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Demodulation of the LM signals – principles 
 

1. Non-coherent demodulation of the DSB-C (AM) signals 

 0 c M
AM c c c 0 ref

ref c

V g g f (t)
s (1 )cos t g (1 mf (t) cos t; for V V ;

V g

⋅ ⋅
= + ω = + ω =  (1) 

 

- the demodulation is performed by an envelope detector (see annex 2) followed by the suppression of the d.c. 

component (HP filtering); 

 

MA non-coherent demodulator with envelope detector 
 

- the envelope detector extracts a signal that is proportional to ampli-
tude variation (i.e. the envelope) of the input AM modulating signal: 

 

e c e c e c es (t) g (1 m f(t)) g g m f(t)= ⋅η + ⋅ = ⋅η + ⋅η ⋅ ⋅                                           (2) 

- after the HP-filtering of the d.c. component by the capacitor C and the Zin of the audio amplifier, the 

demodulated signal is: 

 o c es (t) g m f (t)) A f (t)= ⋅η ⋅ ⋅ = ⋅  (3) 

- the operation principles of the main types of envelope detectors are presented in Annex 2 
 

2. Demodulation of the LM signals  
- the general expression of the LM signals (4) does not allow for the demodulation with the simple envelope 

detection, but more elaborate methods are required;  

 ;tsin)t(g
2

1
tcos)t(g

2
)t(s cqcLM ωω

α
= ∓  (4) 

 Coherent-product LM demodulator 
 

- it consists of a multiplication between the received 

modulated signal and a locally recovered carrier 

followed by a LP filtering   (with a cut-off frequency 

ft > fmM) and the removal of the d.c. component (if 

any),  performed by the HPF made of capacitor C and Zin, the input impedance of the audio amplifier. 

- the local carrier has a frequency offset dω = 2π∙df and an initial phase offset Φ0, which generate a time-

varying phase offset Φ(t) expressed as: 

0 0(t) 2 df t tπ ωΦ = ⋅ ⋅ + Φ = ∆ ⋅ + Φ                                                          (5) 

- the principle of this demodulation method is described by: 

 

q
x c c 0 c ref

0 q0
c c

ref ref

g (t)g(t)
s (t) ( cos t sin t) A cos( t (t)) / V

2 2

A g (t)A g(t)
[cos (t) cos(2 t (t)] [ sin (t) sin(2 t (t)]

4V 4V

α
= ω ω ⋅ ω + Φ =

αα
= Φ + ω + Φ − Φ + ω + Φ

∓

∓

 (6) 

- the multiplication splits the spectrum of the modulated signal, which is around fc, into two spectra, see the 

right-hand figure below: 

Spectra of the modulated LM signal sLM (left) and local-carrier multiplied LM signal sx (right) 
 

- one in the baseband, limited by fmM, the first term in both square brackets; 

- one centered around 2fc, which has the same BW as the modulated signal. 
 

- if we impose that:                               ωmM < 2 ωc - ωmM ↔ ωmM < ωc (7) 
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fc-β 

fc+β fc+fmM 

fc+fmM+β 

fc 

s
2

LM(t)/ Kx BP filter 

2ωc 
    :2 

BP filter 

ωc sLM(t) s2(t) sf(t) 
sL(t) sD(t

) 
V1cosct 

Ph-shift 

φ2 at ωc 

then the spectrum around 2fc can be removed by LP filtering from the sx(t) signal. 

- the filtered signal sf(t) is: 

 
0 q0 0

f f
ref ref ref

A g (t)A g(t) A g(t)
s (t) cos (t) ( sin (t)); s (t) for (t) 0

4V 4V 4V

αα α
= Φ − Φ  = Φ →∓  (8) 

- the corresponding efficiency factor of this demodulator equals:             ηe =A0/(2Vref)      (9) 

Methods employed for the carrier recovery 

- the locally generated carrier signal should have the same phase as the incoming modulated signal so that the 

demodulation should deliver an undistorted signal (except for AM signals) 

-  recalling (5), we have:   ωlt = ωct+d(ωt)+Φ0 = ωct + Φ(t); for a correct demodulation we need Φ(t) → 0. 
- this operation called “carrier recovery” involves the “extraction” of a phase-reference signal, followed 

sometimes by an initial synchronization to remove Φ0 and a dynamic synchronization to compensate for  d(ωt)  

- the carrier recovery methods are divided into: methods employing only the received modulated signal and 

methods employing additional pilot signals sent by the transmitter. 
 

The Quadratic method for the carrier recovery  

- it employs only the received modulated signal;  

- the operating principle is described below considering (for simplicity) sLM(t) = g(t)cosωct 

Quadratic method 

carrier recovery – 

block diagram  
 

t2cos
K2

)t(g

K2

)t(g
)t(s c

x

2

x

2
2 ω+= ;                                            (10)    

                                                    
2

f c

x

g (t)
s (t) cos2 t

2K
= ω ;                                                     (11) 

- after a narrow-band BP filtering the signal transformed into a rectangular one by a clamping amplifier: 
 

 
n

c
L

k 0

sin 2(2k 1) t4V
s ( t )

2k 1=

+ ω
= 

π +
 (12) 

 

- then, being regarded as a digital signal, it is divided by 2 in frequency: 
 

 
n

c
D

k 0

sin(2k 1) t4V
s (t)

2k 1=

+ ω
= 

π +
 (13) 

 

- a last narrow-band BP filtering, centered around ωc, retains the first term of the sum (13), delivering the 
sinusoidal recovered carrier, 4V(sin ωct)/π. 

- the processing chain described above inserts a constant phase shift φ1 of the recovered carrier, refered to the 

received signal. The output phase-shift circuit inserts an additional phase-shift of φ2 = π/2 - φ1, to deliver the 

recovered carrier signal (- cosωct). Optionally, this phase-shift can be removed by the synchronization, see the 

lectures on Baseband transmissions. 

- another class of carrier recovery methods employs the transmission of additional pilot signals, on a priori 

known frequencies, besides the modulated signal 

- as an example, the complex TV signal includes two pilot signals;  

- the VSB signal lies between [fc-β, fc+fmM] with the vestige [fc-β, fc] 

of the suppressed sideband; used in analog TV broadcast 

- two additional pilot signals are transmitted on fc-β, and fc+fmM+β. 
This carrier recovery method is described in [Ed.Nicolau]. 

Demodulation of the QAM signals  
- the QAM demodulator uses the fact that the two 

carrier signals are relatively orthogonal (see eq (23) in 

the previous LM lecture) 

- the demodulator’s block diagram is shown in the 
neighbouring figure.  

QAM demodulator – block diagram 
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- assuming that the transmission channel is ideal, the received signal (after the input BP filtering) should be 

written as (14): 

( ) ( ) ( ) ( ) ( )cos sinrf I c Q cs t g t t g t tω ω= − ⋅                                       (14) 
 

- the locally generated carrier signals exhibit a pulsation shift dω and an initial phase shift Φ0 relative to the 

incoming carrier signals and hence are as: 

( ) ( )( ) ( ) ( )( )0 0cos ; sinω ω ω ω= + + Φ = − + + ΦIL c QL cs t A d t s t A d t                  (15) 

- the signal after the multiplier on the in-phase branch ix(t) is expressed by: 

 

( )
( )

( )
( ) ( ) ( ) ( )

( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( )
( ) ( )( )
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ω ω

ω ω ω ω ω ω
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−

− ⋅
= ⋅ = + + Φ =

   = ⋅ + + Φ − ⋅ ⋅ + + Φ =   

  + Φ + + + Φ 
= ⋅ −  

    

− ⋅
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d t d tA
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V
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=  

    

 = + Φ − + Φ + ⋅

 + + + Φ − + + Φ ⋅
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I Q

ref I

I c Q c
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d t d t

A
g t d t g t d t

V

A
g t d t g t d t

V

 (16) 

- the signal after the multiplier on the quadrature branch cx(t) is expressed by: 
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ω ω ω ω ω ω
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− −

−

−

− ⋅
= ⋅ = ⋅ − + + Φ =

   = − ⋅ + + Φ − − ⋅ ⋅ + + Φ =   

  + + Φ + + Φ 
= − ⋅ −  

    

− −
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g t

V

A
g

V
( )

( ) ( )( )
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(17) 

- the signals ix(t) (16) and cx(t) (17) are fed to the LP filters. These filters are intended to suppress the spectral 

components placed around the 2·fc frequency.  

- the signals resulting at the outputs of the two LP filters are: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

0 0

cos sin
2

sin cos
2

ω ω

ω ω

−

−

 = + Φ − + Φ ⋅
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F I Q

ref I

F I Q

ref Q

A
i t g t d t g t d t

V

A
c t g t d t g t d t

V

 (18) 

- choosing the amplitude of the local carrier signals and the value of the reference voltage, so that: 

 1
2 2ref I ref Q

A A

V V− −

= =
⋅ ⋅

 (19) 

 and assuming a perfect recovery of the local carrier signals, i.e.:  
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0

0; 0;ω = Φ =d  (20) 

- the signals at the outputs of the LP filters become (substituting (19) and (20) in (18)): 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

cos 0 sin 0

sin 0 cos 0

F I Q I

F I Q Q

i t g t g t g t

c t g t g t g t

= − =

= − + =
 (21) 

 

Effects of the incorrect recovery of the locally generated carriers 

a. the local carriers have the same frequency as the received ones, but exhibit a phase-shift relative to the 

received ones, i.e.: 

  
00; .ω = Φ =d ct                                                                            (22) 

- the signals at the LP filters’ outputs would be (substituting (19) and (22) in (18)): 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

cos sin

sin cos

F I Q

F I Q

i t g t g t

c t g t g t

= Φ − Φ

= − Φ + Φ
 (23) 

- since the phase-shift Φ0 is constant, and the functions cos(Φ0) and sin(Φ0) would have constant values, the 

signal demodulated on one of the two branches would be composed of the signal transmitted on that branch, 

attenuated by cos(Φ0), summed with the signal sent on the other branch, weighted by sin(Φ0) – the 

phenomenon is denoted by inter-carrier interference  

- since │cosΦ0 │<1, for Φ≠ 0°, the demodulated signal might suffer a significant attenuation 

b. the locally generated carriers have a frequency offset w.r.t. the frequency of the received carriers 

- in this case, dω ≠ 0, the demodulated signals would have the expression (18), for (Φ0) = 0º, i.e. the 

demodulated signals are no longer proportional to the signals transmitted on the two branches. They are 

weighted by time-variable signals and other time-variable signals are added to them. → 

- for a correct demodulation of the QAM signals, the locally generated carriers should be synchronized to the 

transmitted ones, dω = 0, as for any coherent demodulator. 

- note that in practice a small value of Φ0 (≠ 0) is acceptable 

Remark: The quadratic method for the carrier recovery cannot be applied to the QAM modulated signals due 

to the fact that they are bi-dimensional signals. Prove this statement! 
 

Signal-to-noise ratio performances of the linear modulations 
 

Considerations regarding the Gaussian (White) Noise   
- assuming the modulated signal is transmitted across a channel with a flat frequency characteristic, the recived 

signal can be expresed as: 

 ( ) ( ) ( )r ts t s t n t= +   (24) 

- in most theoretical analyses of the performance provided by various modulations, the noise signal ( )n t  is 

modeled as a „white noise” having a normal (Gaussian) distribution of its amplitude, i.e. a AWGN (Additive 
White Gaussian Noise) signal. 

def. A noise signal is denoted as white  if its power spectral distribution is uniform (constant) over a very large 

frequency range. 
- the white noise power spectral density is denoted by N0, and defines the average power of this signal within a 

given bandwidth BW, i.e. Pn-av = BW∙No. Usually the measuring unit of N0 is:  

 [ ]0

dBm
N

kHz
=   (25) 

def. Gaussian noise – a random signal whose amplitude has a normal (Gaussian) distribution, i.e. the 

probability that the value on ( )n t , at time instant t to be x is given by its probability density function 

( ), ,pdf x σ µ , expressed by:: 

 ( )( ) ( )
( )

2

2

1
, , exp

22

x
P n t x pdf x

µ
σ µ

σπ σ

 −
= = = − 

 
 

  (26) 

where µ  denotes the average (mean) value, while σ denotes its variance.  

Note:  the power of the noise signal is directly proportional to σ2
, i.e. σ2

 = N0∙BW.  

- the mean value of AWGN is zero, i.e. 0µ = . 
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- the probability that the noise value would be smaller than a given value x, at time instant t, which is the 

cumulative distribution function (cdf(x)), is expressed as:  

 ( )( ) ( ) ( )
( )

2

2

1 1
, , , , exp 1

2 22 2

x x
x

P n t x cdf x pdf d d erf
τ µ µ

σ µ τ σ µ τ τ
σπ σ−∞ −∞

 −  − 
< = = = − = +         

    (27) 

wher erf(x) (error function) is the function defined as:: 

 ( )
22

x

erf x e dτ τ
π

−

−∞

=    (28) 

- the pdf(x) and cdf(x) of a Gaussian random variable are presented in the figures below for various values of 

its variance σ and a null mean value 
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PDF and CDF of the Gaussian noise for different values of σ ( 0µ = ) 

-  the probability of the noise signal to have a value greater or equal to x, is of particular importance for 

communications, this probability being expressed by the so-called Q function, 
x

Q
µ

σ

− 
 
 

, defined as: 

 ( )( ) ( ) ( )
1

, , 1 , , 1
2 2x

x x
P n t x Q pdf d cdf x erf

µ µ
τ σ µ τ σ µ

σ σ

∞  − −  
> = = = − == −    

    
   (29) 

- since the received signal is band-pass filtered at the receiver’s input with a pass-band equaling the bandwidth 
of the modulated signal BW, the modulated signal is actually summed with narrow-band noise.  

- the power of the narrow-band noise (PN) is then: 

 2

0N
P N BW σ= ⋅ =   (30) 

- a narrow-band noise can be expressed as a QAM signal [Haykin]: 

 ( ) ( ) ( ) ( ) ( )cos 2 sin 2I c Q cn t n t f t n t f tπ π= −   (31) 

- in (31) ( )In t  and ( )Qn t  are Gaussian-distributed random signals, with zero-mean and variance σ ; their 

bandwidth is BW/2 and their spectral power density equaling N0. 

- knowing that: 

 ( ) ( ) 2 2 1cos sin cos tan
b

a x b x a b x
a

−  
⋅ − ⋅ = + ⋅ −   

  
  (32) 

the signal defined in (31) can be rewritten as [Proakis1]: 

 ( ) ( ) ( )( )cos cn t R t t tω= ⋅ + Ψ   (33) 

where:                             ( ) ( ) ( ) ( )
( )
( )

2 2 1; . tan ; .−
 

= + Ψ = −   
 

I

I Q

Q

n t
R t n t n t a t b

n t
                                            (34) 

 - the envelope of the BP-filtered noise, expressed by (34), is a random signal with a Rayleigh distribution, 

[Lathi], [Haykin]: 

 ( )
2 2/2

2
Rx

R

R

x
P x e σ

σ

−=   (35) 

- the inserted phase shift ( )tΨ  has a uniform distribution in the [ ]0, 2π  interval. 
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SNR performance of coherently-demodulated linear modulations on AWGN channels 

- considering the general expression of LM signals see (40) in the previous LM lecture, and the narrow-band 
noise expressed by (31), the expression of the received signal affected by noise is: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

( ) cos ( ) sin
2 2

r ML I c q Q cs t s t n t g t n t t g t n t t
α

ω ω
   

= + = + − ± +      
  (36) 

- the signal/noise ratio, i.e. the ratio of the received signal’s power at the demodulator’s input (expressed in the 

previous LM lecture by (16) for DSB-C, (26) for DSB-SC and (35) for SSB) over the power of the narrow-
band noise, expressed by (30), equals: 

- DSB-C (BLD+P) 

 

� ( )( )
� ( )( )

2 2 2

2 2 2

0 0

1
1

2 ;
2 2

c

c
DSBC

DSBC i

N i mM

g m f t

g m f tP

P N BW N f
ρ −

−

+
+

= = =
⋅ ⋅ ⋅

  (37) 

- DSB-SC (BLD-PS) 

 

� ( )
� ( )

2 2

2 2

0 0

2 ;
2 2

M

MDSB SC
DSBSC i

N i mM

g f t
g f tP

P N BW N f
ρ −

−

−

= = =
⋅ ⋅

  (38) 

- SSB (BLU) 

 

� ( )
� ( )

2 2

2 2

0 0

4 ;
4

M

MSSB
SSB i

N i mM

g f t

g f tP

P N BW N f
ρ

−

−

= = =
⋅ ⋅

  (39) 

- if the received signal (36) is fed into the coherent ML demodulator, the demodulated signal will be, see (6) 

and (8): 

 ( ) ( )0 ( )
2 2

f I

A
s t g t n t

α 
= +  

  (40) 

- provided that the local carrier is synchronized to the received carrier, the SNR at the demodulator’s output, 
after the removal of the d.c. component (when present), would be expressed for different LM modulations 

(different values of α) by: 

• the power of the received demodulated signal is expressed by (41) for a periodic signal g(t) : 

 ( ) ( ) � ( )
2 2 2 2 2 2 22 2

2 20 0 0

2 2

1 1
lim lim

4 16 16

T T

M M
s o

T T
T T

A A g A g
P g t dt f t dt f t

T T

α α α
−

→∞ →∞

− −

= = ⋅ = ⋅    (41) 

- replacing the value of α, we get the expressions of the average power for different LM modulations at the 

demodulator’s output, see (41) and (42) of the first LM lecture:  
o DSB 

 � ( ) � ( ) � ( )
2 2 2 2 2 2 2 2

2 2 20 0 0
2

16 16 4

M M M
DSB o

A g A g A g
P f t f t f t

α
− = ⋅ = ⋅ = ⋅   (42) 

o SSB 

 � ( ) � ( ) � ( )
2 2 2 2 2 2 2 2

2 2 20 0 0
1

16 16 16

M M M
SSB o

A g A g A g
P f t f t f t

α
− = ⋅ = ⋅ = ⋅   (43) 

• the noise power at the output of the demodulator in DSB transmissions will be: two sidebands! 

 ( ) ( )
2 2 2 22 2

20 0 0 0
0 0

2 2

1 1
lim lim 2

2 4 4 2

T T

N o I I M
T T

T T

m

A A A A
P n t dt n t dt N BW N f

T T
−

→∞ →∞

− −

= = ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅    (44) 

while for the SSB it will be (only one sideband!): 

 ( ) ( )
2 2 2 22 2

20 0 0 0
_ 0 0

0

2

1 1
lim lim

2 4 4 4

T T

N BLU o I I M

T

m
T T

A A A A
P n t dt n t dt N LB N f

T T
−

→∞ →∞

−

= = ⋅ = ⋅ ⋅ = ⋅ ⋅     (45) 

- using the above relations the signal-to-noise ratio (in linear representation) would become: 
- DSB-C – after the removal of the d.c. component: 
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� ( ) � ( )

2
2 20

2 2 2

2

0 0
0

4 ;
2

4

M
cDSBC o

DSBC o

N o mM
M

A
g f t g m f tP

AP N f
N f

ρ −
−

−

⋅ ⋅
= = =

⋅ ⋅
⋅ ⋅

  (46) 

- the ratio between the two signal-to-noise ratios 
DSBC oρ −

 and 
DSBC iρ −

 is: 
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  (47) 

- the ratio η  (47) represents the „demodulator’s gain”; for m = 1 and f(t) = cosωmt, we get η= 2/3. 

- DSB-SC 

 

� ( ) � ( )

2
2 20

2 2

2

0 0
0

4 ;
2

2

M
MDSBSC o

DSBSC o

N o mM
M

A
g f t g f tP

AP N f
N f

ρ −
−

−

⋅ ⋅
= = =

⋅ ⋅
⋅ ⋅

  (48) 

 and the demodulator’s gain for DSB-SC equals: 
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- SSB 
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and the demodulator’s gain is: 
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- the DSB-SC’s gain is two times greater than SSB’s gain due to the two side bands! This is its only advantage 

SNR performance of DSB-C demodulated with an envelope detector on AWGN channels  
- the DSB-C (AM) signal affected by the narrow-band noise is expressed by: 

 ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )1 cos sin 2r MA c I c Q cs t s t n t g m f t n t t n t f tω π= + = + ⋅ + ⋅ −     (52) 

- by using (32) equation (52) can be expressed as: 

 ( ) ( ) ( ){ } ( ) ( )( )
2

21 cos
Qr c I cs t g m f t n t n t t tω= + ⋅ + + ⋅ + Θ     (53) 

- the envelope detector extracts the envelope of this signal, proving an output signal expressed by: 

 ( ) ( ) ( ){ } ( )
2

21
Qr c IA t g m f t n t n t= + ⋅ + +     (54) 

- we will consider now the two extreme cases of the ratio between the level of the modulated signal’s envelope 

and the noise level. Then we get: 
a) Envelope level significantly greater than noise level, i.e. the probability that the signal level is greater than 

noise level is close to unity, ( ) ( )( )1 1+ ⋅ >> ≈  cP g m f t n t  

- in this case the signal at the envelope-detector’s output can be approximated by: 

 ( ) ( ) ( ){ } ( ) ( )
2

1 1r c I c IA t g m f t n t g m f t n t≈ + ⋅ + = + ⋅ +         (55) 
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- (55) shows that at the demodulator’s output we get approximately the same signal as at the output of a 

coherent demodulator, the difference being given by a multiplicative constant A0α/(4Vref), see (8) for DSB-C. 
Therefore, the signal-to-noise ratio at the demodulator’s output would be expressed by (46), while the 

demodulator’s gain is expressed by(47). 
- the above considerations and (55) show that if the signal-to-noise ratio’s value at the demodulator’ input is 

great, the non-coherent demodulator provides about the same performance as the coherent demodulator.   

b) Envelope level significantly smaller than the noise level, i.e. the probability that the signal level is smaller 

than noise level is close to unity, ( ) ( )( )1 1+ ⋅ << ≈  cP g m f t n t  

- the analysis of this particular case is presented in Annex 3 

- the expression of the signal at the output of the envelope detector is, see Annex 3: 

( ) ( )
( )

( )
( )1≈ + + ⋅  

c I

r

g n t
A t R t m f t

R t
                                                             (56) 

- expression (56) shows that the demodulated signal is no longer proportional to the modulating function 

( )f t ; the noise is no longer added to the useful signal, but it is multiplied to the useful signal (due to the non-

linear processing performed by the demodulator). Moreover, this product is added to a noise-signal R(t) with a 

Rayleigh distribution. In this case the output signal is „dominated” by noise generating the so-called “noise 

captured” demodulation. 

- note that AM demodulated with a non-coherent demodulator is the only LM modulation that exhibits such a 

phenomenon, which is common for the FM – to be discussed in the FM lectures. 
 

Conclusions regarding the SNR performance of linear modulations 

• the “noise captured” demodulation occurs only for non-coherently demodulated AM. 

• the demodulator’s gain (or SNR improvement factor) η, has the greatest value for DSB-SC, η = 2 (but 

it uses a double BW); for SSB η  = 1 (but it uses a half-bandwidth). The value of η for AM is η  ≤ 2/3. 
(its value  is also depending on the modulating signal’s shape).   
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Annex 2 

Envelope detectors - this annex is not required for the exam 

- the task of the envelope detector is to extract the baseband signal, “contained” in the envelope of the 

modulated signal  

- the task is accomplished in two steps: a non-linear processing, in this case a one-way or a two-way 

rectification, followed by a low-pass filtering; 

- a HPF can be inserted to suppress the d.c. component, if needed,– 

see the neighbouring figure; 
 

           AM non-coherent detector with a rectifier envelope detector 
 

Averaging detector  

- it usually employs a one-way rectification of the input signal (a diode) followed by a LP filtering. 

- since the diode is controlled by the amplitude of the input signal, the ideal diode acts like an interrupter;  

- rewriting the Fourier series of the interruption function, see  (34) in the first LM lecture, for an ideal diode!, 

we get (57) because the diode is open with the frequency of the carrier signal: 

 
i

i i i c c

i

1 if s ( t) 0; 1 2 2
f (s ( t)) f ( t ) sin t sin 3 t...

0 if s ( t) 0; 2 3

>
= = + ω + ω

≤ π π
 (57) 

 

- the output signal is the product of the input signal with the interruption function (controlled by the input 

signal); in (59) A(t) denotes the envelope of the modulated signal, i.e.  (59). 

- if the spectra of the first two terms of (59) are separable, i.e. :       fmM < fc – fmM ↔ 2fmM < fc                           (58) 
  

the low-pass filtering extracts only the baseband signal. 

Redresor mono/bi 
alternantasi(t) sx(t)

R0 C0

C

Zin
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r i i i c c c

c c c c c

c

1 2 2
s (t) s (t) f (s (t)) A(t) sin( t (t)) [ sin( t (t)) sin 3( t (t))...]

2 3

A(t) 2A(t) 2A(t)
sin( t (t)) sin( t (t)) sin( t (t)) sin( t (t)) sin 3( t (t))...

2 3

2A(t) A(t)
sin( t (t))

2 2

= ⋅ = ω − Θ ⋅ + ω − Θ + ω − Θ =
π π

= ω − Θ + ω − Θ ω − Θ + ω − Θ ω − Θ
π π

= + ω − Θ −
π

c
A(t)

K co s 2( t (t)) ..⋅ ω − Θ +
π

   (59) 

- as seen in (59), the one-way rectification (due to its non-linearity) inserts more spectra that contain the 

modulating signal, out of which one is the modulating signal’s baseband spectrum and the others care centered 

around the harmonics of the carrier frequency. 

- to perform the LP filtering  of the signal (59) the R0C0 constant should observe: 

 ;
f2

1
CR;

f2

1
CR

c
00

mM
00

π
>

π
<  (60) 

  

- the output signal is expressed by the first term of the last line in (59), where ηe = 1/π is called the detector’s 
efficiency (constant). 

- then, the d.c. removal is performed by the right-hand RC group of the above figure 
- the above considerations hold for an ideal diode;  

- for the real diode the analysis is more complex [see ref. E. Nicolau], due to the opening voltage of the diode. 
- denoting by Uo the opening voltage of the diode, the modulated signal’s amplitude A(t) should observe (61) 

to ensure the operation of detector, for a modulation index equaling m:        

 oA(t) 4U /(1 m)> −   (61) 

- if condition (61) is fulfilled, the envelope detector is considered to be an average detector 

- if condition (61) is not fulfilled all the time by the input signal → the detector acts like a peak detector 

- due to the fact that for some alternations of the input signal (the modulated signal), the diode is not open (due 

to their small amplitudes), the output signal does not follow the envelope of the modulated signal, generating 

the “non-pursuit” distortion, see ref. E. Nicolau 
- as shown in the above-mentioned reference, this distortion could be decreased if: 
 

2Re(C+C0) < 1/(2πfmM);  Re= Zin ║ R0/2;  - condition which ensures ft > fmM                     (62) 

 

2ZinC > R0C0 – condition for the non-occurrence of the “non-pursuit” distortion                  (63) 
 

- this shortcoming could be avoided (decreased) if an active OpAmp-based 2-way rectifier is employed. 
 

Annex 3 - this annex is not required for the exam 

SNR performance of DSB-C demodulated with an envelope detector on AWGN channels 
b) Envelope level significantly smaller than the noise level, i.e. the probability that the signal level is smaller 

than noise level is close to unity, ( ) ( )( )1 1+ ⋅ << ≈  cP g m f t n t  

- in this case the signal at the envelope-detector’s output can be approximated by: 
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  (64) 

- since the noise is much greater than the signal’s envelope, the term ( )
22 1

c
g m f t+ ⋅    is significantly smaller 

than the first term, so it can be neglected. Then, taking into account (34), relation (64) is approximated by: 

 ( ) ( ) ( )( ) ( )
( ) ( )

( )
( )

( )
( )2 2

2 2 2

2 2
1 1 1
 

≈ + ⋅ + == + + ⋅    +  
I Q

I Q

c I c I

r

g n t g n t
A t n t n t R t m f t

n t n t R t
  (65) 

- if we approximate 1 1
2

ε
ε+ ≈ +  for ε  sufficiently small, (65) becomes (66) which proves (56): 

 ( ) ( )
( )

( )
( ) ( )

( )

( )
( )2

1 1 1
 

≈ + + ⋅ == + + ⋅       
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c I c I
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  (66) 


