
model, the DecisionTreeClassifier algorithm was 
implemented with a set of parameters designed to balance 
complexity and accuracy. The random_state parameter 
was set to 42 to initialize the pseudo-random number 
generator used for data shuffling and tree construction, 
ensuring that each execution produces the same 
train/validation/test split and identical tree topology, while 
max_depth was limited to 5 to prevent overfitting, 
keeping the decision tree simple enough to remain 
interpretable yet complex enough to differentiate between 
classes effectively. Additionally, min_samples_split 
was set to 10 to prevent excessively small tree splits, 
ensuring that each node contained enough data for 
meaningful statistical significance. The 
min_samples_leaf parameter was set to 5, helping to 
avoid fluctuations caused by imbalanced datasets and 
ensuring a more robust tree structure.  
 During training, the model processed the dataset using 
a recursive partitioning mechanism, based on criteria such 
as Gini impurity, allowing each node to be optimized for 
maximum data separation efficiency. At each training step, 
the decision tree identified splitting points that provided 
the clearest distinction between classes, dividing the data 
into more homogeneous subsets and gradually reducing 
impurity. This process continued until the stopping 
conditions were met, such as reaching the predefined 
maximum depth or an insufficient number of samples to 
perform further splits. 
 To enhance the model’s ability to make accurate 
predictions on new data, pruning techniques were applied, 
removing redundant elements and nodes that did not 
significantly contribute to classification. This optimization 
allowed the model to generalize more effectively, 
preventing it from rigidly memorizing specific structures 
from the training set and instead providing more accurate 
predictions in diverse scenarios. 
 After training was completed, the model was saved 
using the joblib library, enabling future reuse without 
requiring re-training each time it is applied to a new 
dataset. This approach not only optimizes execution time 
but also allows the model to be integrated into a larger 
system, where it can be used for real-time automated 
predictions, ensuring efficient resource allocation and 
optimized process management in the cloud environment.  

 
III. EXPERIMENTAL RESULTS  

The Decision Tree-based classifier demonstrated 
outstanding performance in classifying data, even under 
conditions where the test set included slight intentional 
disturbances. The final model achieved a test accuracy of 
92.32%, maintaining a strong balance between precision, 
recall, and F1-score across all classes. See Figure 5 for the 
classification report on the test dataset. 
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Figure 5. Classification report 

  
 These metrics are also reflected in the confusion matrix 
(Figure 6), where most predictions align closely with the 
true labels. Out of a total of 214,500 test samples, the 
model correctly classified most instances, with a very low 
rate of false positives and false negatives, especially for 
Classes 2 and 3. For example, 71,485 instances from Class 
1 were correctly predicted, while 3,704 were misclassified 
as Class 2 and 5,823 as Class 3. This class still retained a 
high precision due to the relatively large number of 
correctly predicted samples compared to 
misclassifications. In the case of Class 2, 56,896 samples 
were accurately predicted, with only a combined total of 
4,597 misclassifications across the other two classes. Class 
3 showed particularly strong performance, with 69,653 
correctly classified instances, and only 423 and 1,919 
misclassified as Class 1 and Class 2 respectively — leading 
to a precision of over 96%. These results illustrate the 
model’s discriminative power and confirm that it 
effectively distinguishes between subtle differences in 
feature patterns that define each class. 
 What stands out from this confusion matrix is the 
model’s ability to maintain a balanced performance across 
all classes, without favoring any label — a crucial aspect 
in multi-class classification problems. The decision tree’s 
structure contributes significantly to this balance, starting 
with "Score" as the root decision node and gradually 
refining predictions based on DelayMin, 
ThroughputMax, and Priority. This logical flow 
mimics expert decision-making in process allocation, 
where multiple resource parameters must be evaluated 
simultaneously. 
 Moreover, the model’s performance in this test scenario 
validates its robustness under realistic conditions, 
including potential noise or fluctuation in input data. By 
maintaining high recall and F1-scores across all categories, 
the classifier proves its readiness for deployment in 
dynamic cloud environments. In such systems, the ability 
to generalize from a wide range of scenarios — as seen in 
this dataset — is essential to ensure efficient, intelligent, 
and adaptive resource scheduling. 

  
Figure 6. Confusion matrix 

 Before analyzing the decision tree structure in detail, it 
is important to understand the classification labels used 
during training. The model was designed to classify 
processes into one of three distinct classes — Worker 1, 
Worker 2, or Worker 3 — based on a set of features 
including throughput, delay, process size, and priority. 
During dataset generation, the training set maintained a 
balanced distribution among the three classes, with a 
slightly higher concentration in Class 1 due to the 
characteristics of high-priority, high-throughput tasks. This 
balanced but realistic representation ensured that the model 
learned patterns from all categories effectively, minimizing 
bias toward any specific worker during decision-making. 

 
Figure 7. Labels balanced distribution 

 
 To gain insights into how the model makes its 
predictions, an analysis of feature importance was 
performed. The most influential feature turned out to be the 
Score, which combines throughput and delay into a single 
indicator of process efficiency. This is consistent with the 
model architecture, where the score acts as the primary 
splitting criterion in the decision tree. The next most 
important feature was DelayMax, highlighting the impact 
of network delays on the system's decision-making. 
Priority also played a significant role, reinforcing the 
assumption that tasks marked as high priority must be 
processed faster and more efficiently. On the other hand, 
features such as InstructionsMin, InstructionsMax, 
and Area had a minimal impact on the final classification. 
This suggests that, within the current decision tree 
configuration, scheduling-related factors such as delay, 
throughput, and task priority have a greater influence on 
the allocation decision than static process characteristics 
like instruction count or size. 
 

 
Figure 8. ROC Curve comparing training, validation, and 

testing sets 
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 The ROC (Receiver Operating Characteristic) curves 
reveal consistently high classification capability across all 
data subsets, with an AUC of 0.98 on the training set and 
0.97 on both validation and testing sets (see Figure 8). The 
minimal differences among these values indicate strong 
generalization and low risk of overfitting. The model 
demonstrates a steep increase in the true positive rate with 
a very low false positive rate, confirming its robustness in 
handling multi-class classification tasks under varying 
input conditions. 

 
Figure 9. Accuracy comparison across training, 

validation, and testing sets 
 

 Accuracy values remain closely aligned across 
datasets—93% on the training set and 92% on both 
validation and testing (Figure 9), indicating stable 
performance. This slight variation is within acceptable 
limits and reflects a well-regularized model capable of 
maintaining stability and consistency in predictions. The 
balanced performance indicates that the model effectively 
learned underlying patterns in the training data while 
preserving predictive power on unseen examples, thereby 
ensuring reliable deployment in real-world cloud 
environments. 
 The Decision Tree structure provides a detailed 
perspective on how the model analyzes and processes 
information to make optimal classification decisions for 
process allocation. Each split in the tree is based on 
relevant features, allowing for a progressive and efficient 
separation of data, gradually reducing impurities and 
maximizing prediction accuracy. At the core of this process 
lies the root node, which uses the score as the primary 
splitting criterion. Selecting this attribute as the starting 
point in the tree’s structure reflects its importance in 
optimal process classification, as the score is calculated 
based on throughput and delay, two critical factors in 
determining the ideal resource for execution. As the tree 
branches out, intermediate nodes apply additional splits, 
using delay as a secondary major separation criterion. This 
stage further optimizes the decision-making process, 
ensuring that each process is directed to the appropriate 
category with minimal ambiguity. Once the tree reaches its 
terminal nodes, the classification process is complete, and 
each instance is assigned to a well-defined category. The 
terminal nodes represent the model's final decisions, and 
the low or absent impurities at this level indicate a clear 
and precise separation of data. This confirms that the model 
has been effectively trained and has successfully learned 
the essential classification patterns. This hierarchical 
organization of the decision-making process closely 
resembles how Kubernetes manages resource allocation in 

cloud environments. Just as the Kubernetes scheduler 
distributes workloads based on factors such as CPU, 
memory, and delays, the decision tree optimizes process 
distribution based on performance criteria. In both cases, 
the goal was to maximize efficiency, reduce execution 
times, and ensure the optimal utilization of available 
resources. By implementing this decision tree-based 
model, the system achieved a structured and precise 
resource allocation method, which not only enhanced 
process management but also reduced infrastructure 
congestion. Essentially, this mechanism ensures that each 
resource was used intelligently, and task processing was 
carried out in an optimized and predictable manner. This 
decision tree-based approach not only facilitated the 
balanced distribution of resources, but also enabled 
dynamic adaptation to system changes, ensuring flexible 
and efficient task management. By integrating such 
intelligent techniques, the system became capable of 
managing resource allocation more efficiently, 
significantly reducing the risk of overloading certain 
nodes. This enabled a balanced distribution of tasks, 
ensuring that each process was assigned to the most 
suitable node, based on available capacity and the specific 
requirements of the process. Optimizing the execution flow 
not only enhanced system responsiveness but also 
contributed to a more efficient and predictable utilization 
of available resources. In this way, the cloud infrastructure 
becomes more organized and adaptable, allowing it to 
dynamically respond to load variations while maintaining 
stable performance, even under high-demand conditions. 
The scalability of the system was improved, as resources 
were managed automatically and efficiently. Also, 
reliability was enhanced by reducing bottlenecks. 
 Figure 10 illustrates the decision path used by the model 
to classify each process into the appropriate worker class. 
The root node begins with a split based on DelayMax, 
confirming the importance of delay-related parameters in 
initial decision-making. Further branches refine the 
classification using attributes such as Score, 
ThroughputMin, and Priority, ensuring a well-
structured allocation logic. This layout reflects how the 
model prioritizes responsiveness and performance 
efficiency when assigning tasks across workers. The 
purpose of the simulation for model verification was to 
demonstrate how a machine learning model can allocate 
processes to workers, drawing an analogy to Kubernetes 
scheduling.  
 
 

 
Figure 10. Decision Tree structure 

 
 Features such as zone, instructions, size, priority, 
throughput, delay, and score were considered by a decision 
tree-based model to predict the optimal process allocation.  
    The simulation was designed to emulate Kubernetes-

like process scheduling, where tasks are dynamically 
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assigned to computing nodes based on predefined resource 

constraints and system conditions. The core functionality 

of this simulation is centered around two primary classes: 

Cloudlet and Master. In this architecture, the Cloudlet class 

serves as the foundation for simulating processes. Each 

Cloudlet instance encapsulates all the relevant 

characteristics of a task: zone, number of instructions, size, 

priority, throughput, delay, and later, a computed score. 

This class is responsible for receiving input values (e.g., 

from a command-line interface) and transforming them 

into a standardized dictionary format that can be used by 

the machine learning model. 

The abstraction provided by this class mirrors how real-

world orchestration systems manage and structure 

incoming tasks. It ensures modularity and consistency, 

allowing the simulation to treat each task as a fully defined 

object that can be evaluated, scored, and allocated 

efficiently. Complementing the Cloudlet, the Master class 

acts as the central coordinator. It loads the pre-trained 

decision tree model, calculates the score based on the 

Cloudlet's throughput and delay parameters using the same 

logic as in the training phase, and then predicts which 

worker should execute the task. 

Additionally, the Master is responsible for simulating 

task execution by creating directories under the respective 

worker's folder - effectively emulating deployment paths, 

like Kubernetes maps pods to nodes. Each directory 

represents a unit of execution (e.g., one instruction), further 

reinforcing the one-to-one mapping between abstract 

process logic and practical resource scheduling. Figure 11 

illustrates the instantiation of a Cloudlet process, 

encapsulating its features into a structured object ready for 

allocation 

 

 
Figure 11. Creating a process for the model 

 
 Complementing the Cloudlet, the Master Node receives 
the incoming process and analyzes its characteristics to 
determine which worker should execute it (see Figure 12). 
Factors such as priority, number of instructions, 
throughput, and delay are considered to make the optimal 
choice. Once selected, the process is dispatched to the 
appropriate worker node—its execution is animated in 
Figure 13—thus avoiding overloading and ensuring a 
balanced task distribution. 
 Once the appropriate worker was identified, the Master 
forwarded the process for execution. This selection was not 
performed randomly, as it was due to careful analysis. By 
following this structured approach, each process was 
handled according to its requirements, ensuring that the 
system operated in an organized and efficient manner. 
 

 
Figure 12. Animation of process allocation to the model 

 

 
Figure 13. Animation of process allocation to the worker 

 
 The simulation highlighted the potential of integrating 
machine learning into cloud orchestration systems, 
demonstrating how data-driven decisions can significantly 
enhance resource allocation efficiency. By employing a 
model capable of analyzing process characteristics and 
determining optimal allocation, the system became more 
adaptable and efficient.  
 As observed in the simulation, the first incoming 
process was allocated to Worker 1, which was responsible 
for executing the assigned instruction. The model’s ability 
to make accurate predictions ensured that each process was 
directed at the most suitable resource, preventing task 
distribution imbalances. The simulation reflected an 
approach like Kubernetes scheduling, where decision-
making is guided by historical data analysis and learned 
patterns. Just as Kubernetes employs advanced schedulers 
to allocate workloads based on CPU, memory, and network 
delays, the ML-based model followed a similar principle, 
optimizing process execution flow based on precise and 
well-defined criteria. 
 This simulation method represented a powerful strategy 
for efficient task distribution, providing clear insights into 
how machine learning can transform traditional cloud 
orchestration processes. Integrating such techniques could 
lead to better resource utilization, reduced operational 
costs. Also, it increased scalability in distributed 
environments, ensuring a predictive and optimized 
approach to cloud infrastructure management. 
 The decision tree classifier achieves 93 % test accuracy, 
notably outperforming the 90 % reported for the Random 
Forest model in [10] and the 89 % achieved by the SVM-
based approach in [8] on analogous synthetic cloud 
workloads. In addition to higher accuracy, the decision tree 
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requires approximately 30% less training time than the 
Random Forest implementation in [10], reducing overall 
computational cost. Furthermore, the tree’s shallow 
structure (max_depth=5) yields a compact model 
footprint—approximately 40% fewer nodes than the 
ensemble’s combined trees—while preserving 
interpretability. These advantages demonstrate that the 
proposed method not only improves predictive 
performance but also enhances efficiency and 
transparency, making it well suited for real-time cloud 
scheduling scenarios. 
 

IV. CONCLUSIONS AND FUTURE WORK 
This paper introduced a machine learning-based approach 
for intelligent cloud process allocation, utilizing decision 
trees to effectively classify and assign workloads to 
optimal worker nodes. By integrating a wide array of 
process-specific parameters, including zone, instructions, 
size, priority, throughput, and delay. The proposed model 
achieved high allocation accuracy while maintaining 
transparency and interpretability through its tree structure. 
The results confirmed the model’s robustness, achieving 
over 92% test accuracy and showing excellent balance 
across all three worker classes. Even under perturbed data 
scenarios, the system maintained consistent performance, 
highlighting its resilience and generalization capabilities. 
A critical factor in this success was the design of the data 
pipeline: feature engineering, score normalization, and 
controlled scenario generation ensured diverse and 
meaningful learning examples. 
 Through a simulation framework inspired by 
Kubernetes orchestration, the system showcased how AI 
models can emulate and enhance real-world scheduling 
mechanisms. The Cloudlet and Master classes mirrored 
Kubernetes pods and schedulers, enabling process 
creation, scoring, and allocation in a structured and 
reproducible manner. The graphical simulation further 
emphasized the traceability and clarity of the model’s 
predictions. The decision tree-based model proved to be an 
efficient and interpretable solution for real-time task 
allocation, making it a viable candidate for integration into 
production-grade cloud orchestration platforms. 
 Future work will extend the decision tree allocator to 
multi-tenant cloud environments, evaluating its ability to 
maintain fairness and efficiency when workloads contend 
for shared resources. Incorporating reinforcement-learning 
agents into the scheduling loop may enable continuous 
adaptation to real-time throughput and delay fluctuations, 
while hybrid models could combine the interpretability of 
decision trees with the predictive power of deep learning. 
Validation on public cloud traces—such as high-
performance computing and web-service logs—will assess 
practical applicability under production conditions. 
Finally, end-to-end benchmarking against established 
schedulers (Kubernetes’ kube-scheduler) will quantify 
improvements in throughput, latency, and cost savings, 
guiding seamless integration into operational cloud 
platforms. 
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