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Preface to the Third Edition

The 1972 edition of Speech Analysis, Synthesis, and Perception defined the highest possible standards
of scientific precision in the field of speech engineering, and especially in the foundational scientific
disciplines upon which speech engineering is based: acoustics, audition, probability, and signal
processing. Treatment of speech acoustics in the second edition continues to be unmatched by any
other text. The other three foundational disciplines have moved on, leaving the 1972 edition behind.
The goal of this third edition of Speech Analysis, Synthesis, and Perception is to teach twenty-first
century acoustics, audition, probability, and signal processing with the same high standards that
Flanagan applied in 1972.

James Flanagan, Warren Township, New Jersey
Jont Allen, Urbana, Illinois
Mark Hasegawa-Johnson, Urbana, Illinois
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Preface to the Second Edition

The first edition of this book has enjoyed a gratifying existence. Issued in 1965, it found its intended
place as a research reference and as a graduate-level text. Research laboratories and universities
reported broad use. Published reviews—some twenty-five in number—were universally kind. Sub-
sequently the book was translated and published in Russian (Svyaz; Moscow, 1968) and Spanish
(Gredos, S.A.; Madrid, 1972).

Copies of the first edition have been exhausted for several years, but demand for the material
continues. At the behest of the publisher, and with the encouragement of numerous colleagues, a
second edition was begun in 1970. The aim was to retain the original format, but to expand the
content, especially in the areas of digital communications and computer techniques for speech signal
processing. As before, the intended audience is the graduate-level engineer and physicist, but the
psychophysicist, phonetician, speech scientist and linguist should find material of interest.

Preparation of the second edition could not have advanced except for discussions, suggestions
and advice from many colleagues. In particular, professors and scientists who have used the book
in their university lectures, both here and abroad, provided valuable comment about organization
and addition of new material. Also, research colleagues, especially my associates in the Acoustics
Research Department at Bell Laboratories, provided critical assessment of technical data and views
about emphasis. To list individually all who influenced these factors would require inordinate space.
Rather, I commend to you their many scientific contributions described among the following pages.
Naturally, any shortcomings in exposition or interpretation rest solely with me.

The task of examining page proofs was shared, with notable enthusiasm, among several associates.
I owe special thanks to Doctors L. R. Rabiner, R. W. Schafer, N. S. Jayant, A. E. Rosenberg, J. L.
Hall, R. C. Lummis, J. M. Kelly and J. R. Haskew for this assistance. Further, I am indebted to my
company, Bell Laboratories, for supporting the work and making its facilities available for typing
and drafting. My secretary, Mrs. B. Masaitis, bore the brunt of this work and deserves special
praise. As earlier, the efficient staff of Springer, through the organization of Dr. H. Mayer-Kaupp,
shielded me from many details in actualizing the printed volume. Finally, again, to my wife and sons
I express warm thanks for their contribution of weekends which might have been spent otherwise.

James Flanagan
Warren Township, New Jersey
January 15, 1972
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Preface to the First Edition

This book has its origin in a letter. In November of 1959, the late Prof. Dr. Werner Meyer-Eppler
wrote to me, asking if I would contribute to a series he was planning on Communication. His book
“Grundlagen und Anwendungen der Informationstheorie” was to serve as the initial volume of the
series.

After protracted consideration, I agreed to undertake the job provided it could be done outside my
regular duties at the Bell Telephone Laboratories. Shortly afterwards, I received additional respon-
sibilities in my research organization, and felt that I could not conveniently pursue the manuscript.
Consequently, except for the preparation of a detailed outline, the writing was delayed for about a
year and a half. In the interim, Professor Meyer-Eppler suffered a fatal illness, and Professors H.
Wolter and W. D. Keidel assumed the editorial responsibilities for the book series.

The main body of this material was therefore written as a leisuretime project in the years 1962
and 1963. The complete draft of the manuscript was duplicated and circulated to colleagues in
three parts during 1963. Valuable comments and criticisms were obtained, revisions made, and the
manuscript submitted to the publisher in March of 1964. The mechanics of printing have filled the
remaining time.

If the reader finds merit in the work, it will be owing in great measure to the people with whom
I have had the good fortune to be associated. In earlier days at the M.I.T. Acoustics Laboratory,
my association with Professor K. N. Stevens, Dr. A. S. House, and Dr. J. M. Heinz was a great
privilege. During this same time, and on two separate occasions, Dr. G. Fant was a guest researcher
at the M.I.T. laboratory. Later, during a summer, I had the priviledge of working as a guest in Dr.
Fant’s laboratory in Stockholm. On all occasions I profited from his views and opinion.

In more recent times, my associates at Bell Laboratories have been a constant stimulus and
encouragement. Beginning with Dr. J. R. Pierce, under whose direction research in speech and
hearing has taken on renewed vigor, Doctors E. E. David, Jr., M. R. Schroeder, M. V. Mathews,
J. L. Kelly, Jr., N. Guttman, P. B. Denes, G. G. Harris, and many, many others have provided
sage advice, valuable collaboration and a stimulating research atmosphere. I am certain that this
collection of technical talent is duplicated at no other place in the world.

I am greatly in the debt of numerous colleagues for valuable criticism and comment of the draft
material. Their appraisals have aided materially in the revisions. Besides several of those already
named, Professor G. E. Peterson and Dr. H. K. Dunn, and a number of their associates at the
University of Michigan, provided a wealth of valuable suggestions. Professor Osamu Fujimura of
the University of Electro-Communications, Tokyo, supplied many penetrating remarks, particularly
on points relating to vocal-tract acoustics. Dr. W. A. Van Bergeijk of Bell Laboratories reviewed
Chapter IV in detail. Messrs. A. M. Noll, J. L. Sullivan, and H. R. Silbiger, also of the Laboratories,
studied the entire manuscript and supplied numerous helpful comments.

It is with deep regret that I conclude this effort without the counsel of Professor Meyer-Eppler.
I sincerely hope that it fulfills his original concept of the volume. I wish to express my appreciation
to Professor Wolter and to Professor Keidel for their continued support during the preparation.
Also, the many details could not have been surmounted without the help of Dr. H. Mayer-Kaupp
of Springer.

Finally, to my wife and family I express my deep appreciation for their contribution of my time.

James Flanagan
Warren Township, New Jersey
July 29, 1964



Contents

1 Voice Communication 1
1.1 Speech as a Communication Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Entropy of the Speech Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Conditional Entropy of Received Speech . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Capacity of the Acoustic Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Organization of this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Mechanism of Speech Production 13
2.1 Physiology of the Vocal Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The Sounds of Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Vowels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Consonants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Quantitative Description of Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Acoustical Properties of the Vocal System 27
3.1 The Vocal Tract as an Acoustic System . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Equivalent Circuit for the Lossy Cylindrical Pipe . . . . . . . . . . . . . . . . . . . . 29

3.2.1 The Acoustic “L” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 The Acoustic “R” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 The Acoustic “C” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 The Acoustic “G” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5 Summary of the Analogous Acoustic Elements . . . . . . . . . . . . . . . . . 35

3.3 The Radiation Load at the Mouth and Nostrils . . . . . . . . . . . . . . . . . . . . . 36
3.4 Spreading of Sound about the Head . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 The Source for Voiced Sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Glottal Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Sub-Glottal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.3 Glottal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.4 Source-Tract Coupling Between Glottis and Vocal Tract . . . . . . . . . . . . 48
3.5.5 High-Impedance Model of the Glottal Source . . . . . . . . . . . . . . . . . . 50
3.5.6 Experimental Studies of Laryngeal Biomechanics . . . . . . . . . . . . . . . . 50

3.6 Turbulent Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 The Source for Transient Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8 Some Characteristics of Vocal Tract Transmission . . . . . . . . . . . . . . . . . . . 56

3.8.1 Effect of Radiation Load upon Mode Pattern . . . . . . . . . . . . . . . . . . 57
3.8.2 Effect of Glottal Impedance upon Mode Pattern . . . . . . . . . . . . . . . . 60
3.8.3 Effect of Cavity Wall Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8.4 Two-Tube Approximation of the Vocal Tract . . . . . . . . . . . . . . . . . . 64

v



vi CONTENTS

3.8.5 Excitation by Source Forward in Tract . . . . . . . . . . . . . . . . . . . . . . 66
3.8.6 Effects of the Nasal Tract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8.7 Four-Tube, Three-Parameter Approximation of Vowel Production . . . . . . 72
3.8.8 Multitube Approximations and Electrical Analogs of the Vocal Tract . . . . . 74

3.9 Fundamentals of Speech and Hearing in Analysis-Synthesis Telephony . . . . . . . . 76
3.10 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Techniques for Speech Analysis 81
4.1 Spectral Analysis of Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Short-Time Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.2 Measurement of Short-Time Spectra . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.3 Choice of the Weighting Function, h(t) . . . . . . . . . . . . . . . . . . . . . . 85
4.1.4 The Sound Spectrograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.5 Short-Time Correlation Functions and Power Spectra . . . . . . . . . . . . . 92
4.1.6 Average Power Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.7 Measurement of Average Power Spectra for Speech . . . . . . . . . . . . . . . 97

4.2 Predictive Coding of Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Choosing the LPC Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.2 Choosing the LPC Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Frequency-Domain Interpretation of LPC . . . . . . . . . . . . . . . . . . . . 104
4.2.4 Lattice Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.5 How to Calculate Reflection Coefficients . . . . . . . . . . . . . . . . . . . . . 105
4.2.6 LPC Distance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Homomorphic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.1 Complex Cepstrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.2 Cepstrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.3 Signals with Rational Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.4 Liftering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4 Spectral and Cepstral Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.1 Derivative Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.2 Modulation Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Formant Analysis of Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.5.1 Formant-Frequency Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.5.2 Measurement of Formant Bandwidth . . . . . . . . . . . . . . . . . . . . . . . 127

4.6 Analysis of Voice Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.7 Articulatory Analysis of the Vocal Mechanism . . . . . . . . . . . . . . . . . . . . . . 130
4.8 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 Information and Communication 143
5.1 Discrete Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 The Ear and Hearing 147
6.1 Mechanism of the Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1.1 The Outer Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.2 The Middle Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.3 The Inner Ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.1.4 Mechanical-to-Neural Transduction . . . . . . . . . . . . . . . . . . . . . . . . 153
6.1.5 Neural Pathways in the Auditory System . . . . . . . . . . . . . . . . . . . . 157

6.2 Computational Models for Ear Function . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2.1 Basilar Membrane Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2.2 Middle Ear Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



CONTENTS vii

6.2.3 Combined Response of Middle Ear and Basilar Membrane . . . . . . . . . . . 168
6.2.4 An Electrical Circuit for Simulating Basilar Membrane Displacement . . . . . 171
6.2.5 Computer Simulation of Membrane Motion . . . . . . . . . . . . . . . . . . . 172
6.2.6 Transmission Line Analogs of the Cochlea . . . . . . . . . . . . . . . . . . . . 176

6.3 Illustrative Relations between Subjective and Physiological Behavior . . . . . . . . . 178
6.3.1 Pitch Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.3.2 Binaural Lateralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.3.3 Threshold Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.3.4 Auditory Processing of Complex Signals . . . . . . . . . . . . . . . . . . . . . 187

6.4 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7 Human Speech Recognition 195
7.1 Differential vs, Absolute Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.2 Differential Discriminations Along Signal Dimensions Related to Speech . . . . . . . 197

7.2.1 Limens for Vowel Formant Frequencies . . . . . . . . . . . . . . . . . . . . . . 197
7.2.2 Limens for Formant Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.2.3 Limens for Formant Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.2.4 Limens for Fundamental Frequency . . . . . . . . . . . . . . . . . . . . . . . . 198
7.2.5 Limens for Excitation Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.2.6 Limens for Glottal Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.2.7 Discriminability of Maxima and Minima in a Noise Spectrum . . . . . . . . . 199
7.2.8 Other Close-Comparison Measures Related to Speech . . . . . . . . . . . . . 200
7.2.9 Differential Discriminations in the Articulatory Domain . . . . . . . . . . . . 201

7.3 Absolute Discrimination of Speech and Speech-Like Sounds . . . . . . . . . . . . . . 204
7.3.1 Absolute Identification of Phonemes . . . . . . . . . . . . . . . . . . . . . . . 204
7.3.2 Absolute Identification of Syllables . . . . . . . . . . . . . . . . . . . . . . . . 206
7.3.3 Effects of Learning and Linguistic Association in Absolute Identification of

Speech-Like Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3.4 Influence of Linguistic Association Upon Differential Discriminability . . . . . 214

7.4 Effects of Context and Vocabulary Upon Speech Perception . . . . . . . . . . . . . . 216
7.5 The Perceptual Units of Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.5.1 Models of Speech Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.6 Subjective Evaluation of Transmission Systems . . . . . . . . . . . . . . . . . . . . . 221

7.6.1 Articulation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.6.2 Quality Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.7 Calculating Intelligibility Scores from System Response and Noise Level: The Artic-
ulation Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.8 Supplementary Sensory Channels for Speech Perception . . . . . . . . . . . . . . . . 227
7.8.1 Visible Speech Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.8.2 Tactile Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.8.3 Low Frequency Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8 Automatic Speech Recognition 231
8.1 Historical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
8.2 Classification of Short-Time Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.2.1 Optimality Criteria for Classification and Training . . . . . . . . . . . . . . . 235
8.2.2 Gaussian Models of the Speech Spectrum . . . . . . . . . . . . . . . . . . . . 236
8.2.3 Mixture Gaussian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.2.4 Sources of Error in Pattern Classification . . . . . . . . . . . . . . . . . . . . 238
8.2.5 Linear and Discriminant Features . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.2.6 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 238



viii CONTENTS

8.2.7 Talker Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.3 Recognition of Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.3.1 Linear Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.3.2 Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.3.3 Hidden Markov Models: Testing . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.3.4 Approximate Recognition: The Viterbi Algorithm . . . . . . . . . . . . . . . 246
8.3.5 Hidden Markov Models: Training . . . . . . . . . . . . . . . . . . . . . . . . . 248
8.3.6 Pronunciation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8.3.7 Context-Dependent Recognition Units . . . . . . . . . . . . . . . . . . . . . . 256
8.3.8 Landmarks, Events, and Islands of Certainty . . . . . . . . . . . . . . . . . . 256

8.4 Recognition of Utterances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
8.4.1 Static Search Graph: Finite State Methods . . . . . . . . . . . . . . . . . . . 257
8.4.2 Regular Grammars for Dialog Systems . . . . . . . . . . . . . . . . . . . . . . 258
8.4.3 N-Grams and Backoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
8.4.4 Dynamic Search Graph: Stack-Based Methods . . . . . . . . . . . . . . . . . 261
8.4.5 Dynamic Search Graph: Bayesian Networks . . . . . . . . . . . . . . . . . . . 261
8.4.6 Multi-Pass Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.4.7 System Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

8.5 Automatic Recognition and Verification of Speakers . . . . . . . . . . . . . . . . . . 261
8.6 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

9 Speech Synthesis 269
9.1 Mechanical Speaking Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.2 Unit Selection Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

9.2.1 Search Algorithms for Unit Selection . . . . . . . . . . . . . . . . . . . . . . . 273
9.2.2 Unit Selection Criteria for Affective and Expressive Speech . . . . . . . . . . 273
9.2.3 Text Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

9.3 Spectrum Reconstruction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
9.3.1 Short-Time Spectral Reconstruction Techniques . . . . . . . . . . . . . . . . . 274
9.3.2 Unit-Concatenative Synthesis for Embedded Applications . . . . . . . . . . . 275
9.3.3 Signal Modification for Affective and Expressive Speech . . . . . . . . . . . . 275
9.3.4 Talker Morphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

9.4 “Terminal Analog” Synthesizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
9.4.1 Terminal Properties of the Vocal Tract . . . . . . . . . . . . . . . . . . . . . . 276
9.4.2 Spectral Contribution of Higher-Order Poles . . . . . . . . . . . . . . . . . . 278
9.4.3 Non-Glottal Excitation of the Tract . . . . . . . . . . . . . . . . . . . . . . . 279
9.4.4 Spectral Contribution of Higher-Order Zeros. . . . . . . . . . . . . . . . . . . 280
9.4.5 Effects of a Side-Branch Resonator . . . . . . . . . . . . . . . . . . . . . . . . 281
9.4.6 Cascade Type Synthesizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.4.7 Parallel Synthesizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
9.4.8 Digital Techniques for Formant Synthesis . . . . . . . . . . . . . . . . . . . . 286

9.5 Computer Simulation of the Articulatory System . . . . . . . . . . . . . . . . . . . . 296
9.5.1 Reflection-Line Analogs of the Vocal Tract . . . . . . . . . . . . . . . . . . . 296
9.5.2 Transmission-Line Analogs of the Vocal System . . . . . . . . . . . . . . . . . 299
9.5.3 Nonlinear Simulations of the Vocal Tract System . . . . . . . . . . . . . . . . 301

9.6 Excitation of Terminal Analog and Articulatory Synthesizers . . . . . . . . . . . . . 301
9.6.1 Simulation of the Glottal Wave . . . . . . . . . . . . . . . . . . . . . . . . . . 302
9.6.2 Simulation of Unvoiced Excitation . . . . . . . . . . . . . . . . . . . . . . . . 316

9.7 Vocal Radiation Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
9.8 Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322



CONTENTS ix

10 Speech Coding 323
10.1 Assessment of Speech Perceptual Quality . . . . . . . . . . . . . . . . . . . . . . . . 324

10.1.1 Psychophysical Measures of Speech Quality (Subjective Tests) . . . . . . . . 324
10.1.2 Objective Measures: Broadband . . . . . . . . . . . . . . . . . . . . . . . . . 326
10.1.3 Objective Measures: Critical Band . . . . . . . . . . . . . . . . . . . . . . . . 328
10.1.4 Automatic Prediction of Subjective Measures . . . . . . . . . . . . . . . . . . 328
10.1.5 Computationally Efficient Measures . . . . . . . . . . . . . . . . . . . . . . . 328

10.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
10.2.1 Uniform Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.2.2 Zero-Mean Uniform Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.2.3 Companded PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
10.2.4 Optimum Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
10.2.5 Vector Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

10.3 Transform and Sub-Band Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
10.3.1 Analytic Rooter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
10.3.2 Transform Coding: Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . 339
10.3.3 Expansion of the Speech Waveform . . . . . . . . . . . . . . . . . . . . . . . . 339
10.3.4 Expansion of the Short-Time Amplitude Spectrum . . . . . . . . . . . . . . . 341
10.3.5 Expansion of the Short-Time Autocorrelation Function . . . . . . . . . . . . 344

10.4 Correlation Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
10.4.1 Channel Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
10.4.2 Design Variations in Channel Vocoders . . . . . . . . . . . . . . . . . . . . . 352
10.4.3 Vocoder Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
10.4.4 Phase Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
10.4.5 Linear Transformation of Channel Signals . . . . . . . . . . . . . . . . . . . . 358
10.4.6 Sub-Band Coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
10.4.7 Sinusoidal Transform Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

10.5 Predictive Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
10.5.1 Delta Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
10.5.2 Differential PCM (DPCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
10.5.3 Differential Pulse Code Modulation . . . . . . . . . . . . . . . . . . . . . . . . 381
10.5.4 Pitch Prediction Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
10.5.5 Adaptive Predictive Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

10.6 Parametric Models of the Spectral Envelope . . . . . . . . . . . . . . . . . . . . . . . 386
10.6.1 Homomorphic Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
10.6.2 Maximum Likelihood Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . 387
10.6.3 Linear Prediction Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
10.6.4 Articulatory Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
10.6.5 Pattern-Matching Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
10.6.6 Formant Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

10.7 Quantized Linear Prediction Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 397
10.7.1 Log Area Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
10.7.2 Line Spectral Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

10.8 Parametric Models of the Spectral Fine Structure . . . . . . . . . . . . . . . . . . . . 401
10.8.1 Voice-Excited Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
10.8.2 The LPC-10e Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
10.8.3 Mixed Excitation Linear Prediction (MELP) . . . . . . . . . . . . . . . . . . 409
10.8.4 Multi-Band Excitation (MBE) . . . . . . . . . . . . . . . . . . . . . . . . . . 410
10.8.5 Prototype Waveform Interpolative (PWI) Coding . . . . . . . . . . . . . . . . 410
10.8.6 Voice-Excited Formant Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . 411
10.8.7 Frequency-Dividing Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 412



x CONTENTS

10.9 Rate-Distortion Tradeoffs for Speech Coding . . . . . . . . . . . . . . . . . . . . . . . 413
10.9.1 Multiplexing and Digitalization . . . . . . . . . . . . . . . . . . . . . . . . . . 413
10.9.2 Multiplexing of Formant Vocoders . . . . . . . . . . . . . . . . . . . . . . . . 414
10.9.3 Time-Assignment Transmission of Speech . . . . . . . . . . . . . . . . . . . . 416
10.9.4 Multiplexing Channel Vocoders . . . . . . . . . . . . . . . . . . . . . . . . . . 418

10.10Network Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
10.10.1Voice over IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
10.10.2Error Protection Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
10.10.3The Rate-Distortion Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
10.10.4Embedded and Multi-Mode Coding . . . . . . . . . . . . . . . . . . . . . . . 422
10.10.5Joint Source-Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

10.11Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
10.12Homework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426



List of Figures

1.1 Conversation over lunch: Renoir’s Luncheon of the Boating Party, 1881. (Phillips
Collection, Washington D.C.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Schematic diagram of a general communication system. X =source message, Y =received
message, S =transmitted signal, R =received signal, N =noise. (After Shannon and
Weaver, 1949) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Typical confusion matrix (6300Hz bandwidth, -6dB SNR). Entry (i, j) in the matrix
lists the number of times that a talker said consonant xi, and a listener heard conso-
nant yj. Each consonant was uttered as the first phoneme in a CV syllable; the vowel
was always /a/. (After Miller and Nicely, 1955) . . . . . . . . . . . . . . . . . . . . . 8

1.4 (a) Mutual information between spoken and perceived consonant labels, as a function
of SNR, over an acoustic channel with 6300Hz bandwidth (200-6500Hz). (b) Mutual
information between spoken and perceived consonant labels, at 12dB SNR, over low-
pass and highpass acoustic channels with the specified cutoff frequencies. The lowpass
channel contains information between 200Hz and the cutoff; bit rate is shown with a
solid line. The highpass channel contains information between the cutoff and 6500Hz;
bit rate is shown with a dashed line. (After Miller and Nicely, 1955) . . . . . . . . . 8

2.1 Schematic diagram of the human vocal mechanism . . . . . . . . . . . . . . . . . . . 14

2.2 Cut-away view of the human larynx. (After Farnsworth.) VC-vocal cords; AC-
arytenoid cartilages; TC-thyroid cartilage . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Technique for high-speed motion picture photography of the vocal cords. (After
Farnsworth) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Successive phases in one cycle of vocal cord vibration. The total elapsed time is
approximately 8 msec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Schematic vocal tract profiles for the production of English vowels. (Adapted from
Potter, Kopp and Green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Vocal tract profiles for the fricative consonants of English. The short pairs of lines
drawn on the throat represent vocal cord operation. (Adapted from Potter, Kopp
and Green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Articulatory profiles for the English stop consonants. (After Potter, Kopp and Green) 23

2.8 Vocal profiles for the nasal consonants. (After Potter, Kopp and Green) . . . . . . . 23

2.9 Vocal tract configurations for the beginning positions of the glides and semivowels.
(After Potter, Kopp and Green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Schematic diagram of functional components of the vocal tract . . . . . . . . . . . . 28

3.2 Incremental length of lossy cylindrical pipe. (a) acoustic representation; (b) electrical
equivalent for a one-dimensional wave . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Equivalent four-pole networks for a length l of uniform transmission line. (a) T-
section; (b) π-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xi



xii LIST OF FIGURES

3.4 Relations illustrating viscous loss at the wall of a smooth tube . . . . . . . . . . . . 31
3.5 Relations illustrating heat conduction at the wall of a tube . . . . . . . . . . . . . . 34
3.6 Normalized acoustic radiation resistance and reactance for (a) circular piston in all

infinite baffle; (b) circular piston in a spherical baffle whose radius is approximately
three times that of the piston; (c) pulsating sphere. The radius of the radiator,
whether circular or spherical, is a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Spatial distributions of sound pressure for a small piston in a sphere of 9cm radius.
Pressure is expressed in db relative to that produced by a simple spherical source of
equal strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Life-size mannequin for measuring the relation between the mouth volume velocity
and the sound pressure at an external point. The transducer is mounted in the
mannequin’s head. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Distribution of sound pressure about the head, relative to the distribution for a simple
source; (a) horizontal distribution for the mannequin; (b) vertical distribution for the
mannequin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Schematic diagram of the human subglottal system . . . . . . . . . . . . . . . . . . . 41
3.11 An equivalent circuit for the subglottal system . . . . . . . . . . . . . . . . . . . . . 41
3.12 Simple orifice approximation to the human glottis . . . . . . . . . . . . . . . . . . . 43
3.13 Model of the human glottis. (After Berg (van den Berg [1955])) . . . . . . . . . . . . 44
3.14 Simplified circuit for the glottal source . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.15 Ratios of glottal inertance (Lg) to viscous and kinetic resistance (Rv, Rk) as a function

of glottal area (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.16 Glottal area and computed volume velocity waves for single vocal periods. F0 is the

fundamental frequency: Ps is the subglottal pressure. The subject is an adult male
phonating /æ/. (After Flanagan, 1958 (Flanagan [1958])) . . . . . . . . . . . . . . . 47

3.17 Calculated amplitude spectrum for the glottal area wave AII shown in Fig. 3.16.
(After Flanagan, 1961 (Flanagan [1961])) . . . . . . . . . . . . . . . . . . . . . . . . 47

3.18 Small-signal equivalent circuit for the glottal source. (After Flanagan, 1958 (Flanagan
[1958])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.19 Simplified representation of the impedance looking into the vocal tract at the glottis 49
3.20 Equivalent circuit for noise excitation of the vocal tract . . . . . . . . . . . . . . . . 52
3.21 (a) Mechanical model of the vocal tract for simulating fricative consonants. (b) Mea-

sured sound spectrum for a continuant sound similar to /S/. (After (Heinz [1958])) . 53
3.22 Approximate vocal relations for stop consonant production . . . . . . . . . . . . . . 54
3.23 Relation between glottal and mouth volume currents for the unconstricted tract. The

glottal impedance is assumed infinite and the radiation impedance is zero . . . . . . 56
3.24 Magnitude and phase of the glottis-to-mouth transmission for the vocal tract approx-

imation shown in Fig. 3.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.25 Equivalent circuit for the unconstricted vocal tract taking into account the radiation

load. The glottal impedance is assumed infinite . . . . . . . . . . . . . . . . . . . . 58
3.26 Equivalent circuit for the unconstricted vocal tract assuming the glottal impedance

to be finite and the radiation impedance to be zero . . . . . . . . . . . . . . . . . . . 60
3.27 Representation of wall impedance in the equivalent T-section for a length l of uniform

pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.28 Two-tube approximation to the vocal tract. The glottal impedance is assumed infinite

and the radiation impedance zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.29 Two-tube approximations to the vowels /i,æ,A,�/ and their undamped mode (formant)

patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.30 First formant (F1) versus second formant (F2) for several vowels. Solid points are

averages from Peterson and Barney’s (1952) data for real speech uttered by adult
males. Circles are for the two-tube approximation to the vowels shown in Fig. 3.29 . 65



LIST OF FIGURES xiii

3.31 Two-tube approximation to the vocal tract with excitation applied forward of the
constriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.32 Two-tube approximation to the fricative /s/. The undamped pole-zero locations are
obtained from the reactance plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.33 Measured spectra for the fricative /s/ in real speech. (After Hughes and Halle (Halle
et al. [1957])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.34 Two-tube approximation to the vocal tract with the source of excitation applied at
the tube junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.35 Measured spectra for the fricative /f/ in real speech. (After Hughes and Halle (Halle
et al. [1957])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.36 An equivalent circuit for the combined vocal and nasal tracts. The pharynx, mouth
and nasal cavities are assumed to be uniform tubes. . . . . . . . . . . . . . . . . . . 70

3.37 A simple approximation to the vocal configuration for the nasal consonant /m/ . . . 71

3.38 Reactance functions and undamped mode pattern for the articulatory approximation
to /m/ shown in Fig. 3.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.39 Measured spectrum for the nasal consonant /m/ in real speech. (After Fant, 1960) . 72

3.40 Nomogram for the first three undamped modes (F1, F2, F3) of a fourtube approxima-
tion to the vocal tract (Data adapted from Fant, 1960). The parameter is the mouth
area, A4. Curves 1, 2, 3 and 4 represent mouth areas of 4, 2, 0.65 and 0.16 cm2,
respectively. Constant quantities are Al = A3 = 8 cm2, l4 = 1cm and A2 = 0.65 cm2.
Abscissa lengths are in cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Weighting of an on-going signal f(t) by a physically realizable time window h(t). λ
is a dummy integration variable for taking the Fourier transform at any instant, t . . 83

4.2 A method for measuring the short-time amplitude spectrum |F (ω, t)| . . . . . . . . . 84

4.3 Alternative implementation for measuring the short-time amplitude spectrum |F (ω, t)| 84

4.4 Practical measurement of the short-time spectrum |F (ω, t)| by means of a bandpass
filter, a rectifier and a smoothing network . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Short-time amplitude spectra of speech measured by a bank of 24 band-pass filters.
A single filter channel has the configuration shown in Fig. 4.4. The spectral scans are
spaced by 10 msec in time. A digital computer was used to plot the spectra and to
automatically mark the formant frequencies. (After (Flanagan et al. [1962a])) . . . . 86

4.6 The effective time window for short-time frequency analysis by the basilar membrane
in the human ear. The weighting function is deduced from the ear model discussed
in Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Functional diagram of the sound spectrograph . . . . . . . . . . . . . . . . . . . . . . 88

4.8 (a) Broadband sound spectrogram of the utterance “That you may see.” (b) Ampli-
tude vs frequency plots (amplitude sections) taken in the vowel portion of “that” and
in the fricative portion of “see.” (After (Barney and Dunn [1957])) . . . . . . . . . . 89

4.9 Articulatory diagrams and corresponding broad-band spectrograms for the vowels/i,�,a,u/ as uttered by adult male and female speakers. (After (Potter et al. [1947])) 91

4.10 Mean formant frequencies and relative amplitudes for 33 men uttering the English
vowels in an /h-d/ environment. Relative formant amplitudes are given in dB re
the first formant of /O/. (After (Peterson and Barney [1952]) as plotted by Haskins
Laboratories) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.11 Method for the measurement of the short-time correlation function ψ(τ, t) . . . . . . 93

4.12 Circuit for measuring the running short-time correlation function φ(τ, t) . . . . . . . 94

4.13 Arrangement for measuring the short-time spectrum Q(ω, t). (After (Atal [1962])) . 95

4.14 Circuit for measuring the long-time average power spectrum of a signal . . . . . . . 97



xiv LIST OF FIGURES

4.15 Root mean square sound pressures for speech measured in -ll sec intervals 30 cm trom
the mouth. The analyzing filter bands are one-half octave wide below 500Hz and one
octave wide above 500 Hz. (After (Dunn and White [1940])) The parameter is the
percentage of the intervals having levels greater than the ordinate . . . . . . . . . . . 98

4.16 Long-time power density spectrum for continuous speech measured 30 cm from the
mouth. (After (Dunn and White [1940])) . . . . . . . . . . . . . . . . . . . . . . . . 98

4.17 Block diagram of linear prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.18 Linear prediction receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.19 Open-loop quantization of a predictor error signal . . . . . . . . . . . . . . . . . . . 103

4.20 LPC synthesis using a lattice filter structure. . . . . . . . . . . . . . . . . . . . . . . 105

4.21 In the RASTA method, frame-to-frame variations in a spectral estimate are smoothed
using a filter like the one shown here. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.22 Sound spectrogram showing idealized tracks for the first three speech formants . . . 115

4.23 Automatic formant measurement by zero-crossing count and adjustable prefiltering.
(After (Chang [1956])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.24 Spectrum scanning method for automatic extraction of formant frequencies (After
(Flanagan [1956a])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.25 Peak-picking method for automatic tracking of speech formants. (After FLANAGAN,
1956a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.26 Formant outputs from the tracking device shown in Fig. 4.25. In this instance the
boundaries of the spectral segments are fixed . . . . . . . . . . . . . . . . . . . . . . 118

4.27 Spectral fit computed for one pitch period of a voiced sound. (After (Mathews and
Walker [1962])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.28 Tracks for the first and second formant frequencies obtained from a computer-analysis
of real-time spectra. The speech samples are (a) “Hawaii” and (b) “Yowie” uttered
by a man. (After (Hughes [1958])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.29 Computer procedure for formant location by the” analysis-by-synthesis” method. (Af-
ter (Bell et al. [1961])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.30 Idealized illustration of formant location by the “analysis-by-synthesis” method shown
in Fig. 4.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.31 Computer-determined formant tracks obtained by the “analysis-by-synthesis” method.
(a) Spectrogram of original speech. (b) Extracted formant tracks and square error
measure. (After (Bell et al. [1961])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.32 Spectrum and cepstrum analysis of voiced and unvoiced speech sounds. (After (Schafer
and Rabiner [1970])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.33 Cepstrum analysis of continuous speech. The left column shows cepstra of consecutive
segments of speech separated by 20 ms. The right column shows the corresponding
short-time spectra and the cepstrally-smoothed spectra . . . . . . . . . . . . . . . . 124

4.34 Enhancement of formant frequencies by the Chirp-z transform: (a) Cepstrally-smoothed
spectrum in which F2 and F3 are not resolved. (b) Narrow-band analysis along a con-
tour passing closer to the poles. (After (Schafer and Rabiner [1970])) . . . . . . . . . 125

4.35 Automatic formant analysis and synthesis of speech. (a) and (b) Pitch period and
formant frequencies analyzed from natural speech. (c) Spectrogram of the original
speech. (d) Spectrogram of synthesis speech. (After (Schafer and Rabiner [1970])) . 126

4.36 Pole-zero computer analysis of a speech sample using an articulatory model for the
spectral fitting procedure. The (a) diagram shows the pole-zero positions calculated
from the articulatory model. The (b) diagram shows the articulatory parameters
which describe the vocal tract area function. (After (Heinz [1962])) . . . . . . . . . . 126

4.37 Measured formant bandwidths for adult males. (After (Dunn [1961])) . . . . . . . . 128



LIST OF FIGURES xv

4.38 (a) Vocal-tract frequency response measured by sine-wave excitation of an external
vibrator applied to the throat. The articulatory shape is for the neutral vowel and
the glottis is closed. (After (Fujimura and Lindquist [1971])). (b) Variation in first-
formant bandwidth as a function of formant frequency. Data for men and women are
shown for the closed-glottis condition. (After (Fujimura and Lindquist [1971])) . . . 128

4.39 Sagittal plane X-ray of adult male vocal tract . . . . . . . . . . . . . . . . . . . . . . 131

4.40 Method of estimating the vocal tract area function from X-ray data. (After (Fant
[1960])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.41 Typical vocal area functions deduced for several sounds produced by one man. (After
(Fant [1960])) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.42 Typical vocal-tract area functions (solid curves) determined from impedance mcusure-
ments at the mouth. The actual area functions (dashed curves) are derived from X-ray
data. (After (Gopinath and Sondhi [1970])) . . . . . . . . . . . . . . . . . . . . . . . 133

4.43 Seven-parameter articulatory model of the vocal tract. (After (Coker [1968])) . . . . 134

4.44 Comparison of vocal tract area functions generated by the artculatory model of
Fig. 4.43 and human area data from X-rays. (After (Coker [1968])) . . . . . . . . . . 134

6.1 Schematic diagram of the human ear showing outer, middle and inner regions. The
drawing is not to scale. For illustrative purposes the inner and middle ear structures
are shown enlarged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Vibration modes of the ossicles. (a) sound intensities below threshold of feeling (b)
intensities above threshold of feeling. (After (Bekesy [1960])) . . . . . . . . . . . . . 149

6.3 Data on middle ear transmission; effective stapes displacement for a constant sound
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Chapter 1

Voice Communication

“Nature, as we often say, makes nothing in vain, and man is the only animal whom
she has endowed with the gift of speech. And whereas mere voice is but an indication of
pleasure or pain, and is therefore found in other animals, the power of speech is intended
to set forth the expedient and inexpedient, and therefore likewise the just and the unjust.
And it is a characteristic of man that he alone has any sense of good and evil, of just
and unjust, and the like, and the association of living beings who have this sense makes
a family and a state.”
ARISTOTLE, Politics

Our primary method of communication is speech. Humans are unique in our ability to transmit
information with our voices. Of the myriad varieties of life sharing our world, only humans have
developed the vocal means for coding and conveying information beyond a rudimentary stage. It is
more to our credit that we have developed the facility from apparatus designed to subserve other,
more vital purposes.

Because humans evolved in an atmosphere, it is not unnatural that we should learn to com-
municate by causing air molecules to collide. In sustaining longitudinal vibrations, the atmosphere
provides a medium. At the acoustic level, speech signals consist of rapid and significantly erratic
fluctuations in air pressure. These sound pressures are generated and radiated by the vocal appa-
ratus. At a different level of coding, the same speech information is contained in the neural signals
which actuate the vocal muscles and manipulate the vocal tract. Speech sounds radiated into the air
are detected by the ear and apprehended by the brain. The mechanical motions of the middle and
inner ear, and the electrical pulses traversing the auditory nerve, may be thought of as still different
codings of the speech information.

Acoustic transmission and reception of speech works fine, but only over very limited distances.
The reasons are several. At the frequencies used by the vocal tract and ear, radiated acoustic energy
spreads spatially and diminishes rapidly in intensity. Even if the source could produce great amounts
of acoustic power, the medium can support only limited variations in pressure without distorting the
signal. The sensitivity of the receiver—the ear—is limited by the acoustic noise of the environment
and by the physiological noises of the body. The acoustic wave is not, therefore, a good means for
distant transmission.

Through the ages men have striven to communicate at distances. They are, in fact, still striving.
The ancient Greeks are known to have used intricate systems of signal fires which they placed on
judiciously selected mountains for relaying messages between cities. One enterprising Greek, Aeneas
Tacitus by name, is credited with a substantial improvement upon the discrete bonfire message. He
placed water-filled earthen jars at the signal points. A rod, notched along its length and supported
on a cork float, protruded from each jar. At the first signal light, water was started draining from the
jar. At the second it was stopped. The notch on the rod at that level represented a previously agreed
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2 CHAPTER 1. VOICE COMMUNICATION

upon message. (In terms of present day information theory, the system must have had an annoyingly
low channel capacity, and an irritatingly high equivocation and vulnerability to jamming!)

History records other efforts to overcome the disadvantages of acoustic transmission. In the sixth
century B.C., Cyrus the Great of Persia is supposed to have established lines of signal towers on
high hilltops, radiating in several directions from his capital. On these vantage points he stationed
leather-lunged men who shouted messages along, one to the other. Similar “voice towers” reportedly
were used by Julius Caesar in Gaul. (Anyone who has played the party game of vocally transmitting
a story from one person to another around a circle of guests cannot help but reflect upon the
corruption which a message must have suffered in several miles of such transmission.)

Despite the desires and motivations to accomplish communication at distances, it was not until
humans learned to generate, control and convey electrical current that telephony could be brought
within the realm of possibility. As history goes, this has been exceedingly recent. Little more than a
hundred years have passed since the first practical telephone was put into operation; there are now,
by some accounts, more telephones than people on planet Earth.

Many early inventors and scientists labored on electrical telephones and laid foundations which fa-
cilitated the development of commercial telephony. Their biographies make interesting and humbling
reading for today’s communication engineer comfortably ensconced in a well equipped laboratory.

Among the pioneers, Bell was somewhat unique for his background in physiology and phonetics.
His comprehension of the mechanisms of speech and hearing was undoubtedly valuable, if not crucial,
in his electrical experimentation. Similar understanding is equally important wilh today’s telephone
researcher. It was perhaps his training that influenced Bell—according to his assistant Watson—
to summarize the telephony problem by saying “If I could make a current of electricity vary in
intensity precisely as the air varies in density during the production of a speech sound, I should be
able to transmit speech telegraphically.” This is what he set out to do and is what he accomplished.
Bell’s basic notion—namely, preservation of acoustic waveform—clearly proved to be an effective
means for speech transmission. Waveform coding was the most widely used form of telephony until
approximately the year 2000, when the number of digital cellular telephones began to outnumber
the number of analog handsets. As we shall see, even digital telephony preserves the waveform, in
the sense that only perceptually insignificant distortions are allowed.

Although the waveform principle is exceedingly satisfactory and has endured for almost a century,
it is not the most efficient means for voice transmission. Communication engineers have recognized
for many years that a substantial mismatch exists between the information capacity of human
perception and the capacity of the “waveform” channel. Specifically, the channel is capable of
transmitting information at rates much higher than those the human can assimilate.

Recent developments in communication theory have established techniques for quantifying the
information in a signal and the rate at which information can be signalled over a given channel.
These analytical tools have accentuated the desirability of matching the transmission channel to
the information source. From their application, conventional telephony has become a much-used
example of disparate source rate and channel capacity. This disparity—expressed in numbers—has
provided much of the impetus toward investigating more efficient means for speech coding and for
reducing the bandwidth and channel capacity used to transmit speech.

1.1 Speech as a Communication Channel

We speak to establish social bonds, and to create ideas larger than ourselves. The natural envi-
ronment for speaking is noisy and complicated, with a continuously changing visual and auditory
channel, as depicted, for example, in Fig. 1.1. In this famous painting, a group of friends relaxes
on a Sunday afternoon at the restaurant Maison Fournaise. The image provides examples of many
different kinds of conversations: flirtations, expositions, relaxed subdued conversations, and even a
conversation between a woman (Aline Charigot, who would later marry Renoir) and her dog.
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Figure 1.1: Conversation over lunch: Renoir’s Luncheon of the Boating Party, 1881. (Phillips
Collection, Washington D.C.)
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Figure 1.2: Schematic diagram of a general communication system. X =source message, Y =received
message, S =transmitted signal, R =received signal, N =noise. (After Shannon and Weaver, 1949)

Before speaking, every talker conceives a message: a sequence of words, possibly annotated with
subtle hints of nuance and opinion (Levelt [1989]). The message is symbolic, and therefore digital:
most of the content of a spoken message may be equivalently conveyed in an e-mail. In most cases,
however, we find it pleasant to encode the message in an analog medium, by configuring the speech
articulators (the lips, jaw, tongue, soft palate, larynx, and lungs) in order to generate an acoustic
waveform. A listener measures the acoustic signal, and converts it into a neural code. The neural
code passes through a series of neural circuits until, eventually, the listener has decoded the intended
linguistic message–or something approximating the intended message.

The subject of this book is the encoding and decoding of the messages conveyed by speech: the
digital-to-analog and analog-to-digital transformations used by humans and machines to produce and
understand ordinary conversation. Before considering the analog channel in more detail, however,
it’s worthwhile to evaluate the end-to-end performance of the channel.

The mathematical theory of information (Shannon and Weaver [1949]) provides a useful mecha-
nism for analyzing the end-to-end performance of any communications channel, independent of the
details of its implementation. Fig. 1.2 shows the schematic of an abstract communication channel.
There are six boxes in this figure. The boxes marked “information source” and “noise source” each
draw a message or a noise signal, at random, from some probability distribution. The goal of the
box marked “transmitter” is to encode the message, and that of the “receiver” is to decode the mes-
sage, so that the received message will be as similar as possible to the transmitted message. As we
shall see, the average information rate of the speech source is remarkably low. There are apparently
two reasons for the low information rate of speech. First, there is evidence that human listeners are
unable to process information at a rate much higher than that of the speech message; in this respect,
humans are much less effective than machines. Second, low information rate allows speech trans-
mission over extremely noisy acoustic channels. Human listeners (but not machines, yet) are able to
correctly understand meaningful linguistic messages transmitted at signal to noise ratios (SNR) as
low as -20dB; in this respect, humans are much more effective than machines. The low information
rate of speech, and its remarkable noise robustness, are best understood as an adaptation to noisy
natural environments like the outdoor lunch party in Fig. 1.1.
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1.2 Entropy of the Speech Source

The elementary relations of information theory define the information associated with the selec-
tion of a discrete message from a specified ensemble. If the messages of the set are xi, are inde-
pendent, and have probability of occurrence P (xi), the information associated with a selection is
I = log2 (1/P (xi)) bits1. The average information associated with selections from the set is the
ensemble average

H(X) =
∑

i

P (xi) log2

(
1

P (xi)

)
= −

∑

i

P (xi) log2 P (xi)

bits, or the source entropy.
Consider, in these terms, a phonemic transcription of speech; that is, the written equivalent of

the meaningfully distinctive sounds of speech. Take English for example. Table 1.1 shows a list of
42 English phonemes including vowels, diphthongs and consonants, and their relative frequencies of
occurrence in prose (Dewey [1923]). If the phonemes are selected for utterance with equal probability
[i.e., P (xi) = 1/42] the average information per phoneme would be approximately H(X) = 5.4 bits.
If the phonemes are selected independently, but with probabilities equal to the relative frequencies
shown in Table 1.1, then H(X) falls to 4.9 bits. The sequential constraints imposed upon the
selection of speech sounds by a given language reduce this average information still further2. In
conversational speech about 10 phonemes are uttered per second. The written equivalent of the
information generated is therefore less than 50 bits/sec.

1.3 Conditional Entropy of Received Speech

Because of noise, the speech signal arriving at the receiver may be different from the signal generated
by the transmitter. If the decoding algorithm is not sufficiently robust, noise in the acoustic signal
may lead to errors in the received message. Perceptual errors can be characterized by the conditional
probability that the receiver decodes symbol yj, given that the transmitter encoded symbol xi. This
probability may be writtten as PABγ(yj|xi), in order to emphasize that it is also a function of
several channel characteristics, including the encoding system used by the transmitter and receiver
(A), the bandwidth of the channel (B), and the SNR (γ = S/N , where S is the power of the signal
coming out of the transmitter, and N is the power of the noise signal). For example, an error-free
communication system is characterized by the conditional probability distribution

PABγ(yj |xi) = δij ≡
{

1 yj = xi
0 otherwise

(1.1)

If PABγ(yj |xi) 6= δij , then one may say that the communication system is itself introducing
“information” into the received signal. This is an undesirable behavior, because the “information”
generated by the communication channel is independent of the information generated at the source;
this extra “information” is usually called “error.” The average rate at which the communication

1The base-2 logarithm is used to compute information in bits. A base-10 logarithm computes information in
“digits;” a natural logarithm computes information in “nats.” All three units are commonly used in practice.

2Related data exist for the letters of printed English. Conditional constraints imposed by the language are likewise
evident here. If the 26 English letters are considered equiprobable, the average information per letter is 4.7 bits. If the
relative frequencies of the letters are used as estimates of P (xi), the average information per letter is 4.1 bits. If digram
frequencies are considered, the information per letter, when the previous letter is known, is 3.6 bits. Taking account
of trigram frequencies lowers this figure to 3.3 bits. By a limit-taking procedure, the long range statistical effects can
be estimated. For sequences up to 100 letters in literary English the average information per letter is estimated to be
on the order of one bit. This figure suggests a redundancy of about 75 per cent. If statistical effects extending over
longer units such as paragraphs or chapters are considered, the redundancy may be still higher (Shannon and Weaver
[1949]).
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Table 1.1: Relative frequencies of English speech sounds in standard prose. (After Dewey, 1923)

Vowels and diphthongs Consonants
Pho- relative −P (xi) log2 P (xi) Pho- relative −P (xi) log2 P (xi)
neme frequency neme frequency

of occur- of occur-
ence (%) ence (%)I 8.53 0.3029 n 7.24 0.2742A 4.63 0.2052 t 7.13 0.2716æ 3.95 0.1841 r 6.88 0.2657E 3.44 0.1672 s 4.55 0.20285 2.81 0.1448 d 4.31 0.19552 2.33 0.1264 l 3.74 0.1773i 2.12 0.1179 T 3.43 0.1669e, eI 1.84 0.1061 z 2.97 0.1507u 1.60 0.0955 m 2.78 0.1437AI 1.59 0.0950 k 2.71 0.1411oU 1.30 0.0815 v 2.28 0.1244O 1.26 0.795 w 2.08 0.1162U 0.69 0.0495 p 2.04 0.1146AU 0.59 0.0437 f 1.84 0.1061A 0.49 0.0376 h 1.81 0.1048o 0.33 0.0272 b 1.81 0.1048ju 0.31 0.0258 N 0.96 0.0644OI 0.09 0.0091 S 0.82 0.0568g 0.74 0.0524j 0.60 0.0443tS 0.52 0.0395dZ 0.44 0.0344T 0.37 0.0299Z 0.05 0.0055

Totals 38 62

H(X) = −∑i P (xi) log2 P (xi) = 4.9 bits. If all phonemes were equiprobable, then H(X) =
log2 42 = 5.4 bits
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channel introduces errors into a transmitted signal is called the equivocation or conditional entropy
of Y given X , and is defined to be

HABγ(Y |X) = −
∑

i

∑

j

PABγ(xi, yj) log2 PABγ(yj |xi) (1.2)

= −
∑

i

P (xi)
∑

j

PABγ(yj |xi) log2 PABγ(yj |xi)

The amount of information successfully transmitted over the channel is equal to the information rate
of the source,H(X), minus the rate at which errors are introduced by the channel, HABγ(Y |X). This
rate is called the mutual information between the transmitted message and the received message:

IABγ(X,Y ) = H(X) −HABγ(Y |X) (1.3)

=
∑

i

∑

j

P (xi)PABγ(yj |xi)
(
PABγ(yj |xi)

P (xi)

)

Human speech production is a coding algorithm, and may be evaluated just like any other coding
algorithm: by computing the mutual information IABγ that it achieves over any particular acoustic
channel. Fletcher 1922 found that, for SNRs of at least 30dB, phonemes in nonsense syllables are
perceived correctly about 98.5% of the time, corresponding to an equivocation of roughly

H(Y |X) ≈ 0.985 log2(1/0.985) + 0.015 log2(1/0.015) = 0.11 bits/symbol3. (1.4)

In order to force listeners to make perceptual errors, Fletcher was forced to distort the acoustic
channel by introducing additive noise and/or linear filtering (lowpass, highpass, or bandpass filters
applied to the acoustic channel).

Eq. (1.4) is only an approximation of the speech channel equivocation: in order to calcu-
late the equivocation exactly, it is necessary to know the probability PABγ(yj |xi) for every (i, j)
combination. Miller and Nicely 1955 measured conditional probability tables under fifteen dif-
ferent channel conditions for a subset of the English language: specifically, for the subset xi ∈
{p,b,t,d,k,g,f,v,T,D,s,z,S,Z,m,n}, and yj drawn from the same set. Each consonant was produced in a
consonant vowel (CV) syllable, and the vowel was always /A/. In order to cause perceptual errors,
Miller and Nicely limited the bandwidth of the acoustic channel (9 conditions), or the SNR (5 con-
ditions). After several thousand trials, the perceptual effect of each channel was summarized in the
form of a confusion matrix, like the one shown in Fig. 1.3. In a confusion matrix, entry C(i, j) lists
the number of times that phoneme xi was perceived as phoneme yj . The conditional probability
P (yj |xi) may be estimated as

P (yj |xi) ≈
C(i, j)∑
j C(i, j)

(1.5)

Using the approximation in 1.5, the equivocation of the speech communication system, at -6 dB
SNR, is 2.176 bits. Since each syllable is chosen uniformly from 24 = 16 possible syllables, the source
entropy is H(X) = log2 16 = 4 bits. The amount of information successfully transmitted from talker
to listener, therefore, is 4 − 2.176 = 1.834 bits. Fig. 1.4(a) shows the information transmitted from
talker to listener, over the wideband acoustic channel, as a function of SNR. Mutual information
is greater than one bit per consonant at -12dB, and the information rate only drops to zero below
-18dB SNR. Fig. 1.4(b) shows the information transmitted over the lowpass-filtered and highpass
filtered channels, as a function of the cutoff frequency.

3This approximation results from the assumption that only two events matter: the phoneme is either correctly or
incorrectly recognized. The actual equivocation of a 42-phoneme communication system with a 1.5% error rate could
be anywhere between 0.02 and 0.19 bits/symbol, depending on the error rates of each individual phoneme, and the
distribution of errors across the various possible substitutions.
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Figure 1.3: Typical confusion matrix (6300Hz bandwidth, -6dB SNR). Entry (i, j) in the matrix
lists the number of times that a talker said consonant xi, and a listener heard consonant yj. Each
consonant was uttered as the first phoneme in a CV syllable; the vowel was always /a/. (After Miller
and Nicely, 1955)

Figure 1.4: (a) Mutual information between spoken and perceived consonant labels, as a function
of SNR, over an acoustic channel with 6300Hz bandwidth (200-6500Hz). (b) Mutual information
between spoken and perceived consonant labels, at 12dB SNR, over lowpass and highpass acoustic
channels with the specified cutoff frequencies. The lowpass channel contains information between
200Hz and the cutoff; bit rate is shown with a solid line. The highpass channel contains information
between the cutoff and 6500Hz; bit rate is shown with a dashed line. (After Miller and Nicely, 1955)
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1.4 Capacity of the Acoustic Channel

Mutual information is a summary of the efficiency with which algorithm A transmits information
over a channel with bandwidth B and noise statistics N . Shannon has demonstrated 1949 that no
algorithm can transmit more information than

I(X,Y ) ≤ C

(
B,

S

N

)
, (1.6)

where B is the bandwidth of the channel, S/N is the signal to noise ratio, and C(B,S/N) is called
the channel capacity. Shannon has shown that the channel capacity of a channel with additive
Gaussian noise is given by

C(B,S/N) =

∫ B

0

log2

(
1 +

S(f)

N(f)

)
df

bits

second
(1.7)

where S(f) andN(f) are the power spectra of the speech and noise, respectively. Speech is transmit-
ted over an acoustic channel with bandwidths varying between about 3000Hz (telephone transmis-
sion) to 20kHz (the audible frequency range, usable during face-to-face communication). Under very
noisy listening conditions (e.g., at an SNR of -12dB or S/N = 0.0625), the capacity of a telephone-
band acoustic channel is 188 bits/second–far greater than the information transmitted from a human
talker to a human listener. In a quiet room (at an SNR of about 30dB, or S/N ≈ 1000), the chan-
nel capacity of a 20kHz channel is 20,000 bits/second–400 times greater than the information rate
achieved by a human conversationalist.

Why is speech limited to a rate of 50 bits/second? Phrased another way: why don’t people talk
more quickly under quiet listening conditions, or more clearly, in order to communicate at a bit
rate higher than 50 bps? Is the extra information already present, in the form of subtle nuances of
intonation? Is the time waveform simply an inefficient code, incapable of carrying more than 50bps?
Is the human incapable of processing information at rates much higher than 50 bits/sec? Does the
receiver discard much of the transmitted information? Chapter 7 will consider these questions in
much greater detail; for now, let us consider some experimental studies that have tried to answer
this question.

A number of experimental efforts have been made to assess the informational capacity of human
listeners. The experiments necessarily concern specific, idealized perceptual tasks. In most cases it
is difficult to generalize or to extrapolate the results to more complex and applied communication
tasks. Even so, the results do provide quantitative indications which might reasonably be taken as
order-of-magnitude estimates for human communication in general.

In one response task, for example, subjects were required to echo verbally, as fast as possible,
stimuli presented visually (Licklider et al. [1954]). The stimuli consisted of random sequences of
binary digits, decimal digits, letters and words. The maximal rates achieved in this processing of
information were on the order of 30 bits/sec. When the response mode was changed to manual
pointing, the rate fell to about 15 bits/sec.

The same study considered the possibility for increasing the rate by using more than a single
response mode, namely, by permitting manual and vocal responses. For this two-channel processing,
the total rate was found to be approximately the sum of the rates for the individual response
modes, namely about 45 bits/sec. In the experience of the authors this was a record figure for the
unambiguous transmission of information through a human channel.

Another experiment required subjects to read lists of common monosyllables aloud (Pierce and
Karlin [1957]). Highest rates attained in these tests were 42 to 43 bits/sec. It was found that prose
could be read faster than randomized lists of words. The limitation on the rate of reading was
therefore concluded to be mental rather than muscular. When the task was changed to reading and
tracking simultaneously, the rates decreased.
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A different experiment measured the amount of information subjects could assimilate from au-
dible tones coded in several stimulus dimensions (Pollack and Ficks [1954]). The coding was in
terms of tone frequency, loudness, interruption rate, spatial direction of source, total duration of
presentation and ratio of on-off time. In this task subjects were found capable of processing 5.3 bits
per stimulus presentation. Because presentation times varied, with some as great as 17 sec, it is not
possible to deduce rates from these data.

A later experiment attempted to determine the rate at which binaural auditory information
could be processed (Webster [1961]). Listeners were required to make binary discriminations in
several dimensions: specifically, vowel sound; sex of speaker; ear in which heard; and, rising or
falling inflection. In this task, the best subject could receive correctly just under 6 bits/sec. Group
performance was a little less than this figure.

As indicated earlier, these measures are determined according to particular tasks and criteria
of performance. They consequently have significance only within the scopes of the experiments.
Whether the figures are representative of the rates at which humans can perceive and apprehend
speech can only be conjectured. Probably they are. None of the experiments show the human to be
capable of processing information at rates greater than the order of 50 bits/sec.

Assuming this figure does in fact represent a rough upper limit to man’s ability to ingest in-
formation, he might allot his capacity in various ways. For example, if a speaker were rapidly
uttering random equiprobable phonemes, a listener might require all of his processing ability to
receive correctly the written equivalent of the distinctive speech sounds. Little capacity might re-
main for perceiving other features of the speech such as stress, inflection, nasality, timing and other
attributes of the particular voice. On the other hand, if the speech were idle social conversation,
with far-reaching statistical constraints and high redundancy, the listener could direct more of his
capacity to analyzing personal characteristics and articulatory peculiarities.

1.5 Organization of this Book

The goal of this book is to teach the science and technology of speech analysis, synthesis, and
perception. The book is loosely divided into a “science” half and a “technology” half. The science
and technology are unified by an information-theoretic view of speech communication, based on the
theory and terminology developed by Shannon.

The first half of the book (chapters 1-5) addresses the science of speech communication. The
science of speech, in our view, is the study of the speech behaviors of human beings, and includes
a mathematically sophisticated treatment of ideas from both physics and psychology. Like all other
communication channels, the speech communication channel is best studied by methodically eluci-
dating the characteristics of the message, the transmitter, the receiver, and the channel. Chapter 2
describes the characteristics of the message: the alphabet of phonemes and suprasegmental speech
gestures, and the probabilistic rules that govern their combination. Chapter 3 describes the speech
transmitter, with a particular emphasis on the physical acoustic principles of speech production.
Chapter 4 describes the speech receiver, including the results of both physiological and psycho-
logical experiments studying the transductive processes of the ear. Finally, chapter 5 describes
characteristics of the channel and the receiver that relate to the perception and understanding of
speech.

The second half of the book (chapters 6-9) describes technological methods that have been used
to analyze, replace or augment each component of the speech communication system. Chapter 6
describes fundamental signal analysis methods that are common to the algorithms of all succeeding
chapters. After a reader has finished understanding chapter 6, the rest of the book need not be
read in order; each of chapters 7-9 may be studied independently as a self-contained introduction
to the technology it describes. Chapter 7 describes algorithms that replace the speech transmitter
by converting a text message into a natural-sounding acoustic speech signal. Chapter 8 describes
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algorithms that replace the speech receiver, in the sense that they automatically convert an acoustic
speech signal into a written sequence of phonemes or words. Finally, chapter 9 describes algorithms
that replace the acoustic channel with a low-bit-rate digital channel, for purposes of secure, cellular,
or internet telephony. All three of these areas are the subjects of active ongoing research; the goal of
this book is to present fundamental concepts and derivations underlying the most effective solutions
available today.
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Chapter 2

The Mechanism of Speech
Production

2.1 Physiology of the Vocal Apparatus

Speech is the acoustic end product of voluntary, formalized motions of the respiratory and masti-
catory apparatus. It is a motor behavior which must be learned. It is developed, controlled and
maintained by the acoustic feedback of the hearing mechanism and by the kinesthetic feedback of
the speech musculature. Information from these senses is organized and coordinated by the central
nervous system and used to direct the speech function. Impairment of either control mechanism
usually degrades the performance of the vocal apparatus1.

The speech apparatus also subserves the more fundamental processes of breathing and eating.
It has been conjectured that speech evolved when ancient peoples discovered that they could sup-
plement their communicative hand signals with related “gestures” of the vocal tract. Sir Richard
Paget sums up this speculation quite neatly. “What drove man to the invention of speech was, as
I imagine, not so much the need of expressing his thoughts (for that might have been done quite
satisfactorily by bodily gesture) as the difficulty of ‘talking with his hands full.’ It was the continual
use of man’s hands for craftsmanship, the chase, and the beginnings of art and agriculture, that
drove him to find other methods of expressing his ideas–namely, by a specialized pantomime of the
tongue and lips (Paget [1930]).”

The machinery involved in speech production is shown schematically in Fig. 2.1. The diagram
represents a mid-sagittal section through the vocal tract of an adult. The primary function of
inhalation is accomplished by expanding the rib cage, reducing the air pressure in the lungs, and
drawing air into the lungs via nostrils, nasal cavity, velum port and trachea (windpipe). Air is
normally expelled by the same route. In eating, mastication takes place in the oral cavity. When
food is swallowed the structures at the entrance to the trachea are drawn up under the epiglottis.
The latter shields the opening at the vocal cords and prevents food from going into the windpipe.
The esophagus, which normally lies collapsed against the back wall of the throat, is at the same
time drawn open to provide a passage to the stomach.

The vocal tract proper is an acoustical tube which is nonuniform in cross-sectional area. It is
terminated by the lips at one end and by the vocal cord constriction at the top of the trachea at
the other end. In an adult male the vocal tube is about 17cm long and is deformed in crosssectional
area by movement of the articulators; namely, the lips, jaw, longue and velum. The cross-sectional

1Most of us are aware of the difficulties that partially or totally deaf persons have in producing adequate speech.
Even more familiar, perhaps, are the temporary difficulties in articulation experienced after the dentist desensitizes a
large mouth area by an injection of anesthetic.

13
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Figure 2.1: Schematic diagram of the human vocal mechanism

area in the forward portion of the tract can be varied from zero (i.e. complete closure) to upwards
of 20 cc.

The nasal tract constitutes an ancillary path for sound transmission. It begins at the velum and
terminates at the nostrils. In the adult male the cavity has a length of about 12 cm and a volume
on the order of 60 cc, It is partitioned over part of its front-to-back extent by the nasal septum.
Acoustic coupling between the nasal and vocal tracts is controlled by the size of the opening at the
velum. In Fig. 2.1 the velum is shown widely open. In such a case, sound may be radiated from
both the mouth and nostrils. In general, nasal coupling can substantially influence the character of
sound radiated from the mouth. For the production of non-nasal sounds the velum is drawn tightly
up and effectively seals off the entrance to the nasal cavity. In an adult male the area of the velar
opening can range from zero to around 5 cc.

The source of energy for speech production lies in the thoracic and abdominal musculatures. Air
is drawn into the lungs by enlarging the chest cavity and lowering the diaphragm. It is expelled by
contracting the rib cage and increasing the lung pressure. Production of vowel sounds at the softest
possible level requires a lung pressure of the order of 4 cm H20. For very loud, high-pitched sounds,
on the other hand, pressures of about 20 cm H20 or more are not uncommon. During speaking the
lung pressure is maintained by a steady, slow contraction of the rib cage.

As air is forced from the lungs it passes through the trachea into the pharynx, or throat cavity.
The top of the trachea is surmounted by a structure which is shown in additional detail in Fig. 2.2.
This is the larynx. The cartilaginous frame houses two lips of ligament and muscle. These are the
vocal cords and are denoted VC. The slit-like orifice between the cords is called the glottis. The
knobby structures, protruding upward posterior to the cords, are the arytenoid cartilages, and are
labelled AC. These cartilages support the fleshy cords and facilitate adjustment of tension. The
principal outside cartilages of the larynx “box” are the anterior thyroid (labelled TC in Fig. 2.2)
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Figure 2.2: Cut-away view of the human larynx. (After Farnsworth.) VC-vocal cords; AC-arytenoid
cartilages; TC-thyroid cartilage

and the posterior cricoid. Both of these can be identified in Fig. 2.1.
The voiced sounds of speech are produced by vibratory action of the vocal cords. Production of

sound in this manner is called phonation. Qualitatively, the action of the vocal folds is very similar
to the flapping of a flag, or the vibration of the reed in a woodwind instrument. Like a flag flapping
in the wind, the vocal folds must have at least two regions that are out of phase with one another.
Like the jet of air passing over the surface of a flag, the jet of air passing through the glottis has
two regimes: a laminar regime, and a turbulent regime. In the laminar regime, Bernoulli’s equation
holds, so air pressure is inversely proportional to the square of air jet velocity. In the turbulent
regime, differences in velocity are absorbed by the creation of vortices, so that air pressure remains
low and constant throughout the turbulent regime. The glottis flaps from bottom to top: the lower
vocal folds separate first, followed by the upper folds. While the lower folds are wider than the
upper folds, air flow within the glottis is laminar, and therefore the pressure within the glottis is
high, driving the folds open. When the upper folds flap open to a position wider than the lower folds,
air within the glottis becomes turbulent, and therefore the pressure within the glottis drops to a low
constant value. At this point, the stiffness of the vocal folds forces them back together again, and the
cycle repeats. Notice that it is not necessary for the vocal folds to completely close at any point in
the cycle. The “breathy voice” employed to great effect by some singers and actresses is apparently
a form of phonation in which the glottis never completely closes. The mass and compliance of the
cords, and the subglottal pressure, essentially determine the period of the oscillation. This period
is generally shorter than the natural period of the cords; that is, the cords are driven in a forced
oscillation.

The variable area orifice produced by the vibrating cords permits quasi-periodic pulses of air to
excite the acoustic system above the vocal cords. The mechanism is somewhat similar to blowing a
tone on a brass instrument, where the vibrating lips permit quasiperiodic pulses of air to excite the
resonances of the flared horn. Over the past years the vibratory action of the vocal cords has been
studied in considerable detail. Direct observations can be made by positioning a 45-degree mirror
toward the back of the mouth, near the naso-pharynx. Stroboscopic illumination at the proper
frequency slows or “stops” the vibratory pattern and permits detailed scrutiny.
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Figure 2.3: Technique for high-speed motion picture photography of the vocal cords. (After
Farnsworth)

Figure 2.4: Successive phases in one cycle of vocal cord vibration. The total elapsed time is approx-
imately 8 msec
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Still more revealing and more informative is the technique of high-speed photography, pioneered
by Farnsworth(Farnsworth [1940]), in which moving pictures are taken at a rate of 4000 frames/sec,
or higher. The technique is illustrated in Fig. 2.3. The cords are illuminated by an intense light
source via the arrangement of lenses and mirrors shown in the diagram. Photographs are taken
through an aperture in the large front mirror to avoid obstructing the illumination. The result of
such photography is illustrated in Fig. 2.4. The figure shows six selected frames in one cycle of
vibration of the cords of an adult male. In this case the fundamental frequency of vibration, or voice
“pitch,” is 125Hz.

The volume flow of air through the glottis as a function of time is similar to (though not exactly
proportional to) the area of the glottal opening. For a normal voice effort and pitch, the waveform
can be roughly triangular in shape and exhibit duty factors (i.e., ratios of open time to total period)
commonly of the order of 0.3 to 0.7. The glottal volume current therefore has a frequency spectrum
relatively rich in overtones or harmonics. Because of the approximately triangular waveform, the
higher frequency components diminish in amplitude at about 12db/octave.

The waveform of the glottal volume flow for a given individual can vary widely. In particular,
it depends upon sound pitch and intensity. For low-intensity, low-pitched sounds, the subglot-
tal pressure is low, the vocal cord duty factor high, and the amplitude of volume flow low. For
high-intensity, high-pitched sounds, the subglottal pressure is large, the duty factor small and the
amplitude of volume flow great. The amplitude of lateral displacement of the vocal cords, and
hence the maximum glottal area, is correlated with voice intensity to a surprisingly small extent
(Fletcher(Fletcher [1950])). For an adult male, common peak values of glottal area are of the order
of 15 mm2.

Because of its relatively small opening, the acoustic impedance of the glottal source is generally
large compared to the acoustic impedance looking into the vocal tract, at least when the tractis
not tightly constricted. Under these conditions changes in tract configuration have relatively small
(but not negligible) influence upon the glottal volume flow. For tight constriction of the tract, the
acoustic interaction between the tract and the vocal-cord oscillator can be pronounced.

Another source of vocal excitation is produced by a turbulent flow of air created at some point of
stricture in the tract. An acoustic noise is thereby generated and provides an incoherent excitation
for the vocal system. The unvoiced continuant sounds are formed from this source. Indirect mea-
surements and theory suggest that the spectrum of the noise, at its point or region of generation,
is relatively broad and uniform. The vocal cavities forward of the constriction usually are the most
influential in spectrally shaping the sound.

A third source of excitation is created by a pressure buildup at some point of closure. An abrupt
release of the pressure provides a transient excitation of the vocal tract. To a crude approximation
the aperiodic excitation is a step function of pressure, and might be considered to huvc a spectrum
which falls inversely with frequency. The closure can he effected at various positions toward the
front of the tract; for example, at labial, dental, and palatal positions. The transient excitation can
be used with or without vocal cord vibration to produce voiced or unvoiced plosive sounds.

Whispered speech is produced by substituting a noise source for the normally vibrating vocal
cords. The source may by produced by turbulent flow at the partially closed glottis, or at some
other constricted place in the tract.

2.2 The Sounds of Speech

To be a practicable medium for the transmission of information, a language must consist of a finite
number of distinguishable, mutuallyexclusive sounds. That is, the language must be constructed
of basic linguistic units which have the property that if one replaces another in an utterance, the
meaning is changed. The acoustic manifestations of a basic unit may vary widely. All such varia-
tions, however–when heard by a listener skilled in the language–signify the same linguistic element.
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This basic linguistic element is called a phoneme (Bloch and Trager [1942]). Its manifold acoustic
variations are called allophones.

The phonemes might therefore be looked upon as a code uniquely related to the articulatory
gestures of a given language. The allophones of a given phoneme might be considered representative
of the acoustic freedom permissible in specifying a code symbol. This freedom is not only dependent
upon the phoneme, but also upon its position in an utterance.

The set of code symbols used in speech, and their statistical properties, depend upon the language
and dialect of the communicators. When a linguist initially studies an unknown language, his first
step is to make a phonetic transcription in which every perceptually-distinct sound is given a symbol.
He then attempts to relate this transcription to behavior, and to determine which acoustically-
distinguishable sounds belong to the same phoneme. That is, he groups together those sounds which
are not distinct from each other in meaning. The sounds of each group differ in pronunciation, but
this difference is not important to meaning. Their difference is merely a convention of the spoken
language.

Features of speech which may be phonemically distinct in one language may not be phonemic in
another. For example, in many East Asian and Western African languages, changing the pitch of a
vowel changes the meaning of the word. In European and Middle Eastern languages, this generally
is not the case. Other striking examples are the Bantu languages of southern Africa, such as Zulu,
in which tongue clicks and lip smacks are phonemes.

The preceding implications are that speech is, in some sense, discrete. Yet an oscillographic rep-
resentation of the sound pressure wave emanating from a speaker producing connected speech shows
surprisingly few gaps or pause intervals. Connected speech is coupled with a near continuous motion
of the vocal apparatus from sound to sound. This motion involves changes in the configuration of
the vocal tract as well as in its modes of excitation. In continuous articulation the vocal tract dwells
only momentarily in a state appropriate to a given phoneme.

The statistical constraints of the language greatly influence the precision with which a phoneme
needs to be articulated. In some cases it is merely sufficient to make a vocal gesture in the direction
of the normal configuration to signal the phoneme. Too, the relations between speech sounds and
vocal motions are far from unique, although normal speakers operate with gross similarity. No-
table examples of the “many–valuedness” of speech production are the compensatory articulation
of ventriloquists and the mimicry of parrots and myna birds.

Despite the mutability of the vocal apparatus in connected speech, and the continuous nature of
the speech wave, humans can subjectively segment speech into phonemes. Phoneticians are able to
make written transcriptions of connected speech events, and phonetic alphabets have been devised
for the purpose. It has been argued that the concept of a phonetic alphabet was invented only
once in human history, by the Phoenicians of Lebanon in the early first millenium B.C., but the
uniqueness of this invention is obscured by the rapidity with which it was adopted worldwide. By
300 B.C., the Indus river scholar Panini had organized the phonemes of his language into a rank-
three array, with dimensions specifying the manner of articulation (vowel, glide, nasal, fricative,
stop), place of articulation (lips, teeth, alveolar ridge, hard palate, soft palate, uvula, pharynx),
and glottal features (voiced vs. unvoiced, aspirated vs. unaspirated). Panini’s organization remains
the foundation of all modern phonetic alphabets, including the international standard alphabet
developed by the International Phonetic Association (IPA). The international phonetic alphabet
(also abbreviated IPA: the meaning of the acronym is usually apparent from context) provides
symbols for representing the speech sounds of most of the major languages of the world.

Linguists transcribe speech at several different levels of precision. As specified previously, two
phonemes are different only if it is possible to change the meaning of a word by interchanging the
two. A transcription in terms of phonemes is called “phonemic,” and is conventionally enclosed
in virgules // (Fairbanks [1940]). On the other hand, the IPA provides notation for many subtle
acoustic distinctions that are never used, in any given language, to change the meaning of a word; a
transcription that specifies any of these allophonic or sub-phonemic distinctions is called “phonetic,”
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Table 2.1: Vowels

Degree of Tongue hump position
constriction

front central back
High /i/ eve /3r/ bird /u/ boot/I/ it /�r/ lover (unstressed) /U/ foot
Medium /e/ hate* /2/ up /o/ obey*/E/ met /�/ ado (unstressed) /O/ all
Low /æ/ at /A/ father

*These two sounds usually exist as diphthongs in GA dialect. They are included in the vowel table
because they form the nuclei of related diphthongs. See Section 2.27 for further discussion. (See
also (Lehiste and Peterson [1961]).)

and is conventionally enclosed in brackets []. In the remainder of this book, most transcriptions will
be phonemic, but we will occsionally also make use of phonetic transcription.

Classification of speech sounds is customarily accomplished according to their manner and place
of production. Phoneticans have found this method convenient to indicate the gross characteristics
of sounds. For example, the articulation of vowel sounds is generally described by the position
of the tongue hump along the vocal tract (which is often, but not always, the place of greatest
constriction) and the degree of the constriction. This classification method will be employed in
the following discussion of speech sounds. The examples extend to the sounds of English speech of
General American (GA) dialect.

2.2.1 Vowels

Vowels are speech sounds with no narrow constriction in the vocal tract. They are usually voiced
(produced with vocal fold excitation), though they may of course be whispered. In normal articu-
lation, the tract is maintained in a relatively stable configuration during most of the sound. The
vowels are further characterized by negligible (if any) nasal coupling, and by radiation only from the
mouth (excepting that which passes through the cavity walls). If the nasal tract is coupled to the
vocal tract during the production of a vowel, the vowel becomes nasalized. The distinction between
nasalized and non-nasalized versions of any particular vowel is phonemic in some languages (e.g.,
French), but not in English; thus, for example, some comedians produce an entertaining effect by
nasalizing all of their vowels.

When the 12 vowels of GA speech are classified according to the tongue-hump-position degree-
of-constriction scheme, they may be arranged as shown in Table 2.1. Along with each vowel is shown
a key word containing the vowel.

The approximate articulatory configurations for the production of these sounds (exclusive of
the two unstressed vowels) are shown qualitatively by the vocal tract profiles in Fig. 2.5 (Potter
et al. [1947]). The physiological basis for the front-back/high-low classification is particularly well
illustrated if the profiles for the vowels /i,æ,a,u/ are compared2.

2These profiles, and the ones shown subsequently in this chapter, mainly illustrate the oral cavity. The important
pharynx cavity and the lower vocal tract are not drawn. Their shapes may be deduced from x-rays (see Figs. 4.34
through 4.36, for example).
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Figure 2.5: Schematic vocal tract profiles for the production of English vowels. (Adapted from
Potter, Kopp and Green)

Table 2.2: All consonants may be divided into four broad manner classes, using the two binary
features [sonorant] and [continuant]. The opposite of “sonorant” is “obstruent,” sometimes denoted
[−sonorant] the opposite of “continuant” is “discontinuant,” sometimes denoted [−continuant]

Continuant Discontinuant
[+continuant] [−continuant]

Sonorant Glides (/w,j/) Nasals (/m,n,N/)
[+sonorant] and Semivowels (/l,r/)
Obstruent Fricatives (/f,v,T,D,s,z,S,Z,h/) Stops (/p,b,t,d,k,g/)

[−sonorant] and Affricates (/tS,dZ/)
2.2.2 Consonants

Consonants are sounds produced with a constriction at some point in the vocal tract. Consonants
may be further divided into four classes, based on two binary manner features: the feature sonorant,
and the feature continuant.

The literal meaning of the word “sonorant” is “song-like.” A sonorant consonant is a consonant
with no increase of air pressure inside the vocal tract, either because the vocal tract constriction is
not very tight (/w,j,r,l/), or because the soft palate is opened, allowing air to escape through the
nose (/m,n,N/). Because there is no increase in air pressure, the voicing of a sonorant consonant is
free and easy, and, for example, it is possible to sing a sonorant consonant.

A discontinuant consonant is produced with a complete closure at some point in the vocal tract.
Because of this complete closure, the transition between a discontinuant consonant and its neigh-
boring vowel is always marked by a sudden acoustic discontinuity, when the sound quality changes
dramatically in a space of one or two milliseconds. A continuant consonant has no complete vocal
tract closure.

Based on these two binary features, it is possible to divide all consonants into four broad manner
classes, as shown in Table 2.2.
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Table 2.3: Fricative consonants

Place of Voiced Voiceless
articulation
Labio-dental /v/ vote /f/ for
Dental /D/ then /T/ thin
Alveolar /z/ zoo /s/ see
Palatal /Z/ azure /S/ she
Glottal /h/ he

Fricative Consonants

Fricatives are produced from an incoherent noise excitation of the vocal tract. The noise is generated
by turbulent air flow at some point of constriction. In order for the air flow through a constriction
to produce turbulence, the Reynold’s number Ree = udρ/µ must be larger than 1800, where u is
the air particle velocity, ρ and µ are the density and viscosity of air, and d is the smallest cross-
sectional width of the constriction (all expressed in consistent units, so that the Reynolds number
itself is dimensionless). Since velocity is inversely proportional to the area of the constriction,
small constrictions lead to high Reynolds numbers; the threshold Reynolds number for turbulence is
usually reached by by constrictions of less than about 3mm width. In order to produce a fricative,
a talker must position the tongue or lips to create a constriction with a width of 2-3mm, and allow
air pressure to build up behind the constriction, so that the air flow through the constriction is
turbulent. If the constriction is too wide, it will not produce turbulence; if it is too narrow, it will
stop the air flow entirely. Because of the precise articulation required, fricatives are rarely the first
phonemes acquired by infants learning to speak.

Common constrictions for producing fricative consonants are those formed by the tongue behind
the teeth (dental: /T,D/), the upper teeth on the lower lip (labio-dental: /f,v/), the tongue to the
gum ridge (alveolar: /s,z/), the tongue against the hard palate (palatal: /S,Z/), and the vocal cords
constricted and fixed (glottal: /h/). Radiation of fricatives normally occurs from the mouth. If the
vocal cord source operates in conjunction with the noise source, the fricative is a voiced fricative. If
only the noise source is used, the fricative is unvoiced.

Both voiced and unvoiced fricatives are continuant sounds. Because a given fricative articulatory
configuration can be excited either with or without voicing, the voiced and voiceless fricatives form
complementary pairs called cognates. The fricative consonants of the GA dialect are listed in
Table 2.3, along with typical “places” of articulation and key words for pronunciation.

Vocal tract profiles for these sounds are shown in Fig. 2.6. Those diagrams in which the vocal
cords are indicated by two small lines are the voiced fricatives. The vocal cords are shown dashed
for the glottal fricative (/h/).

The phoneme /h/ is a special case because, like the sonorant consonants, it requires no increase
of air pressure within the vocal tract. For this reason, some phoneticians class /h/ as a glide rather
than a fricative (e.g., (Stevens [1999])). In inter-vocalic context (e.g., in the word “ahead”), the
acoustic quality of /h/ may be very sonorant-like, e.g., the amplitude of voicing may not decrease at
all. In other contexts, /h/ may have weakened voicing (like a typical voiced fricative), or it may be
completely unvoiced (like a typical unvoiced fricative). All of these different allophones are produced
and perceived interchangeably, by native speakers of English, as examples of the same underlying
phoneme /h/.
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Table 2.4: Stop consonants

Place of Voiced Voiceless
articulation
Labial /b/ be /p/ pay
Alveolar /d/ day /t/ to
Palatal/velar /g/ go /k/ key

Figure 2.6: Vocal tract profiles for the fricative consonants of English. The short pairs of lines drawn
on the throat represent vocal cord operation. (Adapted from Potter, Kopp and Green)

Stop Consonants

Among those consonants which depend upon vocal tract dynamics for their creation are the stop
consonants. To produce these sounds a complete closure is formed at some point in the vocal
tract. The lungs build up pressure behind this occlusion, and the pressure is suddenly released
by an abrupt motion of the articulators. Stops are distinguished from other phonemes by complete
closure, followed by a characteristic acoustic “explosion” called a “transient.” The transient typically
lasts only one or two milliseconds, but it may be followed by a fricative burst of 5-10ms in duration,
if the lips or tongue pass too slowly through the 2-3mm frication region.

Stops in English come in voiced/unvoiced cognate pairs, as do fricatives. Cognate pairs are
distinguished in two ways. First, the vocal folds may continue to vibrate during the closure interval
of a voiced stop. Closure voicing is often heard in carefully produced speech, but rarely in casual
speech. Instead, most speakers of GA English signal that a stop is voiced by allowing the vocal folds
to begin vibrating immediately after stop release. An unvoiced stop, by contrast, has a period of
aspiration following release, during which the vocal folds are held open and turbulence is produced
at the glottis. The acoustic effect is exactly what one would achieve by producing an unvoiced stop
followed immediately by an /h/.

The cognate pairs of stops, with typical places of articulation, are shown in Table 2.4. Articula-
tory profiles for these sounds are shown in Fig. 2.7. Each position is that just prior to the pressure
release.
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Figure 2.7: Articulatory profiles for the English stop consonants. (After Potter, Kopp and Green)

Table 2.5: Nasals

Place
Labial /m/ me
Alveolar /n/ no
Palatal/velar /N/ sing (no initial form)

Nasal Consonants

The nasal consonants, or nasals, are sonorant consonants; they are normally voiced in GA English,
although unvoiced allophones might be heard in some contexts (e.g., some speakers will devoice
the /n/ in “fishnet”). A complete closure is made toward the front of the vocal tract, either by the
lips, by the tongue at the gum ridge, or by the tongue at the hard or soft palate. The velum is
opened wide and the nasal tract provides the main sound transmission channel. Most of the sound
radiation takes place at the nostrils. The closed oral cavity functions as a side branch resonator
coupled to the main path, and it can substantially influence the sound radiated. Because there is no
increase of the air pressure in the mouth, nasals are classed as sonorant consonants; because there
is a complete closure within the vocal tract, they are discontinuant. The GA nasal consonants are
listed in Table 2.5, and their vocal profiles are illustrated in Fig. 2.8.

Glides and Semivowels

Two small groups of consonants contain sounds that greatly resemble vowels. These are the glides/w,j/ and the semivowels /r,l/ (Fairbanks [1940]). Both are characterized by sonorant voicing, no
effective nasal coupling, and sound radiation from the mouth. All four phonemes may be optionally
devoiced (as in “which” or “rheum”); speakers of GA English usually consider voiced and devoiced
allophones to be examples of the same underlying phoneme.

Figure 2.8: Vocal profiles for the nasal consonants. (After Potter, Kopp and Green)



24 CHAPTER 2. THE MECHANISM OF SPEECH PRODUCTION

Table 2.6: Glides and semi-vowels

Place
Palatal /j/ you
Labial /w/ we (no final form)
Palatal /r/ read
Alveolar /l/ let

Figure 2.9: Vocal tract configurations for the beginning positions of the glides and semivowels.
(After Potter, Kopp and Green)

The glides /w/ and /j/, respectively, may be interpreted as extreme examples of the vowels /u/
and /i/—the former involves an extreme lip constriction, the latter an extreme palatal tongue
constriction. In both cases, the constriction is a dynamic one, released gradually into the following
vowel.

The semivowels, by contrast, may be produced either dynamically or in a relatively static con-
figuration; in fact, either of these two consonants may be produced as the nucleus of a syllable in
English (e.g., in the words “bird” and “bull”; when produced as a syllable nuclei, these phonemes
may be transcribed as /3r/ and /l"/, respectively). Both sounds are most reliably identified by a
unique acoustic pattern: /r/ is the only sound in English with a third formant below 2000Hz, and /l/
is one of the few sounds in English with a third formant above 3000Hz. Both sounds are typically
produced in syllable-initial position with both a tongue body constriction and a tongue tip con-
striction; in syllable-final position, both sounds are optionally produced with only a tongue body
constriction. The tongue tip constriction for /r/ is curled back (“retroflex”), and the tongue body
constriction is tightly bunched in the middle of the hard palate. The tongue tip constriction for /l/
is made with the tip touching the gum ridge like a /d/, but open on the left and/or right (“lateral”);
the tongue body constriction is near the uvula. These are the only retroflex and lateral phonemes in
English, but other languages have other phonemes (in some cases, stops and fricatives) with similar
tongue tip positions.

The glides and semivowels for the GA dialect are listed, according to place of articulation, in
Table 2.6. Their profiles, for the beginning positions, are given in Fig. 2.9.

Combination Sounds: Diphthongs and Affricates

Some of the preceding vowel or consonant elements can be combined to form basic sounds whose
phonetic values depend upon vocal tract motion. An appropriate pair of vowels, so combined, form
a diphthong. The diphthong is vowel-like in nature, but is characterized by change from one vowel
position to another. For example, if the vocal tract is changed from the /e/ position to the /I/
position, the diphthong /eI/ as in say is formed. Other GA diphthongs are /Iu/ as in new, /OI/ as
in boy; /AU/ as in out, /AI/ as in I, and /oU/ as in go.

As vowel combinations form the diphthongs, stop-fricative combinations likewise create the two
GA affricates. These are the /tS/ as in chew and the /dZ/ as in jar.

Each of these combination sounds is perceived to be a phoneme by typical speakers of GA
English. For example, in games where subjects are asked to reverse the order of phonemes in a word
(turning “scram” into “marks,” for example), an affricate or diphthong will be treated as a single
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phoneme (e.g., turning “chide” into “daytch” rather than “dyasht”). The acoustic signal also gives
us one reason to treat a combination sound as if it were a single phoneme: the average duration of
a combination phoneme is shorter than the average total duration of its component phonemes (e.g.,
the average duration of /tS/ is shorter than the sum of the average durations of /t/ and /S/). In
most other respects, however, a combination sound has exactly the same articulatory and acoustic
characteristics as a sequence of two separate phonemes, e.g., a /tS/ is produced with an unvoiced
alveolar closure that looks (e.g., if viewed using MRI) and sounds exactly like a /t/ closure, followed
by an unvoiced palatal fricative that looks and sounds exactly like an /S/. The standard IPA notation
for these sounds writes them as the sequence of two phonemes (e.g., /t/ followed by /S/) in order to
emphasize their articulatory and acoustic decomposibility.

2.3 Quantitative Description of Speech

The preceding discussion has described the production of speech in a completely qualitative way.
It has outlined the mechanism of the voice and the means for producing an audible code which,
within a given language, consists of distinctive sounds. However, for any transmission system to
benefit from prior knowledge of the information source, this knowledge must be cast into a tractable
analytical form that can be employed in the design of signal processing operations. Detailed inquiry
into the physical principles underlying the speech-producing mechanism is therefore indicated.

The following chapter will consider the characteristics of the vocal system in a quantitative
fashion. It will treat the physics of the vocal and nasal tracts in some depth and will set forth
certain acoustical properties of the vocal excitations. The primary objective–as stated earlier–is to
describe the acoustic speech signal in terms of the physical parameters of the system that produced it.
Because of physiological and linguistic constraints, such a description carries important implications
for analysis-synthesis telephony.
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2.4 Homework

Problem 2.1

Mary and John are talking about something they found on the internet. What are they saying?

Mary: heidZAnlUkætDIs
John: w2t
Mary: s2mgAisEzhik�nridAipieinoUteiS2nwIDaUt�nAipieitSArt
John: w2tsiri2sli
Mary: bOiAiwISAikUdduDæt
Problem 2.2

Create IPA transcriptions of the following sentences.

a. A bird in the hand is worth two in the bush.

b. A stitch in time saves nine.

c. Measure twice, cut once.

d. How much wood would a woodchuck chuck if a woodchuck could chuck wood?

Problem 2.3

Create a table showing the manner, place, and voicing features of all phonemes in the phrase
“better speech.”



Chapter 3

Acoustical Properties of the Vocal
System

The collection of olfactory, respiratory and digestive apparatus which humans use for speaking is
a relatively complex sound-producing system. Its operation has been described qualitatively in the
preceding chapter. In this chapter we would like to consider in more detail the acoustical principles
underlying speech production. The treatment is not intended to be exhaustive. Rather it is intended
to circumscribe the problems of vocal tract analysis and to set forth certain fundamental relations
for speech production. In addition, it aims to outline techniques and method for acoustic analysis
of the vocal mechanism and to indicate their practical applications. Specialized treatments of a
number of these points can be found elsewhere1

3.1 The Vocal Tract as an Acoustic System

The operations described qualitatively in the previous chapter can be crudely represented as in
Fig. 3.1. The lungs and associated respiratory muscles are the vocal power supply. For voiced
sounds, the expelled air causes the vocal folds to vibrate as a relaxation oscillator, and the air
stream is modulated into discrete puffs or pulses. Unvoiced sounds are generated either by passing
the air stream through a constriction in the tract, or by making a complete closure, building up
pressure behind the closure and abruptly releasing it. In the first case, turbulent flow and incoherent
sound are produced. In the second, a brief transient excitation occurs. The physical configuration
of the vocal tract is highly variable and is dictated by the positions of the articulators; that is, the
jaw, tongue, lips and velum. The latter controls the degree of coupling to the nasal tract.

In general, several major regions figure prominently in speech production. They are: (a) the
relatively long cavity formed at the lower back of the throat in the pharynx region; (b) the narrow
passage at the place where the tongue is humped; (c) the variable constriction of the velum and
the nasal cavity; (d) the relatively large, forward oral cavity; (e) the radiating ports formed by the
mouth and nostrils.

Voiced sounds are always excited at the same point in the tract, namely at the vocal folds.
Radiation of voiced sounds can take place either from the mouth or nose, or from both. Unvoiced
excitation is applied to the acoustic system at the point where turbulent flow or pressure release
occurs. This point may range from an anterior position (such as the labio-dental excitation for /f/)

1For this purpose G. Fant (Fant [1960]), Acoustic Theory of Speech Production, is highly recommended. Besides
presenting the acoustical bases for vocal analysis, this volume contains a wealth of data on vocal configurations and
their calculated frequency responses. An earlier but still relevant treatise is Chiba and Kajiyama (Chiba and Kajiyama
[1941]), The Vowel; Its Nature and Structure.

27
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Figure 3.1: Schematic diagram of functional components of the vocal tract

to a posterior position (such as the velar excitation for /k/). Unvoiced sounds are normally radiated
from the mouth. All sounds generated by the vocal apparatus are characterized by properties of the
source of excitation and the acoustic transmission system. To examine these properties, let us first
establish some elementary relations for the transmission system, then consider the sound sources,
and finally treat the combined operation of sources and system.

The length of the vocal tract (about 17cm for adult males, about 15cm in adult females) is fully
comparable to the wavelength of sound in air at audible frequencies. It is therefore not possible
to obtain a precise analysis of the tract operation from a lumped-constant approximation of the
major acoustic components. Wave motion in the system must be considered for frequencies above
about 200Hz. The vocal and nasal tracts constitute lossy tubes of non-uniform cross-sectional area.
Wave motion in such tubes is difficult to describe, even for lossless propagation. In fact, exact
solutions to the wave equation are available only for two nonuniform geometries, namely for conical
and hyperbolic area variations (Morse [1948]). And then only the conical geometry leads to a
one-parameter wave.

So long as the greatest cross dimension of the tract is appreciably less than a wavelength (this
is usually true for frequencies below about 5000Hz), and so long as the tube does not flare too
rapidly (producing internal wave reflections), the acoustic system can be approximated by a one-
dimensional wave equation. Such an equation assumes cophasic wave fronts across the cross-section
and is sometimes called the Webster equation (Webster [1919]). Its form is

1

A(x)

∂

∂x

[
A(x)

∂p

∂x

]
=

1

c2
∂2p

∂t2
(3.1)

where A(x) is the cross-sectional area normal to the longitudinal dimension, p is the sound pressure
(a function of t and x) and c is the sound velocity. In general this equation can only be integrated
numerically, and it does not include loss. At least three investigations, however, have made use of
this formulation for studying vowel production (Chiba and Kajiyama [1941], Heinz [1962]).

A more tractable approach to the analysis problem (both computationally and conceptually) is to
impose a further degree of approximation upon the nonuniform tube. The pipe may be represented
in terms of incremental contiguous sections of right circular geometry. The approximation may,
for example, be in terms of cylinders, cones, exponential or hyperbolic horns. Although quantizing
the area function introduces error, its effect can be made small if the lengths of the approximating
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Figure 3.2: Incremental length of lossy cylindrical pipe. (a) acoustic representation; (b) electrical
equivalent for a one-dimensional wave

sections are kept short compared to a wavelength at the highest frequency of interest. The uniform
cylindrical section is particularly easy to treat and will be the one used for the present discussion.

3.2 Equivalent Circuit for the Lossy Cylindrical Pipe

Consider the length dx of lossy cylindrical pipe of area A shown in Fig. 3.2a. Assume plane wave
transmission so that the sound pressure and volume velocity are spatially dependent only upon x.
Because of its mass, the air in the pipe exhibits an inertance which opposes acceleration. Because
of its compressibility the volume of air exhibits a compliance. Assuming that the tube is smooth
and hard-walled, energy losses can occur at the wall through viscous friction and heat conduction.
Viscous losses are proportional to the square of the particle velocity, and heat conduction losses are
proportional to the square of the sound pressure.

The characteristics of sound propagation in such a tube are easily described by drawing upon
elementary electrical theory and some wellknown results for one-dimensional waves on transmission
lines. Consider sound pressure analogous to the voltage and volume velocity analogous to the current
in an electrical line. Sound pressure and volume velocity for plane wave propagation in the uniform
tube satisfy the same wave equation as do voltage and current on a uniform transmission line. A
dx length of lossy electrical line is illustrated in Fig. 3.2b. To develop the analogy let us write
the relations for the electrical line. The per-unitlength inductance, capacitance, series resistance
and shunt conductance are L, C, R, and G respectively. Assuming sinusoidal time dependence for
voltage and current, (Iejωt and Eejωt), the differential current loss and voltage drop across the dx
length of line are

dI = −Eydx and dE = −Izdx, (3.2)

where y = (G+ jwC) and z = (R+ jwL). The voltage and current therefore satisfy

d2E

dx2
− zyE = 0 and

d2I

dx2
− zyI = 0, (3.3)

the solutions for which are
E = A1e

γx +B1e
−γx,

I = A2e
γx +B2e

−γx, (3.4)

where γ =
√
zy = (α+jβ) is the propagation constant, and the A’s and B’s are integration constants

determined by terminal conditions.
For a piece of line l in length, with sending-end voltage and current E1 and I1, the receiving-end

voltage and current E2 and I2 are given by

E2 = E1 cosh γl− I1Z0 sinh γl
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Figure 3.3: Equivalent four-pole networks for a length l of uniform transmission line. (a) T-section;
(b) π-section

I2 = I1 cosh γl − E1Y0 sinh γl, (3.5)

where Z0 =
√
z/y and Y0 =

√
y/z are the characteristic impedance and admittance of the line.

Eq. 3.5 can be rearranged to make evident the impedance parameters for the equivalent four-pole
network

E1 = Z0I1 coth γl− Z0I2cschγl

E2 = Z0I1cschγl − Z0I2 coth γl. (3.6)

The equivalent T-network for the l length of line is therefore as shown in Fig. 3.3a. Similarly, a
different arrangement makes salient the admittance parameters for the four-pole network.

I1 = Y0E1 coth γl− Y0E2cschγl

I2 = Y0E1cschγl− Y0E2 coth γl. (3.7)

The equivalent π-network is shown in Fig. 3.3b. One recalls also from conventional circuit theory the
lossless case corresponds to γ =

√
zy = jβ = jω

√
LC, and Z0 =

√
L/C. The hyperbolic functions

then reduce to circular functions which are purely reactive. Notice, too, for small loss conditions,
(that is, R≪ ωL and G≪ ωC) the attenuation and phase constants are approximately

α ≈ R

2

√
C/L+

G

2

√
L/C

β ≈ ω
√
LC (3.8)

Having recalled the relations for the uniform, lossy electrical line, we want to interpret plane
wave propagation in a uniform, lossy pipe in analogous terms. If sound pressure, p, is considered
analogous to voltage and acoustic volume velocity, U , analogous to current, the lossy, onedimensional,
sinusoidal sound propagation is described by the same equations as given in (3.3). The propagation
constant is complex (that is, the velocity of propagation is in effect complex) and therefore the wave
attenuates as it travels. In a smooth hard-walled tube the viscous and heat conduction losses can be
represented, in effect, by an I2R loss and an E2G loss, respectively. The inertance of the air mass
is analogous to the electrical inductance, and the compliance of the air volume is analogous to the
electrical capacity. We can draw these parallels quantitatively2.

2The reader who is not interested in these details may omit the following four sections and find the results
summarized in Eq. (3.33) of Section 3.2.5.
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Figure 3.4: Relations illustrating viscous loss at the wall of a smooth tube

3.2.1 The Acoustic “L”

The mass of air contained in the dx length of pipe in Fig. 3.2a is ρAdx, where ρ is the air density.
The differential pressure drop in accelerating this mass is by Newton’s law:

dp = ρdx
du

dt
= ρ

dx

A
· dU(x, t)

dt
,

where u is particle velocity and U is volume velocity.
For U(x, t) = U(x)ejωt

dp = jωρ
dx

A
U

and
dp

dx
= jωLaU, (3.9)

where La = ρ/A is the acoustic inertance per unit length.

3.2.2 The Acoustic “R”

The acoustic R represents a power loss proportional to U2 and is the power dissipated in viscous
friction at the tube wall (Ingard [1953]). The easiest way to put in evidence this equivalent surface
resistance is to consider the situation shown in Fig. 3.4. Imagine that the tube wall is a plane
surface, large in extent, and moving sinusoidally in the x-direction with velocity u(t) = ume

jωt. The
air particles proximate to the wall experience a force owing to the viscosity, µ, of the medium. The
power expended per unit area in dragging the air with the plate is the loss to be determined.

Consider a layer of air dy thick and of unit area normal to the y axis, The net force on the layer
is

µ

[(
∂u

∂y

)

y+dy

−
(
∂u

∂y

)

y

]
= ρdy

∂u

∂t
,

where u is the particle velocity in the x-direction. The diffusion equation specifying the air particle
velocity as a function of the distance above the wall is then

∂2u

∂y2
=
ρ

µ

∂u

∂t
, (3.10)

For harmonic time dependence this gives

d2u

dy2
= j

ωρ

µ
u = k2

vu, (3.11)

where kv = (1 + j)
√
ωρ/2µ, and the velocity distribution is

u = ume
−kvy = ume

−
√
ωρ/2µye−j

√
ωρ/2µy (3.12)
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The distance required for the particle velocity to diminish to 1/e of its value at the driven wall is
often called the boundary-layer thickness and is δv =

√
2µ/ωρ. In air at a frequency of 100Hz, for

example, δv ≈ 0.2mm.
The viscous drag, per unit area, on the plane wall is

F = −µ
(
∂u

∂y

)

y=0

= µkvum,

or
F = um(1 + j)

√
ωµρ/2. (3.13)

Notice that this force has a real part and a positive reactive part. The latter acts to increase the
apparent acoustic L. The average power dissipated per unit surface area in this drag is

P̄ =
1

2
|F |um cos θ =

1

2
u2
mRs, (3.14)

where Rs =
√
ωρµ/2 is the per-unit-area surface resistance and θ is the phase angle between F

and u, namely, 45. For a length l of the acoustic tube, the inner surface area is Sl, where S is the
circumference. Therefore, the average power dissipated per unit length of the tube is P̄ S = 1

2u
2
mSR

or in terms of the acoustic volume velocity

P̄S =
1

2
U2
mRa,

where

Ra =
S

A2

√
ωρµ/2, (3.15)

and A is the cross-sectional area of the tube. Ra is then the per-unitlength acoustic resistance for
the analogy shown in Fig. 3.2.

As previously mentioned, the reactive part of the viscous drag contributes to the acoustic induc-
tance per unit length. In fact, for the same area and surface relations applied above, the acoustic

inductance obtained in the foregoing section should be increased by the factor A2

S

√
µρ/2ω, or

La ≈ ρ

A

(
1 +

S

A

√
µ

2ρω

)
. (3.16)

Thus, the viscous boundary layer increases the apparent acoustic inductance by effectively di-
minishing the cross-sectional area. For vocal tract analysis, however, the viscous boundary layer is
usually so thin that the second term in (3.16) is negligible. For example, for a circular cross-section
of 9 cm2, the second term at a frequency of 500Hz is about (0.006) ρ/A.

3.2.3 The Acoustic “C”

The analogous acoustic capacitance, or compliance, arises from the compressibility of the volume of
air contained in the dx length of tube shown in Fig. 3.2a. Most of the elemental air volume Adx
experiences compressions and expansions which follow the adiabatic gas law

PV η = constant,

where P and V are the total pressure and volume of the gas, and η is the adiabatic constant3.
Differentiating with respect to time gives

1

P

dP

dt
= − η

V

dV

dt
.

3η is the ratio of specific heat at constant pressure to that at constant volume. For air at normal conditions,
η = cp/cv = 1.4.
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The diminution of the original air volume, owing to compression caused hy an increase in pressure,
must equal the volume current into the compliance; that is,

U = −dV
dt
,

and
1

P

dP

dt
=
ηU

V
.

For sinusoidal time dependence P = P0 + pejωt, where P0 is the quiescent pressure and is large
compared with p. The volume flow into the compliance of the Adx volume is therefore approximately

U = jω
V p

P0η
= jω

Apdx

P0η
. (3.17)

From the derivation of the acoustic wave equation (Morse [1948]), it is possible to show that the
speed of sound is given by P0η = ρc2. The volume velocity into the per-unit-length compliance can
therefore be written as

U = jω · Ca · p,
where

Ca =
A

P0η
=

A

ρc2
(3.18)

is the per-unit-length acoustic compliance.

3.2.4 The Acoustic “G”

The analogous shunt conductance provides a power loss proportional to the square of the local
sound pressure. Such a loss arises from heat conduction at the walls of the tube. The per-unit-
length conductance can be deduced in a manner similar to that for the viscous loss. As before, it is
easier to treat a simpler situation and extend the result to the vocal tube.

Consider a highly conductive plane wall of large extent, such as shown in Fig. 3.5. The air above
the boundary is essentially at constant pressure and has a coefficient of heat conduction λ and a
specific heat cp. Suppose the wall is given an oscillating temperature T |y=0 = Tme

jωt. The vertical
temperature distribution produced in the air is described by the diffusion equation (Hildebrand
[1948]).

∂2T

∂y2
=
cpρ

λ

∂T

∂t
,

or
∂2T

∂y2
= jω

cpρ

λ
T. (3.19)

The solution is T = Tme
−khy, where

kh = (1 + j)

√
ωcpρ

2λ
(3.20)

which is the same form as the velocity distribution due to viscosity. In a similar fashion, the boundary
layer depth for temperature is δh =

√
2λ/ωcpρ, and kh = (1 + j)/δh.

Now consider more nearly the situation for the sound wave. Imagine an acoustic pressure wave
moving parallel to the conducting boundary, that is, in the x-direction. We wish to determine
the temperature distribution above the wall produced by the sound wave. The conducting wall
is assumed to be maintained at some quiescent temperature and permitted no variation, that is,
λwall = ∞. If the sound wavelength is long compared to the boundary extent under consideration,
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Figure 3.5: Relations illustrating heat conduction at the wall of a tube

the harmonic pressure variation above the wall may be considered as P = P0 + p, where P0 is
the quiescent atmospheric pressure and p = pme

jωt is the pressure variation. (That is, the spatial
variation of p with x is assumed small.) The gas laws prescribe

PV η = constant and PV = RT (for unit mass).

Taking differentials gives
dV

V
= −1

η

dP

P
and

dP

P
+
dV

V
=
dT

T
(3.21)

Combining the equations yields
dP

P

(
1 − 1

η

)
=
dT

T
, (3.22)

where
dP = p = pme

jωt

dT = τ = τme
jωt,

so from (3.22)

τm =
T0

P0

(
η − 1

η

)
pm (3.23)

At the wall, y = 0 and τ(0) = 0 (because λwall = ∞). Far from the wall (i.e., for y large),
|τ(y)| = τm as given in (3.23). Using the result of (3.20), the temperature distribution can be
constructed as

τ(y, t) =
[
1 − e−khy

]
τme

jωt,

or

τ(y, t) =
P0

T0

(
η − 1

η

)[
1 − e−khy

]
pme

jωt. (3.24)

Now consider the power dissipation at the wall corresponding to this situation. A long wave-
length sound has been assumed so that the acoustic pressure variations above the boundary can be
considered p = pme

jωt, and the spatial dependence of pressure neglected. Because of the temper-
ature distribution above the boundary, however, the particle velocity will be nonuniform, and will
have a component in the y-direction. The average power flow per unit surface area into the boundary
is ¯puy0

t, where uyO is the velocity component in the y direction lit the boundary. To examine this
quantity, uy is needed.

Conservation of mass in the y-direction requires

ρ
∂uy
∂y

= −∂ρ
∂t
. (3.25)

Also, for a constant mass of gas dρ/ρ = −dV/V which with the second equation in (3.21) requires

dP

P
− dρ

ρ
=
dT

T
. (3.26)
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Therefore,
∂uy
∂y

=

(
1

T0

∂τ

∂t
− 1

P0

∂p

∂t

)
, (3.27)

and

uy =

∫
∂uy
∂y

· dy

yy =
jωp

P0

{
η − 1

η

(
y +

e−kyy

ky

)
− y

}
. (3.28)

And,

uy0 = p
ω

c

η − 1

ρc

j

1 + j
δh. (3.29)

The equivalent energy flow into the wall is therefore

Wh = ¯puy0
t =

ω

c

η − 1

ρc
δh

1√
2

1

T

∫ T

0

P 2
m cos

(
ωt+

π

4

)
cosωt · dt

Wh =
1

4

ω

c

η − 1

ρc
δhp

2
m =

1

2
Gαp

2
m, (3.30)

where Gα is an equivalent conductance per unit wall area and is equal

Gα =
1

2

ω

c

η − 1

ρc

√
2λ

ωcpρ
. (3.31)

The equivalent conductance per unit length of tube owing to heat conduction is therefore

Gα = S
η − 1

ρc2

√
λω

2cpρ
, (3.32)

where S is the tube circumference. To reiterate, both the heat conduction loss G; and the viscous
loss Rα are applicable to a smooth, rigid tube. The vocal tract is neither, so that in practice these
losses might be expected to be somewhat higher. In addition, the mechanical impedance of the
yielding wall includes a mass reactance and a conductance which contribute to the shunt element of
the equivalent circuit. The effect of the wall reactance upon the tuning of the vocal resonances is
generally small, particularly for open articulations. The contribution of wall conductance to tract
damping is more important. Both of these effects are estimated in a later section.

3.2.5 Summary of the Analogous Acoustic Elements

The per-unit-length analogous constants of the uniform pipe can be summarized.

La = ρ
A , Ca = A

ρc2 ,

Ra = S
A2

√
ωρµ
2 , Ga = S η−1

ρc2

√
λω

2cpρ
,

(3.33)

where A is tube area, S is tube circumference, ρ is air density, c is sound velocity, u is viscosity
coefficient, A is coefficient of heat conduction, η is the adiabatic constant, and cp is the specific heat
of air at constant pressure4.

4

ρ = 1.14 × 10−3 gm/cm3 (moist air at body temperature, 37deg C).

c = 3.5 × 104 cm/sec (moist air at body temperature, 37deg C).
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Having set down these quantities, it is possible to approximate the nonuniform vocal tract with
as many right circular tube sections as desired. The transmission characteristics can be determined
either from calculations on equivalent network sections such as shown in Fig. 3.3, or from electrical
circuit simulations of the clements. When the approximation involves more than three or four
network loops, manual computation becomes prohibitive. Computer techniques can then be used to
good advantage.

A further level of approximation can be made for the equivalent networks in Fig. 3.3. For a
given length of tube, the hyperbolic elements may be approximated by the first terms of their series
expansions, namely,

tanhx = x− x3

3
+

2x5

15
· · ·

and

sinhx = x+
x3

3!
+
x5

5!
· · ·

so that

za = Z0 tanh
γl

2
≈ 1

2
(Ra + jωLa)l

and
1

zb
=

1

Z0
sinh γl ≈ (Ga + jωCa)l. (3.34)

The error incurred in making this approximation is a function of the elemental length l and the
frequency, and is (

1 − x

tanhx

)
and

(
1 − x

sinhx

)
,

respectively. In constructing electrical analogs of the vocal tract it has been customary to use this
approximation while keeping l sufficiently small. We shall return to this point later in the chapter.

We will presently apply the results of this section to some simplified analyses of the vocal tract.
Before doing so, however, it is desirable to establish several fundamental relations for sound radiation
from the mouth and for certain characteristics of the sources of vocal excitation.

3.3 The Radiation Load at the Mouth and Nostrils

At frequencies where the transverse dimensions of the tract are small compared with a wavelength,
the radiating area of the mouth or nose can be assumed to have a velocity distribution that is
approximately uniform and cophasic. It can therefore be considered a vibrating surface, all parts
of which move in phase. The radiating element is set in a baffle that is the head. To a rough
approximation, the baffle is spherical and about 9 cm in radius for an adult. Morse (Morse [1948])
has derived the radiation load on a vibrating piston set in a spherical baffle and shows it to be a
function of frequency and the relative sizes of the piston and sphere. The analytical expression for
the load is involved and cannot be expressed in closed form. A limiting condition, however, is the
case where the radius of the piston becomes small compared with that of the sphere. The radiation
load then approaches that of a piston in an infinite, plane baffle. The latter is well known and can
be expressed in closed form. In terms of the normalized acoustic impedance

z = ZA

(
A

ρc

)
=

p

U

(
A

ρc

)

µ = 1.86 × 10−4 dyne-sec/cm2 (20C, 0.76 m.Hg).

λ = 0.055 × 10−3 cal/gm-sec-deg (0deg C).

c = 0.24 cal/gm-degree (Odeg C, 1 atmos.).

η = 1.4.
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Figure 3.6: Normalized acoustic radiation resistance and reactance for (a) circular piston in all
infinite baffle; (b) circular piston in a spherical baffle whose radius is approximately three times that
of the piston; (c) pulsating sphere. The radius of the radiator, whether circular or spherical, is a

(that is, per-unit-free-space impedance), it is

zp =

[
1 − J1(2ka)

ka

]
+

[
K1(2ka)

2(ka)2

]
, (3.35)

where k = ω/c, a is the piston radius, A the piston area, J1(x) the first order Bessel function, and
K1(x) a related Bessel function given by the series

K1(x) =
2

π

[
x3

3
− x5

32 · 5 +
x7

32 · 52 · 7 · · ·
]
.

For small values of ka, the first terms of the Bessel functions are the most significant, and the
normalized radiation impedance is approximately

zp ≈
(ka)2

2
+ j

8(ka)

3π
; ka≪ 1 (3.36)

This impedance is a resistance proportional to ω2 in series with an inductance of normalized value
8a/3πc. The parallel circuit equivalent is a resistance of 128/9π2 in parallel with an inductance of
8a/3πc.

By way of comparison, the normalized acoustic load on a vibrating sphere is also well known and
is

zs =
jka

1 + jka
, (3.37)

where a is the radius of the sphere. Note that this is the parallel combination of a unit resistance
and an a/c inductance. Again, for small ka,

zs ≈ (ka)2 + j(ka); ka≪ 1. (3.38)
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Using Morse’s results for the spherical baffle, a comparison of the real and imaginary parts of the
radiation impedances for the piston-insphere, piston-in-wall, and pulsating sphere is made in Fig. 3.6.
For the former, a piston-to-sphere radius ratio of a/as = 0.35 is illustrated. The piston-in-wall curves
correspond to a/as = 0. For ka < l, one notices that the reactive loads are very nearly the same for
all three radiators. The real part for the spherical source is about twice that for the pistons.

These relations can be interpreted in terms of mouth dimensions. Consider typical extreme
values of mouth area (smallest and largest) for vowel production. An adult articulating a rounded
vowel such as /u/ produces a mouth opening on the order of 0.9 cm2. For an open vowel such
as /A/ an area of 5.0 cm2 is representative. The radii of circular pistons with these areas are 0.5
cm and 1.3 cm, respectively. For frequencies less than about 5000Hz, these radii place ka less than
unity. If the head is approximated as a sphere of 9 cm radius, the ratios of piston-to-sphere radii for
the extreme areas are 0.06 and 0.1, respectively. For these dimensions and frequencies, therefore,
the radiation load on the mouth is not badly approximated by considering it to be the load on a
piston in an infinite wall. The approximation is even better for the nostrils whose radiating area is
smaller. For higher frequencies and large mouth areas, the load is more precisely estimated from
the piston-insphere relations. Notice, too, that approximating the normalized mouthradiation load
as that of a pulsating sphere leads to a radiation resistance that is about twice too high.

3.4 Spreading of Sound about the Head

In making acoustic analyses of the vocal tract one usually determines the volume current delivered
to the radiation load at the mouth or nostrils. At these points the sound energy is radiated and
spreads spatially. The sound is then received by the ear or by a microphone at some fixed point in
space. It consequently is desirable to know the nature of the transmission from the mouth to the
given point.

The preceding approximations for the radiation impedances do not necessarily imply how the
sound spreads about the head. It is possible for changes in the baffling of a source to make large
changes in the spatial distribution of sound and yet produce relatively small changes in the radiation
load. For example, the piston-in-wall and piston-insphere were previously shown to be comparable
assumptions for the radiation load. Sound radiated by the former is of course confined to the half-
space, while that from the latter spreads spherically. The lobe structures are also spatially different.

One might expect that for frequencies where the wavelength is long compared with the head
diameter, the head will not greatly influence the field. The spatial spreading of sound should be
much like that produced by a simple spherical source of strength equal to the mouth volume velocity.
At high frequencies, however, the diffraction about the head might be expected to influence the field.

A spherical source, pulsating sinusoidally, produces a particle velocity and sound pressure at r
distance from its center equal respectively to

u(r) =
au0

r

jka

1 + jka

1 + jkr

jkr
e−jk(r−a),

and

p(t) =
ρcau0

r

jka

1 + jka
e−jk(r−a) (3.39)

where a is the radius, u0 is the velocity magnitude of the surface, and k = ω/c. (Note the third factor
in u(r) accounts for the “bass-boost” that is obtained by talking close to a velocity microphone, a
favorite artifice of nightclub singers.) If ka ≈ 1, the source is a so-called simple (point) source, and
the sound pressure is

p(r) =
jωρU0

4πr
e−jkr (3.40)



3.4. SPREADING OF SOUND ABOUT THE HEAD 39

Figure 3.7: Spatial distributions of sound pressure for a small piston in a sphere of 9cm radius.
Pressure is expressed in db relative to that produced by a simple spherical source of equal strength

where U0 = 4πa2u0 is the source strength or volume velocity. The simple source therefore produces
a sound pressure that has spherical symmetry and an amplitude that is proportional to l/r and to
ω.

Morse (Morse [1948]) has derived the pressure distribution in the far field of a small vibrating
piston set in a spherical baffle. Assuming that the mouth and head are approximately this configu-
ration, with a 9 cm radius roughly appropriate for the sphere, the radiation pattern can be expressed
relative to that which would be produced by a simple source of equal strength located at the same
position. When this is done, the result is shown in Fig. 3.7. If the pressure field were identical to
that of a simple spherical source, all the curves would fall on the zero db line of the polar plot. The
patterns of Fig. 3.7 are symmetrical about the axis of the mouth (piston) which lies at zero degrees.
One notices that on the mouth axis the high frequencies are emphasized slightly more than the +6
dB/octave variation produced by the simple source (by about another +2 dB/octave for frequencies
greater than 300 Hz). Also some lobing occurs, particularly at the rear of the head.

The question can be raised as to how realistic is the spherical approximation of the real head.
At least one series of measurements has been carried out to get a partial answer and to estimate
spreading of sound about an average life-sized head (Flanagan [1960a]). A sound transducer was
fitted into the head of the adult mannequin shown in Fig. 3.8. The transducer was calibrated to
produce a known acoustic volume velocity at the lips of the dummy, and the amplitude and phase of
the external pressure field were measured with a microphone. When the amplitudes are expressed
relative to the levels which would be produced by a simple source of equal strength located at the
mouth, the results for the horizontal and vertical planes through the mouth are shown in Fig. 3.9.

One notices that for frequencies up to 4000 Hz, the pressures within vertical and horizontal angles
of about 60 degrees, centered on the mouth axis, differ from the simple source levels by no more
than 3 db. Simultaneous phase measurements show that within this same solid angle, centered on
the mouth axis, the phase is within approximately 30 degrees of that for the simple source. Within
these limits, then, the function relating the volume velocity through the mouth to the sound pressure
in front of the mouth can be approximated as the simple source function of Eq.(3.40). Notice that
p(r)/U0 ∼ ω, and the relation has a spectral zero at zero frequency.
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Figure 3.8: Life-size mannequin for measuring the relation between the mouth volume velocity and
the sound pressure at an external point. The transducer is mounted in the mannequin’s head.

Figure 3.9: Distribution of sound pressure about the head, relative to the distribution for a simple
source; (a) horizontal distribution for the mannequin; (b) vertical distribution for the mannequin
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Figure 3.10: Schematic diagram of the human subglottal system

Figure 3.11: An equivalent circuit for the subglottal system

3.5 The Source for Voiced Sounds

3.5.1 Glottal Excitation

The nature of the vocal tract excitation for voiced sounds has been indicated qualitatively in Figs. 2.1
through 2.4. It is possible to be more quantitative about this mechanism and to estimate some of the
acoustical properties of the glottal sound source. (The glottis, as pointed out earlier, is the orifice
between the vocal folds.) Such estimates are based mainly upon a knowledge of the subglottal
pressure, the glottal dimensions, and the time function of glottal area.

TO DO: Provide equations and intuition for the Ishizaka-Flanagan two-mass model of vocal fold
vibration (Ishizaka and Flanagan [1972a,b]), following up the description in chapter 2.

3.5.2 Sub-Glottal Impedance

The principal physiological components of concern are illustrated schematically in Fig. 3.10. The
diagram represents a front view of the subglottal system. The dimensions are roughly appropriate
for an adult male (Judson and Weaver [1942]). In terms of an electrical network, this system might
be thought analogous to the circuit shown in Fig. 3.11.

A charge of air is drawn into the lungs and stored in their acoustic capacity CL. The lungs
are spongy tissues and exhibit an acoustic loss represented by the conductance GL. The loss is a
function of the state of inflation. The muscles of the rib cage apply force to the lungs, raise the lung
pressure PL, and cause air to be expelled–via the bronchi and trachea–through the relatively small
vocal cord orifice. (Recall Fig. 3.1.) Because of their mass and elastic characteristics, the folds are
set vibrating by the local pressure variations in the glottis. The quasiperiodic opening and closing
of the folds varies the series impedance (Rg + jwLg) and modulates the air stream. The air passing
into the vocal tract is therefore in the form of discrete puffs or pulses. As air is expelled, the rib-cage
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muscles contract and tend to maintain a constant lung pressure for a constant vocal effort. The lung
capacity is therefore reduced so that the ratio of air charge to capacity remains roughly constant.

The bronchial and tracheal tubes–shown as equivalent T-sections in Fig. 3.11–are relatively large
so that the pressure drop across them is small5. The subglottal pressure P , and the lung pressure PL
are therefore nearly the same. The variable-area glottal orifice is the time-varying impedance across
which most of the subglottic pressure is expended. The subglottal potential is effectively converted
into kinetic energy in Ihe form of the glottal volume velocity pulses, Ug.

TO DO: Describe models of the sub-glottal impedance by (Fant et al. [1972]), (Ishizaka et al.
[1976]), and by (Cranen and Boves [1987]). Provide spectral examples showing subglottal formants.

3.5.3 Glottal Impedance

For frequencies less than a couple of thousand Hertz, the main component of the glottal impedance is
the resistive term. For many purposes in vocal tract analysis, it is convenient to have a small-signal
(ac) equivalent circuit of the glottal resistance; that is, a Thevenin equivalent of the circuit to the
left of the X ’s in Fig. 3.11. Toward deducing such an equivalent, let us consider the nature of the
time-varying glottal impedance and some typical characteristics of glottal area and volume flow.

To make an initial estimate of the glottal impedance, assume first that the ratio of the glottal
inertance to resistance is small compared to the period of area variation (that is, the Lg/Rg time
constant is small compared with the fundamental period, T ). We will show presently the conditions
under which this assumption is tenable. For such a case, the glottal volume flow may be considered
as a series of consecutively established steady states, and relations for steady flow through an orifice
can be used to estimate the glottal resistance.

Flow through the vocal cord orifice in Fig. 3.10 can be approximated as steady, incompressible
flow through the circular orifice shown in Fig. 3.12. The subglottal and supraglottal pressures are
P1, and P2, respectively. The particle velocity in the port is u, the orifice area is A and its depth
(thickness) is d. If the cross-sectional areas of the adjacent tubes are much larger than A, variations
in P1 and P2 caused by the flow are small, and the pressures can be assumed sensibly constant. Also,
if the dimensions of the orifice are small compared with the wavelength of an acoustic disturbance,
and if the mean flow is much smaller than the speed of sound, an acoustic disturbance is known
essentially instantaneously throughout the vicinity of the orifice, and incompressibility is a valid
assumption. Further, let it be assumed that the velocity distribution over the port is uniform and
that there is no viscous dissipation.

Under these conditions, the kinetic energy per-unit-volume possessed by the air in the orifice is
developed by the pressure difference (P1 − P2) and is

(P1 − P2) =
ρu2

2
. (3.41)

The particle velocity is therefore

u =

[
2(P1 − P2)

ρ

]1/2
(3.42)

We can define an orifice resistance, R∗
g,as the ratio of pressure drop to volume flow

R∗
g =

ρu

2A
=

ρU

2A2
. (3.43)

where U = uA is the volume velocity. In practice, P2 is essentially atmospheric pressure, so that
(P1 − P2) = Ps the excess subglottal pressure, and

R∗
g =

(2ρPs)
1/2

2A
. (3.44)

5The branching bronchi are represented as a single tube having a cross-sectional area equal to the sum of the areas
of the branches.
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Figure 3.12: Simple orifice approximation to the human glottis

In situations more nearly analogous to glottal operation, the assumptions of uniform velocity
distribution across the orifice and negligible viscous losses are not good. The velocity profile is
generally not uniform, and the streamlines are not straight and parallel. There is a contraction of
the jet a short distance downstream where the distribution is uniform and the streamlines become
parallel (vena contracta). The effect is to reduce the effective area of the orifice and to increase
R∗
g. Also, the pressure-to-kinetic energy conversion is never accomplished without viscous loss, and

the particle velocity is actually somewhat less than that given in (3.42). In fact, if the area and
flow velocity are sufficiently small, the discharge is actually governed by viscous laws. This can
certainly obtain in the glottis where the area of opening can go to zero. Therefore, an expression
for orifice resistance–valid also for small velocities and areas–might, as a first approximation, be a
linear combination of kinetic and viscous terms

Rg = Rv + k

(
ρU

2A2

)
, (3.45)

where Rv is a viscous resistance and k is a real constant. For steady laminar flow, Rv is proportional
to the coefficient of viscosity and the length of the conducting passage, and is inversely proportional
to a function of area.

To find approximations of the form (3.45), Wegel (Wegel [1930]) and van den Berg et al.(van den
Berg [1955]) have made steady-flow measurements on models of the human larynx. Both investiga-
tions give empirical formulas which agree in order of magnitude. Van den Berg’s data are somewhat
more extensive and were made on plaster casts of a normal larynx. The glottis was idealized as a
rectangular slit as shown in Fig. 3.13. The length, l, of the slit was maintained constant at 18 mm,
and its depth, d, was maintained at 3 mm. Changes in area were made by changing the width, w.



44 CHAPTER 3. ACOUSTICAL PROPERTIES OF THE VOCAL SYSTEM

Figure 3.13: Model of the human glottis. (After Berg (van den Berg [1955]))

Figure 3.14: Simplified circuit for the glottal source

Measurements on the model show the resistance to be approximately

Rg =
Ps
U

=
12µd

lw3
+ 0.875

ρU

2(lw)2
, (3.46)

where µ is the coefficient of viscosity. According to van den Berg, (3.46) holds within ten per cent
for 0.1 ≤ w ≤ 2.0mm, for Ps ≤ 64 cm H20 at small w, and for U ≪ 2000 cc/sec at large w. As
(3.46) implies, values of P , and A specify the volume flow, U .

The glottal area is A = lw so that the viscous (first) term of (3.46) is proportional to A−3. The
kinetic (second) term is proportional to uA−1 or, to the extent that u can be estimated from (3.42),

it is approximately proportional to P
1/2
s A−1. Whether the viscous or kinetic term predominates

depends upon both A and Ps. They become approximately equal when (ρPs)
1/2A2 = 19.3µdl2. For

typical values of vocal Ps this equality occurs for glottal areas which generally are just a fraction
(usually less than 1

5 ) of the maximum area. In other words, over most of the open cycle of the vocal
folds the glottal resistance is determined by the second term in (3.46).

As pointed out previously, (3.46) is strictly valid only for steady flow conditions. A relevant
question is to what extent might (3.46) be applied in computing the glottal flow as a function of
time when A(t) and Ps are known. The question is equivalent to inquiring into the influence of the
inertance of the glottal air plug. Because the pressure drop across the bronchi and trachea is small,
and because Ps is maintained sensibly constant over the duration of several pitch periods by the low-
impedance lung reservoir6, the circuit of Fig. 3.11 can, for the present purpose, be simplified to that
shown in Fig. 3.14. Furthermore, it is possible to show that at most frequencies the driving point
impedance of the vocal tract, Zt, is small compared with the glottal impedance. If the idealization

6Van den Berg et al. estimate the variation to be less than five per cent of the mean subglottal pressure. Ps was
measured by catheters inserted in the trachea and esophagus.
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Zt = 0 is made, then Ug(t) satisfies

Ug(t)Rg(t) +
d

dt
[Lg(t)Ug(t)] = Ps (3.47)

where Eq. (3.46) can be taken as the approximation to Rg(t) and, neglecting end corrections, Lg(t) =
ρd/A(t).

Because Rg is a flow-dependent quantity, Eq. (3.47) is a nonlinear, first-order differential equa-
tion with nonconstant coefficients. For an arbitrary A(t), it is not easily integrated. However, a
simplification in the area function provides some insight into the glottal flow. Consider that A(t) is
a step function so that

A(t) = A0; t ≥ 0

= 0; t < O, and Ug(0) = 0.

Then dLg/dt is zero for t > 0, and the circuit acts as a flow-dependent resistance in series with
a constant inductance. A step of voltage (Ps) is applied at t = 0. The behavior of the circuit is
therefore described by

dUg
dt

=
1

Lg
(Ps −RgUg) . (3.48)

At t = 0, Ug(0) = 0 and
dUg
dt

∣∣∣∣
t=0

=
Ps
Lg
,

so that initially

Ug(t) ≈
Ps
Lg
t (for positive t near zero).

Similarly, at t = ∞, dUg/dt = 0 and Ug(∞) = Ps/Rg. The value of Ug(∞) is the steady-flow value
which is conditioned solely by Rg. In this case Ug is the solution of Ps − UgRg = 0, and is the
positive root of a seconddegree polynominal in Ug.

A time constant of a sort can be estimated from these asymptotic values of the flow build-up.
Assume that the build-up continues at the initial rate, Ps/Lg, until the steady-state value Ug(∞) is
achieved. The time, T , necessary to achieve the build-up is then

Ug(t) =
Ps
Lg
T = Ug(∞) =

Ps
Lg
,

or

T =
Lg
Rg

. (3.49)

Since Rg is a sum of viscous and kinetic terms Rv and Rk, respectively, the time constant
Lg/(Rv + Rk) is smaller than the smaller of Lg/Rv and Lg/Rk. If the step function of area were
small, Rv would dominate and the Lg/Rv time constant, which is proportional to A2, would be
more nearly appropriate. If the area step were large, the Lg/Rk constant would apply. In this case,
and to the extent that Rv might be neglected (i.e., to the extent that Rg might be approximated as

Rk = 0.875(2ρPs)
1/2/2A), the Lg/Rk constant is proportional to P

− 1
2

s and is independent of A.
On the basis of these assumptions, a plot of the factors Lg/Rv and Lg/Rk is given in Fig. 3.15.

Two values of Ps are shown for Lg/Rk, namely 4 cm H20 and 16 cm H20. The first is approximately
the minimum (liminal) intensity at which it is possible to utter a vowel. The latter corresponds to a
fairly loud utterance or shout. The value of Lg/Rg is therefore less than the solid curves of Fig. 3.15.

The curves of Fig. 3.15 show the greatest value of the time constant (i.e., for liminal subglottic
pressure) to be of the order of a quarter millisecond. This time might be considered negligible
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Figure 3.15: Ratios of glottal inertance (Lg) to viscous and kinetic resistance (Rv, Rk) as a function
of glottal area (A)

compared with a fundamental vocal cord period an order of magnitude greater, that is, 2.5 msec.
The latter corresponds to a fundamental vocal frequency of 400 Hz which is above the average pitch
range for an adult male or female voice, but which might be reasonable for a child. To a first order
approximation, therefore, the waveform of glottal volume velocity can be estimated from Ps and
A(t) simply by applying (3.46).

Notice also from the preceding results that for Lg/Rg ≈ 0.25ms (i.e., Ps ≈ 4cm H20) the
inductive reactance becomes comparable to the resistance for frequencies between 600 and 700 Hz.
For Ps = 16cm H20, the critical frequency is about doubled, to around 1300 Hz. This suggests that
for frequencies generally greater than about 1000 to 2000 Hz, the glottal impedance may exhibit a
significant frequency-proportional term, and the spectrum of the glottal volume flow may reflect the
influence of this factor.

If the effects of inertance are neglected, a rough estimate of the glottal volume velocity can be
made from the resistance expression (3.46). Assuming constant subglottal pressure, the correspond-
ing volume velocity is seen to be proportional to A3 at small glottal areas and to A at larger areas.
Typical volume velocity waves deduced in this manner are shown in Fig. 3.16 (Flanagan [1958]).
The area waves are measured from high speed motion pictures of the glottis (see Fig. 2.3 in Chap-
ter 2), and the subglottal pressure is estimated from the sound intensity and direct tracheal pressure
measurements. The first condition is for the vowel /æ/ uttered at the lowest intensity and pitch
possible. The second is for the same sound at a louder intensity and the same pitch. In the first
case the glottis never completely closes. This is characteristic of weak, voiced utterances. Note that
the viscous term in Rg operates to sharpen the leading and trailing edges of the velocity wave. This
effect acts to increase the amplitude of the high-frequency components in the glottal spectrum.

The spectrum of the glottal volume flow is generally irregular and is characterized by numerous
minima, or spectral zeros. For example, if the wave in Fig. 3.16b were idealized as a symmetrical
triangle, its spectrum would be of the form (sinx/x2) with double-order spectral zeros occurring
for ω = 4nπ/τ0, where n is an integer and T0 is the open time of the glottis. If the actual area
wave of Fig. 3.16b is treated as periodic with period 1/125 sec, and its Fourier spectrum computed
(most conveniently on a digital computer), the result is shown in Fig. 3.17 (Flanagan [1961])). The
slight asymmetry of the area wave causes the spectral zeros to lie at complex frequencies, so that
the spectral minima are neither equally spaced nor as pronounced as for the symmetrical triangle.



3.5. THE SOURCE FOR VOICED SOUNDS 47

Figure 3.16: Glottal area and computed volume velocity waves for single vocal periods. F0 is the
fundamental frequency: Ps is the subglottal pressure. The subject is an adult male phonating /æ/.
(After Flanagan, 1958 (Flanagan [1958]))

Figure 3.17: Calculated amplitude spectrum for the glottal area wave AII shown in Fig. 3.16. (After
Flanagan, 1961 (Flanagan [1961]))
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Figure 3.18: Small-signal equivalent circuit for the glottal source. (After Flanagan, 1958 (Flanagan
[1958]))

3.5.4 Source-Tract Coupling Between Glottis and Vocal Tract

Considering only the resistance Rg given in Eq. (3.46), it is possible to approximate an ac or small-
signal equivalent source for the glottal source. Such a specification essentially permits the source
impedance to be represented by a time-invariant quantity and is useful in performing vocal tract
calculations. The Thevenin (or Norton) equivalent generator for the glottis can be obtained in the
same manner that the ac equivalent circuit for an electronic amplifier is derived. According to (3.46)

Ug(t) = f(Ps, A).

The glottal volume velocity, area and subglottic pressure are unipolar time functions. Each has a
varying component superposed upon a mean value. That is,

Ug(t) = Ug0 + U ′(t)

A(t) = A0 +A′(t)

Ps(t) = Ps0 + P ′
s(t).

Expanding Ug(t) as a Taylor series about (Ps0, A0) and taking first terms gives

Ug(Ps, A) = Ug(Ps0, A0) +
∂Ug
∂Ps

∣∣∣∣
Ps0,A0

(Ps − Ps0) +
∂Ug
∂A

∣∣∣∣
Ps0,A0

(A−A0) + · · · ,

= Ug0 + U ′
g(t),

and

U ′
g(t) =

∂Ug
∂Ps

∣∣∣∣
Ps0,A0

P ′
s +

∂Ug
∂A

∣∣∣∣
Ps0,A0

A′(t). (3.50)

One can interpret (3.50) as an ac volume velocity (current) source of value ∂Ug/∂A|Ps0,A0
A′(t) with

an inherent conductance ∂Ug/∂Ps|Ps0,A0
. The source delivers the ac volume current U ′

g(t) to its

terminals. The source configuration is illustrated in Fig. 3.18. The instantaneous polarity of P ′
s(t)

is reckoned as the pressure beneath the glottis relative to that above.
The partials in (3.50) can be evaluated from (3.46). Let

R′
g =

∂Ps
∂Ug

∣∣∣∣
Ps0,A0

.

Then
∂Ps
∂Ug

= Rg + Ug
∂Rg
∂Ug

,

and

R′
g = (Rv + 2Rk)Ps0,A0

(3.51)
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Figure 3.19: Simplified representation of the impedance looking into the vocal tract at the glottis

The magnitude of the equivalent velocity source is simply

∂Ug
∂A

∣∣∣∣
Ps0,A0

A′(t) =

[
u+A

∂u

∂A

]

Ps0,A0

A′(t).

Neglecting the viscous component of the resistance, Eq. (3.42) may be used to approximate u, in
which case ∂u/∂A = 0 and

∂Ug
∂A

∣∣∣∣
Ps0,A0

≈
(

2Ps0
ρ

)1/2

A′(t) (3.52)

The approximations (3.51) and (3.52) therefore suggest that the ac resistance of the glottal source
is equal the viscous (first) term of (3.46) plus twice the kinetic (second) term, and that the ac volume
current source has a waveform similar to the time-varying component of A(t). To consider a typical
value of R′

g, take Ps0 = 10cmH20 and A0 = 5 mm2. For these commonly encountered values R′
g

is computed to be approximately 100 cgs acoustic ohms. This source impedance can be compared
with typical values of the acoustic impedance looking into the vocal tract (i.e., the tract driving
point impedance). Such a comparison affords an insight into whether the glottal source acts more
nearly as a constant current (velocity) generator or a voltage (pressure) source.

The driving point impedance of the tract is highly dependent upon vocal configuration, but it
can be easily estimated for the unconstricted shape. Consider the tract as a uniform pipe, 17 cm
long and open at the far end. Assuming no nasal coupling, the tract is terminated only by the mouth
radiation impedance. The situation is illustrated in Fig. 3.19.

Using the transmission line relations developed earlier in the chapter, the impedance Zt looking
into the straight pipe is

Zt = Z0
Zr cosh γl + Z0 sinhγl

Z0 cosh γl+ Zr sinhγl
, (3.53)

where l = 17cm, and the other quantities have been previously defined. If for a rough estimate the
pipe is considered lossless, γ = jβ and (3.53) can be written in circular functions

Zt = Z0
Zr cosβl + jZ0 sinβl

Z0 cosβl + jZr sinβl
, (3.54)

where Z0 = ρc/A, β = ω/c. The maxima of Zt will occur at frequencies where l = (2n+ 1)λ/4, so
that βl = (2n+ 1)π/2 and cos JI=O. The maxima of Zt for the lossless pipe are therefore

Ztmax
= Z2

0/Zr, (3.55)

and the pipe acts as a quarter-wave transformer. The minima, on the other hand, are Ztmin
= Zr

and the pipe acts as a half-wave transformer.
To estimate Ztmax

we can use the radiation impedance for the piston in the infinite baffle,
developed earlier in the chapter [see Eq. (3.36)].

Zr = zp
ρc

A
=
ρc

A

[
(ka)2

2
+ j

8

3π
(ka)

]
, (3.56)
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where
a =

√
A/π, and ka≪ 1.

As a reasonable area for the unconstricted tract, take A = 5cm2. The first quarter-wave resonance
for the 17cm long pipe occurs at a frequency of about 500 Hz. At this frequency

Zr|500Hz = (0.18 + j0.81), and Ztmax
|500Hz =

(ρc/A)2

Zr
= 86∠ − 77 deg

cgs acoustic ohms. This driving point impedance is comparable in size to the ac equivalent resistance
of the glottal source just determined. As frequency increases, the magnitude of Zr increases, and
the load reflected to the glottis at the quarter-wave resonances becomes smaller. At the second
resonance, for example, Zr|1500Hz = (1.63 + j2.44) and Ztmax

|1500Hz = 24∠ − 56 deg cgs acoustic
ohms. The reflected impedance continues to diminish with frequency until at very high frequencies
Zr = Z0 = 8.4 cgs acoustic ohms. Note, too, that at the half-wave resonances of the tract, i.e.,
l = nλ/2, the sine terms in (3.54) are zero and Zt = Zr.

The input impedance of the tract is greatest therefore at the frequency of the first quarter-wave
resonance (which corresponds to the first formant). At and in the vicinity of this frequency, the
driving point impedance (neglecting all losses except radiation) is comparable to the ac resistance
of the glottal source. At all other frequencies it is less. For the unconstricted pipe the reflected
impedance maxima are capacitive because the radiation load is inductive. To a first approximation,
then, the glottal source appears as a constant volume velocity (current) source except at frequencies
proximate to the first formant. As previously discussed, the equivalent vocal cord source sends an ac
current equal to u ·A′(t) into Zr in parallel with R′

g. So long as constrictions do not become small,
changes in the tract configuration generally do not greatly influence the operation of the vocal folds.
At and near the frequency of the first formant, however, some interaction of source and tract might
be expected, and in fact does occur. Pitch-synchronous variations in the tuning and the damping of
the first formant–owing to significant tract-source interaction–can be observed experimentally7.

3.5.5 High-Impedance Model of the Glottal Source

TO DO: Describe three successive approximations of the glottal volume velocity waveform: (1) the
periodic triangle waveform, (2) the Fant model (LF with discontinuity), and (3) the Liljencrants-
Fant model (Fant et al. [1986, 1994]). Provide equations, waveforms, and spectra to show the
characteristics of glottal volume velocity correctly and incorrectly modeled by each function.

3.5.6 Experimental Studies of Laryngeal Biomechanics

Our knowledge of all speech excitation sources is heavily dependent on the results of mechanical
modeling experiments. Parameters of the two-mass model of vocal tract vibration described in
Ch. 3 (Ishizaka and Flanagan [1972a]) were adjusted in order to match flow measurements acquired
from the mechanical model built by van den Berg ((van den Berg et al. [1957]); see also (Zantema
and P. Doornenbal [1957], Meyer-Eppler [1953], Wegel [1930])).

It is possible that, at the dawn of the twenty-first century, improved computer simulations of tur-
bulence may have finally eliminated the need for mechanical vocal tract models. Computer models
developed for simulation of turbulence in vibrating cavities have generated surprising results (Pelor-
son et al. [1994], Huang and Levinson [1999]). Most notably, these studies demonstrate that pulsatile
flow from a moving larynx does not re-attach to the vocal tract walls as efficiently as did the flow
in van den Berg’s model. Flow that fails to re-attach has two interesting consequences. First, pres-
sure does not rise downstream of the glottis (Pelorson et al. [1994]). Second, flow continues to be

7The acoustic mechanism of vocal-cord vibration and the interactions between source and system are discussed in
more detail later. An acoustic oscillator model of the folds is derived in Chapter 9 and a computer simulation of the
model is described.
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non-laminar all the way between larynx and lips (Huang and Levinson [1999]): the nearly-laminar
flow carries vortices along before it, like leaves in the wind, without significantly dissipating their
vorticity. The latter finding was measured empirically long before it was successfully modeled; its
impact on sound generation is still not well understood.

More recent studies have greatly enhanced our understanding of vocal fold biomechanics by
measuring the air flow response of excised canine vocal folds (Alipour-Haghigi and Titze [1983],
Alipour and Scherer [1995]), as well as the viscoelastic (Perlman [1985], Alipour-Haghigi and Titze
[1985], Perlman et al. [1984], Perlman and Titze [1988], Alipour-Haghigi and Titze [1991]) and
contractile properties (Alipour-Haghigi and Titze [1987, 1989]) of the vocalis muscle.

3.6 Turbulent Noise Sources

Noise excitation is generated by air moving quickly through a constriction. When air is moving
slowly, it moves in a laminar fashion, meaning that the air particle velocity vectors are layered in
planes roughly parallel to the vocal tract wall. When the velocity of the air becomes too great, or the
constriction width too small, viscous forces tear apart the laminar flow, forcing the jet of air to twist
and turn upon itself in a series of eddies and vortices. Each vortex serves as an initial condition for
creation of the next vortex, in a kind of highly nonlinear feedback. Because of the nonlinear feedback
between successive vortices, there is tremendous variability in the size and angular momentum of
successive vortices. Successive vortices are created with diameters more or less randomly selected
from a distribution ranging from the micrometer scale to the centimeter scale. Each successive vortex
is carried downstream by the air jet, until it strikes against some kind of obstacle downstream from
the constriction, and is broken up into yet smaller vortices. As each vortex strikes against obstacles
in the vocal tract, the moving air creates local pressure fluctuations on the surface of the obstacle;
these pressure fluctuations are pretty random, but the pressure fluctuations created by any single
vortex tend to be concentrated at a frequency inversely proportional to the diameter of the vortex.
Because the vortex diameters are uniformly distributed over a wide range, the center frequencies of
the noise signals are also uniformly distributed over a wide range. The noise source that listeners
hear is therefore very similar to “white noise,” containing energy at all frequencies. The sound /s/,
for example, is produced by forcing air through the narrow constriction between the tongue and
the roof of the mouth. If the jet of air leaving the constriction is directed outward, the noise is
not very loud; if the jet of air is directed downward against the lower teeth, then vortex energy
is very effectively converted into noise, and listeners hear a loud fricative sound. The upper teeth
serve this purpose in the production of dental fricatives such as /f/. One fricative consonant, /h/,
is produced by turbulent flow generated at the glottis. The excitation mechanism is similar to that
for the oral fricatives, except that the nonvibrating vocal folds create the constriction (the glottis
during /h/ is open wider than it would be for any vowel, but it is still a narrower constriction than
any constriction downstream in the vocal tract). The noise in /h/ may be increased in amplitude if
the talker constricts his or her pharynx so that the airstream strikes the epiglottis.

Because it is spatially distributed, the location of the noise source in the tract is difficult to fix
precisely. Generally it can be located at the constriction for a short closure, and just anterior to a
longer constriction. In terms of a network representation, the noise source and its inherent impedance
can be represented as the series elements in Fig. 3.20. Ps is the sound pressure generated by the
turbulent flow and Zs is the inherent impedance of the source. The series connection of the source
can be qualitatively justified by noting that a shunt connection of a low-impedance pressure source
would alter the mode structure of the vocal network. Furthermore, experimentally measured mode
patterns for consonants appear to correspond to the series connection of the exciting source (Fant
[1960]).

Voiced fricative sounds, such as /v/, are produced by simultaneous operation of the glottal and
turbulent sources. Because the vibrating vocal folds cause a pulsive flow of air, the turbulent sound
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Figure 3.20: Equivalent circuit for noise excitation of the vocal tract

generated at the constriction is modulated by the glottal puffs. The turbulent sound is therefore
generated as pitch-synchronous bursts of noise.

It is possible to be a little more quantitative about several aspects or fricative excitation. For
example, Meyer-Eppler(Meyer-Eppler [1953]) has carried out measurements on fricative generation
in constricted plastic tube models of the vocal tract. He has related these measurements to human
production of the fricative consonants /f,s,S/. For these vocal geometries a critical Reynold’s number,
Ree, apparently exists below which negligible turbulent sound is produced. Meyer-Eppler found that
the magnitude of the noise sound pressure Pr—measured at a distance r from the mouth of either
the model or the human—is approximately described by

Pr = K(R2
e −R2

ec), (3.57)

where K is a constant, Re is the dimensionless Reynold’s number Re = uwρ/µ and, as before, u is
the particle velocity, ρ the air density, µ the coefficient of viscosity and w the effective width of the
passage.

TO DO: Provide equations for the dipole turbulence source. Provide a figure showing the mech-
anism by which it is produced. Provide equations for the effective spectrum, and a figure showing
the spectrum (Stevens [1971], Shadle [1985]).

We recall from the earlier discussion (Eq. (3.41)) that for turbulent flow at a constriction the pres-
sure drop across the orifice is approximately Pd = ρu2/2 = ρU2/2A2. Therefore, R2

e = 2ρ(w/µ)2Pd
and (3.57) can be written

Pr = (K1w
2Pd −K2); Pr ≫ 0, (3.58)

where K1 and K2 are constants. This result indicates that, above some threshold value, the frica-
tive sound pressure in front of the mouth is proportional to the pressure drop at the constriction
(essentially the excess pressure behind the occlusion) and to the square of the effective width of the
passage.

By way of illustrating typical flow velocities associated with consonant production, a constriction
area of 0.2 cm2 and an excess pressure of 10cm H20 are not unusual for a fricative like /s/. The

particle velocity corresponding to this pressure is u = (2Pd/ρ)
1
2 ≈ 4100 cm/sec8 and the volume

flow is U ≈ 820cm3/sec.
If the constricted vocal passage is progressively opened and the width increased, a constant excess

pressure can be maintained behind the constriction only at the expense of increased air flow. The
flow must be proportional to the constriction area. The power associated with the flow is essentially
PdU and hence also increases. Since the driving power is derived from the expiratory muscles, their
power capabilities determine the maximum flow that can be produced for a given Pd. At some value
of constriction area, a further increase in area, and consequently in w, is offset by a diminution of
the Pd that can be maintained. The product w2Pd in (3.58) then begins to decrease and so does the
intensity of the fricative sound.

Interest in mechanical analogs continues to the present day. The motivation is mainly that of
simulating and measuring characteristics of human speech that are hard to simulate accurately on
a computer, e.g., nonlinear aspects of vocal fold vibration, and turbulence in the pharyngeal and

8Note this velocity is in excess of 0.1 Mach!
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Figure 3.21: (a) Mechanical model of the vocal tract for simulating fricative consonants. (b) Mea-
sured sound spectrum for a continuant sound similar to /S/. (After (Heinz [1958]))

oral cavities. For example, one of the difficult parameters to measure in the real vocal tract is the
location, intensity, spectrum, and internal impedance of the sound source for unvoiced sounds. One
way of gaining knowledge about this source is with a mechanical analog. The technique for making
such measurements is shown in Fig. 3.21a (Heinz [1958]).

The size of the spherical baffle is taken to represent the human head. A constricted tube in
the baffle represents the vocal tract. Air is blown through the constriction to produce turbulence.
The sound radiated is measured with a spectrum analyzer. A typical spectrum obtained when the
constriction is placed 4cm from the “mouth,” is plotted in Fig. 3.21b. The sound is roughly similar to
the fricative /S/. Because the constriction size for fricative consonants tends to be small, the spectral
resonances are conditioned primarily by the cavities in front of the constriction. The antiresonances
occur at frequencies where the impedance looking into the constriction from the mouth side is infinite.
(Recall the discussion of Section 3.8.5.) The spectrum of the source is deduced to be relatively flat.
Its total power is found to be roughly proportional to the fifth power of the flow velocity.

Recent mechanical modeling experiments have demonstrated the statistics of frication spectra
with far more detail (Shadle [1985], Barney et al. [1999], Shadle et al. [1999]). For example, it is
now known that the power spectrum of the frication pressure source tends to be broadly band-pass,
with a power spectrum that rises at XXdB/octave below the peak, and falls at XX dB/octave above
the peak (PUT FIGURES HERE). (PUT MORE INFORMATION HERE)

3.7 The Source for Transient Excitation

Stop consonants are produced by making a complete closure at an appropriate point (labial, dental
or palatal), building up a pressure behind the occlusion, and sharply releasing the pressure by an
abrupt opening of the constriction. This excitation is therefore similar to exciting an electrical
network with a step function of voltage. The stop explosion is frequently followed by a fricative
excitation. This latter element of the stop is similar to a brief fricative continuant of the same
articulation.

Voiceless stop consonants contrast with fricatives in that they are more transient. For strongly
articulated stops, the glottis is held open so that the subglottal system contributes to the already
substantial volume behind the closure (VB). The respiratory muscles apply a force sufficient to build
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Figure 3.22: Approximate vocal relations for stop consonant production

up the pressure, but do not contract appreciably to force air out during the stop release. The air
flow during the initial part of the stop release is mainly turbulent, with laminar streaming obtaining
as the flow decays. In voiced stops in word-initial position (for example /d, g/), voicing usually
commences following the release, but often (for example, in /b/) can be initiated before the release.

In very crude terms, stop production can be considered analogous to the circuit of Fig. 3.22. The
capacitor CB is the compliance (VB/ρc

2) of the cavities back of the closure and is charged to the
excess pressure Pc. The resistance Rc is that of the constriction and is, according to the previous
discussion [Eq. (3.43)], approximately Rc = ρUm/2A

2. Suppose the constriction area is changed
from zero as a step function, that is,

A(t) = 0; t < 0

= A; t ≥ 0.

The mouth volume current then satisfies

UmRc +
1

CB

∫ t

0

Umdt = Pc

or
ρU2

m

2A2
+

1

CB

∫ t

0

Umdt = Pc, for Um > 0

and the solution for positive values of Um is

Um(t) =

(
2Pc
ρ

) 1
2

A

[
1 − At

CB(ρ2Pc)
1
2

]
(3.59)

According to (3.59) the flow diminishes linearly with time during the initial phases of the stop
release. At the indicated rate, the time to deplete the air charge would be

t1 =
Cb(ρ2Pc)

1
2

A
. (3.60)

As the flow velocity becomes small, however, the tendency is toward laminar streaming, and the
resistance becomes less velocity dependent [sec first term in Eq. (3.46)]. The flow decay then becomes
more nearly exponential9

To fix some typical values, consider the production of a voiceless stop such as /t/. Accord-
ing to Fant (Fant [1960]), realistic parameters for articulation of this sound are Pc = 6 cm H20,

9This can be seen exactly by letting Rc include a constant (viscous) term as well as a flow-dependent term.
Although the differential equation is somewhat more complicated, the variables separate, and the solution can be
written in terms of Um and lnUm.

Let
Rc = rvA

−3(t) + rkA
−2(t) |Um| ,

where rv and rk are constants involving air density and viscosity [as described in Eq. (3.46)]. If the constriction area
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VB = ρc2CB = 4 liters (including lungs) and A = 0.1 cm2. Assuming the area changes abruptly,
substitution of these values into (3.59) and (3.60) gives Um(0) = 320 cm3/sec and t1 = 130 msec.
The particle velocity at the beginning of the linear decay is um(0) = 3200 cm/sec. After 50 msec
it has fallen to the value 1300 cm/sec which is about the lower limit suggested by Meyer-Eppler for
noise generation. As Fant points out, the amount of air consumed during this time is quite small,
on the order of 10 cm3.

Both Stevens(Stevens [1956]) and Fant(Fant [1960]) emphasize the importance of the open glottis
in the production of a strong stop consonant. A closed glottis reduces VB to something less than 100
cm3, and the excess pressure which can be produced behind the constriction is typically on the order
of 3 cm H20. For such conditions is it difficult to produce flows sufficient for noise generation. The
turbulent noise produced during the stop release is essentially a secondary effect of the excitation.
The primary excitation is the impact of the suddenly applied pressure upon the vocal system. As
mentioned earlier, this excitation for an abrupt area change is analogous to a step function of voltage
applied to an electrical circuit. Such a source is characterized by a spectrum which is proportional
to 1/ω, or diminishes in amplitude at -6 db/oct.

TO DO: Compare the calculations above to those of (Massey [1994]), and derive Massey’s equiv-
alent transient source.

is changed stepwise from zero to A at time zero, the resulting flow will again be unipolar and now will satisfy

(rk/A
2)U2

m + (rv/A
3)Um + 1/Cb

Z t

0

Umdt = Pc

The variables in this equation are separable and the solution can be obtained by differentiating both sides with
respect to time. This yields

rv

A3

„

dUm

dt

«

+ 2
rk

A2
Um

dUm

dt
+
Um

Cb

= 0

and
rvCB

A3

„

dUm

Um

«

+ 2
rkCB

A2
dUm = −dt.

Integrating termwise give

rvCB

A3
lnUm]t

0
+ 2

rkCB

A2
Um

–t

0

= −t.

At t = 0, Um = U0, where U0 is the positive real root of the quadratic

“ rk

A2

”

U2

0 +
rv

A3
U0 − Pc = 0.

Then

ln

„

Um

U0

«

+
2rkA

rv
(Um − U0) +

tA3

rvCB

= 0.

Note

for A large: Um ≈

»

U0 −

„

A2

2rkCB

«

t

–

for A small: Um ≈ U0e
−

„

A3

rvCB

«

t
.

It also follows that

dUm

dt
=

−Um

rvCB

A3 + 2rkCB

A2 Um

≈
−A2

2rkCB

, for large A

≈
−UmA3

rvCB

, for small A.
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Figure 3.23: Relation between glottal and mouth volume currents for the unconstricted tract. The
glottal impedance is assumed infinite and the radiation impedance is zero

3.8 Some Characteristics of Vocal Tract Transmission

Some of the fundamental relations developed in the foregoing sections can now be used to put in
evidence certain properties of vocal transmission. These characteristics are easiest demonstrated
analytically by highly simplifying the tract geometry. Calculations on detailed approximations are
more conveniently done with computers. Although our examples generally will be oversimplified,
the extensions to more exact descriptions will in most cases be obvious.

As a first step, consider the transmission from glottis to mouth for nonnasal sounds. Further, as
an ultimate simplification, consider that the tract is uniform in cross section over its whole length
l, is terminated in a radiation load whose magnitude is negligible compared with the characteristic
impedance of the tract, and is driven at the glottis from a volume-velocity source whose internal
impedance is large compared to the tract input impedance. The simple diagram in Fig. 3.23 rep-
resents this situation. The transmission function relating the mouth and glottal volume currents is
then

Um
Ug

=
zb

zb + za
=

1

cosh γl
(3.61)

The normal modes (poles) of the transmission are the values of γl which make the denominator zero.
These resonances produce spectral varialions in the sound radiated from the mouth. They are

cosh γl = 0
γl = ±j(2n+ 1)π2 , n = 0, 1, 2, . . .

(3.62)

The poles therefore occur at complex values of frequency. Letting jω = σ + jω = s, the complex
frequency, and recalling from (3.8) that γ = α+ jβ and β ≈ ω/c for small losses, the complex pole
frequencies may be approximated as

sn ≈ −αc± j
(2n+ 1)πc

2l
, n = 0, 1, 2, . . . 10 (3.63)

The transmission (3.61) can be represented in factored form in terms of the roots of the denom-
inator, namely

H(s) =
Um(s)

Ug(s)
=
∏

n

sns
∗
n

(s− sn)(s− s∗n)
, (3.64)

where s∗n is the complex conjugate of sn, and the numerator is set to satisfy the condition

Um(jω)

Ug(jω)

∣∣∣∣
jω=0

=
1

coshαl
≈ 1,

10Actually α is an implicit function of ω [see Eq. (3.33)]. However, since its frequency dependence is relatively
small, and since usually σn ≪ ωn, the approximation (3.63) is a convenient one.
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for small α. The transmission is therefore characterized by an infinite number of complex conjugate
poles11. The manifestations of these normal modes as spectral peaks in the output sound are called
formants. The transmission (3.64) exhibits no zeros at finite frequencies. Maxima occur in

|H(jω)| for ω = ±(2n+ 1)
π

2

c

l

and the resonances have half-power bandwidths in Hertz approximately equal to ∆f = σ/n = αc/π.
For an adult male vocal tract, approximately 17 cm in length, the unconstricted resonant frequencies
therefore fall at about f1 = 500 Hz, f2 = 1500 Hz, f3 = 2500 Hz, and continue in c/2l increments.

In the present illustration the only losses taken into account are the classical heat conduction
and viscous losses discussed earlier. A calculation of formant bandwidth on this basis alone will
consequently be abnormally low. It is nevertheless instructive to note this contribution to the
formant damping. Recall from Eq. (3.8) that for small losses

α ≈ Ra
2

√
CaLa +

Ga
2

√
LaCa,

where Ra, Ga, La and Ca have been given previously in Section (3.2.5). At the first-formant
frequency for the unconstricted tract (i.e., 500 Hz), and assuming a circular cross-section with
typical area 5 cm2, α is computed to be approximately 5.2× 10−4, giving a first-formant bandwidth
∆f1 = 6 Hz. At the second formant frequency (i.e., 1500 Hz) the same computation gives ∆f2 = 10

Hz. The losses increase as f
1
2 , and at the third formant (2500 Hz) give ∆f3 = 13 Hz. It is also

apparent from (3.64) that H(s) is a minimum phase function (that is, it has all of its zeros, namely
none, in the left half of the s-plane) so that its amplitude and phase responses are uniquely linked
(that is, they are Hilbert transforms). Further, the function is completely specified by the sn’s,
so that the frequencyand amplitude of a formant peak in |H(jω)| are uniquely described by the
pole frequencies. In particular if the formant damping can be considered known and constant, then
the amplitudes of the resonant peaks of |H(jω)| are implicit in the imaginary parts of the formant
frequencies ω1, ω2, . . . , (Fant [1956], Flanagan [1957c]). In fact, it follows from (3.61) that

|H(jω)|ω=ωn
= 1

| cosh(α+jβ)l|ω=ωn

= 1
|j sinhαl|

≈ 1
αl

(3.65)

where β = ω/c and ωn = (2n + 1)πc/2l. Notice, too, that the phase angle of H(jω) advances n
radians in passing a formant frequency ωn; so the amplitude and phase response of H(jω) appear
as in Fig. 3.24. In the same connection, note that for the completely lossless case

H(jω) =
1

cos ωlc
.

3.8.1 Effect of Radiation Load upon Mode Pattern

If the radiation load on the open end of the tube is taken into account, the equivalent circuit for the
tube becomes that shown in Fig. 3.25. Here At is the cross-sectional area of the tract and Am is the
radiating area of the mouth with equivalent radius am. The thickness of the mouth constriction is
assumed negligible, the glottal impedance is high, and cross dimensions are small compared with a
wavelength. The transmission from glottis to mouth is therefore

Um
Ug

=
1

cosh γl + Zr

Z0
sinh γl

,

11Rigorous justification of the form (3.64) has its basis in function theory (Titchmarsh [1932], Ahlfors [1953]). See
Chapter 9, Sec. 9.4 for further discussion of this point.
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Figure 3.24: Magnitude and phase of the glottis-to-mouth transmission for the vocal tract approxi-
mation shown in Fig. 3.23

Figure 3.25: Equivalent circuit for the unconstricted vocal tract taking into account the radiation
load. The glottal impedance is assumed infinite
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or, more conveniently
Um
Ug

=
cosh γrl

cosh(γ + γr)l
, (3.66)

where γrl = tanh−1 Zr/Z0. Note that for Zr ≪ Z0, coshγrl ≈ 1 and for low loss Z0 ρc/At.
By the transformation (3.66), the radiation impedance is carried into the propagation constant,

so that

(γ + γr) =

[
α+ jβ +

1

l
tan−1 Zr

Z0

]

= (α+ jβ + αr + jβr) = (α′ + jβ′) = γ′.

If the radiation load is taken as that on a piston in a wall [see Eq. 3.36 in Sec. 3.3] then

Zr ≈
ρc

Am

[
(ka)2

2
+ j

8ka

3π

]
, ka≪ 1 (3.67)

where a equals the mouth radius am. Expanding tanh−l Zr/Z0 as a series and taking only the first
term (i.e., assuming Zr ≈ Z0) gives

γr ≈
1

l

At
Am

[
(ka)2

2
+ j

8ka

3π

]
(3.68)

= αr + jβr.

For low loss β ≈ ω/c = k, so that

(α′ + jβ′) =

[
α+

At
Am

(βa)2

2l

]
+ jβ

[
1 +

At
Am

8a

3πl

]
. (3.69)

Again the poles of (3.66) occur for

e2γ
′l + 1 = 0

or

γ′ = ±j (2n+ 1)π

2l
, n = 0, 1, 2, . . . (3.70)

Letting jω → s = (σ+ jω), and remembering that in general σn ≪ ωn, the poles are approximately

snr ≈
1

1 + At8a
Am3πl

[
−
(
αc+

Atω
2

2πlc

)
± j

(2n+ 1)πc

2l

]
, (3.71)

n = 0, 1, 2, . . . (Zr ≪ Z0).

The general effect of the radiation, therefore, is to decrease the magnitude of the imaginary parts of
the pole frequencies and to make their real parts more negative.

For the special case Am = A0 the modes are

snr ≈
(

3πl

3πl + 8a

)[
−
(
αc+

a2ω2

2lc

)
± j

(2n+ 1)πc

2l

]
. (3.72)

Using the values of the example in the previous section, At = 5 cm2, l = 17 cm, the spectral
resonances (formants) are lowered in frequency by the multiplying factor 3πl/(3πl+8a) = 0.94. The
original 500 Hz first formant is lowered to 470 Hz, and the 1500 Hz second formant is lowered to 1410
Hz. The first formant bandwidth is increased to about ∆f1 ≈ 0.94(6 + 4) = 9Hz, and the second
formant bandwidth to about ∆f2 ≈ 0.94(l0 + 32) = 40 Hz. The same computation for the third
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Figure 3.26: Equivalent circuit for the unconstricted vocal tract assuming the glottal impedance to
be finite and the radiation impedance to be zero

formant gives ∆f3 ≈ 100 Hz. The latter figures begin to be representative of formant bandwidths
measured on real vocal tracts with the glottis closed (House and Stevens [1958], Dunn [1961], van
den Berg [1955]). The contributions of the radiation, viscous and heat losses to ∆f1 are seen to be
relatively small. Glottal loss and cavity wall vibration generally are more important contributors to
the first formant damping.

As (3.72) indicates, the contribution of the radiation resistance to the formant damping increases

as the square of frequency, while the classical heat conduction and viscous loss cause a to grow as ω
1
2 .

The radiation reactance is inertive and causes the formant frequencies to be lowered. For Am = At,
Eq. (3.71) shows that the radiation reactance has the same effect as lengthening the vocal tract by
an amount (8a/3π).

3.8.2 Effect of Glottal Impedance upon Mode Pattern

The effect of the equivalent glottal impedance can be considered in much the same manner as the
radiation load. To keep the illustration simple, again assume the radiation load to be negligible
compared with the characteristic impedance of the uniform tract, but take the glottal impedance as
finite. This situation is depicted by Fig. 3.26. Similar to the previous instance, the volume velocity
transmission function can be put in the form

Um
Ug

=
1

za

Zg

(
Zg

zb
+ za

zb
+ 1
)

+ 1 + za

Zg

=
1

cosh γl+ Z0

Zg
sinh γl

(3.73)

=
cosh γgl

cosh(γ + γg)l
,

where γgl = tanh−1Z0/Zg, and the glottal impedance is transformed into the propagation constant.
Again taking the first term of the series expansion for tanh−1 Z0/Zg (i.e., assumming Zg ≫ Z0)
gives

(γ + γg) ≈
(
α+ jβ +

1

l

Z0

Zg

)
.

The equivalent glottal impedance may be approximated as Zg = (R′
g + jωLg), where R′

g is the
ac equivalent resistance determined previously in Eq. (3.51), and Lg is the effective inductance of
the glottal port. The zeros of the denominator of (3.73) are the poles of the transmission, and an
argument similar to that used in the preceding section for low losses (Z0 ≈ ρc/At, β ≈ ω/c) leads to

sng ≈
1

1 −
(
LgZ0c
l|Zg|2

)
{
−
(
αc+

R′
gZ0c

l|Zg|2
)
± j

(2n+ 1)πc

2l

}
. (3.74)

According to (3.74), the effect of the finite glottal impedance is to increase the damping of the
formant resonances (owing to the glottal loss R′

g) and to increase the formant frequencies by the
factor multiplying the bracketed term (owing to the glottal inductance). A sample calculation of
the effect can be made. As typical values, take a subglottic pressure (Ps) of 8 cm H20, a mean
glottal area (A0) of 5mm2, a glottal orifice thickness (d) of 3 mm, a vocal tract area (At) of 5 cm2

and a tract length (l) of 17 cm. For these conditions the glottal resistance, computed according to
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Eq. (3.51), is R′
g ≈ 91 cgs acoustic ohms. The glottal inductance is Lg = σd/A0 = 6.8 × 10−3 cgs

units. At about the frequency of the first formant, that is, ω ≈ πc/2l = 2π (500 Hz), the multiplying
factor has a value 1/(1 − 0.014), so that the first formant resonance is increased from its value for
the infinite glottal impedance condition by about 1.4%. The effect of the glottal inductance upon
formant tuning is greatest for the lowest formant because |Zg| increases with frequency. The same
computation for the second formant ( 1500 Hz) shows the multiplying factor to be 1/(1 − 0.010).
One notices also that the effect of the multiplying term is to shorten the apparent length of the tract
to (

l − LgZ0c

|Zg|2
)
.

The resonant bandwidth for the first formant is computed to be

∆f1 =
1

(1 − 0.014)
[6Hz + 56Hz] = 63Hz,

which is reasonably representative of first formant bandwidths measured in real speech. The contri-
bution of the glottal loss R′

g to formant damping is greatest for the lowest formant. It diminishes
with increasing frequency because |Zg| grows with frequency. At the second formant frequency, the
same calculation gives ∆f2 = 1/(1 − 0.010)(10Hz + 40Hz) = 51Hz. One recalls, too, that the heat
conduction and viscous losses (which specify α) increase as ωt, while the radiation loss increases as
ω2 (for ka ≪ 1). The lower-formant damping is therefore influenced more by glottal loss, and the
higher-formant damping is influenced more by radiation loss.

In this same connection, one is reminded that the glottal resistance and inductance (used here as
equivalent constant quantities) are actually time varying. There is consequently a pitch-synchronous
modulation of the pole frequencies sng given in (3.74). That is, as the vocal folds open, the damping
and resonant frequency of a formant increase, so that with each glottal period the pole frequency
traverses a small locus in the complex-frequency plane. This pitch-synchronous change in formant
damping and tuning can often be observed experimentally, particularly in inverse filtering of for-
mants. It is most pronounced for the first formant.

3.8.3 Effect of Cavity Wall Vibration

The previous discussion has assumed the walls of the vocal tract to be smooth and rigid. The
dissipative elements of concern are then the radiation resistance, the glottal resistance, and the
viscous and heat conduction losses at the cavity walls. The human vocal tract is of course not hard-
walled, and its surface impedance is not infinite. The yielding walls can consequently contribute to
the energy loss in the tract and can influence the mode tuning. We would like to estimate this effect.

The finite impedance of the tract wall constitutes an additional shunt path in the equivalent
“T” (or π) section for the pipe (see Fig. 3.3). Because the flesh surrounding the tract is relatively
massive and exhibits viscous loss, the additional shunt admittance for the frequency range of interest
(i.e., speech frequencies) can be approximated as a per-unit-length reciprocal inductance or inertance
(Γw = 1/Lw) and a per-unit-length conductance (Gw = 1/Rw) in parallel12. The modified equivalent
“T” section is shown in Fig. 3.27.

Let us note the effect of the additional shunt admittance upon the propagation constant for the
tube. As before, the basic assumption is that a plane wave is propagating in the pipe and that the
sound pressure at any cross section is uniform and cophasic. Recall that

γ = α+ jβ =
√
yz,

where y and z are the per-unit-length shunt admittance and series impedance, respectively. The
latter quantities are now

z = (Ra + jwLa)

12For describing the behavior at very low frequencies, a compliance element must also be considered.
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Figure 3.27: Representation of wall impedance in the equivalent T-section for a length l of uniform
pipe

y = (Ga +Gw) + j

(
ωCa −

Γw
ω

)
. (3.75)

Again, most conditions of interest will be relatively small-loss situations for which

Ra ≪ ωLa

and

(Ga +Gw) ≪
(
ωCa −

Γw
ω

)
.

Also, in general, the susceptance of the air volume will exceed that of the walls and ωCa ≫ Γw/ω.
Following the earlier discussion [see Eq. (3.8)] the attenuation constant for this situation can be
approximated by

α ≈ 1

2
Ra

√
Ca
La

+
1

2
(Ga +Gw)

√
La
Ca

(3.76)

In a like manner, the phase constant is given approximately by

β ≈ ω

√

La

(
Ca −

Γw
ω2

)
=
ω

c′
. (3.77)

The effective sound velocity c′ in a pipe with “massive” walls–that is, with negative susceptance–
is therefore faster than for free space. The pipe appears shorter and the resonant frequencies are
shifted upward. The effect is greatest for the lower frequencies. The same result can be obtained
more elegantly in terms of specific wall admittance by writing the wave equation for the cylindrical
pipe, noting the radial symmetry and fitting the boundary impedance conditions at the walls (Morse
[1948]). In addition to the plane-wave solution, the latter formulation also gives the higher cylindrical
modes.

Results (3.76) and (3.77) therefore show that vibration of the cavity wall contributes an additive
component to the attenuation constant, and when the wall is predominantly mass-reactive, its effect
is to diminish the phase constant or increase the speed of sound propagation. Following the previous
technique [see Eq. (3.63)], the natural modes for a uniform tube of this sort are given by

snw =

[
−αc′ ± j

(2n+ l)πc′

2l

]
(3.78)

= (σnw + jωnw) ; n = 0, 1, 2, . . .

To calculate the shunting effect of the walls in the real vocal tract, it is necessary to have some
knowledge of the mechanical impedance of the cavity walls. Such measurements are obviously diffi-
cult and apparently have not been made. An order-of-magnitude estimate can be made, however, by
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using mechanical impedance values obtained for other surfaces of the body. At best, such measure-
ments are variable, and the impedance can change appreciably with place. The data do, however,
permit us to make some very rough calculations.

One set of measurements (Franke [1951]) has been made for chest, thigh and stomach tissues,
and these have been applied previously to estimate the wall effect (House and Stevens [1958]). For
frequencies above about 100 Hz, the fleshy areas exhibit resistive and mass reactive components.
The specific impedances fall roughly in the range 4000-7000 dyne-sec/cm3. A typical measurement
on the stomach surface gives a specific impedance that is approximately

zs = (rs + jxs) = (rs + jωls)
= (6500 + jω0.4),

(3.79)

for (2π · 200) ≤ ω ≤ (2π · 1000).
This specific series impedance can be put in terms of equivalent parallel resistance and inductance

by

rp =
r2s + x2

s

rs
and jxp = j

r2s + x2
s

xs
.

These specific values (per-unit-area) can be put in terms of per-unitlength of tube by dividing by S,
the inner circumference, to give

Rw = fracr2s + x2
srsS and jXw = j

r2s + x2
s

xsS
.

Therefore,

Gw =
rsS

r2s + x2
s

and − j
Γw
ω

= −j ωlsS

r2s + x2
s

,

where,

Γw =
ω2lsS

r2s + x2
s

. (3.80)

Assuming the vocal tract to be unconstricted and to have a uniform cross-sectional area of 5
cm2 (i.e., S = 7.9 cm), we can compute the effect of the wall admittance upon the propagation
constant, the formant bandwidth and formant frequency. According to (3.76) and (3.77), the wall’s
contribution to α and β is

αw ≈ Gw
2

√
La
Ca

,

and

βw ≈ ω

√

La

(
Ca −

lsS

r2s + x2
s

)

≈ ω

c

[
1 − ρc2ls

a(r2s + x2
s)

]
, (3.81)

where the radius of the tube is a =
√
A/π, and the bracketed expression is the first two terms in

the binomial expansion of the radical.
Substituting the measured values of rs and ls and computing αw, βw and formant bandwidths

at approximately the first three formant frequencies gives13

Frequency αw βw ∆fw = αwc
′

π

500Hz 4.7 × 10−3 ω
c (1 − 0.011) 50Hz

1500Hz 3.6 × 10−3 ω
c (1 − 0.008) 40Hz

2500Hz 2.5 × 10−3 ω
c (1 − 0.006) 30Hz

13Using c = 3.5 × 104 cm/sec and ρ = 1.14X10−3 gm/cm3.
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Figure 3.28: Two-tube approximation to the vocal tract. The glottal impedance is assumed infinite
and the radiation impedance zero

The contribution of wall loss to the formant bandwidth is therefore greatest at the lowest formant
frequency and diminishes with increasing formant frequency. These computed values, however, when
combined with the previous loss contributions actually seem somewhat large. They suggest that the
walls of the vocal tract are more rigid than the stomach tissue from which the mechanical impedance
estimates were made.

The increase in formant tuning, occasioned by the mass reactance of the cavity walls, is seen to
be rather slight. It is of the order of one per cent for the lower formants and, like the damping,
diminishes with increasing frequency.

3.8.4 Two-Tube Approximation of the Vocal Tract

The previous sections utilized a uniform-tube approximation of the vocal tract to put in evidence
certain properties. The uniform tube, which displays modes equally spaced in frequency, comes close
to a realistic vocal configuration only for the unconstricted schwa sound /�/. Better insight into
the interaction of vocal cavities can be gained by complicating the approximation one step further;
namely, by approximating the tract as two uniform, cascaded tubes of different cross section. To
keep the discussion tractable and focused mainly upon the transmission properties of the tubes, we
again assume the glottal impedance to be high compared with the input impedance of the tract, and
the radiation load to be negligible compared with the impedance level at the mouth. This situation
is represented in Fig. 3.28.

For the circuit shown in Fig. 3.28, the mouth-to-glottis volume current ratio is

Um
Ug

=
1(

1 + za2

zb2

)(
1 + za1

zb1
+ za2

zb1

)
+ za2

zb1

,

which reduces to

Um
Ug

=
1

(cosh γ1l1)(cosh γ2l2)
(
1 + A1

A2
tanh γ1l1 tanh γ2l2

) . (3.82)

The poles of (3.82) occur for
A1

A2
tanh γ2l2 = − cothγ1l1. (3.83)

If the tubes are lossless, the hyperbolic functions reduce to circular functions and all impedances
are pure reactances. The normal modes then satisfy

A1

A2
tanβl2 = cotβl1 (3.84)

Because the vocal tract is relatively low loss, Eq. (3.84) provides a simple means for examining the
mode pattern of the two-tube approximation. For example, consider the approximations shown in
Fig. 3.29 to the articulatory configurations for four different vowels. The reactance functions of
(3.84) are plotted for each case, and the pole frequencies are indicated.
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Figure 3.29: Two-tube approximations to the vowels /i,æ,A,�/ and their undamped mode (formant)
patterns

Figure 3.30: First formant (F1) versus second formant (F2) for several vowels. Solid points are
averages from Peterson and Barney’s (1952) data for real speech uttered by adult males. Circles are
for the two-tube approximation to the vowels shown in Fig. 3.29
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Figure 3.31: Two-tube approximation to the vocal tract with excitation applied forward of the
constriction

One notices that the high front vowel /i/ exhibits the most disparate first and second formants,
while the low back vowel /A/ gives rise to the most proximate first and second formants. The neutral
vowel /�/, corresponding to the unconstricted tract, yields formants uniformly spaced 1000 Hz apart.
The reactance plots also show that increasing the area ratio (A1/A2) of the back-to-front cavities
results in a decrease of the first formant frequency. On the classical F1 vs F2 plot, the first two
modes for the four approximations fall as shown in Fig. 3.30. The unconstricted /�/ sound occupies
the central position. For comparison, formant data for four vowels–as spoken by adult males–are
also plotted (Peterson and Barney [1952]).14 The lower left corner of the classical vowel plot, the
area appropriate to the vowel /u/, has been indicated for completeness. Because of lip rounding,
however, the vowel /u/ cannot be approximated in terms of only two tubes.

Eq. (3.84) also makes salient an aspect of compensatory articulation. The mode pattern for
l1 = a, l2 = b, is exactly the same as for l1 = b, l2 = a. In other words, so long as the area
ratio for the back and front cavities is maintained the same, their lengths may be interchanged
without altering the formant frquencies. This is exactly true for the idealized lossless tubes, and is
approximately so for practical values of loss. This interchangeability is one freedom available to the
ventriloquist. It is also clear from (3.84) that if l1 = 2l2, the infinite values of cotβl1 and tanβl2
are coincident (at βl2 = π/2) and indicate the second mode. The second formant frequency can
therefore be maintained constant by keeping the tube lengths in the ratio of 2:1. The same constancy
applies to the third formant if the length ratio is maintained at 3:2.

3.8.5 Excitation by Source Forward in Tract

As pointed out earlier, fricative sounds (except for /h/) are excited by a series pressure source
applied at a point forward in the tract. It is pertinent to consider the mouth volume velocity which
such an excitation produces.

A previous section showed that for glottal excitation the maxima of glottis-to-mouth transmission
occurred at the natural (pole) frequencies of the vocal system, and the transmission exhibited no
zeros. If excitation is applied at some other point in the system, without altering the network, the
normal modes of the response remain the same. The transmission can, however, exhibit zeros. For
the series excitation these zeros must occur at frequencies where the impedance looking back from
the source (toward the glottis) is infinite. By way of illustration let us retain the simple two-tube
model used previously. Because the turbulent source for voiceless sound is spatially distributed, its
exact point of application is difficult to fix. Generally it can be thought to be applied either at
or just forward of the point of greatest constriction. The former seems to be more nearly the case
for sounds like /S,f,p,k/; the latter for /s,t/. Consider first the case where the source is forward of
the constriction. The two-tube circuit is shown in Fig. 3.31. The back cavity is shown closed, and
the impedance of the glottis and larynx tube is considered to be high (compared to the impedance

14Most of the vocal tract dimensions used to illustrate acoustic relations in this chapter are appropriate to adult
males. Women and children have smaller vocal apparatus. Since the frequencies of the resonant modes are inversely
related to the tract length, the vowel formants for women and children are higher than for the men. According to
Chiba and Kajiyama (Chiba and Kajiyama [1941]), the young adult female vocal tract is 0.87 as long as the young
adult male. The female formants, therefore, should be about 15% higher than those of the male. This situation is
also reflected in the measurements of Peterson and Barney.
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level of the back cavity) even though the glottis may be open. The radiation impedance is again
considered small compared with the impedance level at the mouth, and the inherent impedance of
the source per se is considered small.

The complex frequency (Laplace) transform of the transmission (Um/pt) can be written in the
form

Um(s)

pt(s)
= H(s)G(s), (3.85)

where H(s) is a given in (3.64) and contains all the poles of the system, and G(s) is a function
which includes all the zeros and constants appropriate to nonglottal excitation. In this particular
case, Um/pt is simply the driving point admittance at the lips. It is

Um
pt

=
(zb2 + zbl + za1 + za2)

za2(zb2 + zb1 + za1 + za2) + zb2(zb1 + za1 + za2)
,

which can be put into the form

Um
pt

=

1
Z01

sinh γ1l1 sinh γ2l2

(
coth γ2l2 + A2

A1
cothγ1l1

)

cosh γ1l1 cosh γ2l2

[
1 + A1

A2
tanh γ1l1 tanh γ2l2

] (3.86)

The zeros of transmission occur at frequencies which make the numerator zero, and therefore satisfy

cothγ2l2 = − cothγ1l1

or
tanh γ1l1 = − tanhγ2l2

which for lossless conditions reduces to

tanβl1 = −A2

A1
tanβl2 (3.87)

TO DO: Comment on the zero at zero frequency (obvious in Eq. 3.87, but not discussed in the
sequelae). Demonstrate that the spectra of real fricatives and /h/ is equal to the dipole source of
previous sections, pre-emphasized by the zero at zero frequency. Demonstrate that this zero at zero-
frequency is present in all turbulent sounds, and that its bandwidth is proportional to the distance
between the front of the constriction and the location of the noise source (Stevens [1971], Shadle
[1985]).

As an example, let us use (3.87) and (3.84) to determine the (lossless) zeros and poles of Um/pt
for an articulatory shape crudely representative of /s/. Take

A1 = 7cm2 A2 = 0.2cm2

l1 = 12.5cm l2 = 2.5cm.

The pertinent reactance functions are plotted in Fig. 3.32, and the poles and zeros so determined
are listed.

The lower poles and zeros lie relatively close and essentially nullify one another. The first
significant uncompensated zero lies in the vicinity of 3400 Hz, with the first uncompensated pole
in the neighborhood of 6650 Hz. These two features, as well as the near-cancelling pole-zero pairs,
can often be seen in the spectra of real /s/ sounds. For example, Fig. 3.33 shows two measurements
of the natural speech fricative /s/ (Halle et al. [1957])). For this speaker, the peak in the vicinity
of 6000-7000 Hz would appear to correspond with the uncompensated pole, the dip in the vicinity
of 3000 Hz with the zero. The peak and valley alternations at the lower frequencies reflect roughly
the effect of pole-zero pairs such as indicated in the reactance diagrams. The measured spectra
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Figure 3.32: Two-tube approximation to the fricative /s/. The undamped pole-zero locations are
obtained from the reactance plots

Figure 3.33: Measured spectra for the fricative /s/ in real speech. (After Hughes and Halle (Halle
et al. [1957]))

Figure 3.34: Two-tube approximation to the vocal tract with the source of excitation applied at the
tube junction
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presumably include the transformation from mouth volume current to pressure at a fixed point in
space, as described in Eq. (3.40). The spectra therefore include a zero at zero frequency owing to
the radiation.

To further examine the influence of source position upon the transmission, suppose the turbulent
source is applied more nearly at the junction between the two tubes rather than at the outlet. This
situation is crudely representative of sounds like /f/, /k/ or possibly /S/. In /f/, for example, the
turbulent flow is produced at the constriction formed by the upper teeth and lower lip. The cavities
behind the teeth are large, and the lips forward of the constriction form a short, small-area tube.
The circuit for such an arrangement is shown in Fig. 3.34. The transmission from source to mouth
is

Um
pt

=
zb2

zb2(za1 + za2 + zb1) + za1(zb2 + za1 + za2 + zb1)
or

Um
pt

=
1
Z01

sinh γ1l1

cosh γ1l1 cosh γ2l2

[
1 + A1

A2
tanh γ1l1 tanh γ2l2

] (3.88)

The system poles are the same as before, but the zeros now occur at

1

Z01
sinh γ1l1 = 0,

or

sm =

(
−α1c± j

mπc

l1

)
; m = 0, 1, 2, . . . (3.89)

Again for the lossless case, the zeros occur for sinβl1 = 0, or for frequencies

fm = m
c

2l1
Hz (m = 0, 1, 2, . . .),

where the length of the back cavity is an integral number of half wavelengths. The zeros therefore
occur in complex-conjugate pairs except for m = 0. The real-axis zero arises from the impedance of
the back cavity volume at zero frequency. Specifically, for the lossless situation at low frequencies,
the numerator of (3.88) approaches

lim
ω→0

1

Z01
sinβl1 ≈ ωl1

Z01c
=
A1l1
ρc2

ω = ωC1, where C1 =
V1

ρc2

is the acoustic compliance of the back cavity. The result (3.89) makes clear the reason that a
labio-dental fricative such as /f/ exhibits a relatively uniform spectrum (devoid of large maxima
and minima) over most of the audible frequency range. A crude approximation to the articulatory
configuration for /f/ might be obtained if the parameters of Fig. 3.34 are taken as follows: Al = 7
cm2, A2 = 0.1 cm2, l1 = 14cm, l2 = 1cm. As before the poles occur for cotβl1 = A1/A2 tanβl2.
Because of the large value of A1/A2 and the small value of l2, the poles occur very nearly at the
frequencies which make cotβl1 infinite; namely

fn ≈ n
c

2l1
, n = 0, 1, 2, . . .

(The first infinite value of tanβl2 occurs at the frequency c/4l2, in the vicinity of 8500 Hz.) The
zeros, according to (3.89), occur precisely at the frequencies

fm = m
c

2l1
, m = 0, 1, 2, . . .

so that each pole is very nearly cancelled by a zero. The transmission Um/Pt is therefore relatively
constant until frequencies are reached where the value of A1/A2 tanβl2 has its second zero. This
relative flatness is generally exhibited in the measured spectra of real /f/ sounds such as shown in
Fig. 3.35 (Halle et al. [1957]).
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Figure 3.35: Measured spectra for the fricative /f/ in real speech. (After Hughes and Halle (Halle
et al. [1957]))

Figure 3.36: An equivalent circuit for the combined vocal and nasal tracts. The pharynx, mouth
and nasal cavities are assumed to be uniform tubes.

3.8.6 Effects of the Nasal Tract

This highly simplified and approximate discussion of vocal transmission has so far neglected the
properties of the nasal tract. The nasal tract is called into play for the production of nasal consonants
and for nasalizing certain sounds primarily radiated from the mouth. Both of these classes of sounds
are voiced. For the nasal consonants, an oral closure is made, the velum is opened and the sound
is radiated chiefly from the nostrils. The blocked oral cavity acts as a side branch resonator. In
producing a nasalized vowel, on the other hand, coupling to the nasal tract is introduced by opening
the velum while the major radiation of sound continues from the mouth. Some radiation, usually
lower in intensity, takes place from the nostrils.

The functioning of the combined vocal and nasal tracts is difficult to treat analytically. The
coupled cavities represent a relatively complex system. Precise calculation of their interactions can
best be done by analog or digital computer simulation. Nevertheless, it is possible to illustrate
computationally certain gross features of the system by making simplifying approximations. More
specifically, suppose the pharynx cavity, mouth cavity and nasal cavity are each approximated as
uniform tubes. The equivalent network is shown in Fig. 3.36.

Notice that, in general, the parallel branching of the system at the velum causes zeros of nasal
output at frequencies where the driving point impedance (Zm) of the mouth cavity is zero, and
vice versa. At such frequencies, one branch traps all the velar volume flow. In particular for
nasal consonants, /m,n,N/, Zrm = ∞ and Um = 0. Zeros then occur in the nasal output at
frequencies for which Zm = 0 for the closed oral cavity. Nasal consonants and nasalized vowels are
generally characterized by resonances which appear somewhat broader, or more highly damped, than
those for vowels. Additional loss is contributed by the nasal tract which over a part of its length
is partitioned longitudinally. Its inner surface is convoluted, and the cavity exhibits a relatively
large ratio of surface area to cross-sectional area. Viscous and heat conduction losses are therefore
commensurately larger.

Following the approach used earlier, and with the purpose of indicating the origin of the poles
and zeros of a nasal consonant, let us make a crude, simple approximation to the vocal configuration
for /m/. Such an approximation is illustrated in Fig. 3.37. The poles of the nasal output will be deter-



3.8. SOME CHARACTERISTICS OF VOCAL TRACT TRANSMISSION 71

Figure 3.37: A simple approximation to the vocal configuration for the nasal consonant /m/

Figure 3.38: Reactance functions and undamped mode pattern for the articulatory approximation
to /m/ shown in Fig. 3.37

mined by the combined pharynx, mouth and nasal cavities, while the side-branch resonator-formed
by the closed oral cavity will introduce zeros wherever its input impedance is zero. Considering the
system to be lossless, the radiation load to be negligible, and the glottal impedance to be high, the
easiest way to estimate the pole frequencies is to find the frequencies where the velar admittance
(at the point where the three cavities join) is zero. This requires

∑

k=p,m,n

Yk = 0 =
1

Z0m
tanβlm +

1

Z0p
tanβlp −

1

Z0n
cotβln (3.90)

= Am tanβlm +Ap tanβlp −An cotβln.

The zeros of transmission occur for

Zm = 0 =
ρc

Am
cotβlm

or
βlm = (2n+ 1)

π

2
, n = 0, 1, 2, . . .

or
f = (2n+ 1)

c

4lm
. (3.91)

The mode pattern determined by relations (3.90) and (3.91) is shown in Fig. 3.38. One sees that
the first pole of the coupled systems is fairly low, owing to the substantial length of the pharynx
and nasal tract and the mouth volume. A pole and zero, additional to the poles of the pure vowel
articulation, are introduced in the region of 1000 Hz. This mode pattern is roughly representative
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Figure 3.39: Measured spectrum for the nasal consonant /m/ in real speech. (After Fant, 1960)

Figure 3.40: Nomogram for the first three undamped modes (F1, F2, F3) of a fourtube approximation
to the vocal tract (Data adapted from Fant, 1960). The parameter is the mouth area, A4. Curves
1, 2, 3 and 4 represent mouth areas of 4, 2, 0.65 and 0.16 cm2, respectively. Constant quantities are
Al = A3 = 8 cm2, l4 = 1cm and A2 = 0.65 cm2. Abscissa lengths are in cm

of all the nasal consonants in that the pharynx and nasal tract have roughly the same shape for
all. The first zero falls at approximately 1300 Hz in the present example. For the consonants /n/
and /N/, the oral cavity is progressively shorter, and the zero would be expected to move somewhat
higher in frquency. By way of comparison, the measured spectrum of a real /m/ is shown in
Fig. 3.39 (Fant [1960]). In this measured spectrum, the nasal zero appears to be reflected by the
relatively broad spectral minimum near 1200 Hz. The larger damping and appreciable diminution
of spectral amplitude at the higher frequencies is characteristic of the nasal consonants.

3.8.7 Four-Tube, Three-Parameter Approximation of Vowel Production

To illustrate fundamental relations, the preceding sections have dealt with very simple approxima-
tions to the vocal system. Clearly these crude representations are not adequate to describe the gamut
of articulatory configurations employed in a language. The approximations can obviously be made
better by quantizing the vocal system into more and shorter tube sections. For vowel production in
particular, one generally can identify four main features in the tract geometry. These are the back
pharynx cavity, the tongue hump constriction, the forward mouth cavity and the lip constriction
(see Fig. 3.1). Approximation of these features by four abutting tubes gives a description of vocal
transmission substantially more precise than the two-tube approximation. The first several normal
modes of the four-tube model are reasonably good approximations to the lower formants of real
vowels. Such a fourtube model is illustrated in Fig. 3.40a (adapted from (Fant [1960])).
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If the glottal impedance is taken as large and the radiation load small, the glottal-to-mouth
transmission is

Um
Ug

=
1

∏4
n=1 (cosh γnln) (ab+ cd)

(3.92)

where

a =

(
1 +

A1

A2
tanh γ1l1 tanh γ2l2

)

b =

(
1 +

A3

A4
tanh γ3l3 tanh γ4l3

)

c =
A2

A3

(
tanh γ3l3 +

A3

A4
tanh γ4l4

)

d =
A1

A2
(tanh γ1l1 + tanh γ2l2)

One notices that if l3 = l4 = 0, Eq. (3.92) reduces to the two-tube relations given by Eq. (3.82).

To demonstrate how the first several normal modes of such a cavity arrangement depend upon
configuration, Fant (Fant [1960]) has worked out detailed nomograms for several combinations of
A’s and l’s. One of these is particularly relevant and essentially depicts the scheme followed by
Dunn (Dunn [1950]) in his development of an electrical vocal tract analog. It is reproduced in
adapted form in Fig. 3.40b. The constraints are as follows: l1+l2+l3 = 15cm; l4 = 1cm; A1 = A3 = 8
cm2; A2 = 0.65cm2; and l2 = 5cm, provided tube 2 is terminated by cavities on both sides. The
parameters are the distance from the glottis to the center of the tongue constriction, x, and the
mouth area, A4. For very large and very small values of x, l3 and l1 are zero, respectively, and the
length l2 is varied to satisfy the total length condition. The variation of the first three normal modes
for a range of values of the parameters and for one value of the tongue constriction (A2 = 0.65 cm2)
are shown in Fig. 3.40b.

These data show that a shift of the tongue constriction from a back (x ≈ 3cm) to a front position
(x ≈ 9cm) is generally associated with a transition from high F1-low F2 to low F1-high F2. (This
general tendency was also evident in the two-tube models discussed in Section 3.8.4.) Increasing
the lip rounding, that is decreasing A4 (as well as increasing l4), generally reduces the frequencies
of all formants. Although not shown here, decreasing the tongue constriction reduces the frequency
variations of the formants with place of constriction. In terms of absolute frequency, the variations
in Fl are generally smaller than those of the higher formants. Perceptually, however, the percentage
change in formant frequency is more nearly the important quantity. This point will be discussed
further in Chapter 7.

Owing to the substantial coupling between the connecting tubes, a particular formant cannot
be strictly associated with a particular resonance of a particular vocal cavity. The normal mode
pattern is a characteristic of the whole coupled system. Numerous efforts have been made in the
literature to relate specific formants to specific vocal cavities, but this can be done exactly only
when the constrictions are so small in size that the cavities are, in effect, uncoupled. In instances
where the coupling is small, it is possible to loosely associate a given formant with a particular
resonator. The treachery of the association, however, can be simply illustrated. If a forward motion
of the tongue hump causes a resonant frequency to rise–for example, F2 for 3 < x < 9cm in
Fig. 3.40–the suggestion is that the resonance is mainly influenced by a cavity of diminishing length,
in this case the mouth cavity. On the other hand, the same resonance might be caused to rise in
frequency by a tongue retraction and a consequent shortening of the pharynx cavity-for example,
F2 for 16 > x > 13cm. It is therefore clear that a given formant may be principally dependent upon
different cavities at different times. It can change its cavity-mode affiliation with changes in vocal
configuration. In fact, its dependence upon the mode of vibration of a particular cavity may vary.
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The four-tube approximation to vowel production implies that vowel articulation might be grossly
described in terms of three parameters, namely, the distance from the glottis to the tongue-hump
constriction, x; the size of the tongue constriction, A2; and a measure of lip rounding such as the
area-to-length ratio for the lip tube, A4/l4. This basis notion has long been used qualitatively by pho-
neticians to describe vowel production. It has been cast into quantitative frameworks by Dunn (Dunn
[1950]), Stevens and House (Stevens and House [1955]), Fant (Fant [1960]) and Coker (Coker [1968]),
in connection with work on models of the vocal mechanism. As pointed out earlier, Dunn has used
the scheme much as represented in Fig. 3.40, that is, with constant-area tubes approximating the
tract adjacent to the constriction. Stevens and House and Fant have extended the scheme by specify-
ing constraints on the taper of the vocal tract in the vicinity of the constriction. Stevens and House
use a parabolic function for the area variation, and Fant uses a section of a catenoidal horn (i.e., a
hyperbolic area variation). Both use fixed dimensions for the larynx tube and the lower pharynx.
In perceptual experiments with synthetic vowels, Stevens and House find that a reasonably unique
relation exists between the allowed values of x, A2 and A4/l4 and the first three vowel formants.
Although these three parameters provide an adequate description of most nonnasal, nonretroflex,
vowel articulations, it is clear that they are not generally sufficient for describing consonant and
nasal configurations.

Later work by Coker (Coker [1972]) has aimed at a more detailed and physiologically meaningful
description of the vocal area function. Coker’s articulatory model is specified by seven, relatively-
orthogonal parameters: the x− y position coordinates of the tongue body; the degree and the place
of the tongue tip constriction; the mouth area; the lip protrusion; and the degree of velar (nasal)
coupling. Each parameter has an associated time constant representative of its vocal feature. This
articulatory model has been used as the synthesis element in an automatic system for converting
printed text into synthetic speech (Coker et al. [1971])15.

3.8.8 Multitube Approximations and Electrical Analogs of the Vocal Tract

As the number of elemental tubes used to approximate the vocal shape becomes large, the compu-
tational complexities increase. One generally resorts to analog or digital aids in solving the network
when the number of approximating sections exceeds about four. In early work analog electrical
circuitry has proven a useful tool for simulating both vocal and nasal tracts. It has been used ex-
tensively by Dunn (Dunn [1950]); Stevens, Fant, and Kasowski (Stevens et al. [1953]); Fant (Fant
[1960]); Stevens and House (Stevens and House [1955]); and Rosen (Rosen [1958]). The idea is
first to approximate the linear properties of the vocal mechanism by a sufficiently large number of
tube sections and then to approximate, in terms of lumped-constant electrical elements, the hy-
perbolic impedances of the equivalent T or π networks shown in Fig. 3.3. At low frequencies the
lumped-constant circuit behaves as a distributed transmission line and simulates the one-dimensional
acoustic wave propagation in the vocal tract. The number of approximating tube sections used, the
approximation of the hyperbolic elements, and the effect of cross modes in the actual vocal tract
determine the highest frequency for which the electrical transmission line is an adequate analog.

As shown previously, the elements of the T-section equivalent of the cylindrical tube are

za = Z0 tanh
γl

2
and zb = Z0cschγl.

Taking first-order approximations to these quantities gives

za ≈ Z0

(
γl

2

)
and zb ≈ Z0

(
1

γl

)

za ≈ Z0
1

2
(αjβ)l zb ≈ Z0

1

(α+ jβ)l
. (3.93)

15See further discussion of this system in Chapters 4 and 9.
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From the relations developed earlier, Z0 = [(R+jωL)/(G+jωC)]
1
2 and γ = [(R+jωL)(G+jωC)]

1
2 ,

where R, G, L and C have been given in terms of per-unit-length acoustical quantities in Eq. (3.33).
The T-elements are therefore approximately

za =
1

2
(R + jωL)l and zb =

1

(G+ jωC)l
.

In general, the acoustical quantities Ra, La, Ga, and Ca [in Eq. (3.33)] will not correspond to
practical electrical values. It is usually convenient to scale the acoustical and electrical impedance
levels so that

Z0e = kZ0a

or
[
Re + jωLe
Ge + jωCe

] 1
2

=

[
kRa + jωkLa
Ga

k + jωCa

k

] 1
2

. (3.94)

By way of indicating the size of a practical scale constant k, consider the low-loss situation where

Z0e =

√
Le
Ce

= kZ0a = k

√
La
Ca

= k
(ρc
A

)
, (3.95)

where A is the cross-sectional area of the acoustic tube. A practical value for Z0e is 600 electrical
ohms, and a typical value of A is 8 cm2. Therefore k = 600/5.3 = 113, and the mks impedances
of the per-unitlength electrical elements are scaled up by 113 times the cgs impedances of the per-
unit-length acoustic elements.

Note, too, that βl ≈ ωl/c = ωle
√
LeCe = ωla

√
LaCa. Since the velocity of sound and the

air density in a given length of tube are constant, maintaining the LeCe product constant in the
electrical line is equivalent to maintaining constant velocity of sound propagation in the simulated
pipe. Similarly, changes in the pipe area A are represented by proportional changes in the Ce/Le
ratio.

The electrical simulation is of course applicable to both vocal and nasal tracts. Choice of the
elemental cylinder length l, the electrical scale constant k, and a knowledge of the cross-sectional
area A along the tract are the only parameters needed to determine the lossless elements of the
transmission line. An estimate of tract circumference along its length is needed to compute the
viscous and heat conduction losses (R and G). The radiation loads at the mouth and nostrils are
obtained hy applying the electrical scale constant to the acoustic radiation impedances obtained
earlier in the chapter. It is likewise possible to apply these techniques to the subglottal system and
to incorporate it into the electrical simulation. At least four designs of electrical vocal tracts have
been developed for studying vocal transmission and for synthesizing speech (Dunn [1950], Stevens
et al. [1953], Fant [1960], Rosen [1958]). At least one design has been described for the subglottal
system (van den Berg [1960]).

The equations used to create electrical circuit simulations of the vocal tract may also be used to
implement a vocal tract simulation on a computer. Simulations using the equations described above
have been published by (Fant [1960], Mathews and Walker [1962]). Another approach has been to
represent the cylindrical sections in terms of the reflection coefficients at their junctions (Jr. and
Lochbaum [1962a,b], Mermelstein [1967], Purves et al. [1970]). Vocal tract simulation in terms of
reflection coefficients is closely related to linear predictive analysis of the speech waveform, and will
be considered in considerably more detail in chapter 4.

TO DO: A third method for digital simulation of vocal tract transmission was proposed by
Sondhi and Schroeter (Sondhi and Schroeter [1987]), and elaborated by Lin (Lin [1990]). In this
method, each of the T sections is represented as a matrix transfer function of the following form....
the relationship of flow and pressure at the lips to flow and pressure at the glottis is therefore
given by... the vocal tract transfer function can therefore be computed at any desired number of
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frequency samples using equations... a vocal tract transfer function computed in this way can be
inverse transformed, and convolved with the time-domain waveform of the glottal source, in order
to synthesize speech...

3.9 Fundamentals of Speech and Hearing in Analysis-Synthesis

Telephony

The preceding sections have set forth certain basic acoustic principles for the vocal mechanism. Not
only do these relations concisely describe the physical behavior of the source of speech signals, but
they imply a good deal about efficient communication. They suggest possibilities for coding speech
information in forms other than merely the transduced pressure wave. The normal mode and exci-
tation relations, for example, indicate a schema on which an analysis-synthesis transmission system
might be based. The same can be said for describing the vocal tract by articulatory parameters.
Both results reflect constraints peculiar to the speech-producing mechanism.

As yet, however, the properties of hearing and the constraints exhibited by the ear have not
entered the discussion. The next chapter proposes to establish certain fundamental properties of
the mechanism of hearing–so far as they are known. The exposition will follow a pattern similar
to that of the present chapter. The results of both fundamental discussions will then be useful in
subsequent consideration of speech analysis and speech synthesis.
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3.10 Homework

Problem 3.1

The intensity of an acoustic wave is the average product of its acoustic pressure, p(t), times its
acoustic air particle velocity, u(t):

I = E [p(t)u(t)]

where p(t) is measured in Pascals, and u(t) is measured in m/s. What are the units of intensity?
How does intensity relate to power?

Problem 3.2

The back of a loudspeaker is typically encased in a vented cabinet. A “vented” cabinet is a
wooden box with the loudspeaker on one side, and a hole on the other side. The simplest model of
a vented cabinet is a one-dimensional resonator, with the loudspeaker mounted at x = −L, and the
vent open at x = 0. The boundary conditions are

U(x = −L,Ω) = −Us(Ω)

P (x = 0,Ω) = 0

where Us(Ω) is the loudspeaker velocity. Assume that the area of the loudspeaker and the area of
the vent are both A. Then the total volume velocity radiating out of the cabinet is

Qs(Ω) = A(Us(Ω) + U(0,Ω))

Find the “cabinet transfer function” Qs(Ω)/Us(Ω). Sketch Qs(Ω)/Us(Ω) for 0 ≤ Ω ≤ 2πc/L. Over

what range of frequencies is Qs(Ω)
Us(Ω) > 0?

Problem 3.3

Glottal vibration is the result of two kinds of forces: aerodynamic forces, and stiffness and
damping of the vocal fold. For now, let us only consider the stiffness of the vocal fold:

d2x

dt2
= −

(
k

m

)
x (3.96)

In acoustic terms, Eq. 3.96 governs the undriven, undamped, collision-free vocal fold behavior—
undriven because we are ignoring aerodynamic forces, undamped because we are ignoring the vis-
cosity of the tissue, and collision-free because we assume that the two vocal folds are far enough
apart to avoid collision. Eq. 3.96 is a good place to start our understanding of vocal fold mechanics,
because it isolates the “control knob” that most talkers use, most of the time, to control pitch: the
stiffness, k, of the vocal fold. Stiffness of the vocal fold can be increased by stretching it; stiffness
can be decreased by shortening the vocal fold.

a. Demonstrate that, with no driving forces and no damping and no collisions, the vocal folds
can vibrate forever. Hint: show that x(t) = A cos(ωt− φ) is a solution to Eq. 3.96.

b. The moving part of the vocal fold is a ribbon of tissue about 1cm long, about 3mm deep, and
about 1mm wide. This ribbon of tissue has the density of water (1 gram/cm3). What is its
total mass?
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c. Suppose that a particular talker speaks at 200Hz. According to the model given in Eq. 3.96,
what is the stiffness of her vocal folds? Be sure to tell me what the units are.

d. Assume that the vocal fold displacement, x(t), has an amplitude of 1mm. Plot (by hand or
using any program of your choice) one full period of the vocal fold displacement x(t), of the
vocal fold velocity dx/dt, and of the stiffness force f(t) = −kx(t).

e. Now suppose that the same talker increases her pitch to 300Hz (an increase in pitch of one
musical fifth), without changing her vocal fold mass. What is the new value of her vocal fold
stiffness?

Problem 3.4

During production of the vowel /A/, the pharynx is quite narrow (about 1cm2), while the oral
cavity is quite wide (about 8cm2). Let the boundary between these two parts of the vocal tract be
called x = 0.

a. Draw a schematic picture of this situation.

b. Pressure p(x, t) (in Pascals) and volume velocity u(x, t) (in liters/second) must be continuous
across the boundary, i.e.

p(0−, t) = p(0+, t) (3.97)

u(0−, t) = u(0+, t) (3.98)

Re-write Eqs. 3.97 and 3.98 in terms of the forward-going and backward-going waves, whose
phasors are p1+, p1−, p2+, and p2−.

c. Show that the outgoing waves from, p2+ and p1−, may be written in terms of the incoming
waves, p2− and p1+, and in terms of a reflection coefficient γ. Write γ in terms of the front
cavity and back cavity areas.

d. Suppose that the glottis is a perfect source, i.e., regardless of what the backward-going wave
p1− may be, the forward-going wave is always a perfect cosine p1+ = 1. Find the forward-going
and backward-going waves in the front cavity, p2+, and p2−, as a function of the front cavity
length Lf , and the reflection coefficient γ. Assume a zero-pressure termination at the lips.

e. Find the air velocity at the lips, v(Lf , ω), as a function of Lf , ω, and γ. Assume that p1+ = 1
at all frequencies.

f. Plot v(Lf , ω) as a function of ω.

Problem 3.5

Assume a perfectly decoupled back and front cavity, where Ab ≫ Af . Assume that Lb + Lf =
17cm. Calculate the first three formant frequencies for the following back cavity lengths: Lb ∈
{1, 3, 5, 7, 9, 11, 13, 15}cm. Remember to consider the Helmholtz resonance. Plot F1, F2, and F3 (in
Hertz) on the same axes, as a function of Lb. This plot is called a “nomogram;” it is considered by
many to be a convenient summary of the relationship between vocal tract shape and vowel quality.

Problem 3.6
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The vocal tract configuration for an /r/ consonant, in American English, is roughly as follows:
the back cavity, behind the tongue tip constriction, has a length of about 15cm, with a relatively large
average cross-sectional area (about 10cm2). The front cavity, between the tongue tip constriction
and the lips, has a length of about 4cm, and a cross-sectional area of about 6cm2. The side branch,
under the tongue, has a length of about 4cm, and a cross-sectional area of about 16.5cm2.

a. Sketch the three-tube model for /r/. Label all areas and lengths of all tube sections, and be
sure to show whether each tube is closed or open.

b. Find F1 of the /r/ configuration, using the low-frequency approximations given in the lecture
notes.

c. Find F1 of the neighboring vowel: set the length of the side branch to 0cm, and then solve the
same equations that you solved in part (b). How does your answer compare to part (b)? How
does your answer compare to the first formant of a schwa?

d. Find the first zero frequency of the /r/.

e. Assume that the first zero is part of a “pole-zero pair.” In other words, you can imagine that
the first zero splits the nearest oral formant into a pole-zero-pole complex, with the first pole
about 200Hz below the zero, and the second pole about 200Hz above the zero. In that case,
what is the frequency of F3 of an /r/?
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Chapter 4

Techniques for Speech Analysis

The earlier discussion suggested that the encoding of speech information might be considered at
several stages in the communication chain. On the transmitter side, the configuration and excitation
of the vocal tract constitute one description. In the transmission channel, the transduced acoustic
waveform is a signal representation commonly encountered. At the receiver, the mechanical motion
of the basilar membrane is still another portrayal of the information. Some of these descriptions
exhibit properties which might be exploited in communication.

Efforts in speech analysis and synthesis frequently aim at the efficient encoding and transmission
of speech information1. Here the goal is the transmission of speech information over the small-
est channel capacity adequate to satisfy specified perceptual criteria. Acoustical and physiological
analyses of the vocal mechanism suggest certain possibilities for efficient description of the signal.
Psychological and physiological experiments in hearing also outline certain bounds on perception.
Although such analyses may not necessarily lead to totally optimum methods for encoding and trans-
mission, they do bring to focus important physical constraints. Transmission economies beyond this
level generally must be sought in linguistic and semantic dependencies.

The discussions in Chapters 2 and 3 set forth certain fundamental relations for the vocal mech-
anism. Most of the analyses presumed detailed physical knowledge of the tract. In actual com-
munication practice, however, one generally has knowledge only of some transduced version of the
acoustic signal. (That is, the speaker does not submit to measurements on his vocal tract.) The
acoustic and articulatory parameters of the preceding chapters must therefore be determined from
the speech signal if they are to be exploited.

This chapter proposes to discuss certain speech analysis techniques which have been found useful
for deriving so-called “information-bearing elements” of speech. Subsequent chapters will consider
synthesis of speech from these low information-rate parameters, perceptual criteria appropriate to
the processing of such parameters, and application of analysis, synthesis and perceptual results in
complete transmission systems.

4.1 Spectral Analysis of Speech

Frequency-domain representation of speech information appears advantageous from two standpoints.
First, acoustic analysis of the vocal mechanism shows that the normal mode or natural frequency
concept permits concise description of speech sounds. Second, clear evidence exists that the ear
makes a crude frequency analysis at an early stage in its processing. Presumably, then, features
salient in frequency analysis are important in production and perception, and consequently hold

1Other motivating objectives are: basic understanding of speech communication, voice control of machines, and
voice response from computers.

81
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promise for efficient coding. Experience supports this notion.

Further, the vocal mechanism is a quasi-stationary source of sound. Its excitation and normal
modes change with time. Any spectral measure applicable to the speech signal should therefore
reflect temporal features of perceptual significance as well as spectral features. Something other
then a conventional frequency transform is indicated.

4.1.1 Short-Time Frequency Analysis

The conventional mathematical link between an aperiodic time function f(t) and its complex
amplitude-density spectrum F (ω) is the Fourier transform-pair

F (ω) =

∫ ∞

−∞

f(t)e−jωtdt (4.1)

f(t) = − 1

2π

∫ ∞

−∞

F (ω)ejωtdω

For the transform to exist,
∫∞

∞ |f(t)|dt must be finite. Generally, a continuous speech signal neither
satisfies the existence condition nor is known over all time. The signal must consequently be modified
so that its transform exists for integration over known (past) values. Further, to reflect significant
temporal changes, the integration should extend only over times appropriate to the quasi-steady
elements of the speech signal. Essentially what is desired is a running spectrum, with real-time as
an independent variable, and in which the spectral computation is made on weighted past values of
the signal.

Such a result can be obtained by analyzing a portion of the signal “seen” through a specified
time window, or weighting function. The window is chosen to insure that the product of signal and
window is Fourier transformable. For practical purposes, the weighting function h(t) usually is the
impulse response of a physically-realizable linear system. Then, h(t) = 0; for t < 0. Generally h(t)
is desired to be unipolar and is essentially the response of a low-pass filter. The Fourier transform
(4.1) can therefore be modified by transforming that part of the signal seen through the window at
a given instant of time. The desired operation is

F (ω, t) =

∫ t

infty

f(λ)h(t− λ)e−jwλdλ,

or,

F (ω, t) = e−jωt
∫ ∞

0

f(t− λ)h(λ)ejωλdλ. (4.2)

The signal, with its past values weighted by h(t), is illustrated for a given instant, t, in Fig. 4.1.

The short-time transform, so defined, is the convolution

[f(t)e−jωt ∗ h(t)], or alternatively, e−jωt[f(t) ∗ h(t)ejωt].

If the weighting function h(t) is considered to have the dimension sec−1 (i.e., the Fourier transform of
h(t) is dimensionless), then |F (ω, t)| is a short-time amplitude spectrum with the same dimension as
the signal. Like the conventional Fourier transform, F (ω, t) is generally complex with a magnitude
and phase, namely |F (ω, t)|e−jθ(ω,t), where θ(ω, t) is the short-time phase spectrum. By definition,
the inverse relation also holds

[f(λ)h(t− λ)] =
1

2π

∫ ∞

−∞

F (ω, t)ejωλdω.
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Figure 4.1: Weighting of an on-going signal f(t) by a physically realizable time window h(t). λ is a
dummy integration variable for taking the Fourier transform at any instant, t

Note that at any time t = t1, the product [f(λ)h(t− λ)] is determined for all λ ≤ t1. If the window
function h(t1 − λ) is known, then the original function over the interval −∞ ≤ λ ≤ t1 can be
retrieved from the product. For a value of λ equal to t1

[f(t)h(0)] =
1

2π

∫
F (ω, t1)e

jωt1dω

or in general for λ = t

f(t) =
1

2πh(0)

∫ ∞

−∞

F (ω, t)ejωtdω.

The short-time transform is therefore uniquely invertible if one nonzero value of the window function
is known. Typically h(t) can be chosen so that h(0) = 1 and

f(t) =
1

2π

∫ ∞

−∞

F (ω, t)ejωtdω

which bears a pleasing parallel to the conventional infinite-time Fourier transform.
The inversion implies that f(t) can be determined for the same points in time that F (ω, t)

is known, provided F (ω, t) is known as a continuous function of frequency. However, in cases
where the product function [f(λ)h(t − λ)] is of finite duration in λ (say owing to a finite duration
window) then samples of the waveform f(t) may be recovered exactly from samples in ω of F (ω, t)
(Weinstein [1966]). Discrete-frequency, continuous-time values of the short-time transform, F (ω, t),
are of particular interest and will find applications in later discussions.

4.1.2 Measurement of Short-Time Spectra

We notice that (4.2) can be rewritten

F (ω, t) = −
∫ t

−∞

f(λ) cosωλh(t− λ)dλ − j

∫ t

−∞

f(λ) sinωλh(t− λ)dλ (4.3)

= [a(ω, t) − jb(ω, t)] .

Further,
|F (ω, t)| = [F (ω, t)F ∗(ω, t)] = (a2 + b2)

1
2 (4.4)
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Figure 4.2: A method for measuring the short-time amplitude spectrum |F (ω, t)|

Figure 4.3: Alternative implementation for measuring the short-time amplitude spectrum |F (ω, t)|

and

θ(ω, t) = tan−1 b/a.

where F ∗(ω, t) is the complex conjugate of F (ω, t). Note that |F (ω, t)| is a scalar, whereas F (ω, t)F ∗(ω, t)
is formally complex, and that |F (ω, t)|2 is the short-time power spectrum. The measurement of
|F (ω, t)| can therefore be implemented by the operations shown in Fig. 4.2.

The frequency-domain interpretation of these operations is apparent. The heterodyning (or
multiplication by cosωt and sinωt) shifts (or translates) the spectrum of f(t) across the pass-band
of filter h(t). The latter is normally a low-pass structure. Frequency components of f(t) lying close
to ω produce difference-frequency components inside the low-pass band and yield large outputs
from the h(t) filter. Quadrature versions of the shifted signals are squared and added to give the
short-time power spectrum |F (ω, t)|2.

Alternatively, Eq. (4.2) can be written

F (ω, t) = e−jωt
{∫ ∞

0

f(t− λ)h(λ) cosωλdλ+ j

∫ ∞

0

f(t− λ)h(λ) sinωλdλ

}

= [a′(ω, t) + jb′(ω, t)] e−jωt. (4.5)

The alternative measurement of |F (ω, t)| =
[
a′2 + b′2

] 1
2 can therefore be effected by the operations

in Fig. 4.3.

Again, in terms of a frequency-domain interpretation, the measurement involves filtering by
phase-complementary band-pass filters centered at ω and having bandwidths twice that of the low-
pass h(t) function. The outputs are squared and added to produce the short-time power spectrum
|F (ω, t)|2. Both filters have impulse responses whose envelopes are the time window, h(t). As many
pairs of filters are required as the number of frequency values for which the spectrum is desired.
Notice, too, that for both methods of measurement (i.e., Fig. 4.2 and 5.3) if the input signal f(t) is
a unit impulse the short-time amplitude spectrum is simply h(t), the weighting function.

It is common, in experimental practice, to minimize equipment complexity by making an approx-
imation to the measurements indicated in Fig. 4.2 and 4.3. The desired measurement |F (ω, t)| =
[
a′2(ω, t) + b′2(ω, t)

] 1
2 is essentially the time envelope of either a′(ω, t) or b′(ω, t).
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Figure 4.4: Practical measurement of the short-time spectrum |F (ω, t)| by means of a bandpass
filter, a rectifier and a smoothing network

The time envelope of a Fourier-transformable function u(t) can be defined as

e(t) =
[
u2(t) + û2(t)

] 1
2 , where û(t) =

[
u(t) ∗ 1

πt

]

is the Hilbert transform of u(t). One can show that ˆu(t)v(t) = u(t)v̂(t) = ˆu(t)v(t), provided the
spectra of u(t) and v(t) do not overlap. Making use of these relations, and the possibilities for
interchanging orders of integration in the convolutions, one notices that

a′(ω, t) = [f(t) ∗ h(t)cosωt] (4.6)

â′(ω, t) =

[
a′(ω, t) ∗ 1

πt

]

= f(t) ∗
[
h(t) cosωt ∗ 1

πt

]

= f(t) ∗ [h(t) sinωt]

= b′(ω, t),

provided the spectrum of h(t) does not overlap ω. The quantity |F (ω, t)| is therefore essentially
the time envelope of either a′(ω, t) or b′(ω, t). The envelope can be approximated electrically by
developing the envelope of either filter branch in Fig. 4.3. This is conventionally done by the linear
rectification and low-pass filtering indicated in Fig. 4.4. If the impulse response of the low-pass filter
is appropriately chosen, the output |f(t) ∗ p(t)| ∗ q(t) approximates |F (ω, t)|.

The measurement method of Fig. 4.4 is precisely the one used in the well-known Sound Spectro-
graph and in most filter-bank spectrum analyzers. In particular, it is usually the method used to
develop the short-time spectrum in vocoders and in several techniques for automatic formant analy-
sis. All of these applications will be discussed in further detail subsequently. As a present example,
however, Fig. 4.5 shows successive short-time spectra of a voiced speech sample as produced by a
bank of 24 filters. The filters are approximately 150Hz wide, and cover the frequency range 150
to 4000Hz. Each filter is followed by a rectifier and an R-C network. The filter bank is scanned
every 10 msec and the short-time spectrum plotted. High-frequency emphasis is used on the input
signal to boost its level in the high-frequency end of the spectrum. The filter-bank output is fed
into a digital computer through an analog-to-digital converter, and the spectral scans are plotted
automatically by the computer (FLANAGAN, COKER, and BIRD). The lines connecting the peaks
represent speech formant frequencies which were automatically determined by computer processing
of the short-time spectrum.

4.1.3 Choice of the Weighting Function, h(t)

In speech applications, it usually is desirable for the short-time analysis to discriminate vocal prop-
erties such as voiced and unvoiced excitation, fundamental frequency, and formant structure. The
choice of the analyzing time window h(t) determines the compromise made between temporal and
frequency resolution. A time window short in duration corresponds to a broad band-pass filter. It
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Figure 4.5: Short-time amplitude spectra of speech measured by a bank of 24 band-pass filters.
A single filter channel has the configuration shown in Fig. 4.4. The spectral scans are spaced by
10 msec in time. A digital computer was used to plot the spectra and to automatically mark the
formant frequencies. (After (Flanagan et al. [1962a]))
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may yield a spectral analysis in which the temporal structure of individual vocal periods is resolved.
A window with a duration of several pitch periods, on the other hand, corresponds to a narrower
bandpass filter. It may produce an analysis in which individual harmonic spectral components are
resolved in frequency.

In order to illustrate applicable orders of magnitude for filter widths and time windows, imagine
the analyzing bandpass filter to be ideal (and nonrealizable) with a rectangular amplitude-frequency
response and with zero (or exactly linear) phase response. Let the frequencydomain specification be

P (ω)






= 1; (ω0 − ω1) ≤ ω ≤ (ω0 + ω1)
= 1; −(ω0 + ω1) ≤ ω ≤ −(ω0 − ω1)
= 0; elsewhere

(4.7)

The impulse response of the filter is therefore

p(t) =

(
2ω1

π

)(
sinω1t

ω1t

)
cosω0t (4.8)

= h(t) ∗ cosω0t

and the time window for this ideal filter is the sinx/x envelope of the impulse response. If the time
between initial zeros of the envelope is arbitrarily taken as the effective duration, D, of the time
window, then D = 2π/ω1 = 4π/∆ω, where ∆ω = 2ω1 is the bandwidth of the filter2. The D’s

corresponding to several ∆ω’s are

Condition ∆ω/2π D
(Hz) (msec)

(1) 50 40
(2) 100 20
(3) 250 8

Condition (1) is an analyzing bandwidth commonly used to resolve the harmonic spectral com-
ponents in voiced portions of speech. For this bandwidth, the duration of the time window spans
about four or five pitch periods of a man’s voice.

The broad filter condition (3), on the other hand, produces a weighting function comparable in
duration with a single pitch period of a man’s voice. The time resolution of this analysis therefore
resolves amplitude fluctuations whose temporal courses are of the order of a pitch period. Filter
conditions analogous to both (1) and (3) are employed in the wellknown Sound Spectrograph which
will be discussed in the following section.

The middle condition (2) is a sort of time-frequency compromise for speech. It is a filter width
which has been found useful in devices such as vocoders and formant trackers. The short-time
spectra already shown in Fig. 4.5 are representative of this resolution.

In passing, it is relevant to estimate the effective time window for the mechanical short-time
analysis made by the basilar membrane in the human ear. From the earlier discussion in Chapter 63,
a reasonably good approximation to the displacement impulse response of the basilar membrane, at
a point maximally responsive to radian frequency β, is

p(t) = (βt)2e−βt/2 sinβt = hbm(t) sinβt (4.9)

The time window for the basilar membrane, according to this modeling4, is the “surge” function
plotted in Fig. 4.6. One notices that the time window has a duration inversely related to β. It has
its maximum at tmax = 4/β. If, as a crude estimate, 2tmax is taken as the effective duration D of the

2Sometimes one-half this value is taken as the effective window duration.
3See also the “third” model described in (Flanagan [1962a]))
4Eq. (4.9) does not include the effects of the middle ear. See Chapter 6 for these details.
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Figure 4.6: The effective time window for short-time frequency analysis by the basilar membrane in
the human ear. The weighting function is deduced from the ear model discussed in Chapter IV

Figure 4.7: Functional diagram of the sound spectrograph

window, then for several membrane places:

β/2π d = 2tmax
(Hz) (msec)
100 12.0

1000 1.2
5000 0.2

For most speech signals, therefore,

the mechanical analysis of the ear apparently provides better temporal resolution than spectral reso-
lution. Generally, the only harmonic component resolved mechanically is the fundamental frequency
of voiced segments. This result is borne out by observations on the models described in Chapter 6.

4.1.4 The Sound Spectrograph

Spectral analysis of speech came of age, so to speak, with the development of the Sound Spectrograph
(Koenig [1946]). This device provides a convenient means for permanently displaying the short-time
spectrum of a sizeable duration of signal. Its method of analysis is precisely that shown in Fig. 4.4.
Its choice of time windows (see preceding section) is made to highlight important acoustic and
perceptual features such as formant structure, voicing, friction, stress and pitch. Many other devices
for spectrum analysis have also been developed, but the relative convenience and ease of operation of
the sound spectrograph has stimulated its wide acceptance in speech analysis and phonetic science.
Because it is such a widely used tool, this section will give a brief description of the device and its
principles of operation.

Fig. 4.7 shows a functional diagram of one type of sound spectrograph (commonly known as the
Model D Sonagraph). With the microphone switch (SW 1) in the record position, a speech sample
(generally about 2.5 sec in duration) is recorded on a magnetic disc. The microphone switch is
turned to analyze, and a spectral analysis of the sample is made by playing it repeatedly through
a bandpass filter. Upon successive playings the bandpass filter is, in effect, scanned slowly across
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Figure 4.8: (a) Broadband sound spectrogram of the utterance “That you may see.” (b) Amplitude
vs frequency plots (amplitude sections) taken in the vowel portion of “that” and in the fricative
portion of “see.” (After (Barney and Dunn [1957]))

the frequency band of the signal. The result is therefore equivalent to an analysis by many such
filters. For practical reasons it is more convenient to use a fixed bandpass filter and to “slide”
the spectrum of the signal past the filter. This is accomplished by modulating the signal onto a
high frequency carrier and sliding one sideband of the signal past the ixed bandpass filter. The
translation is accomplished by varying the frequency of the carrier. The carrier frequency control
is mechanically geared to the magnetic disc so the signal spectrum is progressively analyzed upon
repeated rotations of the disc.

With SW 2 in the spectrogram position, the output current of the bandpass filter is amplified
and passed to a stylus whose vertical motion is geared to the magnetic disc and the carrier control
(or to the effective frequency position of the bandpass filter). The stylus is in contact with an
electrically sensitive facsimile paper which is fixed to a drum mounted on the same shaft as the
magnetic disc. Electrical current from the stylus burns the paper in proportion to the current
magnitude. The paper therefore acts as the full-wave rectifier of Fig. 4.4, and the finite size and
spreading of the burned trace perform the low-pass filtering. The density of the burned mark is
roughly proportional to the logarithm of the current magnitude. Because of the mechanical linkage,
the stylus and carrier move slowly across the frequency range of the signal as the magnetic disc
rotates, and a time-intensity-frequency plot of the signal is “painted” on the paper.

Two widths of the bandpass filter are conventionally used with the instrument, 300Hz and 45Hz.
The time-frequency resolution of the analysis is essentially determined by these widths. As discussed
in the preceding section, the wide pass-band provides better temporal resolution of speech events,
while the narrow band yields a frequency resolution adequate to resolve harmonic lines in voiced
utterances. A typical spectrogram made with the 300Hz wide analyzing filter is shown in the upper
diagram of Fig. 4.8. As previously indicated, the abscissa is time, the ordinate is frequency, and
darkness of the pattern represents intensity. Several speech features are indicated. Note that the
time resolution is such that vertical striations in the voiced portions show the fundamental period
of the vocal cords.

The facsimile paper is capable of depicting an intensity range (from lightest gray to darkest black)
of only about 12dB (Prestigiacomo [1957]). It often is desirable to examine amplitude spectra over
a greater intensity range. A means is therefore provided for making a frequency-versus-amplitude
portrayal at any given instant along the time scale. For this operation, SW2 in Fig. 4.7 is put
to the section position. A cam is placed on the drum periphery at the time of occurrence of the
sound whose amplitude section is desired. The functions of the carrier and stylus are as previously
described.

The sectioner contains a full-wave rectifier, an R-C integrator and a biased multivibrator. In
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one version of the apparatus, as the magnetic disc and drum rotate, the cam closes the section
switch at the desired instant in the utterance, The value of the short-time spectrum at this instant
is effectively “read” and stored on a capacitor in the input circuit of a biased multivibrator. The
multi vibrator is held on (i.e., free runs) until the capacitor charge decays to a threshold value. The
multivibrator then turns off. During its on-time, it delivers a marking current to the stylus and
(because of the exponential decay) the length of the marked trace is proportional to the logarithm
of the smoothed output of the analyzing filter. Because the stylus is scanning the frequency scale
with the filter, an amplitude (db)-versus-frequency plot is painted for the prescribed instant.

Amplitude sections are usually made with the 45Hz (narrow band) filter. Typical sections taken
in a vowel and in a fricative are shown in the lower half of Fig. 4.8.

Because the speech sample must be played repeatedly as the analyzing filter scans its band,
the time to produce the complete spectrogram is appreciable. Common practice is to shorten the
analyzing time by playing back at several times the recording speed. A typical value, for example,
is a speed-up of three-to-one. A recorded bandwidth of 100 to 4000Hz is therefore multiplied to 300
to 12000Hz. If the analyzing bandpass filter is centered at, say, 15000Hz, then the carrier oscillator
may scan from 15000 to 27000Hz. Depending upon frequency range and technique, one to several
minutes may be required to analyze a 2.5 sec speech sample. In the course of the analysis the sample
may be played back several hundred times. A common figure for the filter advance is of the order
of 20Hz/playback.

The manner in which broadband spectrograms highlight vocal modes, or formants, for various
articulatory configurations is illustrated in Fig. 4.9. Articulatory diagrams for four vowels, /i,�,a,u/
and their corresponding broadband (300Hz) spectrograms are shown. The dark bands indicate
the spectral energy concentrations and reflect the vocal modes for a given configuration. (These
spectrograms can be compared with the calculated mode patterns for similar vowels in Figs. 3.29
and 3.30 of Chapter 3.)

Typical of the research uses to which this type of spectrographic display has been put is a large-
scale study of vowel formant frequencies, amplitudes, and pitches for a number of different speakersPetersonBarney. The results of this study for 33 men give the mean formant frequencies for the
English vowels as plotted in Fig. 4.10. The vowels were uttered in an /h--d/ environment.

Numerous “relatives” of the sound spectrograph–both predecessors and successors–have been
designed and used, each usually with a specific purpose in mind. These devices range from scanned
filter banks to correlation instruments. In a short space it is not possible to mention many of
them. One variation in the spectrographic technique is the socalled “resonagraph” Huggins52. This
device is designed to delineate formant frequencies and to suppress nonformant energy. Another
modification displays the time derivative of the spectral amplitude, rather than simply the amplitudeMeyer-Eppler51, KokMiller. The effect is to emphasize dynamic time changes in the spectrum and to
suppress quasi-steady portions. Features such as stop consonants or formant transitions are therefore
more sharply delineated.

An even closer relative is the so-called visible speech translator (Dudley and Jr. [1946], Riesz and
Schott [1946]) in which the conventional sound spectrogram is painted electronically in real time,
either on a moving belt coated with luminescent phosphor, or on a rotating cathode ray tube. A still
different variation is the correlatograph (Bennett [1953], Biddulph [1954]) which plots the magnitude
of the short-time autocorrelation function of the signal in trace density, the delay parameter on the
ordinate, and time along the abscissa. Several schemes for quantizing the intensity dimension of
the conventional spectrogram have also been described (Kersta [1948], Prestigiacomo [1957]). The
result is to yield a “topological map” of the signal in which intensity gradients are indicated by the
closeness of the contour lines.
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Figure 4.9: Articulatory diagrams and corresponding broad-band spectrograms for the vowels/i,�,a,u/ as uttered by adult male and female speakers. (After (Potter et al. [1947]))

Figure 4.10: Mean formant frequencies and relative amplitudes for 33 men uttering the English
vowels in an /h-d/ environment. Relative formant amplitudes are given in dB re the first formant
of /O/. (After (Peterson and Barney [1952]) as plotted by Haskins Laboratories)
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4.1.5 Short-Time Correlation Functions and Power Spectra

If x(t) is an on-going stationary random signal, its autocorrelation function φ(τ) and its power
density spectrum Φ(ω) are linked by Fourier transforms (Wiener [1949], Lee [1960]).

φ(τ) = lim
T→∞

1

2T

∫ T

−T

x(t)x(t + τ)dt

=
1

2π

∫ ∞

−∞

Φ(ω)ejωτdω

and

Φ(ω) =

∫ ∞

−∞

φ(τ)e−jωτ dτ. (4.10)

[Note that φ(0) is the mean square value, or average power, of the signal.]
For an aperiodic Fourier-transformable signal, y(t), parallel relations link the autocorrelation

function ψ(τ) and the energy density spectrum Ψ(ω)

ψ(τ) =

∫ ∞

−∞

y(t)y(t+ τ)dt

=
1

2π

∫ ∞

−∞

Ψ(ω)ejωtdω

Ψ(ω) =

∫ ∞

−∞

ψ(τ)e−jωτdτ, (4.11)

where

Ψ(ω) = Y (ω)Y ∗(ω), and Y (ω) =

∫ ∞

−∞

y(t)e−jωtdt

[Note that

ψ(0) =
1

2π

∫ ∞

−∞

Ψ(ω)dω

is the total energy of the signal.]
In both cases the correlation functions are real and even functions of the delay parameter τ , and

the spectra are real and even functions of the frequency ω. All of the transforms can therefore be
written as cosine transforms. These transform-pairs suggest the possibility of determining short-time
spectral information by means of correlation techniques, provided the latter can be extended to the
short-time case.

In the preceding discussion on short-time spectral analysis, the approach was to analyze a Fourier-
transformable “piece” of the signal obtained by suitably weighting the past values. The correlation
relations for aperiodic functions can be similarly extended to this description of the speech signal.
According to the earlier derivations, at any instant t the following transforms are presumed to hold
for the speech signal f(t),

F (ω, t) =

∫ t

−∞

f(λ)h(t− λ)e−jωλdλ

[f(λ)h(t− λ)] =
1

2π

∫ ∞

−∞

F (ω, t)ejωλdω, (4.12)

where h(t) is the weighting function. Then, formally,

ψ(τ, t) =

∫ t

−∞

f(λ)h(t − λ)f(λ+ τ)h(t − λ− τ)dλ
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Figure 4.11: Method for the measurement of the short-time correlation function ψ(τ, t)

ψ(τ, t) =
1

2π

∫ ∞

−∞

Ψ(ω, t)ejωτdω (4.13)

Ψ(ω, t) = [F (ω, t)F ∗(ω, t)] =

∫ ∞

−∞

ψ(τ, t)e−jωτdτ.

Practically, for real time measurement at time t, f(t + τ) for τ > 0 is not known. [For a fixed
over-all delay (comparable to the window duration) τ may be considered to be a differential delay.]
However, ψ(τ, t) is formally an even function of τ . It can therefore be defined in terms of negative
τ so that

Ψ(ω, t) =

∫ ∞

−∞

ψ(τ, t)e−jωτdτ = 2

∫ 0

−∞

ψ(τ, t) cosωτdτ (4.14)

where Ψ(ω, t) is also an even function of ω.

Thus a short-time autocorrelation measure, related to the shorttime power spectrum |F (ω, t)|2
by the aperiodic transform, can be made. Techniques for the measurement of |F (ω, t)|2 have al-
ready been described in Section 4.1.2. Measurement of ψ(τ, t) for negative τ can be effected by
the arrangement shown in Fig. 4.11. The individual output taps from the delay lines are weighted
according to h(t). Corresponding points (in the running variable λ) are multiplied, and the integra-
tion is approximated as a finite sum5. ψ(τ, t) is therefore a running correlation which is related to
|F (ω, t)|2 or Ψ(ω, t) by a Fourier transform.

It is also possible to define a short-time correlation function produced by weighting the product
of the original signal and the signal delayed (FANO). The defining relation is

φ(τ, t) =

∫ t

−∞

f(λ)f(λ+ τ)k(t − λ)dλ, (4.15)

where k(t) = 0, t < 0 is the weighting function. The measure is easily implemented for t ≤ 0 by
the circuit shown in Fig. 4.12. This technique has been used experimentally to measure correlation
functions for speech sounds (Stevens [1950], Kraft [1950], Biddulph [1954]).

5The operations of Fig. 4.11 compute

ψ(τ, t) =

Z

∞

0

f(t − λ)h(λ)f(t − λ− τ)h(λ + τ)dλ,

for negative τ , instead of the form given in Eq. (4.13).
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Figure 4.12: Circuit for measuring the running short-time correlation function φ(τ, t)

In general, no simple transform relation exists between φ(τ, t) and a measurable short-time power
spectrum. Under the special condition k(t) = 2αe−2αt = [h(t)]2, however, φ(τ, t) can be related to
Ψ(ω, t) = |F (ω, t)|2.

ψ(τ, t) =

∫ t

−∞

f(λ)h(t − λ)f(λ+ τ)h(t − λ− τ)dλ

= eατ
∫ t

−∞

2αf(λ)f(λ + τ)e−2α(t−λ)dλ (4.16)

= eατφ(τ, t); τ ≤ 0

But as previously argued, φ(τ, t) is an even function of τ , and if φ(τ, t) is defined as an even function,
then ψ(τ, t) = e−α|τ |φ(τ, t) for all τ , or

φ(τ, t) = eα|τ |ψ(τ, t)

=
eα|τ |

2π

∫ ∞

−∞

Ψ(ω, t)ejωτdω,

and

Ψ(ω, t) =

∫ ∞

−∞

e−α|τ |φ(τ, t)e−jωτdτ

=

∫ ∞

−∞

e−α|τ |φ(τ, t) cosωτdτ.

It also follows that

Ψ(ω, t) =
1

2π

[
F
{
e−α|τ |

}
∗ F {φ(τ, t)}

]
(4.17)

=
1

2π

[(
2α

α2 + ω2

)
∗ Φ(ω, t)

]

=
1

2π

[
|H(ω)|2 ∗ Φ(ω, t)

]
,

where F denotes the Fourier transform.

Thus the short-time power spectrum Ψ(ω, t) is the real convolution of the power spectrum Φ(ω, t)
with the low-pass energy spectrum 2α/(α2 + ω2). Ψ(ω, t) therefore has poorer spectral resolu-

tion than the Fourier transform of φ(τ, t) [i.e., Φ(ω, t)]. Note also that for h(t) = (2α)
1
2 e−αt,

|F (ω, t)| is essentially measured by single-resonant circuits with impulse response [(2α)
1
2 e−αt cosωt]

and [(2α)
1
2 e−αt sinωt] (See Fig. 4.3.)

Weighting functions different from the exponential just discussed do not lead to simple trans-
form relations between φ(τ, t) and a power spectrum. Other definitions, however, can be made of
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Figure 4.13: Arrangement for measuring the short-time spectrum Q(ω, t). (After (Atal [1962]))

measurable correlations and short-time power spectra, and these can be linked by specially defined
transforms (Atal [1962]). For example, one can define a short-time spectrum

Ω(ω, t) =

∫ ∞

−∞

φ(τ, t)m(|τ |) cosωτdτ, (4.18)

in which φ(τ, t), as given in Eq. (4.15), is defined as an even function of τ (but is measured for delays
only) so that,

φ(τ, t) =

∫ t

−∞

f(λ)f(λ− |τ |)n(t − λ)dλ,

where m(t) and n(t) are physically realizable weighting functions and are zero for t < 06. Ω(ω, t)
and φ(τ, t) are then linked by the definitions (4.18). φ(τ, t) can be measured according to Fig. 4.12,
and a straightforward measure of Ω(ω, t) can also be made. Substituting for φ(τ, t) in the definition
of Ω(ω, t) gives

Ω(ω, t) = 2

∫ t

−∞

f(λ)n(t− λ)dλ

∫ ∞

0

f(λ− τ)m(τ) cosωτdτ (4.19)

= 2 {n(t) ∗ f(t) [f(t) ∗m(t) cosωt]} .
The operations indicated in (4.19) are a filtering of the signal f(t) by a (normally bandpass) filter
whose impulse response is [m(t) cosωt]; a multiplication of this output by the original signal; and
a (normally low pass) filtering by a filter whose impulse response is n(t). The measurement is
schematized in Fig. 4.13.

For the case m(t) = n(t) = e−αt, Ω(ω, t) reduces to Ψ(ω, t). From the definition of Ω(ω, t), the
inverse relation follows

φ(τ, t) =
1

2πm(|τ |)

∫ ∞

−∞|

Ω(ω, t) cosωτdω. (4.20)

The defining relations of Eq. (4.18) also imply that

Ω(ω, t) = M(ω) ∗ Φ(ω, t) (4.21)

where

M(ω) =

∫ ∞

−∞

m(|τ |)e−jωτdτ,

and

Φ(ω, t) =

∫ ∞

−∞

φ(tau, t)e−jωτdτ.

This result can be compared with Eq. (4.17), where

|H(ω)|2 =

∫ ∞

−∞

e−α|τ |e−jωτdτ

H(ω) =

∫ ∞

0

(2α)
1
2 e−ατe−jωτdτ =

∫ ∞

0

h(τ)e−jωτdτ

Since Ω(ω, t) is obtained from Φ(ω, t) by convolution with the (low pass) spectrum M(ω), it has
poorer spectral definition than Φ(ω, t).

6If Q(ω, t) is to be a positive quantity, some further restrictions must be placed on n(t).
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4.1.6 Average Power Spectra

The spectral measuring schemes of the previous discussion use windows which are relatively short in
duration to weight past values of the signal. They yield spectra in which brief temporal fluctuations
are preserved. A long-term mean value of the spectrum, say ¯|F (ω, t)|2, might also be of interest if
average spectral distribution is of more importance than short-time variations. Such an average can
be written as

lim
T→∞

1

2T

∫ T

−T

F (ω, t)F ∗(ω, t)dt = ¯|F (ω, t)|2 = ¯Ψ(ω, t) (4.22)

= lim
T→∞

1

2T

∫ T

−T

dt

∫ t

−∞

f(λ)h(t− λ)e−jωλdλ

∫ t

−∞

f(η)h(t− η)ejωηdη.

Changing variables and rearranging

¯|F (ω, t)|2 =

∫ ∞

0

dλh(λ)ejωλ
∫ ∞

0

dηh(η)e−jωη lim
T→∞

1

2T

∫ T

−T

f(t− λ)f(t− η)dt. (4.23)

According to Eqs. (4.10), the latter integral is simply φ(λ−η), which is the inverse Fourier transform
of Φ(ω). That is,

φ(λ − η) =
1

2π

∫ ∞

−∞

Φ(δ)ejδ(λ−η)dδ

=
1

2π

∫ ∞

−∞

Φ(δ)e−jδ(λ−η)dδ,

because Φ(ω) is real and even. Then

¯|F (ω, t)|2 =
1

2π

∫ ∞

−∞

Φ(δ)dδ

∫ ∞

0

h(λ)ejλ(ω−δ)dλ

∫ ∞

0

h(η)e−jη(ω−δ)dη

=
1

2π

∫ ∞

−∞

Φ(δ)H(ω − δ)H∗(ω − δ)dδ

¯|F (ω, t)|2 =
1

2π

[
Φ(ω) ∗ |H(ω)|2

]
. (4.24)

Therefore, the long-time average value of the power spectrum ¯|F (ω, t)|2 is the real convolution
of the power density spectrum Φ(ω) and the energy density spectrum of the time window h(t). The
narrower the |H(ω)|2 spectrum, the more nearly ¯|F (ω, t)|2 represents the power density spectrum
Φ(ω). A narrow H(ω) corresponds to a long time window and to narrow bandpass filters in the
circuits of Fig. 4.3 and 4.4. In the limit H(ω) is an impulse at ω = 0, the time window is a unit step
function and ¯|F (ω, t)|2 has the same spectral characteristics as Φ(ω). For any value of ω, ¯|F (ω, t)|2
is the integral of the power density spectrum “seen” through the aperture |H(ω)|2 positioned at ω.
It is therefore the average power of the signal in the pass band of the filter in Fig. 4.4.

It was previously demonstrated [Eq. (4.17)] that for the special condition h(t) = [(2α)
1
2 eαt],

Ψ(ω, t) =
1

2π

[
|H(ω)|2 ∗ Φ(ω, t)

]
.

Notice that for this situation, the long-time average is

¯Ψ(ω, t) = lim
T→∞

1

2T

∫ T

−T

∫ ∞

−∞

e−α|τ |φ(τ, t) cosωτdτdt (4.25)

=

∫ ∞

−∞

e−α|τ | ¯φ(τ, t) cosωτdτ.
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Figure 4.14: Circuit for measuring the long-time average power spectrum of a signal

Substituting for φ(τ, t) from (4.15) and interchanging variables leads to

¯Ψ(ω, t) =

∫ ∞

0

e−α|τ |φ(τ) cosωτdτ

∫ ∞

0

k(β)dβ. (4.26)

Since ∫ ∞

0

k(t)dt =

∫ ∞

0

h2(t)dt = 1

then
¯Ψ(ω, t) =

1

2π

[
|H(ω)|2 ∗ Φ(ω)

]
,

which corresponds to the result (4.24).

4.1.7 Measurement of Average Power Spectra for Speech

A number of experimental measurements of the average power spectrum of speech have been made
(for example, (Sivian [1929], Dunn and White [1940]). The technique frequently used is essentially
the bandpass filter arrangement shown previously in Fig. 4.4, with the exception that a square-law
rectifier and a long-time integrator (averager) are used. This arrangement is shown is Fig. 4.14. If
the switch closes at time t = 0 and remains closed for T sec, the accumulated capacitor voltage is
an approximation to ¯|F (ω, t)|2 and is,

Vc(T ) =

∫ T

0

a′2(ω, λ)
1

RC
e−

1
RC

(T−λ)dλ (4.27)

If RC ≫ T , then the exponential is essentially unity for 0 ≤ λ ≤ T , and

Vc(T ) ≈ 1

RC

∫ T

0

a′2(ω, λ)dλ (4.28)

∼ ¯|F (ω, t)|2

The measurement described by (4.28) has been used in one investigation of speech spectra.
Bandpass filters with bandwidths one-half octave wide below 500Hz and one octave wide above
500Hz were used. The integration time was 1

8 sec (Dunn and White [1940]). Distributions of the
absolute root-mean-square speech pressure in these bands–measured 30 cm from the mouth of a
talker producing continuous conversational speech–are shown in Fig. 4.15. The data are averages
for six men. The distribution for the unfiltered speech is shown by the marks on the left ordinate.

If the integration time is made very long, say for more than a minute of continuous speech (all
natural pauses between syllables and sentences being included), or if many short-time measurements
are averaged, one obtains a long-time power spectrum in which syllabic length variations are com-
pletely smoothed out. Assuming that the speech power is uniformly distributed in the octave and
half-octave filter bands the measured longtime power density spectrum, Φ(ω), for speech is shown
in Fig. 4.16. The ordinate here is given in terms of mean-square sound pressure per cycle. In both
Fig. 4.15 and 4.16, the detailed formant structure of individual sound is averaged out.
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Figure 4.15: Root mean square sound pressures for speech measured in -ll sec intervals 30 cm trom
the mouth. The analyzing filter bands are one-half octave wide below 500Hz and one octave wide
above 500 Hz. (After (Dunn and White [1940])) The parameter is the percentage of the intervals
having levels greater than the ordinate

Figure 4.16: Long-time power density spectrum for continuous speech measured 30 cm from the
mouth. (After (Dunn and White [1940]))
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4.2 Predictive Coding of Speech

For many classes of information signals, including speech, the value of the signal at a given instant
is correlated with its values at other instants, and hence represents redundant information. One
theory of data compression in digital systems is therefore based upon forming an error signal, ei,
between the samples of an input sequence, si, and linear estimates of those samples, ŝi,

ei = (ŝi − si) .

Generally, the estimate ŝi of sample si is formed as a weighted linear combination of samples from
some portion of the input sample sequence, using a linear prediction filter of the form

ŝi =

p∑

k=1

aksi−k (4.29)

The estimate ŝi is called the linear prediction of si, and the coefficients ak are called the linear
prediction coefficients (LPC). The coefficients are computed from statistics of the sample sequence
in a manner which is optimum in some sense. If the input sample sequence is not stationary, the
weighting coefficients must be updated periodically.

In order to transmit a block of M samples to the receiver, it is necessary that the error samples
and the weighting coefficients be transmitted to the receiver. Suppose the desired accuracy of the
input sample sequence requires “r” bits per sample. By straightforward quantization, it would take
(M · r) bits to transmit the block of M samples. However, if the sample sequence is processed
through a data compression system, the number of bits needed to transmit the block is hopefully
less. Usually the error signal is transmitted at the same rate as the input sample sequence, but the
weighting coefficients are transmitted typically at a rate 1/M times the input sequence. Suppose the
error signal is quantized to q bits and the N weighting coefficients are coded to w bits per coefficient.
The number of bits needed the specify the M samples to the receiver is then (Mq +Nw). In order
to obtain a saving, it is required that

Mq +Nw < Mr

or

q +
N

M
w < r.

If the sample sequence is highly correlated, the power in the error signal will be significantly less
than the power in the input sample sequence. Hence, fewer bits will be required to describe the
error samples than the input samples. If M ≫ N , then the term N

Mw becomes negligible and the
objective can be achieved.

One such method of data compression is linear prediction (Elias [1955]). Linear prediction has
been found to provide significant improvements in picture transmission, speech transmission, and
the transmission of telemetry data. A linear predictor forms its estimates of the input samples from
past samples in the input sequence. Another method of data compression is linear interpolation.
An interpolator forms its estimates of the input samples from both past and future samples in the
input sequence.

Linear interpolation has the potential for reducing the power in the error signal beyond that for
an equal-order prediction. However, interpolation requires more computation and complex imple-
mentation. Also, it looses some of its advantages when the error signal is quantized inside a feedback
loop (Haskew [1969]). The present discussion will therefore focus on prediction.

A linear Nth-order predictor estimates the magnitude of the present input sample, si, by a linear
combination, ŝi, of N weighted past samples.

ŝi =

N∑

j=1

ajsi−j , (4.30)
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Figure 4.17: Block diagram of linear prediction

where aj is the weighting coefficient applied to the past sample si−j .
When the statistics of the input signal are nonstationary (changing as a function of time), the

weighting coefficients must be updated periodically. Only the weighting coefficients computed for
intervals near the present sample yield accurate estimates of the sample magnitude. In this case,
weighting coefficients are updated, for example, every M input samples, where M is usually much
larger than the order of the predictor, N . The output of the predictor, the error ei, is formed by
subtracting the estimated value of the present sample from the actual value of the present sample.

ei = si −
N∑

j=1

ajsi−j . (4.31)

The input signal is now described by the output of the predictor (the error signal) and the
weighting coefficients. In z-transform notation

e(z) = [1 − P (z)]S(z),

where

P (z) =

N∑

j=1

ajz
−j (4.32)

These relations are shown schematically in Fig. 4.17. Recovery of original input signal is obtained
from the inverse relation

s(z) = e(z)[1 − P (z)]−1, (4.33)

and is given by the operations of Fig. 4.18. Typically, however, the transmitted signals, i.e., the ei
and ai, are quantized, and the receiver has access only to corrupted versions of them.

The criterion by which the ai are typically determined is a minimization of the power of the error
signal (that is, minimization of the square difference between ŝi and si). For M samples the error
power is

ǫ2 =
1

M

M∑

j=1

e2j =
1

M

M∑

j=1

(sj − ŝj)
2. (4.34)
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Figure 4.18: Linear prediction receiver

Substitution for the estimate ŝi gives

ǫ2 =
1

M

M∑

j=1

[
sj −

N∑

k=1

aksj−k

]

or

ǫ2 =
1

M

M∑

j=1

s2j −
2

M

M∑

j=1

N∑

k=1

aksj−k +
1

M

M∑

j=1

[
N∑

k=1

aksj−k

] [
N∑

l=1

alsj−l

]
(4.35)

Interchanging summations and rearranging terms,

ǫ2 =
1

M

M∑

j=1

s2j − 2
N∑

k=1

ak



 1

M

M∑

j=1

sjsj−k



+
N∑

k=1

N∑

l=1

akal




M∑

j=1

sj−ksj−l



 (4.36)

Define the signal power σ2 and its covariance function rkl as

σ2 =
1

M

M∑

j=1

s2j ,

and

rkl =
1

Mσ2

M∑

j=1

sj−lsj−k (4.37)

The error power then becomes

ǫ2 = σ2

[
1 − 2

N∑

k=1

akr0k +

N∑

k=1

N∑

l=1

akalrkl

]
(4.38)

This result can be simplified by matrix notation. Define the column matrix containing the weighting
coefficients as

A =




a1

a2

...
aN


 (4.39)

Define the column matrix containing the elements r0k as

G =




r01
r02
...

r0N


 (4.40)
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Define the (N ×N) matrix containing the elements rkl as

R =




r11 r12 · · · r1N
r21 r22 · · · r2N
...

...
...

rN1 rN2 · · · rNN


 (4.41)

Note from the equation for rkl that

rkl = rlk;

hence, R is a symmetric matrix. The error power can then be written as

ǫ2 = σ2
[
1 − 2ATG+ATRA

]
. (4.42)

To optimize the predictor, the column matrix, A, must be selected such that ǫ2 is a minimum.
This is accomplished by taking the derivative of ǫ2 with respect to A and equating the result to zero.

∂ǫ2

∂A

∣∣∣∣
A=Aopt

= 0,

∂ǫ2

∂A
= 2G+ 2RA = 0.

Solving the latter equation for A yields

A = R−1G. (4.43)

The minimum mean-square value of the error signal for the interval of M samples, ǫ2, is found by
substituting the optimum, A, given by Eq. (4.43) in Eq. (4.42) for ǫ2 and simplifying. The result is

{
ǫ2
}
min

= σ2
(
1 −GTR−1G

)
, (4.44)

where σ2 is the mean-square value of the input sequence over the interval of M samples.
The normal equations for autocorrelation can be solved by inverting a Toeplitz matrix:

r̄ = ¯̄Rā ⇒ ā = ¯̄R
−1
r̄ (4.45)

r̄p =




R(1)
R(2)
. . .
R(p)


 ,

¯̄R =




R(0) R(1) . . . R(p− 1)
R(1) R(0) . . . R(p− 2)
. . .

R(p− 1) R(p− 2) . . . R(0)


 , ā =




a1

. . .
ap



 (4.46)

This inversion can be done efficiently using the following recursive algorithm, called the “Levinson-
Durbin recursion:”

E(0) = R(0) (4.47)

ki =
R(i) −∑i−1

j=1 a
(i−1)
j R(i− j)

E(i−1)
, 1 ≤ i ≤ p (4.48)

a
(i)
i = ki (4.49)

a
(i)
j = a

(i−1)
j − kia

(i−1)
i−j , 1 ≤ j ≤ i− 1 (4.50)

E(i) = (1 − k2
i )E

(i−1) (4.51)

(4.52)



4.2. PREDICTIVE CODING OF SPEECH 103

Figure 4.19: Open-loop quantization of a predictor error signal

For practical digital transmission the error samples and the predictor coefficients are quantized
to the fewest possible levels. The receiver of the prediction system uses these data to reconstruct
estimates of the sample sequence of the original signal. If care is not exercised, quantizing noise may
accumulate in the sample sequence.

This difficulty can be simply illustrated. Consider the “open-loop” quantization of the error
signal shown in Fig. 4.19. Let tildas represent quantized versions of the signals. The quantizing
noise present in the reconstructed received signal is therefore

(si − s̃i) = (ei − ẽi) + (ŝi − ˆ̃si),

where

ˆ̃si =

N∑

j=1

ajsi−j . (4.53)

The quantizing noise in the received signal is not merely the same as the quantizing noise of the
error signal, but also includes the quantizing error in the estimate. Since ˆ̃si is formed from a sum
over N past samples the quantizing noise may accumulate.

4.2.1 Choosing the LPC Order

The LPC order needs to be large enough to represent each formant using a complex-conjugate pole
pair. There also need to be an extra 2 or 3 poles to represent spectral tilt. With everything together,
we have:

p ≈ 2 × (Number of Formants) + (2 to 3) (4.54)

The number of formants in the spectrum is the Nyquist rate (Fs/2), divided by the average spacing
between neighboring formants:

Number of Formants =
Fs/2

average(Fn+1 − Fn)
(4.55)

The spacing between neighboring formant frequencies is approximately

average(Fn+1 − Fn) ≈
c

2l
(4.56)

where c = 35400cm/s is the speed of sound, and l is the length of the vocal tract. The length of a
male vocal tract is close to 17.7cm, so there is approximately one formant per 1000Hz:

p ≈
(

Fs
1000Hz

)
+ (2 to 3) (4.57)

The length of a female vocal tract is close to 14.75cm, so there is approximately one formant per
1200Hz:

p ≈
(

Fs
1200Hz

)
+ (2 to 3) (4.58)



104 CHAPTER 4. TECHNIQUES FOR SPEECH ANALYSIS

4.2.2 Choosing the LPC Gain

The LPC excitation is defined by the formula:

s(n) =

p∑

k=1

aks(n− k) +Gu(n) (4.59)

The LPC error is defined by the formula:

e(n) ≡ s(n) −
p∑

k=1

aks(n− k) = Gu(n) (4.60)

If we define

N−1∑

k=0

u2(n) ≡ 1 (4.61)

then

G2 =

∑
e2(n)∑
u2(n)

= Emin (4.62)

4.2.3 Frequency-Domain Interpretation of LPC

The LPC error is

e(n) = s(n) −
p∑

k=1

aks(n− k) (4.63)

so the error spectrum is

E(z) = S(z)(1 −
p∑

k=1

akz
−k) = S(z)A(z) (4.64)

Using Parseval’s theorem, we get that

En =
∑

m

e2(m) =
1

2π

∫ π

−π

|En(ejω)|2 dω (4.65)

Substituting in the form of E(z), we get

En =
1

2π

∫ π

−π

|Xn(e
jω)|2|A(ejω)|2 dω =

G2

2π

∫ π

−π

|Xn(e
jω)|2

|H(ejω)|2 dω (4.66)

Since X is in the numerator inside the integral, any algorithm which minimizes En will automatically
try to produce an H(ejω) which does a good job of modeling X at frequencies where X is large. In
other words, LPC models spectral peaks better than spectral valleys.

4.2.4 Lattice Filtering

Lattice filtering analyzes or synthesizes speech using ith-order forward prediction error e(i)(m) and
backward prediction error b(i)(m):

e(i)(m) = s(m) −
i∑

k=1

aks(m− k) = e(i−1)(m) − kib
(i−1)(m− 1) (4.67)
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Figure 4.20: LPC synthesis using a lattice filter structure.

b(i)(m) = s(m− i) −
i∑

k=1

aks(m+ k − i) = b(i−1)(m− 1) − kie
(i−1)(m) (4.68)

In LPC synthesis, s(n) and b(p)(m) are calculated recursively from e(p)(m), as shown in figure 4.2.4.

4.2.5 How to Calculate Reflection Coefficients

1. Reflection coefficients can be estimated directly from the speech signal by minimizing an error
metric of the form

Ẽ(i) = some function of e(i)(m), b(i)(m) (4.69)

Direct calculation of reflection coefficients is computationally expensive, but sometimes leads
to better estimates of the transfer function (e.g. Burg’s method).

2. Any LPC synthesis filter can be implemented as a lattice filter. The relationship between ai
and ki is given by the Levinson-Durbin recursion.

Why Use Lattice Filter Instead of Direct-Form LPC?

Tests for stability of 1/A(z):

• Roots of A(z): |ri| < 1.

• Reflection coefficients: |ki| < 1.

• Direct form coefficients ak: No simple test.

Equivalence of Lattice and Concatenated-Tube Models

Reflection coefficients in the lattice filter are equivalent to reflection coefficients in a lossless tube
model of the vocal tract. There are many ways to make the two structures correspond. One
convenient formulation numbers the tube areas Ai backward from the lips:

ki =
Ai −Ai+1

Ai +Ai+1
, Ai = Area of ith tube section (4.70)

A0 = ∞ (Area of the space beyond the lips — lossless termination) (4.71)

Ap+1 = Ap (Area of the glottis — lossy termination) (4.72)

The length l of each tube section is determined by the sampling period T and the speed of sound c:

T =
2l

c
(4.73)
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4.2.6 LPC Distance Measures

Suppose we want to calculate the distance between two all-pole spectra,

S1(ω) = |X1(ω)|2 ≈
∣∣∣∣
G1

A1(ω)

∣∣∣∣
2

, S2(ω) = |X2(ω)|2 ≈
∣∣∣∣
G2

A2(ω)

∣∣∣∣
2

(4.74)

We can:

• Calculate the spectral L2 norm by integrating log |G1/A1(ω)|2 − log |G2/A2(ω)|2 over ω.

• Find the LPC cepstrum, and calculate a weighted cepstral distance.

• Calculate an LPC likelihood distortion.

Itakura-Saito Distortion

Suppose that S1(ω) is a random spectrum, produced by filtering a unit-energy noise process U(ω)
through an unknown all-pole filter A1(ω):

S1(ω) =

∣∣∣∣
G1

A1(ω)

∣∣∣∣
2

|U(ω)|2 (4.75)

E[S1(ω)] =

∣∣∣∣
G1

A1(ω)

∣∣∣∣
2

(4.76)

Suppose we don’t know A1, but we have a spectrum A2 which might or might not be a good
approximation to A1. One question worth asking is, what is the probability that the signal x1(n)
was generated using filter G2/A2? This probability is related to a distance called the Itakura-Saito
measure of the distortion between spectra G1/A1 and G2/A2 (Itakura and Saito [1968, 1970]):

dIS

(
G2

1

|A1|2
,
G2

2

|A2|2
)

=
1

2π

∫ π

−π

|X1(ω)|2 |A2(ω)|2
G2

2

dω − log
G2

1

G2
2

− 1 (4.77)

∼ − log (px1 ([x1(0) . . . x1(L− 1)] | G2, A2(ω))) (4.78)

The first term in the Itakura-Saito distortion is the residual energy of the random signal x1(n),
filtered through the inverse filter A2(z)/G2:

x1(n) → A2(z)/G2 → e12(n) (4.79)

1

2π

∫ π

−π

|E12(ω)|2dω =
1

2π

∫ π

−π

|X1(ω)|2 |A2(ω)|2
G2

2

dω (4.80)

=
1

G2
2

∑

n

(x1(n) −
p∑

k=1

ak,2x1(n− k))2 (4.81)

=
1

G2
2

(
R1(0) − 2

p∑

k=1

ak,2R1(k) +

p∑

i=1

p∑

k=1

ai,2ak,2R1(|i− k|)
)

(4.82)

=
a′

2Rp,1a2

G2
2

(4.83)
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where a2 is the LPC coefficient vector representing the polynomial A2(z), and Rp,1 is the autocorre-
lation matrix built out of samples of signal x1(n). Using this notation, the Itakura-Saito distortion
can be written in the easy-to-compute form:

dIS

(
G2

1

|A1|2
,
G2

2

|A2|2
)

=
a′

2Rp,1a2

G2
2

− log
G2

1

G2
2

− 1

(4.85)

(4.85)

Characteristics:

• The Itakura-Saito distortion measure is asymmetric:

dIS

(
G2

1

|A1|2
,
G2

2

|A2|2
)

6= dIS

(
G2

2

|A2|2
,
G2

1

|A1|2
)

(4.86)

• The Itakura-Saito distance is non-negative (dIS ≥ 0) and reflexive (dIS

(
G2

1

|A1|2
,
G2

2

|A2|2

)
= 0 if

and only if G1/A1 = G2/A2).

Likelihood-Ratio Distortion, Itakura Distortion

Many times, we don’t care about differences in the spectral energy of S1 and S2. The likelihood-ratio
distortion measure is obtained by normalizing both S1 and S2 to unit energy, and then calculating
an Itakura-Saito distortion:

dLR

(
1

|A1|2
,

1

|A2|2
)

= dIS

(
1

|A2|2
,

1

|A1|2
)

(4.87)

=
1

2π

∫ π

−π

|A2(ω)|2S1(ω)

G2
1

dω − 1 (4.88)

=
a′

2Rp,1a2

G2
1

− 1 (4.89)

(4.90)

A similar distortion measure called the Itakura distortion is often used instead of the likelihood-ratio
distortion:

dI

(
1

|A1|2
,

1

|A2|2
)

≡ log

(
1

2π

∫ π

−π

|A2(ω)|2S1(ω)

G2
1

dω

)
(4.91)

= log

(
a′

2Rp,1a2

G2
1

)
(4.92)

x(n) and x̂(n):

X(z) = R(z)T (z)P (z)

X̂(z) = R̂(z) + T̂ (z) + P̂ (z)




 X̂(z) = log(X(z)) (4.93)



108 CHAPTER 4. TECHNIQUES FOR SPEECH ANALYSIS

4.3 Homomorphic Analysis

In a further approach toward exploiting the source-system distinction in the speech signal, a process-
ing technique called homomorphic filtering has been applied to vocoder design (Oppenheim [1969],
Oppenheim et al. [1968], Oppenheim [1971]). The approach is based on the observation that the
mouth output pressure is approximately the linear convolution of the vocal excitation signal and the
impulse response of the vocal tract. Homomorphic filtering is applied to deconvolve the components
and provide for their individual processing and description.

Homomorphic filtering is a generic term applying to a class of systems in which a signal-complex
is transformed into a form where the principles of a linear filtering may be applied (Oppenheim
[1969]). In the case of a speech signal, whose spectrum is approximately the product of the excitation
spectrum and the vocal-tract transmission, a logarithm operation produces an additive combination
of the source and system components.

Linear systems are homomorphic to addition:

L[x1(n) + x2(n)] = L[x1(n)] + L[x2(n)] (4.94)

Linear filtering is useful for analyzing a signal with two additive components, e.g. y(n) = x(n)+ǫ(n).
In speech, we are often more interested in “convolutional components.” For example, the speech
signal can be modeled as the convolution of a source function p(n), a transfer function t(n), and a
radiation function r(n):

x(n) = r(n) ∗ (t(n) ∗ p(n)) (4.95)

In order to analyze x(n), we want a nonlinear “filtering” system which is “homomorphic to convo-
lution,” that is,

H [t(n) ∗ p(n)] = H [t(n)] ∗H [p(n)] (4.96)

The system H [•] can be written as the series connection of a transformationD[•], a linear system
L[•], and the inverse transformation D−1[•]:

H [t(n) ∗ p(n)] = D−1 [L [D[t(n) ∗ p(n)]]] (4.97)

where D[•] is the transformation which converts convolution into addition:

D[t(n) ∗ p(n)] = D[t(n)] +D[p(n)] (4.98)

D[x(n)] can be written as D[x(n)] = x̂(n), where x̂(n) is defined to be the complex cepstrum of x(n).
The form of the complex cepstrum is obvious if one considers the z transforms of x(n) and x̂(n):

X(z) = R(z)T (z)P (z)

X̂(z) = R̂(z) + T̂ (z) + P̂ (z)




 X̂(z) = log(X(z)) (4.99)

4.3.1 Complex Cepstrum

The “complex cepstrum” of x[n] is a real-valued sequence, x̂[n], containing sufficient information to
reconstruct the complex Fourier transform X(ejω). Specifically,

x̂(n) = 1
2π

∫ 2π

0
log(X(ejω))ejωndω (4.100)

X̂(ejω) = log(X(ejω)) = log |X(ejω)| + jârg(X(ejω)) (4.101)

The complex cepstrum x̂(n) is only defined if log(X(z)) is a valid Z transform, uniformly defined on
the unit circle. x̂[n] is real-valued if and only if the time-domain sequence x[n] is also real-valued: if
x(n) is real, then log |X(ejω)| is even, and ârg(X(ejω)) is odd, and therefore x̂(n) is real.



4.3. HOMOMORPHIC ANALYSIS 109

The function ârg(X(ejω) is the “unwrapped phase” of X . Recall that the principal argument,
arg(X(ejω)), is only defined over the range of (−π, π]. Such a constraint is not appropriate for
the definition of cepstrum, because we require that the sum of two cepstra should still be a valid
cepstrum:

ârg(X(ejω)) = ârg(R(ejω)) + ârg(T (ejω)) + ârg(P (ejω)) (4.102)

This requirement can be met by adding integer multiples of 2π to the principal argument, as nec-
essary, in order to produce a continuous, odd function of ω; this process is known as “unwrapping”
the phase (the argument is only odd if x(n) is real).

The argument of the cepstrum, n, is sometimes called the “quefrency,” especially in echo analysis
applications (Bogert et al. [1962]). In speech analysis, n is often called the cepstral “lag.”

4.3.2 Cepstrum

The cepstrum (sometimes called the “magnitude cepstrum”) of x[n] is a sequence, c[n], with sufficient
information to reconstruct the magnitude but not the phase of the Fourier transform:

c(n) = 1
2π

∫ 2π

0 log |X(ejω)|ejωndω (4.103)

By algebraic manipulation of Eq. 4.103, it is possible to show that the magnitude cepstrum is
the even part of the complex cepstrum:

x̂(n) + x̂(−n)

2
=

1

2π

∫ 2π

0

log |X(ejω)|ejωndω = c(n) (4.104)

Example 4.3.1 Relationship Between Magnitude Cepstrum and Complex Cepstrum

x(n) = δ(n) − αδ(n−N), |α| < 1 (4.105)

X(z) = 1 − αz−N (4.106)

X̂(z) = log(1 − αz−N ) = −
N∑

r=1

αrz−rN

r
if |αz−N | < 1 (4.107)

x̂(n) = −∑∞
r=1

αr

r δ(n− rN) (4.108)

c(n) = (1/2)(x̂(n) + x̂(−n)) = −∑∞
r=1

αr

2r (δ(n− rN) + δ(n+ rN)) (4.109)

4.3.3 Signals with Rational Spectrum

Consider the class of “rational signals,” that is, signals whose Z-transform can be written as:

X(z) = G

∏Na

k=1(1 − akz
−1)

∏Nb

k=1(1 − bkz)∏Nc

k=1(1 − ckz−1)
∏Nd

k=1(1 − dkz)
, |ak|, |bk|, |ck|, |dk| < 1 (4.110)

For this class of signals, all stable minimum phase signals (all signals with Nb = 0, Nd = 0) are
also causal, and all stable maximum phase signals (Na = 0, Nc = 0) are also anti-causal. The linear
predictive filter (Na = Nb = Nd = 0), for example, is a minimum-phase rational signal.
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For signals in this class, x̂(n) is an infinite length signal, even if x(n) is finite in length (the only
exception is x(n) = Gδ(n)):

x̂(n) =






−∑Na

k=1
an

k

n +
∑Nc

k=1
cn

k

n n > 0

log(G) n = 0
∑Nb

k=1
b−n

k

n −∑Nd

k=1
d−n

k

n n < 0

(4.111)

Although it is infinite in length, x̂(n) is always largest for small values of |n|; as |n| increases, x̂[n]
decays exponentially fast. Minimum-phase, causal sequences have causal x̂(n). Maximum-phase,
anti-causal sequences have anti-causal x̂(n).

Although x̂[n] is infinite in length, only Na +Nb +Nc +Nd + 1 of its samples are independently
specified. All of the other samples can be computed recursively, as follows:

X̂(z) = log(X(z)) (4.112)

d

dz
X̂(z) =

1

X(z)

d

dz
X(z) (4.113)

[
−z d

dz
X̂(z)

]
X(z) =

[
−z d

dz
X(z)

]
(4.114)

nx̂(n) ∗ x(n) = nx(n) (4.115)
∞∑

k=−∞

kx̂(k)x(n − k) = nx(n) (4.116)

For n 6= 0, this yields
∑∞

k=−∞
k
n x̂(k)x(n− k) = x(n) (4.117)

If x(n) is minimum-phase and causal, the summation in the above equation is only non-zero for
0 ≤ k ≤ n, yielding the following recursion for x̂(n):

x̂(n) =
x(n)

x(0)
−
n−1∑

k=0

kx(n− k)

nx(0)
x̂(k), n > 0 (4.118)

If x(n) is maximum-phase and anti-causal, the summation is only non-zero for n ≤ k ≤ 0,
yielding the following formula for x̂(n):

x̂(n) =
x(n)

x(0)
−

0∑

k=n+1

kx(n− k)

nx(0)
x̂(k), n < 0 (4.119)

The low-quefrency part of the cepstrum of a speech signal can be estimated from its LPC coef-
ficients:

H(z) =
G

1 −∑p
k=1 akz

−k
(4.120)

The LPC cepstrum ĥ(m) is the inverse transform of logH(z):

ĥ(m) = Z−1 (logH(z)) (4.121)

= Z−1 (logG− logA(z)) (4.122)

= logGδ(n) − â(m) (4.123)

=






0 n < 0

log(G) n = 0

â(m) n > 0

(4.124)
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Since A(z) is minimum-phase, â(m) is causal, and therefore ĥ(m) is also a causal sequence. The
form of â(m) can be computed as a special case of Eq. 4.118, yielding:

ĥ(n) =






0 n < 0

log(G) n = 0

an +
∑n−1
k=1

k
nan−kĥ(k) p ≥ n > 0

(4.125)

Notice that the first p + 1 cepstral coefficients (0 ≤ n ≤ p) contain a complete description of the

transfer function; ĥ(n) for larger n can be computed recursively from the first p+ 1 values of ĥ(n).

4.3.4 Liftering

Remember that windowing in time equals convolution in frequency. Suppose that w[m] is a win-
dowing sequence with spectrum W (ω); then

F {c[m]w[m]} = logS(ω) ∗W (ω) (4.126)

The L2 distance between two log-power spectra S1(ω) and S2(ω) is defined to be

(d2)
2 =

1

2π

∫ π

−π

|logS1(ω) − logS2(ω)|2 dω (4.127)

The distance between two spectra, as shown in Eq. 4.127, is rarely useful. The fine structure of the
spectrum may convey information about voice quality or pitch, but most linguistic information is
conveyed by the vocal tract transfer function. A pretty good estimate of the vocal tract transfer
function can be computed by smoothing the power spectra, thus

(d̂2)
2 =

1

2π

∫ π

−π

|W (ω) ∗ logS1(ω) −W (ω) ∗ logS2(ω)|2 dω (4.128)

Using Parseval’s theorem, the smoothed spectral distance d̂2 may be efficiently computed as

d̂2
2 =

∞∑

m=−∞

w[m]2(c1[m] − c2[m])2 (4.129)

The magnitude cepstrum is a real-valued, even sequence, c1[m] = c1[−m], therefore it is not
necessary to include both positive and negative values of m in the summation of Eq. 4.129. Suppose
we define the even part of w(m) to be w̃(m):

W̃ (ω) = ℜ{W (ω)} , w̃(m) =

{
w(m)/2 m > 0
w(−m)/2 m < 0

(4.130)

If w(m) is delayed causal, we can take advantage of the even symmetry of c1(m) to express d̂2
2 as a

two-sided sum:

d̂2
2 = 2

L∑

m=−L

w̃2(m)(c1(m) − c2(m))2 (4.131)

=
1

π

∫ π

−π

|(logS1(ω) ∗ W̃ (ω)) − (log S2(ω) ∗ W̃ (ω))|2dω (4.132)

(4.133)

So a weighted cepstral distance is similar to the following L2 norm:

• Smooth logS1(ω) and logS2(ω) using the smoothing spectrum W̃ (ω) = ℜ{W (ω)}.
• Calculate the L2 distortion measure between the two smoothed log spectra.
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Example 4.3.2 Liftering

If w(m) is a causal rectangular window covering samples 1 through L, then w̃(m) is an even window
of length 2L+ 1:

w(m) =

{
1 m = 1, . . . , L
0 else

, w̃(m) =

{
1/2 m = −L, . . . ,−1, 1, . . . , L
0 else

(4.134)

w̃(m) is just a rectangular window of length 2L + 1, minus the impulse δ(n). The spectrum is
therefore:

W̃ (ω) =
sin ω(2L+1)

2

2 sin ω
2

− 1

2
≈ sin ω(2L+1)

2

2 sin ω
2

(4.135)

(4.136)

where the approximation holds for large L.

4.4 Spectral and Cepstral Derivatives

Remember that the log-power-STFT is a function of both time and frequency. Its inverse transform,
the power cepstrum, is therefore a function of both signal time and cepstral lag:

ct(m) =
1

2π

∫ π

−π

logSt(ω)ejωmdω, St(ω) ≡ |Xt(ω)|2 (4.137)

Suppose we are interested in the time-derivative of the log power spectrum. This can be computed
by taking the time-derivative of the cepstrum:

∂ct(m)

∂t
=

1

2π

∫ π

−π

∂ logSt(ω)

∂t
ejωmdω (4.138)

Suppose that the rate of change of the log power spectrum is governed by a Gaussian distribution:

∂ logSt(ω)

∂t
∼ N (S, µS , US) (4.139)

then the cepstral derivative is a weighted sum of Gaussians, and is therefore itself a Gaussian random
variable:

∂ct(m)

∂t
∼ N (o, µ, U) (4.140)

4.4.1 Derivative Estimators

One of the most straightforward ways to model the rate of spectral change is using the first difference
between successive cepstral frames:

∂ct[m]

∂t
≈ ct(m) − ct−δ(m) (4.141)

where the offset δ ≈ 10ms is adjusted to model short-term spectral changes. It is possible to use
different windowing functions at each delay:

ot = [. . . , ct(m)w1(m), . . . ,

(
ct+δ(m) − ct−δ(m)

2

)
w2(m), . . . ,

(
ct+∆(m) − ct−∆(m)

2

)
w3(m), . . .]

(4.142)
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In particular, the spectral energy, ct(0), is a function of the recording level, so that taken by itself,
it tells you nothing at all about the phoneme. However, the rate of change of spectral energy can
tell you a great deal about the phoneme, so most analysis systems include ct+δ(0) − ct−δ(0) in the
observation vector, even if they don’t include any other dynamic information.

Likewise, ct(1) contains information about the spectral slope, which depends on such extraneous
factors as the type of microphone and the speaker identity. The rate of change of the spectral slope,
however, contains a great deal of phonetic information, so it is useful to include ct+δ(1)− ct−δ(1) in
your observation vector.

The simple first cepstral difference discussed above is a noisy estimate of the cepstral derivative.
Instead of using a short-term and long-term cepstral difference, it is possible to compute parametric
estimates of the first and second cepstral derivatives. The first and second cepstral derivatives are
calculated by fitting a quadratic curve to the cepstral trajectory, in order to minimize the error

E =
M∑

t=−M

[ct(m) − (h1(m) + h2(m)t− h3(m)t2)]2 (4.143)

where the window size M is comparable to the long-term cepstral difference window ∆.
The book gives formulas for the optimum h1, h2, and h3 in terms of the cepstral coefficients.

Once these coefficients have been computed, the cepstral derivative estimates are

∂ct(m)

∂t
≈ h2(m),

∂2ct(m)

∂t2
≈ 2h3(m) (4.144)

4.4.2 Modulation Filtering

A spectral derivative estimate can be viewed as a high-pass filter of the log-power spectrum or
cepstrum. For example, a short-term cepstral difference can be written as

dt(m) = ct+1(m) − ct−1(m), Dz(m) = H(z)Cz(m), H(z) = z(1 − z−2) (4.145)

• One of the biggest advantages of high-pass filtering Dz(m) is that it removes the relatively
constant effects of microphone and room tone. Thus, for example, dt(0) and dt(1) are more
useful than ct(0) and ct(1), because constant offsets in the spectral energy and spectral slope
caused by variations in recording conditions have been factored out.

• The biggest disadvantage of the high-pass filter is that it emphasizes rapid spectral changes
which may not be very important perceptually. In fact, psychophysical research suggests that
humans are most sensitive to spectral changes which occur at a rate of about 4-6 cycles per
second (about the rate of syllable production in normal speech), and that sensitivity to spectral
change drops off at higher frequencies. The high-pass filter in equation 4.145 rises at 6dB per
octave all the way up to half the frame rate, e.g. if the frame length is 10ms, H(z) gives
the most emphasis to changes at a rate of 50 cycles per second. This does not reflect human
hearing very well, which is part of the reason why the observation vector ot must contain
samples of ct(m) as well as samples of dt(m).

The RASTA (RelAtive SpecTrAl) method replaces the high-pass filter in equation 4.145 with a
band-pass filter (Hermansky and Morgan [1994]). The band-pass filter has the following character-
istics:

• A very sharp zero at zero frequency, to remove the effect of recording conditions.

• A relatively flat pass-band from 2 to 6 Hertz, which allows RASTA-filtered coefficients rt(m)
to be used in place of the original coefficients ct(m).
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Figure 4.21: In the RASTA method, frame-to-frame variations in a spectral estimate are smoothed
using a filter like the one shown here.

• A slow roll-off above about 6 Hz, which de-emphasizes rapid spectral changes which are mostly
inaudible to human listeners.

The original RASTA filter is as follows, but any filter with the characteristics above could be used
just as well:

H(z) =
2 + z−1 − z−3 − 2z−4

10z−2(1 − 0.98z−1)
(4.146)

The RASTA technique fulfills one of the original purposes of the delta-cepstrum (removing the
influence of recording conditions), but the other condition is not fulfilled. Since rt(m) has a flat
pass-band, it tends to model relatively steady-state spectra, not spectral change; for example, the
difference in spectral rate of change between a /b/ and a /w/ is not captured by rt(m)! Therefore,
it seems reasonable to use an observation vector which contains RASTA-cepstra and delta-RASTA
cepstra, e.g.

ot = [. . . , rt(m), . . . ,
rt+δ(m) − rt−δ(m)

2
, . . .] (4.147)

Unfortunately, the RASTA technique is relatively new, and it is not yet clear whether including
delta-RASTA in the observation vector reduces recognition error or not.

4.5 Formant Analysis of Speech

Formant analysis of speech can be considered a special case of spectral analysis. The objective is
to determine the complex natural frequencies of the vocal mechanism as they change temporally.
The changes are, of course, conditioned by the articulatory deformations of the vocal tract. One
approach to such analysis is to consider how the modes are exhibited in the short-time spectrum
of the signal. As an initial illustration, the temporal courses of the first three speech formants are
traced in an idealized form on the spectrogram of Fig. 4.22. Often, for bandwidth compression
application, an automatic, real-time determination of these data is desired.

As certain of the results in Chapter 3 imply, the damping or dissipation characteristics of the vocal
system are relatively constant and predictable, especially over the frequency range of a given formant.
Generally, therefore, more interest attaches to the temporal variations of the imaginary parts of the
complex formant frequencies than to the real parts. Nevertheless, an adequate knowledge of the
real parts, or of the formant bandwidths, is important both perceptually and in spectral analysis
procedures.
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Figure 4.22: Sound spectrogram showing idealized tracks for the first three speech formants

The “system function” approach to speech analysis, as discussed in Chapter 3, aims at a spec-
ification of the signal in terms of a transmission function and an excitation function. If the vocal
configuration is known, the mode pattern can be computed, and the output response to a given ex-
citation can be obtained. In automatic analysis for encoding and transmission purposes, the reverse
situation generally exists. One has available only the acoustic signal and desires to analyze it in
terms of the properties of the source and the modes of the system. One main difficulty is in not
knowing how to separate uniquely the source and the system.

The normal modes of the vocal system move continuously with time, but they may not, for
example, always be clearly manifest in a shorttime spectrum of the signal. A particular pole may be
momentarily obscured or suppressed by a source zero or by a system zero arising from a side-branch
element (such as the nasal cavity). The short-time spectrum generally exhibits the prominent modes,
but it is often difficult to say with assurance where the low-amplitude poles or significant polezero
pairs might lie.

Further complicating the situation is the fact that the output speech signal is generally not
a minimum-phase function (that is, it may not have all its zeros in the left half of the complex
frequency plane). If it were, its phase spectrum would be implied by its amplitude spectrum. The
vocal-tract transmission is, of course, minimum phase for all conditions where radiation takes place
from only one point, i.e., mouth or nostril. For simultaneous radiation from these points it is not. It
can be shown that the glottal source, provided the volume velocity wave is zero at some time during
its period, possesses only finite-frequency zeros and no poles (Mathews and Walker [1962]). Further,
it can be shown that the zeros can lie in either the right or left half planes, or in both (Dunn et al.
[1962]). These factors conspire to make accurate automatic formant analysis a difficult problem. The
present section outlines a number techniques for the automatic measurement of formant frequency
and formant bandwidth, and indicates the performance they achieve.

4.5.1 Formant-Frequency Extraction

In its simplest visualization, the voiced excitation of a vocal resonance is analogous to the excitation
of a single-tuned circuit by brief, periodic pulses. The output is a damped sinusoid repeated at the
pulse rate. The envelope of the amplitude spectrum has a maximum at a frequency equal essentially
to the imaginary part of the complex pole frequency. The formant frequency might be measured
either by measuring the axis-crossing rate of the time waveform, or by measuring the frequency of
the peak in the spectral envelope. If the bandwidth of the resonance is relatively small, the first
moment of the amplitude spectrum,

f̄ =

∫
fA(f)df∫
A(f)df

might also be a reasonable estimate of the imaginary part of the pole frequency.
The resonances of the vocal tract are, of course, multiple. The output time waveform is therefore

a superposition of damped sinusoids and the amplitude spectrum generally exhibits multiple peaks.
If the individual resonances can be suitably isolated, say by appropriate filtering, the axis-crossing
measures, the spectral maxima and the moments might all be useful indications of formant frequency.
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Figure 4.23: Automatic formant measurement by zero-crossing count and adjustable prefiltering.
(After (Chang [1956]))

If, on the other hand, the more subtle properties of the source and the system are to he accounted
for–say the spectral zeros produced by the glottal source or by a sidebranch resonator–a more
sophisticated measure of the normal modes generally is necessary. One such approach is the detailed
fitting of an hypothesized spectral model to the real speech spectrum. For analyses of this type, it
is often advantageous to employ the storage and rapid logical operations of a digital computer.

Axis-Crossing Measures of Formant Frequency

One of the earliest attempts at automatic tracking of formant frequencies was an average zero-
crossing count (Peterson [1951]). The idea was to take the average density of zero-crossings of
the speech wave and of its time derivative as approximations to the first and second formants,
respectively. The reasoning was that in the unfiltered, voiced speech the first formant is the most
prominent spectral component. It consequently is expected to have the strongest influence upon the
axis-crossing rate. In the differentiated signal, on the other hand, the first formant is de-emphasized
and the second formant is dominant. The results of these measures, however, were found to be poor,
and the conclusion was, that the method did not give acceptable precision.

A number of refinements of the zero-crossing technique have been made. In one (Munson and
Montgomery [1950], Davis et al. [1952]), the speech signal is pre-filtered into frequency ranges ap-
propriate to individual formants. The axis-crossing rate and the amplitude are measured for the
signal in each of the bands. A remaining disadvantage, however, is that the method is still subject
to the overlapping of the formant frequency ranges.

A more elaborate implementation of the same basic idea, but with a feature designed to mini-
mize deleterious overlap, has also been made (Chang [1956]). The notion is to employ an iterative
measure of the average rate of zero-crossing in a given frequency range and to successively narrow
the frequency range on the basis of the measured rate. The expectation is for rapid convergence.
Fig. 4.23 illustrates the method. The signal is pre-filtered by fixed filters into ranges roughly appro-
priate to the first two formants. An axis-crossing measure, ρ0, of the lower band is made and its
value is used to tune automatically a narrower, variable band-pass filter. The axis-crossing output
of this filter is, in turn, taken as an indication of the first formant frequency (F1). Its value is used
to adjust the cut-off frequency of a variable HP filter. The average axis-crossing output of the latter
is taken as an estimate of the second formant frequency (F2).

If the spectral distribution of the signal is continuous, as in the case of unvoiced sounds, the
average axis-crossing rate for a given spectral element is approximately twice the first moment of
the spectral piece (Chang [1956]). However, other more direct methods for measuring spectral
moments have been considered.
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Figure 4.24: Spectrum scanning method for automatic extraction of formant frequencies (After
(Flanagan [1956a]))

Spectral Moments

The n-th moment of an amplitude spectrum A(ω) is Mn =
∫
ωnA(ω)dω, where ω is the radian

frequency. If a suitable pre-filtering or partitioning of the spectrum can be made, then a formant
frequency can be approximated by

ω̄ =
M1

M0
≈
∑
i ωiA(ωi)∑
iA(ωi)

A number of formant measures based upon this principle have been examined (Potter and Steinberg
[1950], Gabor [1952], Atal and Schroeder [1956], Campanella et al. [1962]). The spectral partitioning
problem remains of considerable importance in the accuracy of these methods. However, certain
moment ratios have been found useful in separating the frequency ranges occupied by formants
(Suzuki et al. [1963]). Another difficulty in moment techniques is the asymmetry or skewness of the
spectral resonances. The measured formant frequency may be weighted toward the “heavier” side
of the spectrum, rather than placed at the spectral peak.

Spectrum Scanning and Peak-Picking Methods

Another approach to real-time automatic formant tracking is simply the detection and measurement
of prominences in the short-time amplitude spectrum. At least two methods of this type have been
designed and implemented (Flanagan [1956a]). One is based upon locating points of zero slope
in the spectral envelope, and the other is the detection of local spectral maxima by magnitude
comparison. In the first–illustrated in Fig. 4.24-a short-time ampliutde spectrum is first produced
by a set of bandpass filters, rectifiers, and integrators. The analysis is precisely as described earlier
in Section 4.1.2. The outputs of the filter channels are scanned rapidly (on the order of 100 times
per second) by a sample-and-hold circuit. This produces a time function which is a step-wise
representation of the short-time spectrum at a number (36 in this instance) of frequency values.
For each scan, the time function is differentiated and binary-scaled to produce pulses marking the
maxima of the spectrum. The marking pulses are directed into separate channels by a counter where
they sample a sweep voltage produced at the scanning rate. The sampled voltages are proportional
to the frequencies of the respective spectral maxima and are held during the remainder of the scan.
The resulting stepwise voltages are subsequently smoothed by low-pass filtering.

The second method segments the short-time spectrum into frequency ranges that ideally contain
a single formant. The frequency of the spectral maximum within each segment is then measured. The
operation is illustrated in Fig. 4.25. In the simplest form the segment boundaries are fixed. However,
additional control circuitry can automatically adjust the boundaries so that the frequency range of a
given segment is contingent upon the frequency of the next lower formant. The normalizing circuit
“clamps” the spectral segment either in terms of its peak value or its mean value. This common-mode
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Figure 4.25: Peak-picking method for automatic tracking of speech formants. (After FLANAGAN,
1956a)

Figure 4.26: Formant outputs from the tracking device shown in Fig. 4.25. In this instance the
boundaries of the spectral segments are fixed

rejection enables the following peak-selecting circuitry to operate over a wide range of amplitudes.
The maxima of each segment are selected at a rapid rate–for example, 100 times per second–and
a voltage proportional to the frequency of the selected channel is delivered to the output. The
selections can be time-phased so that the boundary adjustments of the spectral segments are made
sequentially and are set according to the measured position of the next lower formant. A number of
improvements on the basic method have been made by providing frequency interpolation (Shearme
[1959]), more sophisticated logic for adjusting the segment boundaries (Holes and Kelly [1960]), and
greater dynamic range for the peak selectors (Stead and Jones [1961]). The objective in all these
designs has been the realization of a real-time, practicable hardware device for direct application in
a transmission system.

A typical output from the device of Fig. 4.25, using fixed boundaries, is shown in Fig. 4.26. It
is clear that the operation is far from perfect. In this example a large third formant error occurs
in the /r/ of “rain.” Automatic control of the F2-F3 boundary, however, eliminates this error. As
a rough indication of the performance, one evaluation shows that its output follows F1 of vowels
within ±150Hz greater than 93% of the time, and F2 within ±200Hz greater than 91% of the time
(Flanagan [1956a]). Although one desires greater precision, this method–because of its simplicity and
facility for real-time analysis–has proved useful in several investigations of complete formant-vocoder
systems (Flanagan and House [1956], Stead and Jones [1961], Shearme et al. [1962]).

Digital Computer Methods for Formant Extraction

The development of digital computers has enabled application of more sophisticated strategies to
speech processing. The more esoteric processings are made possible by the ability of the computer
to store and rapidly manipulate large quantities of numerical data. A given data sample can be held
in the machine while complex tests and measures are applied to analyze a particular feature and
make a decision. This advantage extends not only to formant tracking, but to all phases of speech
processing. The relations between sampled-data systems and continuous systems (see, for example,
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Figure 4.27: Spectral fit computed for one pitch period of a voiced sound. (After (Mathews and
Walker [1962]))

(Ragazzini and Franklin [1958])) permit simulation of complete transmission systems within the
digital computer. This is a topic in itself, and we will return to it in a later chapter.

The digital analyses which have been made for speech formants have been primarily in terms of
operations on the spectrum. The spectrum either is sampled and read into the computer from an
external filter bank, or is computed from a sampled and quantized version of the speech waveform.
One approach along the latter line has been a pitch-synchronous analysis of voiced sounds (Mathews
and Walker [1962]). Individual pitch periods are determined by visual inspection of the speech
oscillogram. The computer then calculates the Fourier series for each pitch period as though that
period were one of an exactly periodic signal. The envelope of the calculated spectrum is then fitted
by a synthetic spectrum in successive approximations and according to a weighted least-square error
criterion. A pole-zero model for the vocal tract and the glottal source, based upon acoustic relations
for the vocal tract (see Chapter 3), produces the synthetic spectrum.

The fitting procedure is initiated by guessing a set of poles and zeros appropriate to the calculated
real spectrum. The computer then successively increments the frequency and damping of each
individual pole and zero to minimize the weighted mean-square error (in log-amplitude measure).
After about 10 to 20 complete cycles, a close fit to the speech spectrum can be obtained. Typical
rms log-amplitude errors range from about 1.5 to 2.5 db. A typical result of the fitting procedure
is shown in Fig. 4.27. The measured formant frequencies and bandwidths are then taken as the
frequencies and bandwidths of the best fitting spectral model.

A computer system for non-pitch-synchronous formant analysis, in which spectral data are pro-
duced external to the computer, can also be summarized (Hughes [1958, 1961]). A bank of 35
contiguous bandpass filters with rectifiers and integrators produces a short-time spectrum of the
running speech. The filter outputs are scanned at a rapid rate (180 sec−1) to produce a framed
time function which represents successive spectral sections (essentially the same as that shown in
Fig. 4.5). This time function is sampled every 154µsec and quantized to 11 bits by an analog-to-
digital converter. A certain amount of the data is then held in the computer storage for processing.



120 CHAPTER 4. TECHNIQUES FOR SPEECH ANALYSIS

Figure 4.28: Tracks for the first and second formant frequencies obtained from a computer-analysis
of real-time spectra. The speech samples are (a) “Hawaii” and (b) “Yowie” uttered by a man. (After
(Hughes [1958]))

Figure 4.29: Computer procedure for formant location by the” analysis-by-synthesis” method. (After
(Bell et al. [1961]))

One analysis procedure for which the computer is programmed (1) locates the fricative sounds
in a word and classifies them; (2) locates the first and second formants in voiced segments; and (3)
calculates the overall sound level. The formant tracking procedure is basically a peak-picking scheme
similar to that shown previously in Fig. 4.25. However, a number of detailed, programmed constraints
are included to exploit vocal tract characteristics and limitations. In principle, the procedure for a
given spectral scan is as follows. Find the peak filter in the frequency range appropriate to the first
formant. Store the frequency and amplitude values of this channel. On the basis of the F1 location,
adjust the frequency range for locating F2. Locate the peak filter in the adjusted F2 range and store
its frequency and amplitude values. Finally, examine the next spectral scan and find F1 and F2,
subject to continuity constraints with previously determined values. Large, abrupt changes in F1
and F2 of small time duration are ignored. Typical results, described as “good” and “average” from
this procedure are shown in 4.28.

A real-time spectral input to a computer has also been applied in a spectral-fitting technique
for formant location (Bell et al. [1961]). The procedure–termed “analysis-by-synthesis” by its
originators–is illustrated in Fig. 4.29. As before, a filter bank produces a short-time spectrum
which is read into the digital computer via an analog-to-digital converter. Inside the computer,
speech-like spectra are generated from a pole-zero model of the vocal tract and its excitation. (The
filter bank characteristics are also applied to the synthetic spectra.) As in the pitch-synchronous
analysis, the model is based upon the acoustical principles discussed in Chapter 3. The real and
synthetic spectra at a given instant are compared, and a weighted square error is computed. The
nature of the comparison is illustrated in Fig. 4.30. The effect of an error in formant frequency is
indicated by Fig. 4.30a. An error in formant bandwidth is illustrated in Fig. 4.30b.

On the basis of error computations for the immediate and for adjacent spectral samples, a pro-
grammed automatic control strategy determines the procedure for adjusting the pole-zero positions
of the fitting synthetic spectrum to reduce the weighted error. When a minimum-error fit is ob-
tained, the computer automatically stores the pole-zero locations of the vocal tract model and the
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Figure 4.30: Idealized illustration of formant location by the “analysis-by-synthesis” method shown
in Fig. 4.29

source characteristics chosen for that spectrum. Five operations are carried out by the computer:
(1) storage of real input speech spectra; (2) generation of synthetic spectra; (3) control and adjust-
ment of the synthetic spectra; (4) calculation of spectral difference according to a prescribed error
criterion; and (5) storage and display of the parameters which yield minimum error. Provisions
are made so that, if desired, the comparison and control functions can be performed by an human
operator instead of by the automatic procedure.

In principle the programmed matching procedure is applicable both to vowel and consonant
spectra, but the matching model for consonants is generally more complex. A typical result of the
procedure is shown for the first three formants in Fig. 4.31. The (a) part of the figure shows a sound
spectrogram of the utterance /h�bIb/ with sample intervals laid off along the top time axis. The (b)
part of the figure shows the computerdetermined formant tracks for essentially the vowel portion of
the second syllable (i.e., /I/). The sample numbers on the abscissa of the (b) part correspond with
those at the top of (a). The top diagram in part (b) is the square error for the spectral fit. The
“analysis-by-synthesis” technique has also been implemented using a gradient-climbing calculation
for matching the short-time spectrum (Olive [1971]). Other implementations have used sequential
algorithms for fitting the spectrum (Fujisaki [1960]).

Another computer formant tracker uses a principle related to the pole-zero model of speech
(Coker [1965]). The analyzing strategy is a combined peak-picking and spectral fitting approach.
A filter bank, associated rectifiers and lowpass filters produce a short-time spectrum. The filter
outputs are scanned by an electronic commutator, and the time waveform representing the spectral
sections is led to an analog-to-digital converter. The output digital signal describing the successive
spectra is read into the computer, and the short-time spectra are stored in the memory.

The automatic analyzing procedure, prescribed by a program, first locates the absolute maximum
of each spectrum. A single formant resonance is then fitted to the peak. The single resonance is
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Figure 4.31: Computer-determined formant tracks obtained by the “analysis-by-synthesis” method.
(a) Spectrogram of original speech. (b) Extracted formant tracks and square error measure. (After
(Bell et al. [1961]))

Figure 4.32: Spectrum and cepstrum analysis of voiced and unvoiced speech sounds. (After (Schafer
and Rabiner [1970]))

positioned at a frequency corresponding to the first moment of that spectral portion lying, say, from
zero to 6 db down from the peak on both sides. The single formant resonance is then inverse filtered
from the real speech spectrum by subtracting the log-amplitude spectral curves. The operation is
repeated on the remainder until the required number of formants are located. Since the peak picking
is always accomplished on the whole spectrum, the problem of formant segmentation is obviated!
Proximate formants can also be resolved and accurate results can be obtained on running speech.
The formant selections can be displayed directly on the spectral sections in a manner similar to that
shown in Fig. 4.5. Again, the ability of the computer to store large amounts of data and to perform
relatively complex operations at high speed permits a detailed fitting of the spectrum. The analysis
is easily accomplished in real time, and the computer can essentially be used as the formant-tracking
element of a complete formant-vocoder system (Coker and Cummiskey [1965]).

A still different method for formant analysis (Schafer and Rabiner [1970]) makes use of a special
digital transform–the Chirp-Z transform (Rabiner et al. [1969]). The method also incorporates Fast
Fourier Transform methods for spectral analysis (Cooley and Tukey [1965]). In its complete form,
the method depends upon relations prescribed by a 3-pole model of voiced sounds and a single
pole-zero model of voiceless sounds.

The point of departure is a short-time transform of the speech waveform for both voiced an
voiceless sounds. The steps in the spectral analysis are depicted in Fig. 4.32.

The upper part of the figure shows the analysis of voiced speech. The waveform at the top left
is a segment of voiced speech of approximately 40 msec duration, which has been multiplied by a
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Hamming window7. Over such a short time interval, the speech waveform looks like a segment of a
periodic waveform. The detailed time variation of the waveform during a single period is primarily
determined by the vocal tract response, while the fundamental period (pitch period) reflects the
vocal-cord vibration rate.

The logarithm of the magnitude of the Fourier transform of this segment of speech is the rapidly-
varying spectrum plotted at the top right of Fig. 4.32. This function can be thought of as consisting
of an additive combination of a rapidly-varying periodic component, which is associated primarily
with the vocal-cord excitation, and a slowlyvarying component primarily due to the vocal-tract
transmission function. Therefore, the excitation and vocal-tract components are mixed and must
be separated to facilitate estimation of formant values. The standard approach to the problem of
separating a slowly-varying signal and a rapidly-varying signal is to employ linear filtering. Such an
approach applied to the log magnitude of the short-time Fourier transform leads to the computation
of the cepstrum (Bogert et al. [1963]).

The cepstrum is a Fourier transform of a Fourier transform. To compute the cepstrum the
Fourier transform of the time waveform is computed. The logarithm is taken of the magnitude of
this transform. Inverse Fourier transformation of this log-magnitude function produces the cepstrum.
(See also Section 4.6.)

The cepstrum is plotted in the middle of the top row of Fig. 4.32. The rapidly-varying component
of the log-magnitude spectrum contributes the peak in the cepstrum at about 8 msec (the value
of the pitch period). The slowly-varying component corresponds to the low-time portion of the
cepstrum. Therefore, the slowly-varying component can be extracted by first smoothly truncating
the cepstrum values to zero above about 4 msec, and then computing the Fourier transform of the
resulting truncated cepstrum. This yields the slowly-varying curve which is superimposed on the
short-time spectrum, shown at the right of the top row in Fig. 4.32.

The formant frequencies correspond closely with the resonance peaks in the smoothed spectrum.
Therefore, a good estimate of the formant frequencies is obtained by determining which peaks in the
smoothed spectrum are vocal tract resonances. Constraints on formant frequencies and amplitudes,
derived from a three-pole model of voiced sounds, are incorporated into an alogrithm which locates
the first three formant peaks in the smoothed spectrum. The analysis of unvoiced speech segments
is depicted in the bottom row of Fig. 4.32. In this case, the input speech resembles a segment
of a random noise signal. As before, the logarithm of the magnitude of the Fourier transform of
the segment of speech can be thought of as consistmg of a rapidly-varying component, due to the
excitation, plus a slowly-varying component due to the spectral shaping of the vocal-tract transfer
function. In this case, however, the rapidly-varying component is not periodic but is random. Again
the low-time part of the cepstrum corresponds to the slowly-varying component of the transform, hut
the high-time peak present in the cepstrum of voiced speech is absent for unvoiced speech. Thus, the
cepstrum can also be used in deciding whether an input speech segment is voiced or unvoiced, and if
voiced, the pitch period can be estimated from the location of the cepstral peak. Low-pass filtering of
the logarithm of the transform, by truncation of the cepstrum and Fourier transformation, produces
the smoothed spectrum curve which is again superimposed on the short-time transform at the lower
right of Fig. 4.32. In this case, an adequate specification of the spectrum shape can be achieved
by estimating the locations of a single wide-bandwidth resonance and a single anti-resonance, i.e., a
single pole and zero.

Continuous speech is analyzed by performing these operations on short segments of speech which
are selected at equally-spaced time intervals, typically 10-20 msec apart. Fig. 4.33 illustrates this

7The Hamming window is specified by the function
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where τ is the window duration. This data window is attractive because the side lobes of its Fourier transform remain
more than 40 db down at all frequencies (Blackman and Tukey [1959]).
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Figure 4.33: Cepstrum analysis of continuous speech. The left column shows cepstra of consecutive
segments of speech separated by 20 ms. The right column shows the corresponding short-time
spectra and the cepstrally-smoothed spectra

process for a section of speech which, as evidenced by the peaks in the cepstra, is voiced through-
out. The short-time spectrum and smoothed spectrum corresponding to each cepstrum are plotted
adjacent to the cepstrum. In going from top to bottom in Fig. 4.33, each set of curves corresponds
to the analysis of segments of speech selected at 20 msec increments in lime. The formant peaks
determined automatically by the program are connected by straight lines. Occasionally the formants
come close together in frequency and pose a special problem in automatic extraction.

In the third and fourth spectra from the top, the second and third formants are so close together
that there are no longer two distinct peaks. A similar situation occurs in the last four spectra
where the first and second formants are not resolved. A procedure for detecting such situations has
been devised and a technique for enhancing the resolution of the formants has been developed. An
example of the technique is shown in Fig. 4.34.

The curve shown in Fig. 4.34a is the smooth spectrum as evaluated along the jω-axis of the
complex frequency s-plane. (The lowest three vocal tract eigen-frequencies corresponding to this
spectrum are depicted by the x’s in the s-plane at the left.) Because formants two and three (F2 and
F3) are quite close together, only one broad peak is observed in the conventional Fourier spectrum.
However, when the spectrum is evaluated on a contour which passes closer to the poles, two distinct
peaks are in evidence, as shown in Fig. 4.34b. The Chirp z-transform alogrithm facilitates this
additional spectral analysis by allowing a fast computation of the spectrum along an s-plane contour
shown at the left of Fig. 4.34b.

Once the vocal excitation and formant functions are determined, they can be used to synthesize
a waveform which resembles the original speech signal. (Systems for speech synthesis from formant
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Figure 4.34: Enhancement of formant frequencies by the Chirp-z transform: (a) Cepstrally-smoothed
spectrum in which F2 and F3 are not resolved. (b) Narrow-band analysis along a contour passing
closer to the poles. (After (Schafer and Rabiner [1970]))

data are discussed in Section 6.2.) Comparison of the formant-synthesized signal with the original
speech signal is an effective means for evaluating the auomatic formant tracking. Fig. 4.35 shows a
typical result of automatic analysis and synthesis of a voiced sentence. The upper curves show the
pitch period and formant parameters as automatically estimated trom a natural utterance whose
spectrogram is also shown in the figure. The bottom of the figure shows the spectrogram of speech
synthesized from the automatically estimated pitch and formant parameters. Comparison of the
spectograms of the original and synthetic speech indicates that the spectral properties are reasonably
well preserved.

Another approach using computer processing is the analysis of real speech spectra in terms of
a model of articulation (Heinz [1962], Heinz and Stevens [1964]). This approach differs from the
preceding techniques essentially in the spectrum-generation and control strategy operations. The
vocal tract poles and zeros are obtained from an articulatory or area function specification of the
tract. These are obtained by solving the Webster horn equation (see Chapter 3). A spectrum corre-
sponding to the computed poles and zeros is generated and compared to the real speech spectrum.
The error in fit is used to alter the synthetic spectrum by adjusting, on the articulatory level, the
vocal tract area function. A modification of a three-parameter description of vocal configuration is
used to specify the area function (Dunn [1950], Stevens and House [1955], Fant [1960]).

This formulation, provided the area function can be specified accurately enough, offers an impor-
tant advantage over pole-zero models of the vocal system. The latter have as their input parameters
the locations in the complex plane of the poles and zeros of the vocal transmission. The poles of the
system are independent of source location and depend only on the configuration (see Chapter 3).
They move in a continuous manner during the production of connected speech, even though the
source may change in character and location. The zeros, however, depend upon source location
as well as upon tract configuration. They may move, appear and disappear in a discontinuous
fashion. This discontinuous behavior of the zeros–and the resulting large changes in the speech
spectrum–makes pole-zero tracking difficult.

An articulatory description of the signal obviates these difficulties to a considerable extent. More
realistic continuity constraints can be applied to the articulators. The location of the unvoiced source
is generally implied by the configuration, and the vocal zero specification is an automatic by-product
of the specification of configuration and excitation. In terms of articulatory parameters, the spectra
of consonants and consonant-vowel transitions can be matched with little more difficulty than for
vowels. A typical result of this articulatory fitting procedure is shown in Fig. 4.36.

I,’ig. 5.31 a and b.
The left diagram shows the temporal courses of the poles and zeros in the /SE/ portion of the bi-

syllabic utterance /h�SES/ (the time scale is the sample number multiplied by 8.3 msec). The vertical
line, where the zero tracks disappear, represents the consonant-vowel boundary. (Only the first three
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Figure 4.35: Automatic formant analysis and synthesis of speech. (a) and (b) Pitch period and
formant frequencies analyzed from natural speech. (c) Spectrogram of the original speech. (d)
Spectrogram of synthesis speech. (After (Schafer and Rabiner [1970]))

Figure 4.36: Pole-zero computer analysis of a speech sample using an articulatory model for the
spectral fitting procedure. The (a) diagram shows the pole-zero positions calculated from the artic-
ulatory model. The (b) diagram shows the articulatory parameters which describe the vocal tract
area function. (After (Heinz [1962]))
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formants are computed in the vowel part of the utterance.) The diagram to the right shows the corre-
sponding temporal courses of the four articulatory parameters that were adjusted to make the spec-

tral matches. They are:

r0, the effective radius at the tongue constriction,
d0, the location of the tongue constriction measured from the glottis,
a0, the cross-sectional area of the mouth opening, and
l0, the length of the lip tube (or mouth section).

Their trajectories are essentially continuous as the match proceeds across the consonant-vowel
boundary. In going from the fricative /S/ to the vowel /E/, the mouth section becomes shorter and
more open. The position of the constriction moves back toward the glottis, and the radius of the
constriction becomes larger. The position of the unvoiced sound source during the fricative is taken
2.5 cm anterior to the constriction (i.e., d0 + 2.5). The manner in which these relatively simple
motions describe the more complicated pole-zero pattern is striking. Success of the method depends
directly upon the accuracy with which the articulatory parameters describe the vocal-tract shape.
Derivation of sophisticated articulatory models is an important area for research. (See Section 4.7.)

4.5.2 Measurement of Formant Bandwidth

The bandwidths of the formant resonances–or the real parts of the complex poles–are indicative of
the losses associated with the vocal system. Not only are quantitative data on formant bandwidths
valuable in corroborating vocal tract calculations (for example, those made in Chapter 3 for radiation,
viscous, heat-conduction, cavity-wall and glottal losses), but a knowledge of the damping is important
in the proper synthesis of speech.

A number of measurements have been made of vocal tract damping and formant bandwidth.8

The measurements divide mainly between two techniques; either a measure of a resonance width
in the frequency domain, or a measure of a damping constant (or decrement) on a suitably filtered
version of the speech time waveform. In the former case the formant is considered as a simple
resonance, and the half-power frequencies of the spectral envelope are determined. In the latter case
the formant is considered a damped sinusoid, having amplitudes Al and A2 at times t1 and t2. The
damping constant, σ, for the wave and its halfpower bandwidth, ∆f , are related simply as

σ = π∆f =
lnA2/A1

t2 − t1
.

The results of one of the more extensive formant bandwidth studies are summarized in Fig. 4.37
(Dunn [1961]). Part (a) of the figure shows the formant bandwidths measured by fitting a simple
resonance curve to amplitude sections of vowels uttered in an /h–d/ syllable. The data are averages
for 20 male voices producing each vowel. The second curve (b) represents the same data plotted in
terms of Q = f/∆f . The upper graph shows that over the frequency ranges of the first and second
formants, the nominal bandwidths are generally small–on the order of 40 to 70Hz. Above 2000Hz
the bandwidth increases appreciably. The lower plot of formant-Q vs formant frequency shows that
resonant Q’s are largest in the frequency region around 2000Hz.

Formant bandwidths can also be effectively measured from a frequency response of the actual
vocal-tract (Fujimura [1962]). A sine wave of volume velocity is introduced into the vocal-tract at
the glottal end by means of a throat vibrator. The pressure output at the mouth is measured as the
input source is changed in frequency. A typical vocal-tract frequency response is shown in Fig. 4.38a.
The variation in first-formant handwidth, as a function of first-formant frequency, is shown in 5.33b.

These data are for a closed-glottis condition. The bandwidth is seen to increase as first formant
frequency diminishes, owing primarily to the influence of cavity-wall loss. (See calculations of cavity-
wall loss in Section 3.8.3)

8For a good summary and bibliography of earlier investigations, see (Dunn [1961]). Also, see (Fant [1958, 1959a,b]).
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Figure 4.37: Measured formant bandwidths for adult males. (After (Dunn [1961]))

Figure 4.38: (a) Vocal-tract frequency response measured by sine-wave excitation of an external
vibrator applied to the throat. The articulatory shape is for the neutral vowel and the glottis is
closed. (After (Fujimura and Lindquist [1971])). (b) Variation in first-formant bandwidth as a
function of formant frequency. Data for men and women are shown for the closed-glottis condition.
(After (Fujimura and Lindquist [1971]))
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The origins of the principal contributions to vocal-tract damping have already been indicated by
the theory derived in Chapter 3. These are glottal loss and cavity-wall loss for the lower formants,
and radiation, viscous and heat-conduction loss for the higher formants.

4.6 Analysis of Voice Pitch

Fundamental frequency analysis–or “pitch extraction”–is a problem nearly as old as speech analysis
itself. It is one for which a complete solution remains to be found. The main difficulty is that voice
pitch has yet to be adequately defined. Qualitatively, pitch is that subjective attribute that admits
of rank ordering on a scale ranging from low to high. The voiced excitation of the vocal tract is only
quasi-periodic. Not only does the exciting glottal waveform vary in period and amplitude, but it also
varies in shape. Precisely what epochs on the speech waveform, or even on the glottal waveform,
should be chosen for interval or period measurement is not clear. Furthermore, the relation between
an interval, so measured, and the perceived pitch is not well established.

Most pitch-extracting methods take as their objective the indication of the epoch of each glottal
puff and the measurement of the interval between adjacent pulses. Still, exactly how this relates to
the pitch percept with all the random jitter and variation of the glottal wave is a question worthy
of inquiry.

Most automatic or machine pitch extractors attempt either to describe the periodicity of the
signal waveform (Grutzmacher and Lottermoser [1937], Jr. and Schott [1949], Dolansky [1955], Gill
[1959]) or to measure the frequency of the fundamental component if it is present (Dudley [1939a]).
Computer efforts at pitch extraction essentially do the same, but usually more elaborate constraints
and decisions are applied (Inomata [1960], Gold [1962], Sugimoto and Hashimoto [1962]).

One particularly useful method for machine pitch extraction utilizes properties of the cepstrum
to reveal signal periodicity (Noll [1967], Oppenheim et al. [1968]). As described in Section 4.5.1,
the cepstrum is defined as the Fourier transform of the logarithm of the amplitude spectrum of
a signal. Since it is a transform of a transform, and since the resulting independent variable is
reciprocal frequency, or time, the terms “cepstrum” and “quefrency” were coined by its inventors
(Bogert et al. [1963]) to designate the transform and its independent variable.

The log-taking operation has the desirable property of separating source and system characteristic
(at least to the extent that they are spectrally multiplicative). If the output speech wave, f(t), is
the convolution of the vocal tract impulse response, v(t), and the vocal excitation source, s(t), the
magnitudes of their Fourier transforms are related as

|F (ω)| = |V (ω)| · |S(w)|,

where all the amplitude spectra are even functions. Taking the logarithm or both sides gives

ln |F (ω)| = ln |V (ω)| + ln |S(ω)|

Similarly, taking the Fourier transform9 of both sides yields

F ln |F (ω)| = F ln |V (ω)| + F ln |S(ω)|.

For voiced sounds, |S(ω)| is approximately a line spectrum with components spaced at the pitch
frequency 1/T . F ln |S(ω)| therefore exhibits a strong component at the “quefrency,” T . |V (ω)|, on
the other hand, exhibits the relatively “slow” formant maxima. Consequently F ln |V (ω)| has its
strongest component at a very low quefrency.

Because of the additive property of the transforms of the log amplitude spectra, the characteristics
of the source and system are well separated in the cepstrum. The cepstrum is therefore also a

9Formally an inverse Fourier transform.
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valuable tool for formant analysis as well as pitch measurement (Schafer and Rabiner [1970]). (See
Section 4.5.1.) Measurement of pitch and voiced-unvoiced excitation is accomplished by using a
suitable strategy to detect the quefrency components associated with F ln |S(ω)|. Because the
method does not require the presence of the fundamental component, and because it is relatively
insensitive to phase and amplitude factors (owing to the log-magnitude operations) it performs well
in vocoder applications. In one test with a complete channel vocoder, it demonstrated superior
performance in extracting the pitch and voiced-unvoiced control data (Noll [1967]). Because a
large amount of processing is necessary, the method is most attractive for special purpose digital
implementations where Fast Fourier Transform hardware can be used. An illustration of pitch
determination by cepstrum computation has been shown previously in Fig. 4.33a and 4.35.

Perhaps a more basic measurement of voiced excitation is that of the glottal volume-velocity wave
(Miller [1959], Fant [1959b], Mathews [1959], Holmes [1962]). Approximations to this function can
be obtained by so-called inverse-filtering techniques. The idea is to pass the speech signal through
a network whose transmission function is the reciprocal of that of the vocal tract for the particular
sound. Zeros of the network are adjusted to nullify vocal tract poles, and the resulting output is an
approximation to the input glottal volume current.

The inverse-filtering analysis presumes that the source and system relations for the speech-
producing mechanism do not interact and can be uniquely separated and treated independently.
This assumption is a treacherous one if the objective is an accurate estimate of the glottal volume
velocity. In the real vocal tract they interact to a certain extent (particularly at the first-formant
frequency). Another difficulty is that it is not always clear whether to ascribe certain properties
(primarily, zeros) to the tract or to the source. The estimate obtained for the glottal wave obviously
depends upon the vocal-tract model adopted for the inverse filter. The criterion of adjustment of the
inverse filter also influences the answer. Under certain conditions, for example, ripples on the inverse
wave which may be thought to be formant oscillations might in fact be actual glottal variations.

One question often raised is “where in the pitch period does the excitation occur.” Presumably
if such an epoch could be determined, the pulse excitation of a synthesizer could duplicate it and
preserve natural irregularities in the pitch period. Because the glottal wave frequently changes
shape, such a datum is difficult to describe. One claim is that this epoch commonly is at the close
of the cords (Miller [1959]), while another (Holmes [1962]) is that it can occur at other points in
the wave. To a first approximation, such an epoch probably coincides with the greatest change
in the derivative of the glottal waveform. Often this point can occur just about anywhere in the
period. For a triangular wave, for example, it would be at the apex. A perceptual study has been
made of the effects of the glottal waveform on the quality of synthetic speech. The results support
the notion that the significant vocal excitation occurs at the point of greatest slope change in the
glottal wave (Rosenberg [1971a]). Natural speech was analyzed pitch-synchronously. The vocal-tract
transmission and the glottal waveform were determined and separated by inverse filtering. Artificial
glottal waveforms were substituted and the speech signal was regenerated. Listening tests showed
that good quality speech can be obtained from an excitation function fixed in analytical form. The
absence of temporal detail, period-to-period, does not degrade quality. A preferred glottal pulse
shape has but a single slope discontinuity at closing. It is intrinsically asymmetric, so its spectral
zeros never fall on or near the jω-axis for any combination of opening and closing times (Rosenberg
[1971a]).

4.7 Articulatory Analysis of the Vocal Mechanism

The discussion of Chapter 3 showed that if the vocal tract configuration is known, the system re-
sponse can be computed and the mode slructure specified. The cross-sectional area as a function of
distance is sufficient to compute the lower eigenfrequencies of the tract. An accurate account of losses
along the tract requires knowledge of the crosssectional shape or the circumference. [See Eq. 3.33).]



4.7. ARTICULATORY ANALYSIS OF THE VOCAL MECHANISM 131

Figure 4.39: Sagittal plane X-ray of adult male vocal tract

Because the vocal mechanism is relatively inaccessible, the necessary dimensions are obviously diffi-
cult to obtain. Even at best, present methods of measurement yield incomplete descriptions of tract
dimensions and dynamics.

X-ray techniques for motion and still pictures have provided most of the articulatory information
available to date. The X-ray data generally are supplemented by other measures. Conventional
moving pictures can be made of the external components of the vocal system. Palatograms, molds
of the vocal cavities, and electromyographic recordings are also useful techniques for “filling in the
picture.” Much of the effort in X-ray analysis is directed toward therapeutic goals, such as cleft
palate repair and laryngeal treatment. Consequently, the results are often left in only a qualitative
form. Several investigations, however, have aimed at measuring vocal dimensions and articulatory
movements(Fant [1960], Chiba and Kajiyama [1941], Perkell [1965], Fujimura [1961], Houde [1967]).

One of the main problems in obtaining such data is keeping the radiation dose of the subject
within safe limits. This usually means that only a very limited amount of data can be taken on a
single individual. One ingenious solution to this problem utilizes a computer-controlled X-ray beam
which, under program control, is made to irradiate and track only the physiological areas of interest
(Fujimura [1961]).

Another problem is the detail of the X-ray photograph. This is particularly a problem in moving
X-ray photography, even with the best image-intensifier tubes. Detail which looks deceptively good
in the (visually-integrated) moving picture, disappears when one stops the film to study a single
frame. Sound recordings are usually made simultaneously for analysis, but often are of poor quality
because of the noise of the proximate movie camera.

The detail in still pictures is somewhat better but nevertheless lacking. An example of a typical
medical X-ray is shown in Fig. 4.39. The tongue and lips of the subject were coated with a barium
compound to make them more visible. The vocal tract position is appropriate to the production of
a high-front vowel close to /i/.

The typical procedure for obtaining an area function from the X-ray picture can be illustrated.
An axial line through the centers of gravity of the cross sectional areas is first located, as shown
in Fig. 4.40a (Fant [1960]). The shape and area of the cross-sections at a number of locations are
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Figure 4.40: Method of estimating the vocal tract area function from X-ray data. (After (Fant
[1960]))

estimated, as shown in Fig. 4.40b. The shape estimates are deduced on the basis of all available
data, including dental molds of the vocal and nasal cavities, conventional photographs and X-ray
photographs from the front. These sections provide anchor points for an estimate of the whole area
curve. Intermediate values are established both from the sagittal plane X-ray tracing and from
continuity considerations to give the complete area function, as shown in Fig. 4.40c. Typical results
for several sounds produced by one man are shown in Fig. 4.41.

Even under best conditions, some of the vocal dimensions during natural speech are impossible
to measure. For example, one often can only make crude estimates of the true shape and lateral
dimensions of the pharynx cavity. In the same vein, the true dimensions of the constrictions for
fricatives and affricates and the lateral pathways in /l/ are often very uncertain.

Similarly, the vocal source of excitation cannot be studied easily by direct methods. For sus-
tained, open vowels, however, the vocal cord source can be examined by high-speed moving pictures.

Figure 4.41: Typical vocal area functions deduced for several sounds produced by one man. (After
(Fant [1960]))
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Figure 4.42: Typical vocal-tract area functions (solid curves) determined from impedance mcusure-
ments at the mouth. The actual area functions (dashed curves) are derived from X-ray data. (After
(Gopinath and Sondhi [1970]))

Measurements of subglottal pressure are also possible and give insight into vocal cord operation.
Characteristics of the unvoiced sources, on the other hand, i.e., location, spectral properties and
internal impedance, are best inferred from physiological configuration, air flow measurements and
spectral analysis of the output sound.

Research interest in better methods for physiological measurements remains high. One active
research area centers on the possibilities for relating electromyographic recordings of muscle poten-
tials to the articulator movements observed in X-ray pictures. Several “exotic” schemes for vocal
measurement have also been proposed, half humorously. They may, however, hold some promise.
For example, a conducting dag loop might be painted around the circumference of the tract at a
given position and electrical leads attached. The cross sectional area at that point could be measured
by placing the subject in a magnetic field normal to the section and measuring the flux which links
the dag loop. Other possibilities might be the attachment of miniature strain gauges at significant
points, or the placement of inflatable annular cuffs or catheters at given positions in the tract. Still
other possibilities include miniature ultrasonic transducers fixed to the articulators.

Acoustic measurements directly on the vocal-tract also promise useful estimation of the cross-
sectional area function (Mermelstein [1967], Schroeder [1967], Gopinath and Sondhi [1970])). In
one method the acoustic impedance of the tract is periodically sampled at the mouth (Gopinath
and Sondhi [1970]). While the subject silently articulates into an impedance tube, pulses of sound
pressure are produced periodically (typically at 100 sec−1) and the volume velocity response is mea-
sured. The pressure and volume velocity along the tract are assumed to obey Webster’s horn equation
[Eq. (3.1)], which is valid for frequencies below about 4000Hz. An asymptotic high-frequency be-
havior of the tract is assumed. No assumptions are made about the termination at the glottal end
or about the length of the tract. Solution of an integral equation yields the integral of the cross-
sectional area of an equivalent Iossless, hard-walled pipe as a function of distance. Differentiation
gives the area function. Typical results, compared to area functions from X-ray measurements, are
shown in Fig. 4.42. The impedance tube calculations are made for hard-walled vocal-tracts having
the shapes given by the X-ray data.

A question of considered importance is the influence of wall-yielding (as is present in the real
vocal tract) upon the calculated area function. Present efforts aim to include wall vibration and
wall loss into the area determination method. Further research is needed to test the method with
real speakers and real speech, and to account for real vocal-tract conditions, including loss, yielding
side walls and nasal coupling.

Vocal-tract models, electrical vocal-tract analogs and computational analyses have all been useful
in inferring articulatory data and tract dynamics from acoustic measurements of speech sounds
and from X-ray data. One articulatory model, which has an important application in synthesis
(see Section 9.5), has also been useful in establishing physiological constraints and time constants
associated with major articulators (Coker [1968])). The articulatory model describes the vocal area
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Figure 4.43: Seven-parameter articulatory model of the vocal tract. (After (Coker [1968]))

Figure 4.44: Comparison of vocal tract area functions generated by the artculatory model of Fig. 4.43
and human area data from X-rays. (After (Coker [1968]))

function in terms of seven parameters, shown in Fig. 4.43. The coordinates are: the position of the
tongue body, X,Y ; the lip protrusion, L; the lip rounding W ; the place and degree of tongue tip
constriction, R and B; and the degree of velar coupling, N . No nasal tract is incorporated in this
version of the model, and velar coupling exerts its influence solely through the tract area function.

The area function described by the model can be used to synthesize connected speech, which in
turn can be compared in spectral detail to real speech. Also, because of its correspondence to major
vocal elements, the seven-parameter model can be used to duplicate articulatory motions observed
from X-ray motion pictures. Further, its description of vocal-tract area can be compared with X-ray
area data, as shown in Fig. 4.44. Such comparisons have been useful in analyzing priorities and
time-constants for the motions of the articulators in real speech and in quantifying these effects for
speech synthesis (Coker et al. [1971], Flanagan et al. [1970], Umeda [1970]).
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4.8 Homework

Problem 4.1

A speech signal is sampled at a rate of 20,000 samples per second. A 12ms window is used for
short-time spectral analysis.

a. How many speech samples are used in each segment?

b. If the window is a rectangular window, what analysis frame rate (in frames per second) will
guarantee that no frequency-aliasing occurs? (Assume that the side-lobes have zero amplitude.)

c. If the window is a Hamming window, what analysis frame rate (in frames per second) will
guarantee that no frequency-aliasing occurs? (Assume that the side-lobes have zero amplitude.)

d. What size Fast Fourier Transform is required to guarantee that no time-aliasing will occur?

e. Suppose that the window w(n) is an ideal low-pass filter with a cutoff frequency of fc =
312.5Hz. What size FFT should you use in order to construct a filterbank with non-overlapping
filters? Will time-aliasing occur?

Problem 4.2

Consider the following non-causal triangular window:

wt[n] =
1

N
wr[n] ∗ wr [−n] (4.148)

where

wr[n] = u[n] − u[n−N ] (4.149)

a. Sketch wt[n].

b. Notice the following property of the Fourier transform:

x[−n] ↔ X(−ω)

Use the property above, the conjugate symmetry, and the convolution properties of the Fourier
transform to show that

Wt(ω) =
1

N
|Wr(ω)|2 (4.150)

Sketch Wt(ω).

c. Now consider the following triangular window:

wt[n] =
N − |N − n|

N
(u[n] − u[n− 2N ]) (4.151)

Find Wt(ω). Hint: use the time-delay property.

Problem 4.3
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Two of the most commonly used DSP windows—the Hanning window and Hamming window—
can be written in the following form. In this equation, N must be odd, and B is the filter design
parameter: B = 0.5 for a Hanning window, and B = 0.46 for a Hamming window.

w[n] = r[n] ((1 −B) + B cos(2πn/N))

where r[n] is the zero-centered rectangular window

r[n] =

{
1 |n| ≤ (N − 1)/2
0 |n| > (N − 1)/2

a. What is the DTFT R(ω) of r[n]? At what frequency is the first null of R(ω)? What is the
amplitude of the first sidelobe of R(ω)?

b. Express W (ω) as the sum of three scaled and frequency-shifted copies of R(ω). At what
frequency is the first null of W (ω)?

c. In terms of B, what is the amplitude of the first sidelobe of W (ω)? Find the value of B which
minimizes the amplitude of the first sidelobe, and say what that minimum amplitude turns
out to be.

d. Sketch H(ω), the DTFT of the following digital filter. Label the amplitude, peak frequencies,
and the frequencies of one or two zero crossings.

h[n] = cos(πn/3)w[n]

e. Sketch G(ω), the DTFT of the following digital filter. Label the amplitude and cutoff frequen-
cies.

g[n] = 0.25sinc(πn/4) cos(πn/3)w[n]

Problem 4.4

Suppose that the autocorrelation coefficients of signal x1(n) are R(0) = 500 and R(1) = 400.

a. A first-order linear predictive model of the transfer function is given by T1(z) = G1/(1−a1z
−1).

Find G1 and a1.

b. Suppose that the spectrum of another signal, x2(n), can be modeled using the following transfer
function:

T2(z) =
10

1 − 0.9z−1
(4.152)

What is the Itakura-Saito distance between T1(z) and T2(z)?

Problem 4.5

Write a program of the form A = lpcana(X, P, N) which performs LPC analysis of order P
on the waveform X using frames of length N samples. The matrix A should contain one row for
each frame; each row should contain the LPC filter coefficients for one frame.

Write a program [F,BW] = formants(A,FS) which finds the roots of the LPC polynomials
stored in A, and calculates up to p/2 analog formant bandwidths BWi and frequencies Fi per frame,
such that

ri = e−
πBWi+j2πFi

Fs (4.153)
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where ri is one of the roots of A(z).
Plot the formant frequencies as a function of time, and compare your plot to a spectrogram of

the utterance. Which formants are tracked during voiced segments? What happens when there
are less than p/2 trackable formants? What happens to the LPC-based formant estimates during
unvoiced speech segments?

Problem 4.6

Write a program [N0, B] = pitch(X, N, N0MIN, N0MAX). For each frame, set B and N0
according to the following formulas:

B = max rx(m), N0,min ≤ m ≤ N0,max (4.154)

N0 = arg max rx(m), N0,min ≤ m ≤ N0,max (4.155)

(4.156)

a. Try different values ofN0,min and N0,max. For each value you test, plot B and N0 as a function
of time, and compare them to the spectrogram. What values give the best pitch tracking? Is
B always larger for voiced segments than unvoiced segments? What is the threshold value of
B which best divides voiced and unvoiced segments?

b. Try pitch tracking using the autocorrelation of the LPC residual, rather than the signal auto-
correlation. Do you find any improvement? Why or why not?

Problem 4.7

Consider the sequence

x[n] = δ[n] − aδ[n− 1] (4.157)

where |a| < 1. Suppose that we wish to approximate the complex cepstrum x̂[n] from samples of
the logarithm of the Fourier transform:

x̂p[n] =
1

N

N−1∑

k=0

log
(
X(ej

2π
N
kn)
)

(4.158)

Is it possible to choose N large enough such that x̂p[n] = x̂[n], without aliasing? If so, what is the
minimum value of N? If not, what is the minimum value of N (give or take a few samples) such
that

|x̂p[n] − x̂[n]| <
∣∣∣∣
x̂[n]

100

∣∣∣∣ (4.159)

Note: You may find the following formula to be useful:

log(1 − x) = −
∞∑

n=1

xn

n
if |x| < 1 (4.160)

Problem 4.8
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Suppose that homomorphic analysis yields the following estimate of the vocal tract transfer
function:

H(z) =
G

1 −∑2q
k=1 akz

−k
= G

q∏

k=1

1

(1 − bkz−1)(1 − b∗kz
−1)

(4.161)

with pole locations bk = rke
jθk and b∗k = rke

−jθk which are located inside the unit circle. If the
sampling rate is Fs, then the formant frequencies Fk and bandwidths Bk can be estimated by:

F̂k =
Fsθk
2π

(4.162)

B̂k = −Fs
π

log(rk) (4.163)

Suppose that we suspect that all of the bandwidth estimates B̂k are too large. Show that the
estimated formant bandwidths are reduced, without changing the estimated formant frequencies, if
we replace H(z) by the following transformed spectrum:

H̃(z) = H
( z
α

)
= G

q∏

k=1

1

(1 − bk(z/α)−1)(1 − b∗k(z/α)−1)
(4.164)

where α is real and greater than unity and |αbk| < 1.
Suppose H(z) consists of a single complex pole pair of the form

H(z) =
1

(1 − rejθz−1)(1 − re−jθz−1)
(4.165)

where r and θ are both real. Find expressions for the complex cepstra associated with H(z) and
H̃(z) in this case. Find expressions for the real cepstra, and plot the real cepstra as functions of
time.

Problem 4.9

Compute the following spectra for three different vowel segments segments, and plot the log-
magnitude spectra (in dB) for frequencies between 0 and 4000Hz. You should turn in code, equations,
or some combination of both which will make it clear how each spectrum was computed.

a. Power spectrum S(ω).

b. S(ω), smoothed using cepstral lifter ŵ1(n):

ŵ1(n) = u(n− 1) − u(n− L− 1) (4.166)

Choose L so that the window length is 1.5ms. What is the cutoff frequency of the magnitude
lifter spectrum, W̃1(ω) = |Ŵ1(ω)|?

c. S(ω), smoothed using cepstral lifter ŵ2(n):

ŵ2(n) = ŵ1(n)

(
1 +

L

2
sin(

nπ

L
)

)
(4.167)

d. LPC transfer function H(ω) = G/A(ω).

e. H(ω), smoothed using cepstral lifter ŵ1(n).
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f. H(ω), smoothed using cepstral lifter ŵ2(n).

g. Line spectra 1/P (ω) and 1/Q(ω), truncated at reasonable maximum and minimum values.

Problem 4.10

The three vowel signals you analyzed in problem 4.8 are different — but how different are they?
Calculate the difference between the two vowels using the following spectral distortion metrics. Turn
in code and/or equations showing how each distortion metric was computed.

a. L2 spectral norm, calculated using log-FFT spectra.

b. Truncated cepstral distance d̂2
c using a rectangular window.

c. Liftered cepstral distance d̂2
2(L) using half of a Hamming window.

d. Likelihood-ratio distortions,

dLR

(
1

|A1|2
,

1

|A2|2
)

and dLR

(
1

|A2|2
,

1

|A1|2
)

(4.168)

where the subscripts 1 and 2 represent the first and second vowel.

e. Itakura-Saito distortions,

dIS

(
G2

1

|A1|2
,
G2

2

|A2|2
)

and dIS

(
G2

2

|A2|2
,
G2

1

|A1|2
)

(4.169)

Problem 4.11

Remember that a filter characteristicH(ω) is defined by its magnitude |H(ω)| and phase ∠H(ω).
One particularly useful representation of the phase of H(ω) is the group delay τH(ω), defined as

τH(ω) = −d∠H(ω)

dω
(4.170)

In general, a linear phase filter has a constant group delay—and the constant is equal to the amount
by which the output is delayed with respect to the input. If τ(ω) is not constant, components of the
input x[n] at different frequencies will be delayed by different amounts. If the differences are large,
the result is a sort of reverberated sound.

a. In order to understand group delay, consider the filter

h1[n] = δ[n−D]

Suppose that
y1[n] = h1[n] ∗ x[n]

Find a simple representation of y1[n] in terms of x[n].

b. What is the DTFT of this filter, H1(ω)? What is the group delay? How is the group delay
related to your answer to part a?
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c. Consider h2[n], given by

h2[n] = w[n]
(ωc
π

)
sinc

(
ωc(n − N − 1

2
)

)
(4.171)

where

w[n] = u[n] − u[n−N ] (4.172)

Sketch h2[n]. By inspection (without doing any equation manipulation), find the group delay
τ2(ω). Now do a little symbol manipulation: express the magnitude response, |H2(ω)|, in the
form of the frequency domain convolution between two functions.

Problem 4.12

The process of voiced speech production (e.g., sung vowels) can be modeled as a linear filter,

y[n] = h[n] ∗ x[n]

where x[n] is a periodic excitation signal modeling the volume velocity coming through the singer’s
vocal folds,

x[n] =

∞∑

r=−∞

x0[n+ rN ]

and h[n] is an infinite-length impulse response modeling the frequency response of the mouth. Sup-
pose it were possible to estimate the signal x[n] in some way; then an approximation of h[n] would
be given by

ĥ[n] =
1

N

N−1∑

k=0

Y (2πk/N)

X(2πk/N)
e

j2πkn
N

where Y (2πkn/N) and X(2πkn/N) are the N -point DFT of any single period of x[n] and y[n],

respectively, and N is the fundamental pitch period of x[n]. What is the relationship between ĥ[n]
and h[n]? Justify your answer.

Problem 4.13

Suppose that x[n] is a cosine, given by

x[n] = cos(ω0n)

a. Suppose that the STFT Xm(ejψ) is computed using a rectangular window of length N . Find
Xm(ejψ).

b. Suppose that the STFT is only computed once per M samples. Find XfM (ejψ), the STFT of
frame number f .

Problem 4.14
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a. Suppose that the input to a room response is a periodic signal x[n] = v[(n)N ], where the ()N
notation means “modulo N,” i.e.

x[n] =






v[n+N ] −N ≤ n ≤ −1
v[n] 0 ≤ n ≤ N − 1
v[n−N ] N ≤ n ≤ 2N − 1
...

x[n] is played through a speaker-room-microphone system with impulse response h[n], so that
y[n] = h[n] ∗ x[n] is the linear convolution of h[n] and x[n]. Show that y[n] is therefore the
circular convolution of v[n] and h[n], repeated periodically with periodN . Argue that therefore
Y (k) = X(k)H(k), where Y (k) is the N -point DFT of y[n].

b. Define the circular autocorrelation rv[n] and the estimated impulse response q[n] as in the
following equation

rv[n] =

N−1∑

m=0

v[m]v[(m+ n)N ], q[n] = y[n] ∗ v[−n] (4.173)

Show that q[n] is a time-aliased periodic repetition of ĥ[n] = rv[n] ⊛ h[n], i.e.

q[n] =

∞∑

k=−∞

ĥ[n− kN ], ĥ[n] = rv[n] ⊛ h[n]

where ⊛ denotes circular convolution. Argue that therefore, if rv[n] = δ[n], then q[n] is a
time-aliased periodic repetition of the true room response h[n].
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Chapter 5

Information and Communication

“The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. Frequently the
messages have meaning; that is they refer to or are correlated according to some system
with certain physical or conceptual entities. These semantic aspects of communication
are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages.”
SHANNON, The Mathematical Theory of Communication (Shannon and Weaver [1949])

The theory of communication addresses the relationship between transmitted and received mes-
sages. In everyday discourse, a message is usually understood to be a sequence of words, sounds,
or symbols representing some intended meaning. Shannon proposed that the essential property of a
message is not the meaning, but the sequence of symbols. According to his notation, the essential
property of a message is that it is a sequence of symbols, selected from a set of possible symbol
sequences according to some (usually unknown) probability distribution. Formally, we may write
that a message X is selected from the set X ∗, where the ∗ superscript is called the “Kleene closure”
operator, and it means that:

X = [x1, x2, . . . , x|X|], (5.1)

xt ∈ X (5.2)

0 ≤ |X | <∞ (5.3)

The set X is called the “alphabet.” The alphabet may be discrete or continuous, finite or infinite.
For example, written English words are created by selecting letters from a 26-letter alphabet. On the
other hand, an arbitrary acoustic waveform x(t) can also be treated as a message, if we are willing
to sample the waveform at discrete sampling times: then x1 = x(t1), x2 = x(t2), etc., and these
“symbols” are acoustic pressure measurements drawn from the set of all real numbers (X = R).

In order to talk about communication, it is necessary to talk about noise. In order to talk about
noise, it is necessary to talk about randomness. Most channels are characterized by random errors,
such that the received signal Y = [y1, . . . , y|Y |] is related to the transmitted signal according to some
probability distribution P (Y |X). Clearly, the ideal channel is the one that introduces no errors,
i.e., P (X = Y |Y ) = 1 for all Y . Real-world communication channels are almost never so simple.
Communication theory defines the conditional entropy of a channel, H(X |Y ), to be a measure of
the degree to which the probability measure P (X |Y ) differs from error-free. Conditional entropy is
always non-negative (H(X |Y ) ≥ 0), and conditional entropy is zero only if the channel never causes
an error.

When a channel is noisy, it is sometimes possible to improve communication by simplifying the
language. Everybody has experienced “mosh pit simplification:” when you are trying to communi-
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cate with somebody in an extremely noisy environment (e.g., a mosh pit), it helps to use only short,
common, predictable words. In the extreme case, it is possible to make any channel error-free by
limiting the language to just one possible utterance: no matter what the talker says, the listener
always knows that the intended utterance was “hello,” because protocol dictates that no other ut-
terance is possible in the given context. A one-word language is characterized by the probability
distribution P (X = X0) = 1, where X0 is the unique allowable message. The utility of a one-word
language, unfortunately, is rather limited. Communication theory defines the entropy of a language,
H(X), to be a measure of the difference between P (X) and the PDF of a one-word language.

The goal of effective communication, usually, is to adjust the language so that transmitted
messagesX are both interesting and intelligible. The balance between “interesting” and “intelligible”
is measured by the mutual information between a transmitted message, X , and the corresponding
received message, Y , defined as

I(X,Y ) = H(X) −H(X |Y ) (5.4)

Mutual information can be defined in such a way that I(X,Y ) ≥ 0, and I(X,Y ) = 0 only if knowing
the received message (Y ) provides one with no information about the content of the transmitted
message (X).

The remainder of this chapter will describe entropy, conditional entropy, mutual information, and
channel capacity (the maximum mutual information achievable by a particular channel). The first
two sections will describe the entropy and other properties of messages, languages, and information
sources. The third and fourth sections will introduce noise, and will more carefully define conditional
entropy, mutual information, and channel capacity. The fifth section will more carefully discuss the
relationship between sampling rate and mutual information across a continuous channel.

5.1 Discrete Sources

Printed books are an example of a discrete information source. Generally, a discrete informa-
tion source will mean a system that selects choices from a finite set of elementary symbols A =
{a, b, c, . . .}. The symbols are assumed to be ordered in time or in space, so that it makes sense to
talk about the first symbol (a(1) ∈ A), the second symbol (a(2) ∈ A), the tth symbol (a(t) ∈ A),
and so on.

Suppose that the book is written in a European language, so that all of its characters may
be written using the Latin-1 character set. Latin-1 is an 8-bit code: each character in the book
(including letters, numbers, punctuation, and control characters) is encoded using exactly 8 bits. If
a particular printing of the book is able to represent n characters per page, then it makes sense to
say that this book generates information at a rate of 8n bits per page. A text file containing 100,000
characters always contains 800,000 bits.

Now suppose, instead, that the book contains characters from the international phonetic alpha-
bet ( [IPA]), as well as a few characters from other non-Latin scripts. The standard method for
encoding non-Latin characters is unicode. Unicode is a mixed-length standard. Characters in the
standard Latin alphabet, Arabic numerals, and a few other characters are coded using 8-bit code
words, but characters from most other alphabets are coded using 16-bit symbols. A page with n
characters contains somewhere between 8n and 16n bits of information, depending on the propor-
tion of Latin characters on the page. In order to describe the average bit rate of the language (in
bits/page), we need to know what percentage of the characters are in the Latin alphabet, and what
percentage are symbols from IPA or other alphabets.

Both Latin-1 and unicode are inefficient encodings, because they fail to take into account the
different frequencies of different letters in the alphabet. For example, recall the phoneme probabilities
listed in Table 1.1. According to the table, the word “in” (In) occurs with probability P(I)P(n)=
0.0853 × 0.0724 = .00618, i.e., 0.6% of all two-phoneme sequences in the English language contain
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the word “in.” At the other extreme, the word “joy” (dZOI) occurs with probability 0.0044×0.0009 =
4 × 10−7.

But this account is also simplistic; the word “joy” is less common than the word “in,” but its
frequency is not so low as 4 × 10−7. A much better approximation can be obtained if we suppose
that successive phonemes are not chosen independently but their probabilities depend on preceding
phonemes. In the simplest model of this type, each phone depends only on the immediately preceding
phone, and not on the ones before that. The probability of hearing phone j following phone i can
thus be written as a conditional bigram probability p(j|i):

p(j|i) =
p(i, j)

p(i)
=

p(i, j)∑
j p(i, j)

(5.5)

For example, by counting occurrences in the XXX corpus, we find that the bigram probability
P(OI—dZ)= XXX . The probability of any particular two-phone sequence being the word “joy” is
therefore P(dZ)P(OI|dZ)= 0.0044 ×XXXX = XXXX . Perhaps there is a little more “joy” in the
world than we first supposed.

This process can be extended to the estimation of trigram probabilities p(i, j, k), 4-gram proba-
bilities p(i, j, k,m), 5-gram probabilities p(i, j, k,m, n), and so on. In general, the probability of any
particular T -phone sequence, A = a1, a2, . . . , aT is given by

p(A) = p(a1)p(a2|a1) . . . p(aT |a1, a2, a3, . . . , aT−1), (5.6)

where the last term is the T -gram conditional probability of aT given its context.
To give a visual idea of how this series of processes approaches a natural human language, we

can play a game invented by Shannon (Shannon and Weaver [1949]), and often called the “Shannon
game.” The probabilities of Latin-1 character N-grams ranging in length from N = 1 to N = 12 were
estimated from the Wall Street Journal corpus of American English. The following approximations
to the English language were then generated at random, by choosing each character, at, using its
N-gram conditional probability:

1. Zero-order approximation (symbols independent and equi-probable).

2. Unigram (1-gram) approximation (symbols chosen independently according to p(at)):

3. Bigram approximation (symbols chosen according to p(at|at−1)):

4. Trigram approximation:

5. 6-gram approximation:

6. 12-gram approximation:
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Chapter 6

The Ear and Hearing

The ultimate recipient of information in a speech communication link is usually a human being.
The recipient’s perceptual abilities dictate the precision with which speech data must be processed
and transmitted. These abilities essentially prescribe fidelity criteria for reception and, in effect,
determine the channel capacity necessary for the transmission of voice messages. It consequently
is pertinent to inquire into the fundamental mechanism of hearing and to attempt to establish
capabilities and limitations of human perception.

As suggested earlier, speech information–originating from a speaker, traversing a transmission
medium and arriving at a listener–might be considered at a number of stages of coding. On the
transmitter side, the stages might include the acoustic wave, the muscular forces manipulating
the vocal mechanism, or the physical shape and excitation of the tract. On the receiver side,
the information might be considered in terms of the acoustic-mechanical motions of the hearing
transducer, or in terms of the electrical pulses transmitted to the brain over the auditory nerve.
Characteristics of one or more of these codings might have application in practicable transmission
systems.

The previous chapter set forth fundamental relations between the acoustics and the physiology of
the vocal mechanism. We will subsequently have occasion to apply the results to analysis-synthesis
telephony. In the present chapter we wish to establish similar relations for the ear. Later we will
utilize these in discussions of auditory discrimination and speech perception.

6.1 Mechanism of the Ear

The acousto-mechanical operation of the peripheral ear has been put on a rather firm base. This
knowledge is due primarily to the brilliant experiments carried out by G. von Békésy, and for which
he was awarded the Nobel Prize in 1961. In contrast, present knowledge is relatively incomplete
about inner-ear processes for converting mechanical motion into neural activity. Still less is known
about the transmission of neural information to the brain and the ultimate mechanism of perception.

Despite these difficulties, it is possible to quantify certain aspects of perception without knowing
in detail what is going on inside the “black box.” Subjective behavior, in response to prescribed
auditory stimuli, can of course be observed and measured, and such data are useful guideposts in
the design of speech communication systems. In some instances the correlations between perceptual
behavior and the physiological operation of the peripheral ear can be placed in clear evidence. The
present discussion aims to indicate current understanding of auditory physiology and psychoacoustic
behavior, and to illustrate the extent to which the two can be brought into harmony.

The primary acoustic transducer of the human is shown schematically in Fig. 6.1. The acousto-
mechanical components of the organ are conventionally divided according to three regions, namely,
the outer ear, the middle ear, and the inner ear.
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Figure 6.1: Schematic diagram of the human ear showing outer, middle and inner regions. The
drawing is not to scale. For illustrative purposes the inner and middle ear structures are shown
enlarged

6.1.1 The Outer Ear

As commonly understood, the term ear usually applies to the salient, convoluted appendage on the
side of the head. This structure is the pinna, and it surrounds the entrance to the external ear canal.
Its main function in humans is to protect the external canal–although its directional characteristics
at high audible frequencies probably facilitate localization of sound sources. (In some animals, the
directional acoustic properties of the pinna are utilized more fully.)

In humans, the external ear canal, or meatus, is about 2.7 cm in length and about 0.7 cm in
diameter. Its volume is on the order of 1 cm3, and its cross-section is oval-to-circular in shape with
an area 0.3 to 0.5 cm2 (Bekesy [1960]). The meatus is terminated by a thin membrane which is the
eardrum, or tympanic membrane. The membrane has the form of a relatively stiff, inwardly-directed
cone with an included angle of about 135. Its surface area is on the order of 0.8 cm2. To a rough
approximation, the meatus is a uniform pipe–open at one end and closed at the other. It has normal
modes of vibration which occur at frequencies where the pipe length is an odd multiple of a quarter
wavelength. The first mode therefore falls at f ≈ c/4(2.7) ≈ 3000Hz. This resonance might be
expected to aid the ear’s sensitivity in this frequency range. Measurements do in fact show that it
provides a sound pressure increase at the ear drum of between 5 and 10 db over the value at the
canal entrance (Wiener and Ross [1946]).

6.1.2 The Middle Ear

Just interior to the eardrum is the air-filled, middle-ear cavity which contains the ossicular bones.
The function of the ossicles is mainly one of impedance transformation from the air medium of the
outer ear to the liquid medium of the inner ear1. The malleus, or hammer, is fixed to and rests on
the eardrum. It makes contact with the incus, or anvil, which in turn connects via a small joint to
the stapes, or stirrup. The footplate of the stirrup seats in a port, the oval window, and is retained
there by an annular ligament. The oval window is the entrance to the inner ear.

A sound wave impinging on the outer ear is led down the external meatus and sets the eardrum
into vibration. The vibration is transmitted via the three ossicular bones into the inner ear. The
acousto-mechanical impedance of the inner ear is much greater than that of air, and for efficient
transmission of sound energy an impedance transformation (a step up) is required. The ossicles
provide such. First their lever action alone provides a force amplification of about 1.3 (Bekesy
[1960]). That is, a force applied to the hammer appears at the stirrup footplate multiplied by 1.3.

1This impedance transformation is important to the basic role of the middle ear; that is, the conversion of an
external sound pressure into a fluid volume displacement in the inner ear (see Sec. 6.1.3).
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Figure 6.2: Vibration modes of the ossicles. (a) sound intensities below threshold of feeling (b)
intensities above threshold of feeling. (After (Bekesy [1960]))

Second, the effective area of the eardrum is much greater than that of the stirrup, so that the ratio
of pressure applied at the stirrup to that applied at the eardrum is essentially 1.3 times the ratio of
the effective areas of drum and stirrup. Bekesy has measured this pressure transformation and finds
it to be on the order of 15:1.

The middle ear structure serves another important purpose, namely, it provides protection against
loud sounds which may damage the more delicate inner ear. The protective function is generally
assumed to be served by two tympanic muscles–especially the tensor-tympani which connects the
middle of the eardrum to the inner region of the head. Reflex contractions presumably attenuate
the vibratory amplitude of the drum. Békésy points out, however, that voluntary contractions of
the tensor and changes in the static pressure of the meatus only slightly reduce the vibrational
amplitude of the drum. The contractions consequently can have only small effect in protecting
against sound pressures that extend over a wide range of magnitudes. This fact can be established
from measurements of the acoustic impedance at the drum.

In detailed studies on the mode of vibration of the ossicles, Békésy observed that at low and
moderate sound intensities the stapes motion is principally a rotation about an axis through the
open “hoop” of the stirrup. The movement is illustrated in Fig. 6.2a. At sound intensities near and
above the threshold of feeling, the motion of the stapes changes more to a rotation about an axis
running longitudinally through the “arch” of the stapes, as shown in Fig. 4.2b. In the latter mode,
the effective volume displacement is small because the upper-half of the rootplate advances by about
as much as the lower half recedes.

Contraction of the middle ear muscles increases with sound intensity, so that the ossicles are
prevented from bouncing out of contact and causing excessive distortion at the high levels. This
control of distortion over the amplitude range from threshold-of-hearing to near thresholdof-feeling-
while at the same time protecting the inner ear from harmful vibrational levels-apparently accounts
for the elaborate middle-ear structure2.

One of the important characteristics of the middle ear is its transmission as a function of fre-
quency, that is, the volume displacement of the stapes footplate produced by a given sound pressure
at the eardrum. A number of efforts have been made to measure or to deduce this characteris-
tic (Bekesy [1960], Zwislocki [1957, 1959], Müller [1961, 1962]). The results are somewhat disparate,
suggesting that not only is the characteristic a function of intensity in the living human, but that it
may vary substantially from individual to individual.

If the fluid of the inner ear is considered incompressible and the walls of the cochlea rigid, then
the volume displacement of the round window must be the same as that of the stapes footplate. At
low frequencies the combined elasticity of the drum, ossicles and round window membrane controls
the stirrup motion. That is, the system acts like a spring, with the stapes displacement proportional
to, and in phase with, the eardrum pressure. Somewhere between about 1000 and 3000Hz the

2One can appreciate the difficulties posed in duplicating this mechanical linkage with prosthetic devices. For
example, one middle-ear prosthesis involves replacing damaged or diseased ossicles by a plastic strut joining the drum
and the stapes footplate. The protection against distortion and high-amplitude vibration, normally provided by the
middle ear, are difficult to include in such a construction.
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Figure 6.3: Data on middle ear transmission; effective stapes displacement for a constant sound
pressure at the eardrum. (a) BÉKÉSY (1960) (one determination); (b) BÉKÉSY (1960) (another
determination); (c) measured from an electrical analog circuit (after ZWISLOCKI, 1959); (d) mea-
sured from an electrical analog circuit (after (Müller [1961])).

Figure 6.4: Simplified diagram of the cochlea uncoiled

mass reactance of the system becomes important, and the motion passes from a stiffness-controlled
vibration to a viscous-controlled one and finally to a mass-controlled motion. For a given sound
pressure at the drum, the stirrup displacement begins to diminish in amplitude and lag in phase as
frequency increases.

Békésy (Bekesy [1960]) has made a number of measurements of middle-ear transmission by
directly observing the volume displacement of the round window. The transmission properties can
also be deduced from a knowledge of the middle-ear topology, the input mechanical impedance
to the inner ear, and the acoustic impedance at the eardrum. This approach has been used by
Zwislocki (Zwislocki [1957, 1959]) and by Moller (Müller [1961]) to develop analog circuits of the
middle ear. All these results agree in gross aspects but suggest that substantial variability can exist
in the characteristic. By way of comparison, the transmission of the middle ear according to several
determinations is shown in Fig. 6.3a-d.

For the data in Fig. 6.3b, Békésy obtains a critical “roll-off” frequency for middle-ear transmission
of about 800 Hz. For the data in Fig. 6.3a, it is clearly higher, possibly around 3000Hz. Zwislocki’s
result in Fig. 6.3c places it somewhere in the vicinity of 1500Hz, and Moller’s result in Fig. 6.3d is near
1000Hz. The common indication is that the middle-ear transmission has a low-pass characteristic.
The effective cut-off frequency and the skirt slope are apparently subject to considerable variation.

6.1.3 The Inner Ear

As illustrated in Fig. 6.1, the inner ear is composed of the cochlea (normally coiled like a snail
shell in a flat spiral of two and one-half turns), the vestibular apparatus and the auditory nerve
terminations. It is in the cochlea that auditory mechanical-to-neural transduction takes place. The
vestibular components (semi-circular canals, saccule and utricle) serve the sense of spatial orientation
and apparently are not normally used for detecting audio vibrations.

If the cochlea is uncoiled and stretched out, it appears schematically as in Fig. 6.4. The cochlear
chamber is filled with a colorless liquid, perilymph, which has a viscosity about twice that of water
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Figure 6.5: Schematic cross section of the cochlear canal. (Adapted from Davis (Davis [1957]))

and a specific gravity of about 1.03. The length of the canal in the spiral conch is about 35 mm.
The cross-sectional area at the stirrup end is about 4 mm2 and the area decreases to about 1 mm2

at the tip.

The cochlear chamber is divided along almost its whole length by a partition. The half which
receives the stapes is called the scala vestibuli; the other half is the scala tympani. The cochlear
partition is itself a channel–the scala media–bounded partly by a bony shelf, a gelatinous membrane
called the basilar membrane, and another membrane known as Reissner’s membrane. The partition
is filled with a different liquid, the endolymph. The basilar membrane and bony shelf both terminate
a mm or two short of the ends of the scalas, permitting them to communicate at the helicotrema.
The area of the connecting passage is about 0.3 to 0.4 mm2(Békésy and Rosenblith). The basilar
membrane is about 32 mm in length and tapers from a width of about 0.05 mm at the base (stirrup)
to about 0.5 mm at the apex (Davis [1951]).

The inner ear is connected to the middle ear at the stapes footplate. The latter, supported by
a ring-shaped ligament, seats into the oval window (about 3 mm2 in area). In vibrating, the stapes
acts as a piston and produces a volume displacement of the cochlear fluid. Because the cochlea is
essentially rigid and its fluid incompressible, fluid displacements caused by inward motion of the
stapes must be relieved. This function is accomplished at the round window which is covered by a
compliant membrane (about 2 mm2). Very slow vibrations of the stapes (say less than 20Hz) result
in a to-and-fro flow of fluid between the scala vestibuli and scala tympani through the opening at the
helicotrema. Higher frequency vibrations are transmitted through the yielding cochlear partition at
a point which depends upon the frequency content of the stimulation.

A cross-section of the cochlea and its partition is shown in Fig. 6.5. The main functions and
dynamical properties of the partition reside in the basilar membrane. It is upon the latter that the
organ of Corti rests. Among several types of supporting cells, the organ of Corti contains some 30000
sensory cells (or hair cells), on which the endings of the auditory nerve (entering from the lower left
in Fig. 6.5) terminate. The basilar membrane is stiffer and less massive at its narrow, basal end
and more compliant and massive at the broad, apical end. Its resonant properties therefore vary
continuously along its length. At low frequencies, Reissner’s membrane normally moves cophasically
with the basilar membrane.

Current knowledge of the acoustic-mechanical properties of the basilar membrane is due almost
exclusively to the efforts of von Békésy. In physiological preparations, he vibrated the stapes foot-
plate sinusoidally and measured the amplitude and phase of the membrane displacements along the
length of the cochlea. The mechanical characteristics of the basilar membrane, as determined in
these experiments, are shown in Fig. 6.6. Figs. 6.6a and b show the amplitude and phase of specific
membrane points as functions of frequency. Fig. 6.6c shows the amplitude and phase as afunction
of membrane place with frequency as the parameter.

The amplitude and phase response of a given membrane point is much like that of a relatively
broad band-pass filter. The amplitude responses of successive points are roughly constant-Q in
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Figure 6.6: Amplitude and phase responses for basilar membrane displacement. The stapes is driven
sinusoidally with constant amplitude of displacement. (After (Bekesy [1960]).) (a) Amplitude vs
frequency responses for successive points along the membrane. (b) Amplitude and phase responses
for the membrane place maximally responsive to 150 Hz. (c) Amplitude and phase of membrane
displacement as a function of distance along the membrane. Frequency is the parameter
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Figure 6.7: Cross section of the organ of Corti. (After (Davis [1951]))

nature. Because of this constant percentage bandwidth property, the frequency resolution is best
at the low-frequency (apical) end of the membrane, and the time resolution is best at the higher-
frequency (basal) end3.

All the amplitude responses of Fig. 6.6 are normalized to unity. Békésy’s measurements suggest,
however, that for constant amplitude of stapes displacement, the peak membrane response increases
at about 5 db/octave for points resonant at frequencies up to about 1000Hz, and is approximately
constant in peak displacement for points resonant at higher frequencies. Linear increments of dis-
tance along the basilar membrane correspond approximately to logarithmic increments of peak
frequency, at least for frequencies less than about 1000Hz.

Excitation at the stapes is propagated down the membrane in the form of a travelling wave
of displacement. Because of the taper of the distributed constants with distance, essentially no
reflection takes place at the helicotrema, and no standing wave of displacement is created. The
membrane is a dispersive transmission medium. The travelling wave loses more and more of its high
frequency components as it progresses toward the helicotrema, and its group delay increases.

6.1.4 Mechanical-to-Neural Transduction

Mechanical motion of the membrane is converted into neural activity in the organ of Corti. An
enlarged view of this structure is shown in Fig. 6.7. The organ of Corti contains a collection of
cells among which are the hair cells. The hairs emanating from these sensory cells protrude upward
through the reticular lamina and contact a third membrane of the cochlear partition, the tectorial
membrane. One set of cells lies in a single row, longitudinal to the basilar membrane and toward the
axis of the cochlear spiral (left of the arch of Corti). They are termed the inner hair cells. Another
set lies in three or four longitudinal rows, radially away from the center of the spiral. These are
the outer hair cells. Estimates fix the number of the former at about 5000 and the latter at about
25000.

The tectorial and basilar membranes are anchored at their inner edges at spatially separate points.
A deformation of the basilar membrane causes relative motion between the tectorial membrane and
the reticular lamina and a resultant stress on the hairs passing between. By a process that presently
is not understood, a bending of the hairs produces an electrical discharge in the cochlear portion of
the VIIIth nerve4. The first-order fibers of this cochlear branch, or auditory nerve, enter from the
lower left in Fig. 6.7 and run to the inner and outer hair cells.

Electrophysiological experiments suggest that the outer and inner hair cells of the organ of Corti
differ in their sensitivities to mechanical stimulation(Bekesy [1953], Davis [1958]). The outer hair

3Recent measurements of basilar membrane vibration in animals, using the Mossbauer effect (Johnstone and Boyle
[1967], Rhode [1971]), suggest that the mechanical response is sharper (higher in Q) than shown in Fig. 6.6. Also, the
measurements suggest that the mechanical response is somewhat dependent upon sound intensity.

4The VIIIth nerve also serves the vestibular apparatus. See Fig. 6.1.
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cells appear to be sensitive to bending only in a direction transverse to the long dimension of the
membrane. Moreover, only outward bending of the hairs (away from the arch of Corti) produces an
electrical potential in the scala media favorable for exciting the auditory nerve endings. This outward
bending is produced on (unipolar) upward motions of the basilar membrane, that is, motions which
drive it toward the tectorial membrane.

The inner hair cells, on the other hand–residing between the arch of Corti and the axis of the
cochlear spiral–appear sensitive to bending in a direction parallel to the long dimension of the
membrane (Bekesy [1953], Davis [1958]). In this case bending only toward the apex of the cochlea
produces a scala media potential favorable for stimulating the nerve. So far as a given point on
the membrane is concerned, the inner hair cells are essentially sensitive to the longitudinal gradient
of displacement, that is, to the spatial derivative in the long dimension. Furthermore, the inner
cells fire only on the polarity of the gradient which corresponds to bending toward the apex. The
threshold for firing of the inner cells appears to be appreciably higher than that for the outer cells.
Exactly how the pattern of mechanical displacement of the basilar membrane is reflected in the
“transducer” potentials of the sensory cells and in the electrical pulses elicited in the auditory nerve
has yet to be put on a firm basis.

The sensory cells of the ear connect to the brain via the bundle of nerve cells–or neurons–
comprising the auditory nerve. The auditory nerve passes down the axis of the cochlear spiral–
collecting more nerve fibers as it runs from apex to base–until it contains some 30000 neurons.
Neurons presumably have only two states, namely, active or inactive. When excited by an electrical
input above a particular threshold, they produce a standard electrical pulse of about a millisecond
duration and are desensitized for a period of about one to three milliseconds thereafter. They
consequently can be excited to maximum discharge rates on the order of 300 to 1000Hz.

The connections between the nerve cells and the hair cells in the organ of Corti are complex.
Each inner hair cell is innervated by one or two nerve fibers, and each fiber connects with one or
two hair cells. Innervation of the outer cells is more compound. Most nerve fibers make connections
with a number of outer cells, and each outer cell usually receives connections from several nerve
fibers (Davis [1957]). The exact functional significance of this complex multiple distribution of the
nerve supply is not presently known. One study has suggested that it contributes to the great
intensity range of the ear (van Bergeijk [1961]).

The fibers of the auditory nerve twist like strands of rope about a central core. The nerve itself is
short and enters the lower brain stem (medulla oblongata) after a run of about 5mm (Davis [1957]).
The incoming fibers divide, and the branches run respectively to the dorsal and to the vertral portions
of the cochlear nucleus. Here the first synapses (junctions connecting one nerve cell to another) of
the auditory system reside. The fibers of the auditory nerve, and the cells of the cochlear nucleus
to which they join, essentially preserve the orderly arrangement of the corresponding sensory cells
on the basilar membrane. The same general tendency toward orderly arrangement, with respect to
membrane place of origin, seems to be maintained throughout the auditory system.

Relatively little is known about the mechanism by which the basilar membrane displacements
are converted into neural activity. Still less is known about how information is coded in nerve pulses
and assimilated into an auditory percept by the brain. Qualitatively, however, several deductions
seem to be generally accepted. First, the hairs of the sensory cells, in experiencing a lateral shear
owing to relative motion of basilar membrane and tectorial membrane (see Fig. 6.7), generate local
electrical potentials which represent the local basilar membrane displacement. More precisely, the
shearing forces on the sensory hairs “modulate” (as would a variable resistor) a current passing
between the scala media and the base of the hair cell (Davis [1965]).

Second, this facsimile alternating potential, acting at the base of the hair cell, modulates the
liberation of a chemical mediator about some quiescent rate. The mediator, in sufficient quantity,
stimulates the dendritic endings of the first-order nerve fibers and causes the fibers to fire. Because
of its quiescent bias rate, the hypothesized chemical mediator is secreted more on one phase of the
sensory potential than on the other; that is, a rectifying function is implied in triggering the nerve
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Figure 6.8: Distribution of resting potentials in the cochlea. Scala tympani is taken as the zero
reference. The tectorial membrane is not shown. The interiors of all cells are strongly negative.
(After (Tasaki et al. [1954]))

fiber.
Lastly, the chemical stimulation of the nerve endings produces an all-or-none electrical firing,

which is propagated axonally to subsequent higher-order fibers in the central nervous system.
There are two basic electrical phenomena in the cochlea: the resting (dc) polarization of the

parts, and the ac output of the organ of Corti (which, as stated, appears to reflect the displacement
of the cochlear partition). Current thinking holds that the ac output, or the cochlear microphonic5,
is a potential produced by the sensory or receptor cells and is derived from the pre-existing resting
polarization of the receptor cells by a change in the ohmic resistance of a mechanically-sensitive por-
tion of the cell membrane. “This change in resistance is presumably brought about by a deformation,
however slight, of a critical bit of the polarized surface” (Davis [1965]).

Energy considerations argue for an active (power-amplifying) type of transduction, as in a carbon
microphone. The biasing current (power supply) for the transducer is produced by the biological
battery which is the resting polarization of the hair cell. The mechanical energy of the basilar
membrane is not transduced into electrical current, rather it controls or modulates the flow of
current across the interface (cell membrane) which separates the negative polarization inside the
hair cell from the positive, endo-cochlear potential of the endolymph inside the cochlear partition.

A map of the cochlear resting potentials is shown in Fig. 6.8. The scala tympani is taken as
the zero reference potential, and regions of similar potential are often found within the organ of
Corti. Other areas, presumably intracellular, are strongly negative. The endolymphatic space (scala
media) is strongly positive. (Refer to Fig. 6.5 for more details on the organ of Corti.)

If a microelectrode penetrates upward through the basilar membrane, recording simultaneously
the de potentials (which serve to locate the electrode tip) and the cochlear microphonic response
to a 500Hz tone, the result is shown in Fig. 6.9. The conclusion is that the electrical interface at
which the phase reversal of the cochlear microphonic occurs is the hair-bearing surface of the hair
cell (although one cannot differentiate between the surface and base location of the hair cell).

Two biological batteries therefore act in series: the internal (negative) polarization of the hair
cells and the (positive) dc polarization of the endocochlear voltage (which is probably generated
by the stria vascularis). This action leads to the conception of the equivalent circuit for cochlear
excitation shown in Fig. 6.10.

The cochlear microphonic, as already mentioned, is viewed as the fluctuating voltage drop across
the cell membrane due to alternating increase or decrease in its ohmic resistance. It appears to be
a facsimile representation of the local displacement of the basilar membrane (TEAS et al.). The
dynamic range of the microphonic is relatively large. Its amplitude appears linearly related to input
sound pressure over ranges greater than 40 dB (Teas et al. [1962]).

Although the functional link between the cochlear microphonic (or the facsimile membrane dis-

5This potential is typically observed by an electrode placed at the round window or inserted into a scala.
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Figure 6.9: Cochlear microphonic and dc potentials recorded by a microelectrode penetrating the
organ of Corti from the scala tympani side. The cochlear microphonic is in response to a 500Hz
tone. (After (Davis [1965]))

Figure 6.10: A “resistance microphone” theory of cochlear transduction. (After DAVIS, 1965)
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Figure 6.11: Schematic diagram of the ascending auditory pathways. (Adapted from (Netter [1962]))

placement) and the all-or-none electrical activity in the fibers of the auditory nerve remains obscure,
it is nevertheless clear that a local deformation of the membrane (of sufficient amplitude), and a
consequent bending of the sensory hairs in the area, causes the sensory cells to generate a scala
media potential favorable for triggering the neurons in that region. The greater the displacement
magnitude, the greater the number of neurons activated. A periodic displacement of sufficiently low
frequency elicits neural firing synchronous with the stimulus. The periodicity of tones of frequencies
less than about 1000Hz may therefore be represented by the periodicity of the neural volleys. This
mechanism may be one method of coding for the subjective attribute of pitch. The fact that the
neurons leading away from a given region of the frequency-selective basilar membrane maintain their
identity in the auditory nerve offers a further possibility for the coding of pitch, namely, in terms of
membrane place of maximum stimulation.

6.1.5 Neural Pathways in the Auditory System

A schematic representation of the ascending neural pathways associated with one ear are shown in
Fig. 6.11. Beginning in the organ of Corti, the roughly 30000 individual neurons innervate singly or
multiply about the same number of sensory (hair) cells. (In general, the inner hair cells are served by
only one or two neurons, the outer cells by several.) The dendritic arbors of the first-order neurons
bear on the sensory cells. The cell bodies of the first-order neurons are located in the spiral ganglion,
and their axons pass via the cochlear nerve (about 5 mm) to the dorsal and ventral cochlear nuclei
in the medulla. Here the first synapses of the auditory pathway are located. From these nuclei, some
second-order neurons pass to the superior olive on the same side, some decussate to the opposite
side. Some pass upward to the medial geniculate body, with or without intermediate synapses with
other neurons located in the lateral lemnisci and the inferior colliculi. The latter nuclei are located
in the midbrain, and a second, smaller pathway of decussation runs between them. Thus, stimuli
received at the two ears may interact both at the medulla and midbrain levels. The last stage in the
pathway is the auditory cortex. The exact neuro-electrical representation of sound stimuli at these
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Figure 6.12: Electrical firings from two auditory nerve fibers. The characteristic frequency of unit
22 is 2.3 kHz and that for unit 24 is 6.6 kHz, The stimulus is 50 msec bursts of a 2.3 kHz tone.
(After (Kiang and Peake [1960]))

various levels is not well understood, and considerable research effort is presently aimed at studying
these processes.

The first-order fibers of the auditory nerve connect to different places along the cochlear partition.
Starting at the point (apex) of the cochlea, they are progressively collected in the internal auditory
meatus until, at the base, the whole nerve trunk is formed. Because the basilar membrane is a
mechanical frequency analyzer, it is not surprising that individual fibers exhibit frequency specificity.
Owing to the way in which the fibers are collected and the trunk formed, those fibers which have
greatest sensitivity to high frequencies lie on the outer part of the whole nerve, while those more
sensitive to low frequencies tend to be found toward the core. This “tonotopic” organization of the
auditory system (that is, its place-frequency preserving aspect) seems to be maintained at least to
some degree all the way to the cortical level (Tunturi [1955]).

The electrical response of individual fibers is a standard pulse. Characteristically, the pulse
exhibits a duration on the order of a millisecond. The activity is statistical in two senses. First, the
firing patterns of an individual fiber are not identical in successive repetitions of a given stimulus.
Second, individual fibers exhibit spontaneous firing (electrical output) of a random nature. The
latter appears to be much the same for all first-order fibers.

Comprehensive investigation of first-order electrical behavior in cats has been carried out by
Kiang et al. (Kiang and Peake [1960]). Since the structure of the cochlea and auditory nerve follows
the same general plan in all mammals, data from these studies should give insight into the human
auditory system.

Typical microelectrode recordings from single primary fibers are illustrated in Fig. 6.12. In this
instance, the signal comprises 50 msec tone bursts of a 2.3 kHz frequency. The upper recording is
from a fiber that is maximally sensitive to this frequency, while the lower is from a fiber maximally
sensitive to 6.6 kHz. The electrical output of the former is highly correlated with the stimulus, while
the electrical output of the latter is not. The nerve response potential is recorded with respect to a
convenient reference potential, in this case the head holder for the preparation. A positive voltage
is indicated by a downward deflection.

By choosing a suitable criterion of response, the frequency characteristic (tuning curve) of an
individual first-order fiber can be measured. Results of such measurements are illustrated for several
fibers in Fig. 6.13. The frequency for which the threshold is lowest (the minimum of each curve)
is called the characteristic frequency (CF) of the fiber (unit). These minima appear to match well
the shape of the audiogram determined from behavioral measurements. An interesting aspect of
these data is that while over the low-frequency range the shapes of the tuning curves appear to be
nearly constant percentage bandwidth in character (constant Q) and display a bandwidth which
correlates reasonably well with Békésy’s mechanical responses, the tuning curves of high-frequency
units are much sharper and display Qincreasing with frequency. (Békésy’s observations on human
basilar membrane were, of course, limited to the low end of the spectrum–2400Hz and down.)

Kiang et al. have also observed the electrical response of primary units to punctuate signals,
namely, broadband clicks. Individual responses to 10 successive rarefaction clicks of 100–sec duration
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Figure 6.13: Frequency sensitivities for six different fibers in the auditory nerve of cat. (After (Kiang
and Peake [1960]))

are plotted in Fig. 6.14. The figure shows the electrical response recorded at the round window (RW,
primarily the cochlear microphonic) and the response of the individual fiber. The time origin is taken
as the time the pulse is delivered to the earphone. The characteristic frequency of the unit is 540Hz.
The pattern of firing differs in successive stimulations, but the responses show a consistent periodic
aspect. Multiple firings in response to a single click are apparent.

A convenient way to analyze this periodic feature is, in successive presentations of the signal, to
measure the number of times the fiber fires at a prescribed time after the signal onset. This number
plotted against the time of firing forms the post-stimulus time (PST) histogram. Some quantization
of the time scale is implied and this quantization (or “bin width”) is made sufficiently small to resolve
the periodicities of interest. (For click signals, a bin width of 0.063 msec was customarily used.) A
digital computer is a valuable tool for calculating and displaying the histogram. One minute of data
from the conditions in Fig. 6.14 produces the histogram of Fig. 4.15. (Since the clicks are delivered
at a rate of 10 Hz, this histogram is the result of 600 signal presentations.) The times of firings show
a periodic structure, or “preferred” times for firing. In the midfrequency range for the animal, the
histogram may exhibit as many as five or six distinct peaks or preferred times. At the upper end of
the animal’s frequency range, the tendency is for the histogram to display a single major peak.

The preferred times for firing appear to be intimately linked to the characteristic frequency of
the unit, and the interval between peaks in the PST histogram is approximately equal to l/CF.
Higher frequency units consequently show smaller intervals between the PST histogram peaks. The
interval between peaks in the histogram and l/CF are related as shown in Fig. 6.16. Data for 56
different units are plotted. The multiple responses of single primary units to single clicks almost
certainly reflect the mechanical response of the cochlea. (See the derivations of Section 6.2 for the
impulse response of the basilar membrane.)

Microelectrode studies of the electrical activity of single neurons at other levels in the auditory
pathway have been, and are being, carried out. Varying experimental techniques and methods of
anesthesia have sometimes led to disagreements among the results, but as research progresses the
neural schema is becoming increasingly better understood.

According to at least one investigation on cat, the rate of single unit firings is monotonically
related to stimulus intensity at all neural stages from the periphery up to the medial geniculate
body (KATSUKI). This is exemplified for sinusoidal tones in Figs. 6.17 and 4.18. Fig. 6.17 shows
the spikes (firings) of a single neuron in the trapezoidal body of cat in response to tone bursts of
9000Hz, delivered at four different levels. The spike duration is on the order of the conventional 1
msec, and the firings are more numerous for the more intense sounds.

Fig. 6.18 shows a monotone relation between firing rate and intensity for different neural stages.
The firing rate for the first-order single neuron (the top curve for the cochlear nerve) has a maximum
value close to its best (characteristic) frequency, namely 830 Hz. This suggests that for the sinusoidal
stimulation, the first-order neuron fires at most once per period. The rates at the higher neural stages
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Figure 6.15: Post stimulus time (PST) histogram for the nerve fiber shown in Fig. 6.14. CF = 540Hz.
Stimulus pulses 10 Hertz. (After (Kiang and Peake [1960]))

Figure 6.16: Characteristic period (l/CF) for 56 different auditory nerve fibers plotted against the
interpeak interval measured from PST histograms. (After KIANG et at.)

Figure 6.17: Responses of a single auditory neuron in the trapezoidal body of cat. The stimulus was
tone bursts of 9000Hz produced at the indicated relative intensities. (After KATSUKI)
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Figure 6.18: Relation between sound intensity and firing (spike) frequency for single neurons at four
different neural stages in the auditory tract of cat. Characteristic frequencies of the single units:
Nerve: 830Hz; Trapezoid: 9000Hz; Cortex: 3500Hz; Geniculate: 6000 Hz.(After KATSUKI)

Figure 6.19: Sagittal section through theleft cochlear complex in cat. The electrode followed the
track visible just above the ruled line. Frequencies of best response of neurons along thetrack are
indicated. (After (Rose et al. [1959]))

appear substantially less than their characteristic frequencies.
Microelectrode recordings from single first-order neurons often show appreciable spontaneous

activity. At higher neural stages and in the cortex, spontaneous activity apparently is not as pro-
nounced (KATSUKI).

The cochlear nucleus complex of cat has been another particular area of study (Rose et al.
[1959]). Strong evidence for a distinct tonotopical organization is found in the major subdivision of
the cochlear nucleus. Typical of this finding is the sagittal section through the left cochlear complex
shown in Fig. 6.19. The frequency scale indicates the best (most sensitive) frequencies of the neurons
located along the ruled axis.

Some tonotopical organization appears to exist at the cortical level, although its degree and
extent seems to be controversial (for example, (Katsuki [1960], Tunturi [1955])).

The relations between threshold sound amplitude and tone frequency (that is, the tuning curves)
for single units at the cochlear nucleus level have been found to vary in shape (Rose et al. [1959]).
Some appear broad, others narrow. All, however, resemble roughly the mechanical resonance char-
acteristic of the basilar membrane. That is, the tuning curve (or threshold amplitude) rises more
steeply on the high-frequency side than on the low-frequency side. Typical narrow and broad tuning
curves obtained from single units in the cochlear nucleus are shown in Fig. 6.20a and b, respectively.
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Figure 6.20: Intensity us frequency” threshold” responses for single neurons in the cochlear nucleus
of cat. The different curves represent the responses of different neurons. (a) Units with narrow
response areas; (b) units with broad response areas. (After (Rose et al. [1959]))
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Figure 6.21: Schematic diagram of the peripheral ear. The quantities to be related analytically are
the eardrum pressure, p(t): the stapes displacement, x(t); and the basilar membrane displacement
at distance l from the stapes, yl(t)

For tones up to about 60 db above the threshold, the frequency range of response for both narrow
and broad units does not extend over more than about 0.3 of an octave above the best frequency.
The frequency range below the best frequency can range from about 0.4 to 3.8 octaves for the nar-
row units, to almost the whole lower frequency range for the broad units. Single units at this level
display adaptive and inhibitory behavior which is strongly intensity dependent.

The mechanism of neural transmission across a synapse also remains to be firmly established.
A temporal delay–typically on the order of 1 msec–is usually incurred at the junction. Response
latencies at the level of the cochlear nucleus have minimum times on the order of 2 to 3 msec, but
latencies as great as 6 to 8 msec have been measured. At the cortical level, latencies as great as 20
to 30 msec and as small as 6 to 8 msec are possible.

6.2 Computational Models for Ear Function

It has been emphasized in the preceding discussion that the complete mechanism of auditory per-
ception is far from being adequately understood. Even so, present knowledge of ear physiology,
nerve electrophysiology, and subjective behavior make it possible to relate certain auditory functions
among these disparate realms. Such correlations are facilitated if behavior can be quantified and an-
alytically specified. As a step in this direction, a computational model has been derived to describe
basilar membrane displacement in response to an arbitrary sound pressure at the eardrum (Flanagan
[1962a]).

The physiological functions embraced by the model are shown in the upper diagram of Fig. 6.21.
In this simplified schematic of the peripheral ear, the cochlea is shown uncoiled. p(t) is the sound
pressure at the eardrum, x(t) is the equivalent linear displacement of the stapes footplate, and yl(t)
is the linear displacement of the basilar membrane at a distance l from the stapes. The desired
objective is an analytical approximation to the relations among these quantities. It is convenient
to obtain it in two steps. The first step is to approximate the middle-ear transmission, that is, the
relation between x(t) and p(t). The second is to approximate the transmission from the stapes to
the specified point l on the membrane. The approximating functions are indicated as the Laplace
transforms G(s) and Fl(s), respectively, in the lower part of Fig. 6.21.
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The functions G(s) and Fl(s) must be fitted to available physiological data. If the ear is assumed
to be mechanically passive and linear over the frequency and amplitude ranges of interest, rational
functions of frequency with stable normal modes (left half-plane poles) can be used to approximate
the physiological data. Besides computational convenience, the rational functions have the advan-
tage that they can be realized in terms of lumped-constant electrical circuits, if desired. Because
the model is an input-output or “terminal” analog, the response of one point does not require ex-
plicit computation of the activity at other points. One therefore has the freedom to calculate the
displacement yl(t) for as many, or for as few, values of l as are desired.

6.2.1 Basilar Membrane Model

The physiological data upon which the form of Fl(s) is based are those of BÉKÉSY, shown in
Fig. 6.66. If the curves of Fig. 6.6 are normalized with respect to the frequency of the maximum
response, one finds that they are approximately constant percentage bandwidth responses. One
also finds that the phase data suggest a component which is approximately a simple delay, and
whose value is inversely proportional to the frequency of peak response. That is, low frequency
points on the membrane (nearer the apex) exhibit more delay than high frequency (basal) points.
A more detailed discussion of these relations and the functional fitting of the data has been given
previously (Flanagan [1962a]). In this earlier work, the fit afforded by three different forms of Fl(s)
was considered. For purpose of the present discussion, only the results for the first, a fifth-degree
function, will be used.

The physiological data can, of course, be approximated as closely as desired by selecting an
appropriately complex model. The present model is chosen to be a realistic compromise between
computational tractability and adequacy in specifying the physiological data. One function which
provides a reasonable fit to Békésy’s results is

Fl(s) = c1β
4
l

(
2000πβl
βl + 2000π

)0.8(
s+ ǫl
s+ βl

)[
1

(s+ αl)2 + β2
l

]2
e

−3πs
4βl (6.1)

where

s = α+ jβ is the complex frequency,
βl = 2αl is the radian frequency to which the point l-

distance from the stapes responds maximally,
c1 is a real constant that gives the proper absolute

value of displacement,

e
−3πs
4βl is a delay factor of 3π/4βl seconds which brings

the phase delay of the model into line with the
phase measured on the human ear. This factor is
primarily transit delay from stapes to point l on
the membrane,(

2000πβl

βl+2000π

)0.8

β4
l is an amplitude factor which matches the varia-

tions in peak response with resonant frequency βl
as measured physiologically by (Bekesy [1943]).

ǫl/βl = 0.1 to 0.0 depending upon the desired fit to the
response at low frequencies.

The membrane response at any point is therefore approximated in terms of the poles and zeros of
the rational function part of Fl(s). As indicated previously in Fig. 6.6, the resonant properties of the
membrane are approximately constant-Q (constant percentage bandwidth) in character. The real

6More recent data on basilar membrane vibration, determined in animal experiments using the Mossbauer ef-
fect (Johnstone and Boyle [1967], Rhode [1971]), may also serve as this point of departure.
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Figure 6.22: (a) Pole-zero diagram for the approximating function Fl(s) (After FLANAGAN, 1962a).
(b) Amplitude and phase response of the basilar membrane model Fl(s). Frequency is normalized
in terms of the characteristic frequency βl

Figure 6.23: Response of the basilar membrane model to an impulse of stapes displacement

and imaginary parts of the critical frequencies can therefore be related by a constant factor, namely,
βl = 2αl. To within a multiplicative constant, then, the imaginary part of the pole frequency, βl,
completely describes the model and the characteristics of the membrane at a place l-distance from
the stapes. The pole-zero diagram for the model is shown in Fig. 6.22a.

The real-frequency response of the model is evidenced by letting s = jω. If frequency is normal-
ized in terms of ζ = ω/βl, then relative phase and amplitude responses of Fl(jζ) are as shown in
Fig. 6.22b. Because of the previously mentioned relations, Fl(ζ) has (except for the multiplicative
constant) the same form for all values of l.

The inverse Laplace transform of (6.1) is the displacement response of the membrane to an
impulse of displacement by the stapes. The details of the inverse transformation are numerically
lengthy, but if the mathematics is followed through it is found to be

fl(t) = c1

(
2000π

βl + 2000π

)0.8

β1+r
l {[0.033 + 0.360βl(t− T )] (6.2)

×e−
βl(t−T )

2 sinβl(t− T ) + [0.575 − 0.320βl(t− T )]

e−
βl(t−T )

2 cosβl(t− T ) − 0.575e−βl(t−T )
}

= 0

for t ≥ T and ǫl/βl = 0.1,

where the delay T = 3π/4βl, as previously stated. A plot of the response (6.2) is shown in Fig. 6.23.
Note, too, from the form of (6.1) that the complex displacement response can be determined as

a function of the place frequency βl for a given stimulating frequency s = jωn The radian frequency
βl can, in turn, be related directly to the distance l (in mm) from the stapes by

(35 − l) = 7.5 logβa/2π(20)
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Figure 6.24: Functional approximation of middle ear transmission. The solid curves are from an
electrical analog by ZWISLOCKl (see Fig. 6.3c). The plotted points are amplitude and phase values
of the approximating function G(s). (Flanagan [1962a])

(see (Flanagan [1962a])). Therefore (6.1) can be used to compute F (s, l)|s=jωn
= A(l)ejφ(l) to give

spatial responses of amplitude and phase similar to those shown in Fig. 6.6c.

6.2.2 Middle Ear Transmission

To account for middle ear transmission, an analytical specification is necessary of the stapes dis-
placement produced by a given sound pressure at the eardrum (see Fig. 6.21). Quantitative phys-
ioacoustical data on the operation of the human middle ear are sparse. The data which are available
are due largely to Békésy and, later, to Zwislocki and to Moller. These results have been shown
in Fig. 6.3. The data suggest appreciable variability and uncertainty, particularly in connection
with the critical (roll-off) frequency and damping of the characteristic. All agree, however, that the
middle ear transmission is a low-pass function. Békésy’s results were obtained from physiological
measurements. Zwislocki’s and Moller’s data are from electrical analogs based upon impedance mea-
surements at the eardrum, a knowledge of the topology of the middle ear circuit, and a knowledge
of some of the circuit constants. In gross respects the data are in agreement7.

If ZWISLOCKI’S results in Fig. 6.3 are used, they can be approximated reasonably well by a
function of third degree. Such an approximating function is of the form

G(s) =
c0

(s+ a) [(s+ a)2 + b2]
(6.3)

where c0 is a positive real constant. [When combined with Fl(s), the multiplying constants are chosen
to yield proper absolute membrane displacement. For convenience, one might consider c0 = a(a2+b2)
so that the low-frequency transmission ofG(s) is unity.] When the pole frequencies ofG(s) are related
according to

b = 2a = 2π(l500) rad/sec, (6.4)

the fit to Zwislocki’s data is shown by the plotted points in Fig. 6.24. The inverse transform of (6.3)
is the displacement response of the stapes to an impulse of pressure at the eardrum. It is easily
obtained and will be useful in the subsequent discussion. Let

G(S) = G1(s)G2(s),

where

G1(s) =
c0

s+ a
; G2(s) =

1

(s+ a)2 + b2
(6.5)

7Recent measurements on middle-ear transmission in cat (Guinan and Peake [1967], Peake et al. [1962]) also
correspond favorably with these data.
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Figure 6.25: Displacement and velocity responses of the stapes to an impulse of pressure at the
eardrum

The inverses of the parts are

g1(t) = c0e
−at; g2(t) =

e−at

b
sin bt. (6.6)

The inverse of G(s) is then the convolution of g1(t) and g2(t)

g(t) =

∫ t

0

g1(τ)g2(t− τ)dτ,

or

g(t) = c0
e−at

b
(1 − cos bt) =

c0e
−bt/2

b
(1 − cos bt). (6.7)

Also for future use, note that the time derivative of the stapes displacement is

ġ(t) =
c0e

−bt/2

2
(2 sin bt+ cos bt− l). (6.8)

Plots of g(t) and ġ(t) are shown in Fig. 6.25. For this middle ear function, the response is seen
to be heavily damped. Other data, for example Moller’s in Fig. 4.3, suggest somewhat less damping
and the possibility of adequate approximation by a still simpler, second-degree function. For such a
transmission, the stapes impulse response would be somewhat more oscillatory8.

6.2.3 Combined Response of Middle Ear and Basilar Membrane

The combined response of the models for the middle ear and basilar membrane is

Hl(s) = G(S)Fl(s)
hl(t) = g(t) ∗ fl(t). (6.9)

8The modelling technique does not of course depend critically upon the particular set of data being modeled.
When more complete physiological measurements are forthcoming, the rational function can be altered to fit the new
data.
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Figure 6.26: Displacement responses for apical, middle and basal points on the membrane to an
impulse of pressure at the eardrum. The responses are computed from the inverse transform of
[G(s)Fl(s)]

For the Fl(s) model described here, the combined time response is easiest obtained by inverse
transforming Hl(s). [For other Fl(s) models, the combined response may be more conveniently
computed from timedomain convolution.]

The details of the inverse transform of Hl(s) are numerically involved and only the result is of
interest here. When the inverse transform is calculated, the result has the form

hl(τ) = Ae−bτ/2 +Be−bτ/2(cos bτ − 1
2 sin bτ) + C(e−bτ/2 sin bτ)

+De−ηbτ + E(e−ηbτ/2 sin ηbτ) + F (ηbτe−ηbτ/2 sin bτ)

+G(e−ηbτ/2 cos ηbτ) +H(ηbτe−ηbτ/2 cos ηbτ); for τ ≥ 0,

(6.10)

where τ = (t− T ); T = 3π/4βl; η = βl/b; βl = 2αl; b = 2a; ǫl = 0; and the A, B, C, D, E, F , G, H
are all real numbers which are functions of βl and b (see (Flanagan [1962a]), for explicit description).

The form of the impulse response is thus seen to depend upon the parameter η = βl/b. Values
of η < 1.0 refer to (apical) membrane points whose frequency of maximal response is less than the
critical frequency of the middle ear. For these points, the middle-ear transmission is essentially
constant with frequency, and the membrane displacement is very nearly that indicated by fl(t) in
Eq. (6.2). On the other hand, values of η > 1.0 refer to (basal) points which respond maximally at
frequencies greater than the critical frequency of the middle ear. For these points, the middle-ear
transmission is highly dependent upon frequency and would be expected to influence strongly the
membrane displacement. To illustrate this point, Eq. (6.10) has been evaluated for η =0.1, 0.8, and
3.0. The result is shown in Fig. 6.26.

For an impulse of pressure delivered to the eardrum, the three solid curves represent the mem-
brane displacements at points which respond maximally to frequencies of 150, 1200, and 4500Hz,
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Figure 6.27: (a) Amplitudevs frequency responses for the combined model. (b) Phasevs frequency
responses for the combined model

respectively. Each of the plots also includes a dashed curve. In Figs. 6.26a and 6.26b, the dashed
curve is the membrane displacement computed by assuming the middle-ear transmission to be con-
stant, or flat, and with zero phase. This is simply the response [L−1Fl(s)]. In Fig. 6.26c the dashed
curve is the time derivative of the stapes displacement, g(t), taken from 6.25. Fig. 6.25c therefore
suggests that the form of the membrane displacement in the basal region is very similar to the
derivative of the stapes displacement.

The individual frequency-domain responses for G(s) and Fl(s) have been shown in Figs. 6.22
and 6.24, respectively. The combined response in the frequency domain is simply the sum of the
individual curves for amplitude (in db) and phase (in radians). The combined amplitude and phase
responses for the model G(s)Fl(s) are shown in Figs. 6.27a and 6.27b, respectively.

As already indicated by the impulse responses, the response of apical (low-frequency) points on
the membrane is given essentially by Fl(s), while for basal (high-frequency) points the response
is considerably influenced by the middle-ear transmission G(s). Concerning the latter point, two
things may be noted about the frequency response of the membrane model [i.e., Fl(ω)]. First, the
low-frequency skirt of the amplitude curve rises at about 6 db/octave. And second, the phase of the
membrane model [i.e. ∠Fl(ω)] approaches +π/2 radians at frequencies below the peak amplitude
response9. In other words, at frequencies appreciably less than its peak response frequency, the
membrane function Fl(ω) behaves crudely as a differentiator. Because the middle-ear transmission
begins to diminish in amplitude at frequencies above about 1500Hz, the membrane displacement

9This phase behavior is contrary to the physiological phase measurements shown in Fig. 6.6b. Nevertheless,
calculations of minimum phase responses for the basilar membrane indicated that the low-frequency phase behavior
must approach n/2 radians lead (Flanagan et al. [1962a]). This earlier analytical prediction (and hence justification
for the choice 1=0) has been confirmed by recent measurements. These measurements, using the Mossbauer effect, in
fact reveal a leading phase at low frequencies (Johnstone and Boyle [1967], Rhode [1971]).



6.2. COMPUTATIONAL MODELS FOR EAR FUNCTION 171

Figure 6.28: Electrical network representation of the ear model

in the basal region is roughly the time derivative of the stapes displacement. The waveform of the
impulse response along the basal part of the membrane is therefore approximately constant in shape.
Along the apical part, however, the impulse response oscillates more slowly (in time) as the apex is
approached. This has already been illustrated in Fig. 6.26.

One further point may be noted from Fig. 6.27. Because the amplitude response of the middle-ear
declines appreciably at high frequencies, the amplitude response of a basal point is highly asym-
metrical. (Note the combined response for η = 3.0.) The result is that a given basal point–while
responding with greater amplitude than any other membrane point at its characteristic frequency–
responds with greatest amplitude (but not greater than some other point) at some lower frequency.

6.2.4 An Electrical Circuit for Simulating Basilar Membrane Displace-
ment

On the basis of the relations developed in the previous sections [Eqs. (6.1) and (6.3)], it is possible
to construct electrical circuits whose transmission properties are identical to those of the functions
G(s) and Fl(s). This is easiest done by representing the critical frequencies in terms of simple
cascaded resonant circuits, and supplying the additional phase delay by means of an electrical delay
line. Such a simulation for the condition ǫl = 0 is shown in Fig. 6.28.

The voltage at an individual output tap represents the membrane displacement at a specified
distance from the stapes. The electrical voltages analogous to the sound pressure at the eardrum
and to the stapes displacement are also indicated. The buffer amplifiers labelled A have fixed gains
which take account of the proper multiplicative amplitude constants.

The circuit elements are selected according to the constraints stated for G(s) and Fl(s). The con-
straints are represented by the equations shown in Fig. 6.28 and, together with choice of impedance
levels, completely specify the circuit. For each membrane point the relative gains of the amplifiers
are set to satisfy the amplitude relations implied in Fig. 6.27a. The gains also take account of the
constant multiplying factors in the rational function models. Some representative impulse responses
of the analog circuit of Fig. 6.28 are shown in Fig. 6.29a. One notices the degradation in time
resolution as the response is viewed at points more apical ward. That is, the frequency resolution
of the membrane increases as the apex is approached.

The electrical circuit can also be used in a simple manner to provide an approximation to the
spatial derivative of displacement. This function, like the displacement, may be important in the
conversion of mechanical-to-neural activity. As mentioned earlier, it has been noted that the inner
hair cells in the organ of Corti appear sensitive to longitudinal bending of the membrane, Whereas
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Figure 6.29: (a) Impulse responses measured on the network of Fig. 6.28. (b) First difference
approximations to th espatial derivative measured from the network of Fig. 6.28

the outer cells are sensitive to transverse bending (Bekesy [1953]). The former may therefore be
more sensitive to the spatial gradient or derivative of membrane displacement, while the latter may
be primarily sensitive to displacement.

The differences between the deflection of adjacent, uniformly-spaced points can be taken as an
approximation to the spatial derivative. Fig. 6.29b shows the first spatial difference obtained from
the analog circuit by taking

∂y

∂x
=
y(t, x+ ∆x) − y(t, x)

∆x
,

where
∆x = 0.3mm

The similarity to the displacement is considerable.

6.2.5 Computer Simulation of Membrane Motion

If it is desired to simulate the membrane motion at a large number of points and to perform complex
operations upon the displacement responses, it is convenient to have a digital representation of the
model suitable for calculations in a digital computer. One such digital simulation represents the
membrane motion at 40 points (Flanagan [1962b]).

As might be done in realizing the analog electrical circuit, the digital representation of the model
can be constructed from sampled-data equivalents of the individual complex pole-pairs and the
individual real poles and zeros. The sampled-data equivalents approximate the continuous functions
over the frequency range of interest. The computer operations used to simulate the necessary poles
and zeros are shown in Fig. 6.30. All of the square boxes labelled D are delays equal to the time
between successive digital samples. The input sampling frequency, 1/D, in the present simulation
is 20 KHz, and the input data are quantized to 11 bits. All of the triangular boxes are “amplifiers”
which multiply their input samples by the gain factors shown next to the boxes.

Each of the digital operations enclosed by dashed lines is treated as a component block in the
program. The block shown in Fig. 6.30a is labelled CP for conjugate-pole. It has the transfer
function

Ya(s)

Xa(s)
=
[
e−2θe−2sD − 2e−θ cosΦe−sD + 1

]−1
(6.11)

which has poles at
e−(θ+sD) = cosΦ ± j sin Φ
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Figure 6.30: Sampled-data equivalents for the complex conjugate poles, real-axis pole, and real-axis
zero

Figure 6.31: Functional block diagram for a digital computer simulation of basilar membrane dis-
placement
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or

s =
1

D
[−θ ± j(Φ + 2nπ)] , n = 0, 1, 2, . . .

so that
θl = αlD and Φl = βlD,

where αl and βl are the real and imaginary parts of the pole-pair to be simulated. The pole
constellation of the sampled-data function repeats at ±j2nπ/D (or at j2nπ/5× l0−5 for the 20kHz
sampling frequency).

Single real-axis poles are approximated as shown by the P block in Fig. 6.30b. The transfer
function is

Yb(x)

Xb(s)
=
[
1 − e−(θ+sD)

]
(6.12)

and has poles at

s =
1

D
(−θ ± j2nπ) , n = 0, 1, 2, . . .

The single zero is simulated by the Z block in Fig. 6.30c. Its transfer function is the reciprocal of
the P block and is

Yc(s)

Xc(s)
= l − e−(θ+sD) (6.13)

with zeros at

s =
1

D
(−θj2nπ), n = 0, 1, 2, . . .

In the present simulation the zero is placed at the origin, so that θ = 0 (i.e., ǫl = 0).
The computer operations diagrammed by these blocks were used to simulate the model G(s)Fl(s)

for 40 points along the basilar membrane. The points represent 0.5 mm increments in distance along
the membrane, and they span the frequency range 75 to 4600Hz. The blocks are put together in
the computer program as shown in Fig. 6.3110 The amplifier boxes c′0 and c′1 in Fig. 6.31 take into
account not only the model amplitude constants c0 and c1 and the (2000πβl/(βl+2000π))0.8 factor,
but also the amplitude responses of the digital component blocks. For example, it is convenient
to make the zero-frequency gain of the CP boxes unity, so each c′1 amplifier effectively includes a
[e−2θ − 2e−θ × cosΦ + 1]2 term. The overall effect of the c′0 and c′1 gain adjustments is to yield the
amplitudes specified by G(s)Fl(s). The delay to each membrane point, 3π/4βl, is simulated in terms
of integral numbers of sample intervals. In the present simulation it is consequently represented to
the nearest 50 usee.

An illustrative impulse response from the simulation, plotted automatically by the computer,
is shown in Fig. 6.32. The displacement response of the membrane at 40 points is shown as a
function of time. The characteristic frequencies of the membrane points are marked along the y-
axis, starting with 4600Hz at the lower (basal) end and going to 75Hz at the upper (apical) end.
Time is represented along the x-axis. The input pressure signal p(t) is a single positive pulse 100
µsec in duration and delivered at t = 0. The responses show that the basal points respond with
short latency and preserve a relatively broad-band version of the input pulse. The apical points
display increasingly greater latency and progressive elimination of high-frequency content from the
signal.

These same attributes of the membrane are put in evidence by a periodic pulse signal, which will
be of interest in the subsequent discussion. Fig. 6.33 shows the reponse to an input signal composed
of alternate positive and negative pulses of 100µsec duration, produced at a fundamental frequency
of 100Hz and initiated at t = 0. The time between alternate pulses is therefore 5 msec. At the
apical (low-frequency) end of the membrane, the frequency resolution is best, and the displacement

10In the present case the simulation was facilitated by casting the operations in the format of a special compiler
program (Jr. and Lochbaum [1962b], Vyssotsky [1961]).
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Figure 6.32: Digital computer simulation of the impulse responses for 40 ponits along the basilar
membrane. The input signal is a single rarefaction pulse, 100µsec in duration, delivered to th
eeardrum at time t = 0. (After (Flanagan [1962b]))

Figure 6.33: Digital computer output for 40 simulated points along the basilar membrane. Each trace
is the displacement response of a given membrane place to alternate positive and negative pressure
pulses. The pulses have 100µsec duration and are produced at a rate of 200 Hz. The input signal is
applied at the eardrum and is initiated at time zero. The simulated membrane points are spaced by
0.5mm. Their characteristic frequencies are indicated along the ordinate. (After (Flanagan [1962b]))
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Figure 6.34: Idealized schematic of the cochlea. (After PETERSON and BOGERT)

builds up to the fundamental sinusoid. At the basal (highfrequency) end, the membrane resolves
the individual pulses in time. The responses also reflect the transit delay along the membrane.

The utility of the computation model depends equally upon its mathematical tractability and
its adequacy in approximating membrane characteristics. Given both, the model can find direct
application in relating subjective and physiological auditory behavior. More specifically, it can be
useful in relating psychoacoustic responses to patterns of membrane displacement and in establishing
an explanatory framework for the neural representation of auditory information.

6.2.6 Transmission Line Analogs of the Cochlea

The preceding discussion has concerned an “input-output” formulation of the properties of the
middle ear and basilar membrane. This approach, for computational and applicational convenience,
treats the mechanism in terms of its terminal characteristics. A number of derivations have been
made, however, in which the distributed nature of the inner ear is taken into account, and the
detailed functioning of the mechanism is examined (Peterson and Bogert [1950], Bogert [1951],
Ranke [1942], Zwislocki [1948], Oetinger and Hauser [1961])). At least two of these treatments have
yielded transmission line analogs for the inner ear.

The simplifying assumptions made in formulating the several treatments are somewhat similar.
By way of illustration, they will be indicated for one formulation (Peterson and Bogert [1950]). The
cochlea is idealized as shown in Fig. 6.34. The oval window is located at O and the round window
at R. The distance along the cochlea is reckoned from the base and denoted as x. The cross-
sectional areas of the scalas vestibuli and tympani are assumed to be identical functions of distance,
S0(x). The width of the basilar membrane is taken as b(x), and the per-unit-area distributed mass,
resistance and stiffness of the basilar membrane (or, more precisely, of the cochlear duct separating
the scalas) are respectively m(x), r(x) and k(x). The mechanical constants used are deduced from
the physiological measurements of Békésy.

The following simplifying assumptions are made. All amplitudes are small enough that nonlinear
effects are excluded. The stapes produces only plane compressional waves in the scalas. Linear
relations exists between the pressure difference across the membrane at any point and the membrane
displacement, velocity and acceleration at that point. The vertical component of particle velocity in
the perilymph fluid is small and is neglected. A given differential element of the membrane exerts
no mutual mechanical coupling on its adjacent elements.

The relations necessary to describe the system are the equations for a plane compressional wave
propagating in the scalas and the equation of motion for a given membrane element. For a plane
wave in the scalas, the sound pressure, p, and particle velocity, u, are linked by the equation of
motion

ρ
∂u

∂t
= − ∂p

∂x
, (6.14)

where p is the average density of the perilymph fluid. If the membrane displacements are small, the
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Figure 6.35: Instantaneous pressure difference across the cochlear partition at successive phases in
one period of a 1000Hz excitation. (After (Peterson and Bogert [1950]))

equations of continuity (mass conservation) for the two scalas are

∂(uvS)

∂x
= − S

ρc2
∂pv
∂t

− vb

∂(utS)

∂x
= − S

ρc2
∂pt
∂t

+ vb (6.15)

where v is the membrane velocity and the subscripts v and t denote vestibuli and tympani, respec-
tively. These relations state that the rate of mass accumulation for an elemental volume in the scala
is equal to the temporal derivative of the fluid density.

The equation of motion for the membrane is

(pv − pt) = m
dv

dt
+ rv + k

∫
vdt, (6.16)

where the pressure difference between the scalas (pv − pt) is the forcing function for a membrane
element.

Eqs. (6.14) to (6.16) can be solved simultaneously for the pressures and velocities involved.
A typical solution for the instantaneous pressure difference produced across the membrane by an
excitation of 1000Hz is shown in Fig. 6.35. The pressure difference is shown at 1

8msec intervals
(every π/4 radians of phase) for one cycle. The traveling wave nature of the excitation is apparent,
with the speed of propagation along the membrane being greater at the basal end and becoming
slower as the apex (helicotrema) is approached.

From the pressure and velocity solutions, an equivalent four-pole network can be deduced for an
incremental length of the cochlea. Voltage can be taken analogous to sound pressure and current
analogous to volume velocity. Such a network section is shown in Fig. 6.36 (BOGERT). Here L1

represents the mass of the fluid in an incremental length of the scalas; C1 the compressibility of
the fluid; and L2, R2, C2, C3, and C4 represent the mechanical constants of the membrane. The
voltage P (x, ω) represents the pressure difference across the membrane as a function of distance and
frequency, and the voltage Y (x, ω) represents the membrane displacement.

A set of 175 such sections has been used to produce a transmission line analog of the cochlea (Bogert
[1951]). The displacement responses exhibited by the line compare well in shape with those measured
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Figure 6.36: Electrical network section for representing an incremental length of the cochlea. (Af-
ter (Bogert [1951]))

Figure 6.37: Comparison of the displacement response of the transmission line analog of the cochlea
to physiological data for the ear. (After BOGERT)

by Békésy on real cochleas. An illustrative response is shown in Fig. 6.37. Some differences are found
in the positions of peak response and in the lowest frequencies which exhibit resonance phenomena.
Probable origins of the differences are the uncertainties connected with the spatial variation of the
measured mechanical constants of the membrane and the neglect of mutual coupling among mem-
brane elements. Despite the uncertainties in the distributed parameters, the transmission line analog
provides a graphic demonstration of the traveling-wave nature of the basilar membrane motion.

6.3 Illustrative Relations between Subjective and Physiolog-
ical Behavior

The ear models discussed above describe only the mechanical functions of the peripheral ear. Any
comprehensive hypothesis about auditory perception must provide for the transduction of mechanical
displacement into neural activity. As indicated earlier, the details of this process are not well
understood. The assumptions that presently can be made are of a gross and simplified nature.
Three such assumptions are useful, however, in attempting to relate physiological and subjective
behavior. Although oversimplifications, they do not seem to violate known physiological facts.
The first is that sufficient local deformation of the basilar membrane elicits neural activity in the
terminations of the auditory nerve. A single neuron is presumably a binary (fired or unfired) device.
The number of neurons activated depends in a monotonic fashion upon the amplitude of membrane
displacement11. Such neural activity may exist in the form of volleys triggered synchronously with

11Psychological and physiological evidence suggests that the intensity of the neural activity is a power-law function
of the mechanical displacement. A single neuron is also refractory for a given period after firing. A limit exists,
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Figure 6.38: Membrane displacement responses for filtered and unfiltered periodic pulses. The
stimulus pulses are alternately positive and negative. The membrane displacements are simulated
by the electrical networks shown in Fig. 6.28. To display the waveforms more effectively, the traces
are adjusted for equal peak-to-peak amplitudes. Relative amplitudes are therefore not preserved

the stimulus, or in the form of a signalling of place localization of displacement. Implicit is the notion
that the displacement–or perhaps spatial derivatives of displacement-must exceed a certain threshold
before nerve firings take place. Second, neural firings occur on only one “polarity” of the membrane
displacement, or of its spatial derivative. In other words, some process like half-wave rectification
operates on the mechanical response. Third, the membrane point displacing with the greatest
amplitude originates the predominant neutral activity. This activity may operate to suppress or
inhibit activity arising from neighboring points. These assumptions, along with the results from
the models, have in a number of instances been helpful in interpreting auditory subjective behavior.
Without going into any case in depth, several applications can be outlined.

6.3.1 Pitch Perception

Pitch is that subjective attribute which admits of a rank ordering on a scale ranging from low to
high. As such, it correlates strongly with objective measures of frequency. One important facet of
auditory perception is the ability to ascribe a pitch to sounds which exhibit periodic characteristics.

Consider first the pitch of pure (sinusoidal) tones. For such stimuli the basilar membrane dis-
placements are, of course, sinusoidal. The frequency responses given previously in Fig. 6.27a indicate
the relative amplitudes of displacement versus frequency for different membrane points. At any given
frequency, one point on the membrane responds with greater amplitude than all others. In accor-
dance with the previous assumptions, the most numerous neural volleys are elicited at this maximum
point. For frequencies sufficiently low (less than about 1000Hz), the volleys are triggered once per
cycle and at some fixed epoch on the displacement waveform. Subsequent processing by higher
centers presumably appreciates the periodicity of the stimulus-locked volleys.

For frequencies greater than about 1000 to 2000Hz, electro-physiological evidence suggests that
synchrony of neural firings is not maintained (Galambos [1958]). In such cases, pitch apparently is
perceived through a signalling of the place of greatest membrane displacement. The poorer frequency
resolution of points lying in the basal part of the basilar membrane probably also contributes to the
psychoacoustic fact that pitch discrimination is less acute at higher frequencies.

Suppose the periodic sound stimulus is not a simple sinusoidal tone but is more complex, say
repeated sharp pulses. What pitch is heard? For purpose of illustration, imagine the stimulus to be
the alternately positive and negative impulses used to illustrate the digital simulation in Fig. 6.33.
Such a pulse train has a spectrum which is odd-harmonic. If the pulses occur slowly enough, the
membrane displacement at all points will resolve each pulse in time. That is, the membrane will
have time to execute a complete, damped impulse response at all places for each pulse, whether

therefore, upon the rate at which it can fire.
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positive or negative. Such a situation is depicted by the analog membrane responses shown in the
left column of Fig. 6.38. The fundamental frequency of excitation is 25Hz (50 pps). The waveforms
were measured from analog networks such as illustrated in 6.28.

For this low pulse rate condition, one might imagine that neural firings synchronous with each
pulse–regardless of polarity–would be triggered at all points along the membrane. The perceived
pitch might then be expected to be equal to the pulse rate. Measurements show this to be the
case (Flanagan and Guttman [1960]). Furthermore, the model indicates that a pulse signal of this
low rate causes the greatest displacements near the middle portion of the membrane, that is, in the
vicinity of the place maximally responsive to about 1500Hz.

If, on the other hand, the fundamental frequency of excitation is made sufficiently high, say
200Hz or greater, the fundamental component will be resolved (in frequency) at the most apically-
responding point. This situation is illustrated for a 200Hz fundamental by the traces in the second
column of Fig. 6.38. The 200Hz place on the membrane displaces with a nearly pure sinusoidal mo-
tion, while the more basal points continue to resolve each pulse in time. At the apical end, therefore,
neural volleys might be expected to be triggered synchronously at the fundamental frequency, while
toward the basal end the displacements favor firings at the pulse rate, that is, twice per fundamental
period. Psychoacoustic measurements indicate that the apical, fundamental-correlated displace-
ments are subjectively more significant than the basal, pulse-rate displacements. The fundamental-
rate volleys generally predominate in the percept, and the pitch is heard as 200 sec−1. At some
frequency, then, the pitch assignment switches from pulse rate to fundamental.

The pulse pattern illustrating the computer simulation in Fig. 6.33 is the same positive-negative
pulse alternation under discussion, but it is produced at a fundamental frequency of 100 Hz. This
frequency is immediately in the transition range between the fundamental and pulserate pitch modes.
One notices in Fig. 6.33 that the ear is beginning to resolve the fundamental component in relatively
low amplitude at the apical end of the membrane, while the pulse rate is evident in the basal
displacements. One might suppose for this condition that the pulse rate and fundamental cues are
strongly competing, and that the pitch percept is ambiguous. Subjective measurements bear this
out.

Another effect becomes pronounced in and near the pitch-transition region corresponding to the
conditions of Fig. 6.33. A fine structure in the perception of pulse pitch becomes more evident. The
membrane region where displacement amplitude is greatest is in the place-frequency range 600 to
1500Hz. In this region the displacement response to a pulse has a period which is an appreciable
fraction of the pulse repetition period. That is, the half-period time of the pulse response is a
significant percentage of the pulse period. Assume as before that neural firings occur only on positive
deflections of the membrane. The intervals between firings on fibers originating from a given place in
this region should, therefore, be alternately lengthened and shortened. The change in interval (from
strict periodicity) is by an amount equal to the half-period of the pulse response at that place. One
might expect, therefore, a bimodality in the pitch percept. If fd is the place-frequency of dominant
membrane motion and r the signal pulse rate, the perceived pitch fp should correspond to

fp =

[
1

r
± 1

2fd

]−1

.

This bimodality in the pitch percept is in fact found (Rosenberg [1965], Ritsma [1967]).

If the 200Hz stimulus in the middle column of Fig. 6.38 is high-pass filtered at a sufficiently
high frequency, only the basal displacements remain effective in producing the pitch percept. For
example, the membrane displacements for a high-pass filtering at 4000 Hz are shown in the third
column of Fig. 6.38. If the present arguments continue to hold, such a filtering should change the
percept from the fundamental mode back to the pulse-rate mode. The reason, of course, is that the
time resolution of the basal end separates each pulse, whether positive or negative. This hypothesis
is in fact sustained in psychoacoustic measurements (Guttman and Flanagan [1964]).
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Figure 6.39: Basilar membrane responses at the 2400, 1200 and 600Hz points to a pressure-
rarefaction pulse of 100µsec duration. The responses are measured on the electrical analog circuit
of Fig. 6.28. Relative amplitudes are preserved

A somewhat more subtle effect is obtained if the high-pass filtering is made at a fairly small
harmonic number, for example, at the second harmonic, so as to remove only the fundamental
component. Under certain of these conditions, the membrane may generate displacements which
favor a difference-frequency response. For a stimulus with odd and even components, the pitch
percept can be the fundamental, even though the fundamental is not present in the stimulus.

6.3.2 Binaural Lateralization

Another aspect of perception is binaural lateralization. This is the subjective ability to locate a
sound image at a particular point inside the head when listening over earphones. If identical clicks
(impulses of sound pressure) are produced simultaneously at the two ears, a normal listener hears
the sound image to be located exactly in the center of his head. If the click at one ear is produced
a little earlier or with slightly greater intensity than the other, the sound image shifts toward that
ear. The shift continues with increasing interaural time or intensity difference until the image moves
completely to one side and eventually breaks apart. One then begins to hear individual clicks located
at the ears.

Naively we suppose the subjective position of the image to be determined by some sort of com-
putation of coincidence between neural volleys. The volleys originate at the periphery and travel to
higher enters via synaptic pathways. The volley initiated earliest progresses to a point in the neural
net where a coincidence occurs with the later volley. A subjective image appropriately off-center
is produced. To the extent that intensity differences can shift the image position, intensity must
be coded–at least partially–in terms of volley timing. As has been the case in pitch perception,
there are several research areas in binaural phenomena where the computational model described
in Section 6.2 has been helpful in quantifying physiological response and relating it to subjective
behavior. One such area concerns the effects of phase and masking upon the binaural lateralization
of clicks.

If a pulse of pressure rarefaction is produced at the eardrum, the drum is initially drawn outward.
The stapes is also initially drawn outward, and the membrane is initially drawn upward. The stapes
and membrane displacements (as described by the model) in response to a rarefaction pulse of
100µsec duration are shown by the waveforms at the right of Fig. 6.39. The pulse responses of
three different membrane points are shown, namely, the points maximally responsive to 2400Hz,
1200Hz, and 600Hz, respectively. The stapes displacement is a slightly integrated version of the
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Figure 6.40: Experimental arrangement for measuring the interaural times that produce centered
sound images. (After (Flanagan et al. [1962a])

input. The membrane responses reflect the vibratory behavior of the particular points as well as the
travelingwave transit delay to the points.

According to the model, broadband pulses produce the greatest displacements near the middle
of the membrane, roughly in the region maximally responsive to about 1500Hz. The magnitude of
displacement is less at places either more toward the base or more toward the apex. It has been
hypothesized that the most significant neural activity is generated at the membrane point displacing
with the greatest amplitude. Further, electro-physiological data suggest that neural firings occur at
some threshold only on unipolar motions of the basilar membrane. (For the outer hair cells, these
are motions which drive the basilar membrane toward the tectorial membrane.) The oscillatory
behavior of the pulse response suggests, too, that multiple or secondary neural firings might be
elicited by single stimulus pulses.

If pulses are supplied to both ears, a centered sound image is heard if the significant neural
activity is elicited simultaneously. Suppose that the input pulses are identical rarefaction pulses.
The maximum displacements occur near the middle of the membrane. For simplicity imagine that
the neural firings are triggered somewhere near the positive crests of the displacement waves. For
this cophasic condition, a centered image is heard if the input pulses are produced simultaneously, or
if the interaural time is zero. Suppose now that the pulse to one of the ears is reversed in phase to a
pressure condensation. The membrane responses for this ear also change sign and are the negatives
of those shown in Fig. 6.39. Their first positive crests now occur later by about one-half cycle of the
displacement at each point. At the middle of the membrane this half-cycle amounts to about 300
to 400µsec. To produce a centered image for the antiphasic condition, then, one would expect that
the condensation pulse would have to be advanced in time by this amount.

The membrane point which displaces with the greatest coherent amplitude can be manipulated by
adding masking noise of appropriate frequency content. That is, the place which normally responds
with greatest amplitude can be obscured by noise, and the significant displacement caused to occur at
a less sensitive place. For example, suppose that the basal end of the membrane in one ear is masked
by high-pass noise, and the apical end of the membrane in the other ear is masked by low-pass noise.
If the listener is required to adjust stimulus pulses to produce a centered image, the fusion must be
made from apical-end information in one ear and basal-end in the other. The resulting interaural
time would then reflect both the oscillatory characteristics of the specific membrane points and the
traveling-wave delay between them.
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Experiments show these time dependencies to be manifest in subjective behavior (Flanagan
et al. [1962a]). The test procedure to measure them is shown in Fig. 6.40. Identical pulse generators
produce 100µsec pulses at a rate of 10 per second. Pulse amplitude is set to produce a 40 db
sensation level. The subject, seated in a sound-treated room, listens to the pulses over condenser
earphones. (Condenser phones are used because of the importance of good acoustic reproduction
of the pulses.) He has a switch available to reverse the polarity of the pulses delivered to the right
ear so that it can be made a condensation instead of the normal rarefaction. The subject also has a
delay control which varies the relative times of occurrence of the two pulses over a range of 5 msec.
Two uncorrelated noise generators supply masking noise via variable filters. (A separate experiment
was conducted to determine the filtered noise levels necessary to mask prescribed spectral portions
of the pulse stimuli.)

For a given masking and pulse polarity condition, the subject is required to adjust the delay to
produce a centered sound image in his head. Multiple images are frequently found, with the more
subtle, secondary images apparently being elicited on secondary bounces of the membrane.

Fig. 6.41 shows the results for principal-image fusions under a variety of masking conditions.
Fig. 6.41a gives results for unmasked and symmetrically-masked conditions, and Fig. 6.41b gives the
results for asymmetrical masking. The data are for four subjects, and each point is the median of
approximately 15 principal-image responses. Each two sets of points is bracketed along the abscissa.
The set labelled C is the cophasic response and that labelled A is the antiphasic. The cophasic
conditions are rarefaction pulses in both ears. The antiphasic conditions are rarefaction in the left
ear and condensation in the right ear.

Each bracket corresponds to the masking conditions represented by the schematic cochleas drawn
below the brackets. The labelling at the top of each cochlea gives the masking condition for that ear.
For example, the UN means unmasked. The dark shading on the cochleas indicates the membrane
regions obscured by masking noise. The double arrow between each pair of cochleas indicates
approximately the points of maximum, unmasked displacement. For example, in the first case of
Fig. 6.41a, which is the unmasked case, the maximum displacements occur near the middles of the
two membranes.

The single arrows in the vicinity of the plotted responses are estimates or the interaural times
calculated from the basilar membrane model. The estimates are made by assuming the neural firings
to be produced at the positive crest of the displacement at the most significant place. The arrows
therefore represent the time differences between the first positive crests at the places indicated in
the cochlear diagrams. As such, they include the transit time to the particular place, plus the initial
quarter-cycle duratiori of the pulse response.

The actual threshold for neural firing is of course not known, and is very likely to be dependent
upon place. In the symmetrically-masked conditions, an actual knowledge of the threshold is not
of much consequence since the threshold epoch, whether it is at the crest or down from the crest,
should be about the same in the two ears. For these cases, therefore, it is the half-cycle time of
the displacement wave that is important. Fig. 6.41a shows that the measured responses do, in fact,
agree relatively well with this simple estimate of the interaural time. All of the principal cophasic
fusions are made for essentially zero time, and the antiphasic lateralizations reflect the half-cycle
disparity of the appropriate places, with the condensation pulse always leading.

The agreement is not as good for the asymmetrically-masked cases shown in Fig. 6.41b. Signal
loudnesses are different in the two ears, and the neural thresholds probably vary with place. The
times of the initial positive crests would not be expected to give very realistic estimates of the
interaural times. It becomes much more important to have a knowledge of the actual threshold
levels and the relative amplitudes of the displacements. Even so, it is interesting to note to what
extent the simple positive-crest estimates follow the data.

In the first condition, the left ear is unmasked and the right ear has masking noise high-pass
filtered at 600Hz (600 HP). The cophasic interaural time is predicted to be on the order of 600 usee,
and the measurements do give essentially this figure. The antiphasic condition is expected to be on
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Figure 6.41: Experimentally measured interaural times for lateralizing cophasic and antiphasic clicks.
Several conditions of masking are shown. (a) Unmasked and symmetrically masked conditions. (b)
Asymmetrically masked conditions. The arrows indicate the interaural times predicted from the
basilar membrane model
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Figure 6.42: Relation between the mechanical sensitivity of the ear and the monaural minimum
audible pressure threshold for pure tones

the order or 1450 µsec, but the measured median response is a little less, about 1200 µsec.
The next case has the left ear masked with noise low-pass filtered at 2400Hz (2400 LP), and the

right ear is unmasked. The cophasic condition is expected to yield an interaural time of slightly less
than 100 µsec, with the left ear lagging, but the experimental measurements actually give a right ear
lag of about 150 µsec. The relatively wide spread of the subject medians in the asymmetrical cases,
and in particular for the cases involving 2400 LP, show that these lateralizations are considerably
more difficult and more variable than the symmetrical cases. The antiphasic response for this same
condition is estimated to give an interaural time on the order of 400 µsec, but again the responses
are variable with the median falling at about 100 µsec. One subject’s median actually falls on the
right-lag side of the axis.

The final condition has 2400 LP in the left ear and 600 HP in the right ear. The cophasic
fusion is expected to be in the neighborhood of 700 µsec, and the measured response is found about
here. The antiphasic condition should yield an interaural time on the order of 1550 µsec, but the
measurements produce a median slightly greater than 1100 µsec.

Clearly, the simple assumption of neural firing at the positive crests (or some other fixed epoch)
of the displacement is not adequate to specify all of the interaural times. The real thresholds
for firing are likely to vary considerably with place. In fact, by taking data such as these, plus
the displacement waves from the model, the possibility exists for working backwards to deduce
information about neural threshold epochs. More broadly than this, however, the present results
suggest strong ties between subjective response and the detailed motion of the basilar membrane.

6.3.3 Threshold Sensitivity

The combined response curves in Fig. 6.27a indicate that the ear is mechanically more sensitive to
certain frequencies than to others. A similar frequency dependence exists subjectively. To what
extent are the variations in the threshold of audibility accounted for simply by the mechanical
sensitivity of the ear?

The envelope of the peak displacement responses in Fig. 6.27a can be compared with the subjec-
tively determined minimum audible pressure for pure (sine) tones. Fig. 6.42 shows this comparison.
The agreement is generally poor, although the gross trends are similar. One curve in the figure
is based on the 1500 Hz critical frequency for the middle ear. The earlier discussion has pointed
up the uncertainty and variability of this figure. If a critical frequency of 3000Hz is taken for the
middle car, the fit to the threshold curve at high frequencies is more respectable12. The match at

12Note, too, that the membrane velocity response ẏ(t) provides a better fit to the tone threshold than does the
displacement, y(t). ẏ(t) includes an additional +6 db/oct. component.
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Figure 6.43: Average number of ganglion cells per mm length of organ of Corti. (After GUILD et
at.)

Figure 6.44: Binaural thresholds of audibility for periodic pulses. (After FLANAGAN, 1961a)

low frequencies, however, is not improved, but this is of less concern for a different reason.

At the low frequencies, the disparity between the mechanical and subjective sensitivity may be
partially a neural effect. According to the earlier assumptions, the number of neurons activated
bears some monotonic relation to amplitude of membrane displacement. Perception of loudness
is thought to involve possibly temporal and spatial integrations of neural activity. If a constant
integrated neural activity were equivalent to constant loudness, the difference between mechanical
and subjective sensitivities might be owing to a sparser neural density in the apical (low-frequency)
end of the cochlea. There is physiological evidence to this effect.

In histological studies, Guildet al. counted the number of ganglion cells per mm length of the
organ of Corti (Guild et al. [1931]). Their results for normal ears are summarized in Fig. 6.43. These
data show a slight decrease in the number of cells at the basal end, and a substantial decrease in
the density as the apex is approached. The innervation over the middle of the membrane is roughly
constant.

One can pose similar questions about threshold sensitivity to short pulses or clicks of sound.
For pulses of sufficiently low repetition rate, the maximal displacement of the membrane–as stated
before–is near the middle. According to the model, the place of maximum displacement remains
near the middle for pulse rates in excess of several hundred per second. In its central region, the
resonance properties of the membrane permit temporal resolution of individual exciting pulses for
rates upwards of 1000Hz. If the predominant displacement takes place in one vicinity for a large
range of pulse rates, polarity patterns and pulse durations, how might the subjective threshold
vary with these factors, and how might it be correlated with the membrane motion? At least one
examination of this question has been made (Flanagan [1961]). The results can be briefly indicated.

Binaural thresholds of audibility for a variety of periodic pulse trains with various polarity
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Figure 6.45: Model of the threshold of audibility for the pulse data shown in Fig. 6.44

patterns, pulse rates and durations are shown in Fig. 6.44. The data show that the thresholds
are relatively independent of polarity pattern. For pulse rates less than 100Hz, the thresholds are
relatively independent of rate, and are dependent only upon duration. Above 100Hz, the thresholds
diminish with increasing pulse rate. The amplitude of membrane displacement would be expected
to be a function of pulse duration and to produce a lower threshold for the longer pulses, which is
the case. For rates greater than 100Hz, however, some other nonmechanical effect apparently is of
importance. The way in which audible pulse amplitude diminishes suggests a temporal integration
with a time constant of the order of 10 msec.

Using the earlier assumptions about conversion of mechanical to neural activity, one might ask
“what processing of the membrane displacement at the point of greatest amplitude would reflect the
constant loudness percept at threshold.” One answer is suggested by the operations illustrated in
Fig. 6.45. The first two blocks represent middle ear transmission [as specified in Eq. (6.3)] and basilar
membrane displacement [vicinity of the 1000Hz point, as specified in Eq. (6.1)]. The diode represents
the half-wave rectification associated with neural firings on unipolar motions of the membrane. The
RC integrator has a 10 msec time constant, as suggested by the threshold data. The powerlaw
element (exponent=0.6) represents the power-law relation found in loudness estimation13. A meter
indicates the peak value of the output of the power-law device. When the stimulus conditions
represented by points on the threshold curves in Fig. 6.44 are applied to this circuit, the output
meter reads the same value, namely, threshold.

One can also notice how this simple process might be expected to operate for sine wave inputs.
Because the integration time is 10 msec, frequencies greater than about 100Hz produce meter read-
ings proportional to the average value of the half-wave rectified sinusoid. In other words, the meter
reading is proportional to the amplitude of the sine wave into the rectifier. Two alterations in the
network circuitry are then necessary. First, the basilar membrane network appropriate to the point
maximally responsive to the sine frequency must be used. This may be selected from an ensemble of
networks. And second, to take account of the sparser apical innervation, the signal from the rectifier
must be attenuated for the low-frequency networks in accordance with the difference between the
mechanical and subjective sensitivity curves in Fig. 6.42. The power-law device is still included to
simulate the growth of loudness with sound level.

6.3.4 Auditory Processing of Complex Signals

The preceding discussions suggest that the extent to which subjective behavior can be correlated
with (and even predicted by) the physiological operation of the ear is substantial. Recent electro-
physiological data link neural activity closely with the detailed mechanical motion of the basilar
membrane. Subjective measurements, such as described in the foregoing sections, lend further
support to the link. Psychological and physiological experimentation continue to serve jointly in ex-
panding knowledge about the processes involved in converting the mechanical motions of the inner
ear into intelligence-preserving neural activity.

13The power-law device is not necessary for simple threshold indications of “audible-inaudible.” It is necessary,
however, to represent the growth of loudness with sound level, and to provide indications of subjective loudness above
threshold.
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The physiological-psychoacoustic correlations which have been put forward here have involved
only the simplest of signals–generally, signals that are temporally punctuate or spectrally discrete, or
both. Furthermore, the correlations have considered only gross and salient features of these signals,
such as periodicity or time of occurrence. The primary aim has been to outline the peripheral
mechanism of the ear and to connect it with several phenomena in perception. Little has been said
about classical psychoacoustics or about speech perception. As the stimuli are made increasingly
complex–in the ultimate, speech signals–it seems clear that more elaborate processing is called into
play in perception. Much of the additional processing probably occurs centrally in the nervous
system. For such perception, the correlations that presently can be made between the physiological
and perceptual domains are relatively rudimentary. As research goes forward, however, these links
will be strengthened.

The literature on hearing contains a large corpus of data on subjective response to speech and
speech-like stimuli. There are, for example, determinations of the ear’s ability to discriminate
features such as vowel pitch, loudness, formant frequency, spectral irregularity and the like. Such
data are particularly important in establishing criteria for the design of speech transmission systems
and in estimating the channel capacity necessary to transmit speech data. Instead of appearing in
this chapter, comments on these researches have been reserved for a later, more applied discussion
where they have more direct application to transmission systems.
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6.4 Homework

Problem 6.1

Consider the acoustic pressure signal

p(t) = A cos(2π499t) +A cos(2π501t) +A cos(2π999t) +A cos(2π1001t) (6.17)

a. Suppose that A is adjusted so that the intensity level of the signal is Ip = 40dB SPL. What is
A?

b. Assume that a 500Hz tone with an amplitude of A is exactly as loud as a 1000Hz tone with
an amplitude of A. In terms of the variable A, what is the loudness in sones of the signal p(t)
given in equation 6.17?

Problem 6.2

a. What is the loudness level, in phons, of a 40dB SPL tone at 1000Hz? What is the loudness,
in sones, of the same tone?

b. What is the loudness level, in phons, of a 40dB SPL tone at 500Hz? What is the loudness, in
sones, of the same tone?

c. What is the loudness, in sones, of a stimulus consisting of the 500Hz and 1000Hz tones (each
at level 40dB SPL) played at the same time?

d. What is the loudness, in sones, of a stimulus consisting of two tones played at the same time:
one at 1000Hz/40dB SPL, and one at 1050Hz/40dB SPL?

Problem 6.3

a. Weber’s law states that many perceived quantities Ω (e.g. pitch, loudness, light intensity) are
related to a real-world stimulus S by the relationship

dΩ =
dS

S

Prove that Weber’s law describes the relationship between the loudness level of a tone at
1000Hz (in phons) and its acoustic intensity (in Watts/ square meter).

b. Stevens proposed that some perceived quantities, instead, follow the general law

Ω = C(S − ST )E

where ST is a threshold stimulus quantity, and C and E are constants that depend on the
problem. If the perceived quantity is loudness (in sones), and the acoustic quantity is intensity
(in Watts/square meter), what are the variables C, ST , and E?
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Problem 6.4

The auditory resolution of the purple-spotted stonewall toad is considerably less than that of
human beings. The equivalent rectangular bandwidth of a purple-spotted stonewall toad is given by

ERB(x) =
fc(x)

2
+ 100Hz

Construct a set of triangular pseudo-critical-band-filters centered at the frequencies fc(x) = fc(x−
1) + ERB(x− 1), of the form

H(x, 2πf) = max

(
0,

ERBx − |f − fc(x)|
ERB(x)

)

Draw the first four filters H(x, 2πf) for 1 ≤ x ≤ 4. Assume that Ωc(0) = 0.

Problem 6.5

In this problem, you will devise an experimental protocol for measuring the shape of auditory
filters. The derivation will be similar to that described in the notes. Recall that intensity is related
to the power spectrum of an acoustic pressure signal by

If = z0rf (0) =
z0
π

∫ ∞

0

Rf (Ω)dΩ (6.18)

a. Suppose that
f(t) = A sin(Ωct), g(t) = h(t) ∗ f [n]

where H(ω) is a filter of unknown shape. Find the power spectrum Rg(Ω) and intensity Ig of
g(t). Write Ig in terms of If , the intensity of f(t).

b. Suppose that v(t) is a band-stop noise signal. Specifically, suppose that

Pv(ω) =

{
0 Ωc − α < |Ω| < Ωc + α
N0 otherwise

If w(t) = h(t)∗v(t), find the power spectrum Rw(Ω). Show that the intensity Iw is proportional
to

C(α) =

∫ Ωc−α

0

|H(Ω)|2dΩ +

∫ ∞

Ωc+α

|H(Ω)|2dΩ

c. Suppose that
x(t) = f(t) + v(t), y(t) = h(t) ∗ x(t)

where f(t) and v(t) are as given in previous parts. Assume that f(t) and v(t) are uncorrelated,
so that their spectra add in quadrature. What is the intensity Iy? Write Iy in terms of If , the
intensity of f(t).

d. Norm Needscash has signed up for a psychology experiment. In this experiment, Norm will
listen to two noise bursts, and try to figure out which of the two noise bursts contained an
embedded sine wave. Suppose that Norm can reliably hear the sine wave if and only if the
signal+noise loudness level exceeds the noise-only loudness level by some minimum amount θ:

10 log10 Iy ≥ 10 log10 Iw + θ
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The experimenter plans to keep the noise variance N0 fixed, and vary the signal power If until
Norm can reliably hear the sine wave. The experimenter will call this threshold power P , that
is, Norm can hear the sine wave if and only if

If ≥ P

Write P as a function of θ, N0, H(Ωc), and C(α).

e. The experiment described above is repeated for many different combinations of noise-gap width
α and center frequency Ωc. For each combination of α and Ωc, Norm has to listen to many
different signal levels, in order to determine the signal level P at which he can first hear the
sine wave. Fortunately, the experimenter provides lots of coffee, and of course Norm is paid
for his time.

Based on all of these data, the experimenter estimates dP/dα. Show that, given dP/dα, it is
possible to estimate the shape of the filter |H(Ω)|2. Specifically, show that

|H(j(Ωc + α))|2 + |H(j(Ωc − α))|2
|H(Ωc)|2

∝ dP

dα

Problem 6.6

Consider an acoustic pressure signal, measured at the oval window, with a missing fundamental
frequency:

p[n] =

N0/2∑

k=2

2Pk cos(knω0 + θk)

a. Suppose that the cochlear filters Hi(ω), i = 1, . . . , N0/2, are conveniently defined as

Hi(ω) =

{
1
(
i− 1

2

)
ω0 ≤ |ω| <

(
i+ 1

2

)
ω0

0 else

Remember that the basilar membrane velocity at position xi is given by

Ui(ω) = P (ω)Hi(ω)

Find ui[n].

b. Suppose that the brainstem correlogram computation is applied to the basilar membrane
velocities directly, without half-wave rectification, i.e.

ri[n] =
1

N

N−1∑

τ=n

ui[τ ]ui[τ − n]

Find ri[n]. Assume that N is large enough that there are no significant cross-terms, and that
the autocorrelation of cos(knω0) is roughly 0.5wT [n] cos(knω0).

c. Find the lowest value of the delay n, n > 0, such that ri[n] has a peak in every band except
i = 1.

Problem 6.7
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a. This lab will use three test signals. All test signals should be downsampled to about 6.4kHz;
higher sampling rates don’t make much sense, because inner hair cells only phase lock up to
about 2kHz.

The first test signal should be a sine wave at some frequency between about 100Hz and 600Hz.
The second test signal should be a periodic signal with the same fundamental frequency as
the sine wave, but with the first harmonic component missing (like the signal in problem 9.1;
include at least three higher harmonics). The third test signal is any audio clip of interest to
you, downsampled to about 6.4kHz.

Construct the three test signals. Compute and plot the long-term power spectra of all three
signals, using the “periodogram” spectral estimator. Plot all three power spectral estimates
in subplots of the same figure; label the axes in Hertz. The periodogram spectral estimator
is created by averaging the short-time power spectral estimates in a series of M consecutive
frames, with frame length N and frame skip parameter S:

R̂x(ω) =
1

M

M∑

m=1

R̂x(ω,m) (6.19)

R̂x(ω,m) =
1

N
|X(ω,m)|2 (6.20)

X(ω,m) =

N−1∑

n=0

x[mS + n]e−jωn (6.21)

b. Write a function F=cochlea(f) that computes a model of inner hair cell voltages in response
to an acoustic signal f. The function should do the following things:

• Bandpass filter x. You may use either uniformly spaced, non-overlapping filters (with
bandwidths of about 100Hz) or ERB-spaced filters (with bandwidths equal to about
one ERB). Uniformly spaced filters may be designed by creating a prototype 50Hz FIR
lowpass filter in matlab, and then modulating your prototype filter up to each of the
different center frequencies. ERB-spaced filters may be created, for example, by defining
the impulse responses to be gammatone functions, and by adjusting the center frequency
and bandwidths of the gammatone functions according to the ERB scale.

• Half-wave rectify each bandpass-filtered signal.

Each row of the matrix F should contain the rectified band-pass filter output from one hair
cell channel.

Use cochlea to estimate hair cell voltages in response to the sine wave, the missing-fundamental
wave, and the audio clip. Create a plot with three subplots. From each of these different F

matrices, pick out one channel with relatively high energy, and plot about 100ms from that
channel, as a function of time. For the third plot (audio clip), be sure to pick out a 100ms
segment with high energy. Label the axes in milliseconds or seconds, not samples. Provide
the following information in the title of each plot: the type of signal, and the band center
frequency.

c. Write a function [CG, CG0]=correlogram(F) that computes the correlogram, CG, given esti-
mates of the inner hair cell voltages. The correlogram CG should be a rank-3 array of the form
CG(t,b,m), in which the dimensions are autocorrelation lag (t), band number (b), and frame
number (m). The energy matrix CG0 should be a matrix of the form CG0(b,m), in which the
dimensions are band number (b) and frame number (m). The function correlogram should do
the following things:
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• Window each of the rectified signals using enframe. Use non-overlapping frames of about
33.3ms.

• Compute the autocorrelation of each frame of each bandpass filtered signal. Set CG0 equal
to the zero-lag autocorrelation CG(0). Set the correlogram CG equal to the half of the
autocorrelation function for which τ > 0; discard the other half of the autocorrelation
function.

Compute the correlogram of the sine wave, and of the missing-fundamental signal. Choose any
representative frame from the sine wave correlogram, and compute the whitened correlogram
of that frame, i.e. if NCOR is the number of autocorrelation lags, you could write:

WCG = CG(:,:,m)./repmat(CG0(:,m),[1 NCOR]);

Create an image plot of this whitened correlogram, e.g., if TAU contains the autocorrelation
lags in milliseconds, and CF contains the center frequencies in Hertz, you could type

imagesc(TAU,CF,64*WCG); axes xy

Do the same with the missing-fundamental wave, and hand in both plots. The two plots should
have some similarities, and some differences.

d. Create a movie displaying the correlogram of your audio clip as a function of time.

First, normalize the entire correlogram according to the maximum energy—compute the nor-
malized correlogram NCG, as

NCG(t, b,m) =
CG(t, b,m)

maxtmaxm CG(t, b,m)
(6.22)

Note this is NOT the same as computing a whitened correlogram—the entire correlogram
should increase and decrease from frame to frame. You can probably compute this using
commands such as

MAXENERGY = max(CG0);

NCG = CG./repmat(MAXENERGY,[NCOR 1 NFRAMES]);

Then create a movie using code something like this (but instead of “strange animal noises,”
be sure to write the title of your own audio clip):

mov=avifile(’correlogram.avi’,’fps’,30);

for m=1:size(CG,3),

image(TAU,CF,64*NCG(:,:,m));

xlabel(’Autocorrelation lag (seconds)’);

ylabel(’Center frequency (Hz)’);

title(’Correlogram of strange animal noises’);

frame=getframe(gca);

mov=addframe(mov,frame);

end

mov=close(mov);

Play back the AVI file using windows media player or the matlab aviread function.

When you’re satisfied with the movie quality, clip out 4-9 frames, showing the structure of
the correlogram as a function of time. Plot them in a figure, and attach this figure to your
assignment.
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Problem 6.8

Model the head as a sphere, 10cm in radius. Plot the inter-aural time delay, in milliseconds, as
a function of the angle of incidence, for 0 ≤ θ ≤ π/2.

Problem 6.9

An approximate formula relating frequency to position on the basilar membrane is given by

x(fc) ≈ 35mm − 11mm ln

(
1 +

46fc
fc + 14700Hz

)
(6.23)

This formula is actually not based directly on physiological measurements. Instead, it is based
on the physiological rule of thumb which says that one equivalent rectangular bandwidth is about
1mm on the basilar membrane—in other words, vibration of a position x on the basilar membrane
necessarily includes vibration of positions between x−0.5mm and x+0.5mm. The form of Eq. 6.23 is
too detailed to have been derived from physiological experiments; it is, rather, derived from psycho-
acoustic measurements of ERB, of the type that we will consider in lecture 11. In the mean time,
this problem will consider some of the implications of Eq. 6.23.

a. Approximate Eq. 6.23 as a log-linear form, i.e.,

ERB = 11 ln

(
1 +

f

Fr

)
(6.24)

for some reference frequency Fr . What is Fr?

b. Divide Eq. 6.24 into two frequency regions, a “linear” region and a “logarithmic” region, using
the following approximation:

ln (1 + z) ≈ z for z < e− 1 (6.25)

Sketch x(fc) as a function of fc over the audible frequency band (about 0 to 20kHz). Label
the linear and the logarithmic regions.

c. Use the linear approximation from part (b) to estimate the equivalent rectangular bandwidth
(ERB) of a cochlear filter at relatively low frequencies. Using your approximation from part
(b), you should find that ERB is independent of fc for low frequencies.

d. At very high center frequencies (fc ≫ Fr), how many millimeters on the basilar membrane are
traversed by one octave in frequency? That is, if you double the center frequency, how many
millimeters do you move?

e. Invert your answer to part (d) in order to estimate the fraction of an octave that is spanned
(in the ERB sense) by a cochlear filter at high frequencies. How many semitones is one ERB?

f. Invert your answer to part (a) or part (b) (whichever you like) in order to create a formula
fc(x) that specifies the center frequency fc corresponding to any position x on the basilar
membrane.



Chapter 7

Human Speech Recognition

As a general topic, auditory perception can be divided a number of ways. From the standpoint of
communication, one separation might be between classical auditory psychophysics, on the one hand,
and the recognition of acoustic signals presented within a linguistic framework, on the other. The
former relates principally to the abilities and limitations of the hearing organ as a mechano-neural
transducer of all acoustic signals. The latter bears mainly upon the identification and classifications
of auditory patterns which are significant within the communicative experience of the listener.

Classical auditory psychophysics strives to discover the “resolving power” of the hearing mech-
anism. Discrimination is usually examined along fundamental dimensions of the stimulus–usually
along only one dimension at a time. The measurements are generally conducted under conditions
which are most favorable for making the relevant discriminations, that is, differential discriminations
or close comparisons. Differential thresholds for dimensions such as intensity and frequency fall into
this classification. Intuitively one feels that large neural storage and complex central processing
probably are not brought into play in such detections. The measures more likely reflect the capacity
of the transducer and the peripheral neural net to preserve details about a given stimulus dimension.
The discussion in Chapter 6, for example, touched upon these properties of the peripheral system.
The apparent relations between physiological and psychoacoustic response were analyzed for several
stimulus cases. The acoustic signals were of the “classical” type in that they were either temporally
punctate or spectrally simple, or both.

Speech, on the other hand, is a multidimensional signal that elicits a linguistic association. For
it to be an effective communication code, some sort of absolute perceptual categorization must be
made of its content. That is, the signal must be broken down into a finite number of discrete
message elements. The “size” of these perceptual elements, and the manner in which they are
processed to yield the percept, are questions of considerable debate and not little speculation. Our
present knowledge brings us nowhere near a good understanding of the process. Theorizing about
speech perception–cloaked in all of its linguistic and over-learned functions–abounds with pitfalls.
An even larger problem, perhaps, is reconciling physiological, psychophysical and linguistic factors.
As in other difficult situations, it is tempting to push back to some still-higher center the final
decision-making process that is the real seat of perception.

Although a complete theory of speech perception remains in the future, a good deal can be
said about auditory discrimination. Some of the “classical” measurements relate strongly to signal
dimensions important to speech–even though the measurements are made outside of linguistic or
contextual frames. In addition, a respectable amount of information has been accumulated on
the acoustic cues associated with synthetic approximants to simple speech elements–for example,
syllables and phonemes.

From the practical point of view, articulation tests and intelligibility measures based upon abso-
lute recognition of sentences, words, syllables, and isolated phonemes can be used to good effect in

195



196 CHAPTER 7. HUMAN SPEECH RECOGNITION

evaluating transmission facilities. For a given processing of the voice signal, these tests often help to
identify factors upon which perception depends (although they serve poorly, if at all, in supplying
a description of the perception process itself). Under certain conditions, the so-called articulation
index can be used to compute intelligibility scores from physical measurements on the transmission
system. Still ancillary to intelligibility testing, some data are available on the influences of linguistic,
contextual and grammatical constraints. Contrariwise, measures of the prosodic and quality features
of speech are not well established.

The present chapter proposes to circumscribe some of these problems. In particular, the aim is
to indicate current level of understanding in the perception of speech and speech-related sounds.

7.1 Differential vs, Absolute Discrimination

Classical psychophysics generally deals with discriminations made in close comparison. Speech
perception, on the other hand, seems more likely an absolute classification of an acoustic signal.
Can the former provide useful information about the latter, or vice versa?

Man is highly sensitive to differences in the frequency or intensity of sounds presented for com-
parison. Under certain conditions the threshold for detecting a difference in the frequencies of two
successively presented pure tones may be as small as one part in 1000 (Rosenblith and Stevens
[1953]). The threshold for detecting a difference in intensity may be less than one db (Riesz [1928]).
On the basis of comparative judgments, it has been estimated that the normal listener can distinguish
about 350000 different tones (Stevens and Davis [1938]).

Contrasting with this acute differential sensitivity, a listener is relatively inept at identifying and
labelling sounds presented in isolation. When equally-loud pure tones are presented individually for
absolute judgment of frequency, listeners are able to accomplish perfect identification among only five
different tones (Pollack [1952]). This identification corresponds to an information transfer of about
2.3 bits per stimulus presentation. If, however, the sound stimulus is made multidimensional, for
example by quantizing it in frequency, loudness, duration, etc., the correct identifications increase,
and the information transferred may be as high as five to seven bits per stimulus presentation
(Pollack and Ficks [1954]). This rate is equivalent to correct identification from an ensemble of from
32 to 128 stimuli.

It is clear that absolute and differential discriminations yield substantially different estimates of
man’s informational capacity. The former suggest that few subdivisions along a given dimension
can be identified, whereas the latter indicate that a much larger number may be discriminated. The
differential measure, however, reflects the ability to discriminate under the most favorable circum-
stances for detecting a difference (namely, a close comparison usually along a single dimension). In
a sense, it represents an upper bound on the resolving ability of the perceptual mechanism.

So far as absolute judgments are concerned, the differential estimate of discrimination is an
optimistic one. The probability is extremely small that stimulus quantizations as small as a difference
limen1 could ever be detected absolutely. Even so, differential measures quantify perception in a
“clinical” way, and they place a rough ceiling (albeit over-optimistic) on the ability to detect changes
in a signal. In any speech processing system, fidelity criteria based upon differential discriminations
would be expected to be very conservative. Lacking more directly applicable measures, however,
they can often be useful in estimating the performance and channel capacity requirements of a
transmission system (Flanagan [1956b]).

1The terms difference limen (DL) and just-noticeable difference (JND) are synonomous with differential threshold
or just-discriminable change.
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7.2 Differential Discriminations Along Signal Dimensions Re-
lated to Speech

The results of Chapters 3 and 6 suggest that significant dimensions for the speech signal might be
defined in either the acoustic or articulatory domains. Both domains have perceptual correlates. The
analyses in Chapter 3, for example, attempted to separate the properties of vocal transmission and
excitation. Perceptually-important acoustic dimensions of the system function are those of the mode
pattern–that is, the complex frequencies of the poles and zeros of the transmission. Alternatively,
the same information is specified by the bandwidths and frequencies of the maxima and minima of
the amplitude spectrum and by the values of the phase spectrum. In a similar manner, relevant
dimensions of the excitation source for voiced sounds are intensity, fundamental frequency and
perhaps spectral zero pattern (or equivalently, glottal wave asymmetry and duty factor). For the
unvoiced source, intensity and duration are significant dimensions.

Auditory sensitivity to some of these factors–divorced of any linguistic or contextual frame–has
been measured in psychoacoustic experiments. For example, data are available on just-discriminable
changes in formant frequency, fundamental frequency, over-all intensity and formant bandwidth.
Without going into the details of any specific experiment, the nature of the results can be summa-
rized.

7.2.1 Limens for Vowel Formant Frequencies

Using synthetic vowel sounds generated by a terminal-analog synthesizer (see Section 9.4, Chapter 9),
just-discriminable changes in the frequencies of the first and second formants have been measured
(Flanagan [1955b]). The synthesizer was operated as it would be used in a formant-vocoder system.
Although the difference limens (DL’s) depend to an important extent upon the proximity of the
formants, they are found to be on the order of three to five percent of the formant frequency2.

7.2.2 Limens for Formant Amplitude

The results of Chapter 3 and 6 show that the relative amplitude of a given formant in the speech
signal is a function of several factors, among them formant frequency, vocal damping, transmission
zeros and excitation characteristics. One measure of the differential discriminability of formant
amplitude has been made with a parallel-connected, terminal-analog synthesizer (Flanagan [1957a]).
The intensity limen for the second formant of a near-neutral vowel (/æ/) is found to be about 3 db.

A related measurement of the limen for over-all intensity of a synthetic vowel gives a value of
about 1.5 db (Flanagan [1955]). Because the first formant is usually the most intense formant in
vowel sounds, the over-all figure might be taken as a rough estimate of the first-formant intensity
limen.

Another experiment determined the intensity limens for single harmonic components of synthetic
vowels (Flanagan [1965]). Values found for intensity changes at the first and second formant fre-
quencies support well the values just mentioned. Intensity limens for harmonic components located
in spectral “valleys” can be quite large, as much as +13db to −∞ db, i.e., complete absence.

7.2.3 Limens for Formant Bandwidth

Apparently, no direct measures of the discriminability of changes in formant bandwidth, or damping,
have been made on synthetic vowels. However, some related measurements, and their extrapolations,

2This experiment considered changes in the frequency of only one formant at a time. In real speech–and in
formant-coding of speech–the formants usually move simultaneously. A relevant and practically-useful extention of
the experiment might be the determination of “DL solids” in F1-F2-F3 space. Proximity effects of the formants
should, in general, give these “solids” ellipsoidal shapes. Similar comments about discrimination of simultaneous
changes in signal dimensions apply in several of the following experiments.
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suggest what might be expected.

Stevens (Stevens [1952]) measured the descriminability of changes in the tuning and damping
of a single electrical resonator. The resonator was excited by periodic pulses at a fundamental
frequency of 125 Hz. The output signal was therefore representative of a one-formant vowel. In
general, changes on the order of 20 to 40% in formant bandwidth were just-discriminable.

Also, the results of Chapter 3 show that the amplitude of a formant peak is inversely related to
formant damping. The 1.5 db figure found for the amplitude limen of the first formant corresponds
to a bandwidth change of about 20%. Similarly, the 3 db figure for the second formant corresponds
to a bandwidth change of about 40%3.

7.2.4 Limens for Fundamental Frequency

Following an experimental procedure similar to that used with the formant measurements, a differ-
ence limen has been measured for the fundamental excitation frequency of synthetic vowel sounds
(Flanagan and Saslow [1958]). For synthetic vowels appropriate to a man, the fundamental-frequency
limen is found to be about 0.3 to 0.5 per cent of the fundamental-frequency. From this and
the previously-mentioned measurements, a hierarchy in frequency acuity emerges. The formant-
frequency limen is an order of magnitude more acute than the formantbandwidth limen, and the
fundamental-frequency limen is an order of magnitude more acute than the formant-frequency limen.

7.2.5 Limens for Excitation Intensity

For a given glottal wave shape and vocal transmission, the over-all intensity of a voiced sound is
directly proportional to the amplitude of the glottal pulse. As mentioned previously, a measure of
the limen for over-all vowel intensity gives a value of about 1.5 db.

Similarly, the over-all intensity of an unvoiced sound is directly related to the amplitude of the
unvoiced source. Fricative consonants are relatively broadband, noise-excited, continuant sounds.
The discriminability of changes in their over-all amplitude might be expected to be somewhat similar
to that of wide-band noise. Intensity limens have been measured for the latter (Miller [1947]). They
are found to be of the order of 0.4 db for sensation levels above 30 db. The minimum perceptible
intensity change is therefore about 5%. Only a few fricative consonants have relatively flat spectra,
but the figure might be used as an order-of-magnitude estimate. Experience with speech synthesis
confirms that it is a conservative figure.

7.2.6 Limens for Glottal Zeros

The differential discriminability of changes in the spectral zero pattern of the vocal cord source (see
Section 9.6, Chapter 9), or in the detailed spectrum of the glottal wave, have, to the author’s knowl-
edge, been observed only informally (Flanagan [1961]). The glottal source may contribute significant
factors to speech quality and to speaker recognition. Therefore, liminal measures of parameters such
as the duty factor and asymmetry of the glottal wave could be valuable in establishing bounds on
their importance to speech naturalness.

It is clear that if complex source zeros lie far enough away from the jω-axis of the frequency
plane they have negligible effect on signal quality. One experiment in which only gross features of
the source spectrum and waveform were preserved suggests that many temporal and spectral details
are unimportant to quality (Rosenberg [1965]) (see Section 9.6.1).

3Another multidimensional DL of interest might be that for simultaneous changes in formant bandwidth and
frequency. In other words, one might determine DL “areas” in the complex-frequency plane for vocal tract poles.
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Figure 7.1: Detectability of irregularities in a broadband noise spectrum. (After (Malme [1959]))

7.2.7 Discriminability of Maxima and Minima in a Noise Spectrum

The vocal tract transmission for fricative consonants, like other sounds, is characterized by certain
poles and zeros. Broadband noise excitation is filtered by this transmission. Some of the poles
and zeros (and their related spectral maxima and minima) are perceptually significant. Others are
not. One measurement considered the differential discriminability of a single peak or valley in an
otherwise flat noise spectrum (Malme [1959]). A single pole and zero filtering of a broadband noise
was used to produce the spectral variations shown in the insert of Fig. 7.1. The equivalent complex
frequencies (half-power bandwidths vs. center frequencies) of the irregularities which were just-
detectable from the flat spectrum are also plotted in Fig. 7.1. The db numbers next to the points
are the just-perceptible peak heights and notch depths, respectively. These data indicate that, at
least in a flat-noise surround, spectral peaks with Q’s (i.e., ratios of center frequency to bandwidth)
less than about 5, and spectral notches with Q’s less than about 8 are not differentially perceptible.

The results suggest, therefore, that many of the small spectral irregularities seen in a fricative
consonant such as /f/ are not perceptually significant. In the same vein, certain spectral peaks
such as in /s/ or /S/ are of course significantly different from a flat spectrum. Synthesis of fricative
consonants has been demonstrated by representing the spectrum in terms of two poles and one zero
(Heinz and Stevens [1961]). Appropriate Q’s for the poles are found in the range of about 5 to 13.
For the zero, Q’s of the order of 2 to 4 appear appropriate. The suggestion is, therefore, that to
the extent the results in Fig. 7.1 can be applied, the poles are more significant perceptually than
the zero, the latter apparently having importance only in contributing to the gross spectral shape.
This appears to be the case, for the zero has been found to be relatively noncritical of frequency
position and often can be placed automatically about an octave below the first pole (Heinz and
Stevens [1961]).

A similar discrimination measurement has been made for a noise spectrum with exactly periodic
maxima–that is, for a comb filtering of the noise (Atal and Schroeder [1956]). The objective was
to investigate the perceptual effects of irregularities in the frequency response of rooms. The comb-
filtered noise was differentially compared with white noise of equal power, and a limen was obtained
for the minimum detectable periodic irregularity. The minimum detectable ratio of maximum-to-
minimum spectral amplitude was found to be about one db. This figure is in close agreement with
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Figure 7.2: Frequency paths and excitation pattern for a simulated time-varying formant. Rising
and falling resonances are used. The epochs of the five excitation pulses are shown. (After (Brady
et al. [1961]))

the intensity limen measured for white noise (see Section 7.2.5).

The results of this same experiment provide information on the weighting function used by
the ear in performing its short-time spectral analysis. The weighting function deduced from the
measurements is approximately exponential in form, with an initial slope corresponding to a time
constant of 9 msec. This latter figure compares favorably with the time constant deduced for loudness
measurements on periodic clicks (see Section 6.3.3, Chapter 6).

7.2.8 Other Close-Comparison Measures Related to Speech

A number of other psychophysical measurements relate, more or less strongly, to differential percep-
tion along speech dimensions. Several of these can be mentioned to illustrate the diverse nature of
the data.

One experiment measured the perception of a single, time-varying formant (Brady et al. [1961]).
A continuously-tunable resonant circuit was excited by five equi-spaced pitch pulses. The pulses
were produced at a rate of 100Hz. During the excitation, the tuning of the resonator was moved
between 1000 and 1500Hz, according to the rising and falling trajectories shown in Fig. 7.2. The
formant transitions were accomplished in 20 msec. To examine how the varying formant frequency
is perceived, listeners were asked to adjust the frequency of a nontime-varying resonance until it
sounded as much like the varying one as possible. Typical results of the matches are shown in
Fig. 7.3. The test stimuli labelled a, b, c, d, e, and f correspond to those diagramed in Fig. 7.2.
The data show a strong tendency to set the steady resonance to a frequency corresponding to the
final value of the varying formant, particularly when the formant change occurs near the beginning
of the sound. The tendency to match the final frequency appears somewhat stronger for stimuli in
which the resonant frequency ascends.

In a different vein, a temporal fine structure is known to exist in the glottal source. The shape
and periodicity of the glottal pulse is subject to various perturbations which may be significant to
speech quality. In a condition known as diplophonia, for example, alternate glottal pulses may be of
different size (Smith [1958]). Similarly, successive glottal periods may vary in duration. To quantify
this effect, one study analyzed the durations of 7000 pitch periods of real speech (Lieberman [1961]).
In successive samples of three periods each, the variation in period was greater than 0.1 msec in 86%
of the cases. In 20% of the cases the duration difference between periods was greater than 0.6 msec,
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Figure 7.3: Results of matching a nontime-varying resonance to the time-varying resonances shown
in Fig. 7.2. Mean values are plotted. The vertical lines indicate the standard deviations of the
matches. (After (Brady et al. [1961]))

and in 15% it was greater than 1.0 msec. In 38% of the cases the periods were alternately long and
short. Adjacent periods were not correlated, but alternate periods were highly correlated.

As one step toward trying to understand the possible perceptual correlates of these factors, a
preliminary investigation has examined the effects upon perceived pitch of systematic differences in
amplitude and timing of an otherwise periodic pulse train (Flanagan et al. [1962b], Guttman and
Flanagan [1962]). Among the conditions considered were the pulse wave forms shown in the left-hand
column of Fig. 7.4. Starting with exactly periodic trains (of period T12) , alternate pulses in the
train were changed incrementally either in amplitude level (Stimulus AL) or in time of occurrence
(Stimulus AT ). The effect upon pitch was assessed by having listeners adjust the frequency of a
uniform, periodic train (Stimulus B) until its pitch matched that of the perturbed train. As either
the amplitude difference (∆L) or the time difference (∆T ) increases, a point is soon reached where
the pitch drops by an octave.

The second column of Fig. 7.4 shows the frequency spectra of the amplitude-varied stimulus (AL)
, the time-varied stimulus (AT ), and the standard matching stimulus (B). The third column of the
figure shows the corresponding pole-zero diagrams for the three periodic trains. Notice that for
the AL signal the relative amplitudes of adjacent spectral lines are dependent only upon the pulse
amplitudes a1 and a2. For AT on the other hand, the spectral amplitudes are conditioned by the
fundamental period T and by the cycloidal envelope which, in turn, is determined by the interval T .

Median matches made by a number of listeners for the ∆L and ∆T conditions are shown in
Fig. 7.5a and 7.5b, respectively. In both plots the parameter is the pulse rate of the A stimulus (i.e.,
twice its fundamental frequency). The results in Fig. 7.5a for ∆L show that, over the frequency
range appropriate to the human voice fundamental, an amplitude difference ∆L of about 6 to 8 db,
or greater, will produce an octave reduction in the perceived pitch. In the same fashion, the ∆T
data in Fig. 7.5b show that in the range of the voice fundamental (i.e., about 100Hz and above) a
time shift ∆T on the order of 0.1 or more, will produce an octave reduction in pitch.

7.2.9 Differential Discriminations in the Articulatory Domain

The acoustic dimensions considered for the speech and speech-like signals in the preceding discussion
have counterparts in the articulatory domain. However, the acoustic and articulatory relations do not
generally exist in one-to-one correspondence. For example, a change in a constriction size, or in its
location, alters not only one formant frequency, but in general all of them (see Fig. 3.40, Chapter 3).
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Figure 7.4: Periodic pulse stimuli for assessing the influence of amplitude and time perturbations
upon perceived pitch. The left column shows the time waveforms of the experimental trains; ampli-
tude variation (AL), time variation (AT ), and the standard matching train (B). The second column
shows the corresponding amplitude spectra, and the third column shows the complex-frequency
diagram. (After (Flanagan et al. [1962b], Guttman and Flanagan [1962]))

It is therefore difficult to interpret, say, limens for formant frequency and amplitude in terms of just-
discriminable articulatory changes. One can, nevertheless, make some simple observations about the
links between the domains.

The just-discriminable changes in formant frequency were found to be about three to five per
cent. For a straight pipe the formants are approximately

Fn =
(2n− l)c

4l
, n = 1, 2, . . .

The sensitivity of the mode frequencies to length changes is

∂Fn/∂l = − (2n− l)c

4l2
, or

Fn
∆Fn

= − l

∆l
,

so that a given percentage change in the tract length l produces the same percentage change in the
formant frequencies. The DL for tract length might therefore be expected to be roughly comparable,
percentage-wise, to the formant frequency DL. By referring to Fig. 3.40, Chapter 3, one can see other,
more complex correspondences between formant changes and articulatory changes.

Another simple example is the sensitivity of the mode damping for a straight pipe to changes in
the mean glottal area (see Eq. (3.74)]. Assume for simplicity that the equivalent glottal impedance
is purely resistive and is produced only by kinetic factors, that is,

R′
g =

(2ρPs0)
1
2

A0

[using the notation of see Eq. (3.51)]. The pole dampings (i.e., real parts) are given by

σn ≈ −
(
αc+

Z0c

lRg

)

or

σn ≈ −
[
αc+

cZ0A0

l(2ρPs0)
1
2

]

[see Eq. (3.74)]. The sensitivity of the damping with respect to mean glottal area is then

∂σn
∂A0

≈ − cZ0

l(2ρPs0)
1
2

,
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Figure 7.5: Results of matching the pitch of a uniform pulse train (B) to that of: (a) a periodic
train (AL) whose alternate pulses differ in amplitude by ∆L and (b) a periodic train (AT ) whose
alternate pulses are shifted in time by ∆T . In both cases the parameter is the pulse rate of the A
stimulus. (After (Flanagan et al. [1962b], Guttman and Flanagan [1962]))
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Figure 7.6: Three-parameter description of vowel articulation. r0 is the radius of the maximum
constriction; x0 is the distance from the glottis to the maximum constriction; and A/l is the ratio
of mouth area to lip rounding. (After (Stevens and House [1955]))

or the change in mode damping is approximately proportional to the change in mean glottal area.

7.3 Absolute Discrimination of Speech and Speech-Like Sounds

Most efforts to establish the acoustic cues for speech-sound recognition have been absolute identifi-
cation experiments. The test stimuli have generally been synthetic versions of phoneme-length and
syllable-length utterances. This approach presumably keeps the stimuli simplified to noncontextual
situations where only the physical properties of the specific signal influence the percept. At the same
time it may permit association of a linguistic structure, and the perceptual responses are usually
interpreted within this frame of reference.

7.3.1 Absolute Identification of Phonemes

A relatively small number of experiments has dealt solely with isolated phonemes. One study–
using a transmission-line vocal tract analog–investigated articulatory configurations appropriate to
vowels. It tested a simple three-number articulatory description of vowel production (Stevens [1955],
Stevens and House [1955], House [1956]). The three-number scheme for describing vowel articulation
is illustrated for two configurations in Fig. 7.6. The three parameters used to describe the vocal shape
are the radius of the maximum constriction, r0; the distance from the glottis to the constriction, x0;
and the ratio of mouth area to lip rounding, A/l. The radius of the dashed portion of the tract is
described by the function

r(x) = [0.025(1.2− r0)(x− x0)
2 + r0],

where the lengths are in centimeters.

An electrical transmission line simulated the configurations and synthesized the sounds. Isolated
vowels,500 msec in duration, were judged absolutely by listeners and placed into nine English vowel
categories. Pitch was monotonically inflected from 120 to 140Hz. The listener responses in terms of
articulatory parameters are illustrated for one value of constriction in Fig. 7.7. The two response
contours indicate agreement among 50% and 75% of the responses, respectively. The Peterson and
Barney data for natural vowels uttered by men (see Fig. 4.10, Chapter 4), when transformed into
the same articulatory coordinates, are given in Fig. 7.8. The two plots show that, except for small
differences, the three number description does surprisingly well in providing a unique specification
of the vowels.

A somewhat similar experiment on synthesis and perception has been carried out for Japanese
vowels (Nakata and Suzuki [1959]). In this experiment, however, the sounds were produced by a
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Figure 7.7: Listener responses to isolated synthetic vowels described by the 3-parameter technique.
One value of constriction is shown. Two levels of response corresponding to 50 and 75% agreement
among subjects are plotted. (After (House [1955]))

terminal-analog synthesizer, and the idea was to find the synthetic formant patterns appropriate to
the vowels.

The same transmission-line analog–but with attached nasal tract-has been used to study the
perception of nasal consonants (House [1957]). Isolated, 500 msec representations of nasal conso-
nants were synthesized and presented to listeners for absolute judgment. The permissible response
categories were the three nasal consonants /m,n, and N/. The articulatory description used for syn-
thesis was similar to that described in the preceding discussion on vowels, but with the additional
specification of the velar coupling. Typical confusion matrices of responses (to articulatory configu-
rations which were determined by pre-tests to be representative nasal consonant stimuli) are shown
in Table 7.1a.

While the responses to the synthetic nasal consonants do not look particularly decisive, they

Table 7.1: Listener responses to synthetic and natural nasal consonants
a) Synthetic b) Natural
Stimulus Response % Stimulus Response %m n N m n Nm 81 11 8 m 96 4 0n 33 61 6 n 42 56 2N 20 18 62 N 60 28 12

a) Synthetic: Mean correct response = 68%.
b) Natural: Mean correct response = 55%.
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Figure 7.8: Formant frequency data of Peterson and Barney for 33 men transformed into the 3-
parameter description of vowel articulation. (After (House [1955]))

do compare favorably with similar measurements on natural nasal consonants (Malecot [1956]). A
confusion matrix for the latter are shown in Table 7.1b. In this case the synthetic nasals are discrimi-
nated better than the natural ones! In view of the high functional load that nasals, particularly /n/,
carry in connected speech (see Table 1.1, Chapter 1), the low discrimination scores suggest that
transitions, both from and into adjacent sounds, may be highly important to nasal perception.

7.3.2 Absolute Identification of Syllables

A substantial amount of research has considered the perception of isolated syllables. The effort has
aimed mainly at discovering the acoustic cues important to phoneme recognition. Central to the
objective is the determination of the separate contribution each acoustic variable makes to speech
perception, as well as an understanding of how the contributions combine in the total percept.
Much of the work points up the importance of acoustic environment upon perception; that is, the
perception of a given phoneme can be strongly conditioned by its neighbors.

Among the leaders in this work has been the group at the Haskins Laboratories. Many of their
experiments have used synthetic syllables generated by the pattern-playback machine. The operation
of this synthesizer has been described in Chapter 9, and it is shown in Fig. 9.5. As explained in
Section 9.3.1, the device synthesizes sound from data displayed as a conventional time-frequency-
intensity spectrogram.

The nature of the experimentation is exemplified in consonant identification tests on CV syllables.
The consonant used is either a voiced or voiceless stop. If it is voiceless (i.e., /p,t,k/), one of the
variables that seems to enable listeners to differentiate the sounds is the position along the frequency
scale of the brief burst of noise constituting the stop release. To isolate this particular cue and to
determine its role in perception, schematized stop-vowel syllables such as shown in Fig. 7.9c were
synthesized (Cooper et al. [1952]). The noise burst (the small vertical ellipse in Fig. 7.9c) was
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Figure 7.9: Stimulus patterns for determining the effect of noise-burst frequency on the perception
of voiceless stop consonants: (a) frequency positions of the noise bursts, (b) formant frequencies of
the two-formant vowels; (c) one of the synthetic consonant-vowel syllables formed by pairing a noise
burst of (a) with a two-formant vowel of (b). (After (Cooper et al. [1952]))

Figure 7.10: Listener responses to the synthetic consonant-vowel syllables shown in Fig. 7.9. (After
(Cooper et al. [1952]))

constant in bandwidth and duration, and the vowel was a two-formant vowel that was maintained
steady throughout the syllable. Combinations of noise bursts and vowel formants shown in Fig. 7.9a
and b, respectively, produced the test ensemble.

The syllables were presented in isolation to listeners who were asked to judge the initial consonant
either as /p,t or k/. The identifications, according to noise-burst location and vowel, are shown in
Fig. 7.10. The contours indicate approximately equal response percentages, with the small contours
representing the higher percentage response.

For these particular syllables, the one frequency variable (namely frequency of noise burst) ap-
pears adequate to distinguish the three consonants. High frequency bursts are heard as /t/ for all
vowels. For /p/ and /k/ the identification depends not only upon frequency of burst but also on
its relation to the vowel. Bursts on a level with the second formant, or slightly above, are heard
as /k/; otherwise they are heard as /p/. The conclusion is advanced that the perception of these
stimuli–and perhaps their spoken counterparts–requires the CV combination (that is, the syllable)
as a minimal acoustic unit. Without information on the following vowel, the consonant percept may
be equivocal.

A second cue important in the perception of stop-consonants is the stop-vowel formant transi-
tions. One relevant question is how might this cue and the former one of burst position contribute
singly, and how might they combine. To get some indication of the answer, the same voiceless-
stop and vowel syllables were generated as before, except the noise burst was eliminated and the
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Figure 7.11: Second-formant trajectories for testing the contribution of formant transitions to the
perception of voiceless stop consonants. (After (Cooper et al. [1952]))

Figure 7.12: Median responses of 33 listeners to stop consonant and vowel syllables generated by
the patterns shown in Fig. 7.11. The bars show the quartile ranges. (After (Cooper et al. [1952]))

consonant cue was produced solely by a transition of the second formant.
The ensemble of transitions tested is shown in Fig. 7.11. The transition numbers, N , ranging

from -4 to +6, indicate the starting frequencies of the second formant. In terms of actualHz, the
starting frequencies are given by [F2 + N(120)] Hz, where F2 is the steady-state second formant
frequency of the two-formant vowels shown in Fig. 7.94. The first formant was maintained constant
at the values given in Fig. 7.9. The fundamental frequency of the sound was also held constant at
120Hz. The durations of the transitions were 40 msec for 1, and 80 msec for +6. For transitions
in between, the durations varied linearly. The form of the transition curve is unspecified except
that an effort was made to approximate the transitions seen in spectrograms of real speech. In the
experience of the authors, variations in the duration of the transition and its curvature do not cause
the sound to change from one stop consonant to another.

The median /p,t,k/ responses of 33 listeners, for these transitions coupled with seven differ-
ent vowels, are shown in Fig. 7.12. The lengths of the plotted bars show the quantile ranges of
the responses. The results indicate that the second formant transition effectively cues the /p,t,k/
discrimination.

In extending this line of investigation to other consonants, the same authors found that the
second formant cues also apply to the voiced cognates /b,d,g/. Distinctions between the voiced and

4An exception, apparently, was the negative F2 transitions of the vowels /o/ and /u/. This was
ˆ

F2 +N
`

120

2

´˜

(Liberman et al. [1954]).



7.3. ABSOLUTE DISCRIMINATION OF SPEECH AND SPEECH-LIKE SOUNDS 209

Figure 7.13: Listener responses in absolute identification of synthetic fricatives produced by a pole-
zero filtering of noise. The frequency of the pole is indicated on the abscissa, and the frequency of
the zero is approximately one octave lower. (After (Heinz and Stevens [1961]))

unvoiced cognates are made by the first formant transition and by the voice bar. When vowel plus
nasal-consonant syllables are generated in a similar manner, but with the formant transitions at the
ends of the vowels and with an added, constant nasal resonance, the second formant transitions that
serve to distinguish /p,t,k/ and /b,d,g/ also serve to distinguish /m,n,N/ (Liberman et al. [1954])).

Returning to the syllables composed of voiceless stop and vowel, several remarks can be made.
The two sets of results show the individual contributions of the noise burst in the stop release and
the formant transition in the following vowel. The results do not, however, suggest how these cues
combine and how they may relate to each other. One might expect that identification would be
improved by the combined burst and transition cues, and that they might complement each other;
when one is weak, the other might be strong. In some syllables both cues may not be sufficient, and
a still different factor, such as third formant transition, may be vital to the discrimination.

The dependence of consonant perception upon the following vowel suggests to the authors that
listeners perceive speech in acoustic units of syllable length or perhaps half-syllable length5. A one-
to-one correspondence between sound and phoneme is not found, and the phoneme may not exist in
the speech wave in a free form. Clearly, one should not expect to find absolute acoustic invariants
for the individual phoneme.

The experiments of the preceding discussion concerned sounds generated from abstracted spectro-
grams and by a particular synthesizer. Similar experiments have aimed to determine the perceptual
adequacy of other synthesizers and to examine the influence of still different acoustic cues upon
recognition. One of these has treated the synthesis of isolated fricatives and fricative-vowel syllables
(Heinz and Stevens [1961]). Fricative consonants were generated by filtering noise with a single
pole-zero electrical circuit. The frequency of the zero was always maintained an octave below that
of the pole. The object was to determine whether such an idealized spectral representation can elicit
fricative responses, and further, to establish the ranges of pole-zero locations associated with the
particular responses. (Recall from Chapter 3 that the mode pattern of fricatives usually involves a
number of poles and zeros. Recall, too, that the discussion in Section 7.2.7 suggests that many of
the modes may not be perceptually significant.)

In one test, fricative consonants were generated and tested in isolation. A range of tuning and
bandwidth was explored for the pole and zero. Identifications were made from an ensemble of
five phonemes; namely, /S,C,s,T,f/. The synthetic sounds were 200 msec in duration. The results
show that different resonant bandwidths, ranging in Q from about 5 to 10, produce no significant
changes in the fricative responses. Changes in tuning of the resonance, however, produce important

5This point, and other views on it, will be discussed further in Section 7.5.
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Figure 7.14: Abstracted spectrogram showing the synthesis of a syllable with fricative consonant
and vowel. The single fricative resonance is Ff . The four-formant vowel is an approximation of /A/.
The lower three curves represent the temporal variation of the excitation and formant frequencies
in the syllable. (After (Heinz and Stevens [1961]))

differences in response. The effect is illustrated by the percentage responsevs resonant frequency
plotted in Fig. 7.13. The /f/ and /T/ responses are combined.

Using the same synthetic fricatives, consonant-vowel syllables were synthesized with a terminal-
analog synthesizer. The vowel used was always /A/, and the syllable synthesized is illustrated by
the schematic spectrogram in the upper part of Fig. 7.14. The timing sequence of control functions
for the terminal-analog synthesizer is shown by the lower curves in Fig. 7.14. The first two curves
show the build-up and decay characteristics of the noise (voiceless) and buzz (voiced) excitation.
The third curve shows the timing of the formant transitions. The Fl vowel transition always started
from 200Hz. The initial F2 value was either 900, 1700 or 2400Hz. Fricative resonances of 2500,
3500, 5000, 6500 and 8000Hz were used. Listeners were required to identify the initial consonant
as /f,T,s,S/.

The consonant judgments–as functions of the fricative resonance frequency and second-formant
transition-are plotted in Fig. 7.15. The results for two ratios of consonant-to-vowel intensity are
shown, namely -5 db and -25 db. Two response contours are also shown. Inside the dashed lines
the indicated fricative is responded in more than 90% of the presentations. Inside the solid lines
the response is greater than 75%. The two consonant-to-vowel intensities dramatize the importance
of relative level in the perception of /T/ and /f/, and to a lesser extent, /s/. The responses also
suggest that the fricative /f/ is distinguished from /T/ largely on the basis of the F2 transition in
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Figure 7.15: Absolute identifications of the initial consonant in the synthetic syllable schematized
in Fig. 7.14. Two response contours are shown corresponding to 90 and 75% identification. Two
consonantto-vowel intensities (-5 and -25 db) are shown. (After (Heinz and Stevens [1961]))

the vowel. Contrariwise, the formant transition does not have much influence upon the /s/ and /S/
discrimination, this being determined more by the frequency of the fricative resonance. Another
study, closely related in form and philosophy to the present one, has been carried out for Japanese
fricatives (Nakata [1960]).

In much the same vein, other experiments have studied formant transitions with a transmission-
line analog (Stevens [1956]). The results show thatlow F2 loci (1000Hz or less) are generally asso-
ciated with bilabial or labiodental articulatory configurations. On the other hand, F2 loci in the
middle frequency range (1500 to 2000Hz) are associated with alveolar configurations, and F2 loci
above 2000Hz are associated with palatal configurations.

A still different approach to synthesis and perception is exemplified by the generation of connected
speech from individual, spectrallyconstant synthetic segments (Cohen and T’Hart [1962]). The
segments are of phoneme length and are time-gated with prescribed build-up, decay and duration.
From these results the suggestion is advanced that proper dimensioning of the time parameter
makes it possible to neglect a number of details of formant information usually considered to be of
paramount importance. It seems reasonably clear, however, that the ear accomplishes a short-time
spectral analysis (see Chapter 4) and that it appreciates continuous variations both in frequency
and intensity. The “time parameter” view implies a trading relation of a sort between spectral
information and temporal detail. Such a trade may in fact exist, but the extent to which it can
be exploited may be limited. It would appear unlikely that high-quality, high-intelligibility speech
could be consistently synthesized without taking account of mode transitions within phoneme-length
segments.

7.3.3 Effects of Learning and Linguistic Association in Absolute Identi-
fication of Speech-Like Signals

It was suggested earlier that at least two limitations exist in applying classical psychophysical data
to speech recognition. First, the classical measures are generally restricted to differential discrimi-
nations. Second, they are usually made along only one dimension of the stimulus. Speech, however,
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appears to be a multidimensional stimulus. Its perceptual units, whatever they might be–and they
probably vary according to the detection task–are presumably perceived absolutely. At least one
experiment has attempted to measure the effects of learning and linguistic association in absolute
discriminations. The tests treated several dimensions of complex, speech-like sounds (House et al.
[1962]).

Four different groups of stimuli (A, B, C and D), varying in their similarity to speech, were used.
The stimuli of each group were further divided into subgroups. The signals of each subgroup were
coded in a given number of dimensions. Each member of the subgroup was designed to convey three
bits of information per presentation. The signals of the A group, for example, were produced by
filtering random noise with a simple resonant circuit. They could be coded along time, frequency and
intensity dimensions. Stimuli in subgroup A1 were coded unidimensionally in terms of 8 frequency
positions of the noise resonance. The center frequency of the resonance varied from 500 to 5000Hz,
and its corresponding bandwidth varied from 300 to 3120 Hz. One intensity (namely, a reference
intensity) and one duration (300 msec) were used. In contrast, stimuli of subgroup A7 were coded
in terms of two frequency positions of the noise (820 or 3070Hz), two intensity values (8 db re A1),
and two durations (150 or 450 msec). The subgroups A2 through A6 utilized different combinations
of dimensions and quantizationsbetween these extremes.

The B stimuli were also rudimentary signals but with slightly more speech-like properties. They
had temporal and spectral properties roughly analogous to vowel-consonant syllables. The vowel
element was produced by exciting a single resonant circuit with 125Hz pulses. The center frequency
of the resonator was 300Hz and its bandwidth was 60Hz. The consonant portion was produced by
exciting a simple resonant circuit with white noise. The coded dimensions of the B signals were
center frequency and bandwidth of the noise portion (center frequencies 500 to 5000Hz, bandwidths
100 to 1000Hz); intensity of noise ( 14 db); and duration of the silent interval (gap) between the vowel
and consonant (10 to 180 msec). The total duration was always 350 msec. Like the A group, set B
1 was a one-dimensional coding and had eight frequency values, one intensity and one duration. Set
B7 was a three-dimensional coding and had two frequencies, two intensities and two gap durations.

The C group was constructed to be still more similar to speech. It incorporated many of the
characteristics of acceptable synthetic speech samples. Like B, the C stimuli were vowel-consonant
syllables, but the vowel was generated from four resonators whose center frequencies were fixed
at 500, 1500, 2500, and 3350Hz. Their bandwidths were approximately those of spoken vowels.
The first formant was given a falling transition to the time gap, in analogy to the vowel-to-stop
consonant transition. The consonant portion was generated by a single pole-zero filtering of noise,
similar to the circuit described in the preceding section for producing fricative consonants (Heinz
and Stevens [1961]). Voiced excitation during the vowel was inflected from 120 to 150 pps. The
stimulus dimensions and the varied parameters were similar to those of the B signals. In set C1, the
consonant resonance varied from 500 to 5000 in eight steps. The vowel duration was 250 msec, the
gap 50 msec, and the consonant 100 msec. (Total duration was always 400 msec.) In set C7, the
consonant dimensions of resonance, intensity and gap were all binary.

The D stimuli were real, monosyllabic speech utterances produced by one speaker. Only a single,
three-dimensional subgroup was used. The eight syllables were composed of two vowels, /I/ and /2/,
and four consonants /f,s,p,t/. Four of the eight syllables were monosyllabic English words, and four
were nonsense syllables.

In the tests the stimuli were presented singly in isolation. Listeners were required to associate
each with one of eight unlabelled buttons on a response panel. After the subject made his selection,
one of eight lights on the panel flashed, indicating the correct button with which to associate the
stimulus. The next sound was then presented. There was no speed requirement.

The results show how the median probability of correct identification increases with learning.
Identification data from twelve listeners for the unidimensional, frequency-coded stimuli are shown
in Fig. 7.16. Each test block involved the randomized presentation of sixteen items from a given
(8-component) stimulus ensemble. The responses to the tri-dimensional stimuli are given in Fig. 7.17.
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Figure 7.16: Median probability of correct response for frequency-coded, one-dimensional stimuli.
(After (House et al. [1962]))

Figure 7.17: Median probability of correct response for time-frequency-intensity coded threedimen-
sional stimuli. (After (House et al. [1962]))
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The two sets of results show that learning is more rapid for the tridimensional stimuli than for
the one-dimensional items. Of the tridimensional signals, real speech (D7) is learned the fastest. The
least speech-like artificial signal (A7) is learned the next fastest. The results suggest two conclusions.
First, performance during learning is better when the stimuli are coded in several physical dimensions
than when they lie along a unidimensional continuum. Second, as the physical characteristics of the
stimuli are made more similar to speech, there is a deterioration of performance, except for stimuli
that are actual speech signals!

The explanation advanced for this latter and somewhat surprising result is that neither the A, B,
nor C stimulus ensembles were sufficiently like speech to elicit a linguistic association. Hence, they
had to be identified in a manner different from speech. Real speech sounds, however, are categorized
with great facility by listeners, and presumably the subjects made use of linguistic categories in
discriminating the D stimuli. The A, B, and C signals, lacking linguistic association, were probably
identified in terms of what may be more “natural” basic dimensions in perception, namely, loudness,
pitch and duration. Discrimination of these fundamental dimensions might be expected to be more
clear cut for the A stimuli. The B and C signals apparently do not order well along these dimensions
because of the fixed initial vowel segment.

The results are therefore interpreted to argue against the existence of a speech-like continuum.
Although the signals may bear more or less resemblance to speech from a physical point of view,
the subjective responses exhibit a sharp dichotomy. Either the sounds are associated with linguistic
entities or they are not. In the present experiment presumably none of the synthetic sounds were
associated with linguistic quantities. Within a linguistic frame, the tendency is to categorize a
signal according to dimensions established by the language structure. Perception of the signal as a
linguistic unit probably depends strongly upon nonperipheral processes. Small details of the signal,
routinely preserved at the periphery of the ear, may not be of primary importance. For nonlinguistic
signals, on the other hand, the tendency is to order them along what seem to be natural psychological
dimensions. Their discrimination probably requires less central processing than does the perception
of speech.

7.3.4 Influence of Linguistic Association Upon Differential Discriminabil-
ity

A listener’s linguistic learning and experience provide an acute ability to categorize speech signals.
In the experiment of the preceding section, listeners presumably resorted to linguistic associations
for the D7 stimuli. They apparently did not for the other stimuli, either because the signals were
not sufficiently speech-like, or because the listener’s attention was not drawn to such an association
by the instructions given him.

The results therefore raise a further question. Assuming that a linguistic association is made,
is its effect reflected in the differential discriminations a listener can make? In other words, can
the learning and discriminability acquired in linguistic experience carryover into a more classical
differential comparison. At least one experiment suggests that it can (Liberman et al. [1957]). The
objective was to demonstrate that the differential discriminability of formant motion in a synthetic
speech syllable is more acute when the change traverses a phoneme boundary.

Consonant-vowel syllables were synthesized with the pattern playback device described in Sec-
tion 9.3.1, Chapter 9. Two formants were used and the vowel was always /e/ (Fl=360, F2=2l60Hz).
The consonants were various two-formant transitions spanning the known approximations to /b,d,g/.
The set of synthetic syllables used is shown in Fig. 7.18. The positive first-formant transition is the
same in all the syllables and is a necessary cue to voicing. The second formant transitions range
from highly negative to highly positive. The duration is the same for all syllables, namely 300 msec.

Two tests were made. In one, the stimuli were presented singly for absolute judgment of the
consonant. The allowed response categories were /b,d,g/. In the second, an ABX presentation was
made. Stimuli A and B were different syllables from Fig. 7.18. They were separated by either one,
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Figure 7.18: Synthetic two-formant syllables with formant transitions spanning the ranges for the
voiced consonants /b,d,g/. The vowel is the same for each syllable and is representative of lei.(After
(Liberman et al. [1957]))

Figure 7.19: Absolute Consonant identifications of one listener for the stimuli of Fig. 7.18. (After
(Liberman et al. [1957]))

two or three successive steps Shown in Fig. 7.18. Sound X was identical to either A or B. On the
basis of any cues they chose to use, listeners judged whether X was most like A or B. The second
test therefore gave a measure of relative discriminability at each step on the continuum described
by the stimuli in Fig. 7.18.

The absolute identification results of the best subject in the experiment are shown in Fig. 7.19.
This same subject’s responses in the ABX test, when the step size between A and B is two (that is,
the B stimulus number is A plus two in Fig. 7.18), are given in Fig. 7.20. Comparison of the data
shows a clear diminution of differential discriminability of formant transition for the stimuli contained
within the /b/ and /d/ response ranges. A corresponding drop for the /g/ range apparently is not
obtained. The other subjects in the experiment did not give data with maxima and minima so well
defined, but the indications are that somewhat similar variations exist. A rough approximation of
differential discriminability can be made on the assumption that listeners can discriminate only so
well as they can identify. This assumption tends to predict the relative variations in discriminability,
but it underestimates the absolute level of discriminability. The difference may represent a so-called
margin of true discrimination, that is, the ability of listeners to distinguish speech sounds not solely
on the basis of phoneme labels, but also more directly by acoustic differences.

The suggestion is advanced that the inflection points in discrimination are not innately built into
the human. Different languages have phoneme boundaries in different places. The case for acquired
discriminability would of course be strengthened by demonstrating that native speakers of other
languages exhibit maxima of differential sensitivity placed along the continuum in accordance with
their languages. The crucial factor in the present experiment is the extent to which linguistic associ-
ations are elicited by the stimuli6. Lacking the ability to categorize, the differential discriminability
might be expected to be monotonic along the stimulus continuum.

6The question is made more pointed, perhaps, by the results of the previous section where apparently no linguistic
association was made with synthetic syllables.
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Figure 7.20: ABX responses of the listener whose absolute responses are shown in Fig. 7.19. The step
size between A and B stimuli was two positions in the stimulus set of Fig. 7.18. (After (Liberman
et al. [1957]))

To inquire into this last point, a similar experiment was conducted on synthetic vowel sounds
(Liberman et al. [1962]). No increase in discrimination was found at the phoneme boundaries. In
addition, the differential discriminability lay considerably above that predicted simply on the basis
that listeners can discriminate only so well as they can identify. (In other words, listeners can
discriminate many within-phoneme differences.) The conclusion is that the perception of vowels
tends to be continuous and is not as categorized as, for example, the stop consonants. A further
experiment with two other phonemic distinctions, namely vowel length and tone in Thai, also failed
to show sharpening at the phoneme boundary (Liberman et al. [1962]).

7.4 Effects of Context and Vocabulary Upon Speech Percep-

tion

The precision with which listeners identify speech elements is intimately related to the size of the
vocabulary and to the sequential or contextual constraints that exist in the message. The percent
correct response is higher the more predictable the message, either by virtue of higher probability
of occurrence or owing to the conditional probabilities associated with the linguistic and contextual
structure. This influence is apparent in intelligibility scores for various types of spoken material.
Fig. 7.21 illustrates the effect in an experiment where speech was masked by varying amounts of
noise (Miller et al. [1951]).

Three different types of test material were used. Articulation tests were made with the same
subjects and experimental apparatus. One set of material was the spoken digits zero to nine.
Another was complete sentences read and scored for the major words. A third was nonsense syllables
which were pronounced and recorded using an abbreviated phonetic notation. As Fig. 7.21 shows,
the signal-to-noise ratios necessary to produce 50 percent correct response are approximately -
14 db for the digits, -4 db for the words in sentences, and +3 db for nonsense syllables. The
discriminations among a small number of possibilities are obviously better than among a large
number. The sequential constraints present in the sentences apparently result in higher intelligibility
scores than for the nonsense material.

The effect of vocabulary size was examined in further detail. The same type of articulation tests
were performed on monosyllabic word sets numbering 2, 4, 8, 16, 32, 256, or an unspecified number.
For the restricted vocabularies, the listeners were informed of the alternatives. The results of the
intelligibility tests are shown in Fig. 7.22. The results show clearly that as vocabulary size increases,
the signal-to-noise ratio necessary to maintain a given level of performance also increases.
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Figure 7.21: Intelligibility scores for different types of spoken material as a function of signal-to-noise
ratio. (After (Miller et al. [1951]))

Figure 7.22: Effects of vocabulary size upon the intelligibility of monosyllabic words. (After (Miller
et al. [1951]))
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Semantic and syntactical constraints also influence the predictability of a speech utterance and
hence its intelligibility. The grammatical rules of a given language prescribe allowable sequences of
words. Semantic factors impose constraints upon those words which can be associated to form a
meaningful unit. Experiments have demonstrated that the intelligibility of words is substantially
higher in grammatically-correct, meaningful sentences than when the same words are presented
randomly in isolation (Miller et al. [1951]). The sentence context reduces the number of alternative
words among which a listener must decide, and the improvement in intelligibility is due, at least
partially, to this reduction.

Reduction in the number of alternatives, however, is not the sole factor. Experiments have com-
pared the intelligibility of words in grammatically-correct, meaningful sentences to the intelligibility
in nongrammatical, pseudo-sentences (Miller [1962]). The pseudo-sentences were constructed so
that the number of word alternatives was exactly the same as for the grammatical sentences. In the
grammatical structures a listener apparently accomplishes perception in terms of phrases, or longer
elements. He may delay decisions about words, rather than make them about each word as it occurs.
The nongrammatical structures, on the other hand, cannot be processed this way. They must be
perceived in terms of shorter temporal elements.

A somewhat different emphasis can be placed on context from the standpoint of acoustic environ-
ment and reference. Many perceptual evaluations seem to be made by a relative rather than absolute
assessment of physical properties. That is, the physical surround establishes a frame of reference
for the decoding operation. A simple example might be the pitch inflection of an utterance. The
relative change, or pattern of inflection, is probably more significant perceptually than the absolute
number of cycles per second.

Such acoustic “referencing” has been demonstrated in synthetic speech. It can be present to the
extent that identification of a given monosyllabic word is strongly influenced by the time-frequency-
intensity frame within which it is placed (Ladefoged and Broadbent [1957]). For example, a given
synthetic vowel was produced as the central element of the synthetic word /b--t/. This word was
used in synthetic sentences having different relative patterns of formant frequencies. Depending
upon the acoustic reference established by the formant patterns in the rest of the sentence, the
physically same synthetic word was variously identified as bit, bet or bat.

7.5 The Perceptual Units of Speech

The data in the preceding discussions suggest that speech perception is an adaptive process. It is a
process in which the detection procedure probably is tailored to fit the signal and the listening task. If
the listener is able to impose a linguistic organization upon the sounds, he may use information that
is temporally dispersed to arrive at a decision about a given sound element. If such an association
is not made, the decision tends to be made more upon the acoustic factors of the moment and in
comparison to whatever standard is available.

The suggestion that a listener uses temporally spread information raises the question as to the
size of the temporal “chunks” in which speech is perceived. Very probably the size of the perceptual
element varies with the discrimination task, and the listener adjusts his processing rate to suit
different types of speech information. He may, for example, attend to prosodic information while
phonemic information is momentarily predictable. For nonspeech or nonlinguistically associated
discriminations, the perceptual processing may be substantially different. In either case, however,
the information must funnel through the same sensory transducer. As mentioned earlier, differential
discriminations of “classical” psychoacoustic signals probably reflect the fundamental limitations
of the transducer and the peripheral processing, whereas linguistically-connected discriminations
probably reflect the storage and processing characteristics of the central mechanism.

Speech recognition presumably requires that sound elements be identified in absolute terms. For
some sounds, however, distinctiveness is not so much an acoustic, or even articulatory factor, but a
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consequence of linguistic experience. A distinctiveness, which may be salient in connected speech,
may be diminished or altogether lost in isolation. A case in point concerns the nasal consonants.
These sounds carry a heavy functional load in connected speech (see Table 1.1, Chapter 1), but are
poorly identified in isolation (see Table 7.1, Section 7.3.1).

A number of studies have aimed at determining the units in which perception occurs. For the most
part the experiments arrive at disparate results, probably owing to the large differences in perceptual
tasks and to the fact that there may be no single answer to the question. Perhaps exemplifying one
extreme in perception is the task of speech “shadowing” (Chistovich [1962]). This approach aims
to resolve whether, upon hearing the beginning of a speech sound, a listener immediately begins
to make some preliminary decisions and corrects them as more information becomes available, or
whether he stores long portions of data before interpreting them. The question was examined in
two ways. First, the latency was measured for the articulatory movements of a listener who was
repeating as rapidly as possible (“shadowing”) the speech syllables he heard over earphones. The
syllables were either vowel-consonantvowel or consonant-vowel. Second, the latency was measured
for a written transcription of the consonant sounds in the syllables heard.

The results showed that in the vocal shadowing, the consonant latencies were on the order of
100 to 120 msec for the VCV syllables, and on the order of 150 to 200 msec for the CV’s. In the
VCV syllables the subject apparently anticipates the C before it is completely articulated, perhaps
getting a good deal of information from the formant transitions in the initial V. He is often wrong
initially, but generally corrects himself (on a running basis) by the end of the C. Because the subject
reacts before he perceives the whole consonant–and even makes responses that are not possible in his
language–the interpretation is advanced that the subject makes a number of simple decisions about
the articulatory origin of the acoustic event (that is, whether the origin is dental, voiced, voiceless,
nasal, etc.). The decisions are corrected as the sound proceeds, and a set of features are finally
accumulated to form the phoneme. It is therefore suggested that shadowing is “phoneme creation”
from simple decisions about articulatory parameters.

The latencies for the written mode of response were found to be very nearly the same as the
latencies to the ends of the C’s in shadowing (that is, the interval between ends of the original and
the shadowed C’s). The conclusion is therefore put forward that consonant writing is closely related
to consonant shadowing.

It is difficult to say precisely how perception under these conditions relates to perception of
running speech. The results may be strictly interpretable only within the frame of the task. If
the task is made different, the measures are likely to indicate a different duration for the “unit.”
Another experiment perhaps illustrates the opposite extreme in evaluating the unit. It suggests that
listeners are not only aware of large parts of an utterance at any moment, but actually may find it
difficult to consider speech in terms of small segments, even when asked to make an effort to do so
(Ladefoged [1958]).

The spoken word “dot” was superimposed on the recording of a complete sentence. Listeners
were asked to note and report the precise moment in the sentence when the superimposed word
commenced. The judgments were generally inaccurate, but it was not uncommon for subjects to
report that the superimposed item occurred two or three words earlier in the sentence than was
actually the case.

This behavior suggests that the mechanisms and times for processing on-going contextual in-
formation may be considerably different from those for isolated stimuli, even though the latter are
speech sounds. It also suggests that continuous speech produces complex temporal patterns that
are preceived as a whole. Items such as syllables, words, phrases, and sometimes even sentences,
may therefore have a perceptual unity. In such an event, efforts to explain perception in terms of
sequential identification of smaller segments would not be successful. As a consequence, attempts
to build machines that recognize speech in terms of brief acoustic units may be of little or no profit.

It was suggested earlier (see Section 7.3.3) that “natural” auditory dimensions apparently include
subjective attributes such as pitch, loudness, and temporal pattern, and that these dimensions appear
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Figure 7.23: Block diagram model of stages in speech perception. (After (Bondarko et al. [1968]))

useful in discriminating nonlinguistically associated sounds. These same dimensions may of course
apply to continuous speech signals, but they may be assessed in different ways–perhaps in ways
that are related to production. For example, there is some evidence that the loudness of speech is
assessed more in terms of the respiratory effort required to produce the necessary subglottal pressure
than it is in terms similar to, say, the loudness scale for sine waves (Ladefoged [1958]). If the “motor
theory” of speech perception has validity, a listener may evaluate a speech signal in terms of the
motor activity that produced it, as well as in terms of other acoustic factors not directly under motor
control.

Many theorists in speech perception appeal to a link between production and perception. How
tight this link is, is not known. If it is close, perception could conceivably occur in terms of “articu-
latory” segments rather than acoustic segments. In producing speech, the human has at least three
kinds of feedback: auditory, tactile and proprioceptive. Blocking of one or more of these channels
apparently causes some of its functions to be assumed–but generally less well-by one of the other
channels. Speech attributes such as vowel quality, nasality and pitch seem highly dependent upon
auditory feedback, while features such as lip and tongue movements in consonant articulation seem
more dependent upon tactile and proprioceptive channels. If perception is linked to these processes,
some speech properties might be identified by reference to acoustic factors, and others by reference
to articulatory activity.

7.5.1 Models of Speech Perception

Much progress remains to be made in understanding and in modeling the mechanism of human
speech perception. Not least is the problem of quantifying behavior in response to speech signals.
Appeal to the mechanism of speech production is sometimes made on the basis that perceptual
factors, at some level, must correspond to those necessary to speak the same message. This “motor
theory of speech perception” has been the focus of considerable speculation and not little controversy
(LIBERMAN et al.). If truly invoked by humans–which has not been shown–it has the advantage
that motor commands to the vocal mechanism are more amenable to psychological study than are,
say, electrical representations of speech signals in the human contex. Further, acoustic and linguistic
correlates of the motor commands are more accessable for study.

At least one view (Bondarko et al. [1968]) has maintained that the development of a model of
human speech perception is the same problem as the development of an automatic speech recognizer,
and further, that present knowledge embraces only the most rudimentary aspects of such a model.
The proposal for such a model involves the hierarchial structure shown in Fig. 7.23. The model is
envisioned as a chain of transformations in which each stage acts as an information filter to reduce
the dimensionality of the signal. For example, the first three blocks transform an acoustic signal
into a succession of words where each word is described by a set of lexical and grammatical features
and by prosodic characteristics. Syntax and finally semantic analysis complete the transformations
necessary for message understanding. The natures of the transformations, if in fact they exist in
identifiable and separable forms, are not known. Perceptual experiments do, however, suggest certain
characteristics of the first two stages.

The peripheral auditory analysis made by the human cochlea is such that features of the short-
time spectrum of the input signal are preserved. This analysis preserves temporal detail relevant to
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changes in spectral distribution, periodicity (or non-periodicity) and intensity. That this is true can
be shown by psychoacoustic experiments on perception of changes in pitch, formants or intensity
of speech and speech-like sounds. That this information is reduced in “dimensionality” for later
processing is supported by experiments which show that consonant perception is influenced only by
the direction and rate of change of formant transitions, and not by absolute values of their “loci” or
initial frequencies. Similar perceptions of the direction and rate of change of fundamental frequency,
or pitch, influence nasal-non-nasal discriminations in labial consonants (Chistovich [1955]).

The reduction of dimensionality performed in the phonetic analysis is likely to be one of feature
analysis rather than one of comparison to a stored reference pattern. This view is supported by
data on syllable recognition where features such as manner of production may be perceived correctly
while, say, place of production is perceived incorrectly. Similarly, prosodic features may be perceived
without discrimination of phonetic factors. Experiments on mimicking and shadowing (Chistovich
et al. [1965]) are consistent with this in that some phonematic features can be recognized and
produced even before a listener hears a whole syllable. This type of feature analysis also argues
that the input to the phonemic analysis block of Fig. 7.23 may already be organized for parallel,
multichannel processing.

Exactly what duration of signal may be subjected to such analysis in not clear, but data on short-
term auditory memory provides some insight. In recall experiments with speech (Miller [1956],
Nevelskü [1966]) a sequence of three vowels or three tones is recalled as a sequence of decisions
regarding the stimuli and not as a sequence of acoustic descriptions (Chistovich et al. [1961]). The
phonemic analysis must therefore work with speech segments shorter than average word length.
Furthermore, experiments show that a man cannot remember sequences of nonsense syllables longer
than 7 to 10 syllables (Miller [1956], Chistovich et al. [1965]). This fact bears on the size of the
short-time storage and characterizes the “time window” through which the message is “seen” by the
morphological analysis stage.

On the other side it is clear that a listener does not make separate decisions about every phoneme
in running speech. The units with which he operates likely correspond to words, or to even longer
segments. Information handed from the morphological analysis to the syntactic and semantic anal-
ysis can, consequently, be reduced in dimensionality to this extent. Auditory segments need not
coincide with phonemes-i.e., each segment need not contain information about one and only one
phoneme and the number of segments need not equal the number of phonemes.

Experiments on recall show that a listener remembers phonemes as a set of features (Wickelgren
[1965, 1966], Galunov [1966]). Therefore, the phonemic information at the output of the phonetic
analysis block should be represented by abstract, distinctive features. Several different acoustic (or
auditory) features may contain information about one and the same distinctive feature.

7.6 Subjective Evaluation of Transmission Systems

7.6.1 Articulation Tests

A conventional technique for evaluating a communication facility is to determine the intelligibility
of the speech it transmits. This is customarily done by counting the number of discrete speech units
correctly recognized by a listener. Typically, a speaker reads a list of syllables, words, or sentences
to a group of listeners. The percentage of items recorded correctly is taken as the articulation score.
By choosing test material representative of the sound statistics of a language, a realistic test can be
made of the transmission system. The development of the so-called phonetically-balanced (PB) test
words has this objective (Egan [1944]). The techniques for administering and scoring articulation
tests have been described in many places, and there is little need to repeat the procedures here (see
for example, (Beranek [1954], Harris et al. [1957], Richardson [1953])).

An articulation score is not an absolute quantity. It is a function of parameters such as test mate-
rial, personnel, training, and test procedure. It consequently should be treated as a relative measure.
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Figure 7.24: A relation between word articulation score and sentence intelligibility. Sentences are
scored for meaning conveyed. (After (Egan [1944]))

Usually the significant information is a difference between scores obtained with the same material,
procedures and personnel. Syllable and word items can be scored in terms of the correctness of their
written response. Sentences can be scored either in terms of their meaning conveyed, or in terms
of key words in the sentence. Contextual constraints usually make the scores for sentences higher
than those for isolated words. One relation that has been worked out between word articulation and
sentence intelligibility (in terms of meaning conveyed) is shown in Fig. 7.24 (Egan [1944]).

Articulation tests are typically done without speed requirements, and the stimulus presentation
rates are favorable for careful consideration of each item. More realistic articulation tests–so far as
the informational capacity of a transmission system is concerned–should include time limitations.
Some research into the design of such tests has been initiated (D’Eustachio [1960]). The philosophy
of adding stress to the communication task is that “fragile” systems will fail before more robust
systems with perhaps valuable redundancy. Time limitation is but one way stress can be introduced.
Additional mental activities, such as required with simultaneous motor or visual tasks, also load the
listener. The aim is to control the sensitivity of the test by varying the subjective load (Nakatani
[1971], Moncur and Dirks [1967]).

7.6.2 Quality Tests

In the conventional articulation test, a listener is usually required to respond with the written
equivalent of the speech he hears. The quality or naturalness of the signal is not specifically evaluated.
Methods for quantitatively rating speech quality have not been well established, mainly because the
physical correlates of quality are poorly understood. Various rating-scales and rank-order methods
have been examined (Egan [1944]). However, generally applicable techniques for uniquely relating
speech quality and acoustic factors are not presently available.

One proposal has suggested that speaker recognition is an important and measurable aspect of
naturalness (Ochiai and Kato [1949], Ochiai [1958]). Results along these lines suggest that spectral
distortions of a speech signal affect the accuracy of speaker identification much differently from the
way they affect phoneme identification. Another proposal has been to consider voice quality as
the “spectral remainder” after inverse filtering a prescribed number of formants out of the signal
(Fujimura [1961]). A large contribution to what remains is then attributed to the source of vocal
excitation.

Perhaps one of the most promising tools for assessing speech quality is Multi-dimensional Scaling
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(Shepard [1962], Kruskal [1964], Carroll [1971]). In this technique, non-metric data, corresponding
to subjective judgments on a signal, are analyzed to reveal preferred rankings, and to show how
individual subjects weight (in importance to preference) different attributes of the stimulus.

The technique assumes that observers use a common set of subjective factors (or coordinates) on
which to base their judgements. The analysis indicates the number of such factors needed to account
for prescribed amounts of variance in the subjective judgments. It does not, however, identify the
physical correlates of the factors. This interpretation is a human one, and must rest upon knowledge
of the physical properties of the stimuli.

The method is applicable to judgments made in close comparison (say, similarity or difference
judgments on stimulus pairs) and to judgments made on an absolute basis (say, absolute assignment
of quality ratings). Numerous variations of the method exist. An explanation of all would fill a book
itself. The most expedient vehicle to illustrate the nature of the method is a specific example.

In one application, multidimensional scaling was used to assess the acceptability of amplitude-
modulated, periodic pulses as an electronic telephone ringing signal (Bricker and Flanagan [1970]).
Physical variables were pulse repetition frequency (f0), harmonic content (c), modulation frequency
(fm) and modulation duty-factor (df)7. Listeners heard single presentations of each signal condition
and assigned an absolute numerical rating chosen from an unbounded range of positive and negative
integers. Positive ratings were assigned to signals that were liked and negative to those disliked.
The assigned ratings of each subject were converted to standard scores having zero mean and unity
standard deviation.

The normalized judgments of n subjects on m different signal conditions produce an n×m data
matrix S. The multidimensional procedure factors this data matrix into an n× r matrix of subject
vectors and an r × m matrix of stimulus coordinates in r-dimensional space. The product of the
subject and stimulus matrices is an n × m matrix S∗ which is, in a least-squares sense, the best
approximation of rank r to the original data matrix S. In particular, the r-dimensional projections
of the stimuli onto each subject’s vector constitute the best approximation to that subject’s original
data vector. The r-dimensional projections of a subject’s vector onto the r orthogonal coordinates
indicate the relative weights assigned to the coordinates by that subject.

The goal is to find directions in r-space along which signals are ordered in a physically inter-
pretable manner. These directions are then related to the common perceptual attributes assumed
as the basis for judgment. The relation of the subject vectors to these directions indicate the weight
(or importance) of the attributes in the individual subjective ratings.

The r-dimensions are ordered according to the size of their characteristic roots, or to the pro-
portion of the variance they account for in the original data. In the present example 40 subjects
rated 81 signal conditions, and three dimensions accounted for most of the variance (r = 3). The
projections of the subject vectors onto the two most important dimensions are shown in Fig. 7.25a.

Each arrowhead is the endpoint of a unit vector in the 3-dimensional unit sphere generated by
the program. The vector thus specified may be imagined as a line segment from the end point
extending through the origin and an equal distance beyond; the arrow points in the direction of
higher rating by that subject. The relative weights given to each of the three dimensions by a given
subject, according to the assumptions of the technique, are reflected graphically by the perpendicular
projections on the three axes of that subject’s endpoint. Specifically, the squares of the projected
values sum to 1.0 (by definition of the unit vector) and the subject weights are quantitatively related
as the squares of the projected values. Thus, a subject whose endpoint is close to the end of one axis
is described by the model as weighting that dimension heavily and the other two negligibly. One
subject in Fig. 7.25a is seen to assign weights particularly different from the other 39.

The 81 stimulus coordinates of the preference judgments on the 81 signal conditions are shown
projected onto the same factor plane in Fig. 7.25b. Each point represents a single signal condition.
On this plane, a distinction is made between those signals differing only in duty factor (df) and

7The modulation waveform was a half-wave rectified version of (a+ sin 2πfmt).
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Figure 7.25: (a) Subject vectors obtained from a multi-dimensional scaling analysis projected onto
the two most important perceptual dimensions I and III. The data are for a tone ringer experiment.
(b) Preference judgments on 81 tone-ringer conditions, projected onto the two most important
perceptual dimensions I and III. Direction of high preference is indicated by the vectors in Fig. 7.25a.
(After (Bricker and Flanagan [1970]))
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fundamental frequency (f0) (see insert key)8. The axes are scaled so that the variances of stimulus
values on the two coordinates are equal. Dimension I can be associated with the physical attribute
duty factor. Dimension III can be interpreted as fundamental frequency. The signal conditions
can be divided according to duty factor and fundamental frequency, as shown by the dashed lines.
Considering the direction of subject vectors in Fig. 7.25a, one sees there is a general preference for
low duty factor and low fundamental frequency signals.

Multidimensional scaling in its many forms appears particularly promising for quality assessment
of speech signals. Synthetic speech is a good case in point. Here the intelligibility may be made
high, and the interest is in finding physical factors that relate to (and may be used to improve)
naturalness. In other instances, multi-dimensional scaling has been valuable in assessing quality
degradations due to non-linear distortions in speech transmission systems.

7.7 Calculating Intelligibility Scores from System Response
and Noise Level: The Articulation Index

Articulation tests, properly done to get stable and consistent results, are immensely time consuming.
More desirable is the ability to estimate intelligibility from the physical transmission characteristics
of the system; for example, from the frequency-amplitude response and the noise level. Under certain
restrictive conditions, the well-known articulation index is a technique for making such an estimate
(French and Steinberg [1947]). The concept has been extended and organized into graphical and
tabular operations for rapid, practical application (Beranek [1947, 1954], Kryter [1962]).

The articulation index method is limited to particular distortions in systems using conventional
“waveform” transmission. These distortions include relatively smooth variations and limitations in
the transmission bandwidth, and the masking of the transmitted signal by ongoing, continuous-
spectra noises. Under certain conditions, interference caused by temporally interrupted noise, non-
linear amplitude distortion (peak clipping), and masking by reverberation can be accounted for. In
general, however, the technique is not applicable to systems whose transmission bands exhibit many
sharp peaks and valleys, to periodic line spectra masking noises, to intermodulation distortions and
nonlinearities, and to transmission systems generally of the analysis-synthesis type (that is, where
the speech information is coded in terms other than the facsimile waveform).

The technique for calculating the articulation index (AI) has been described in detail in many
other places. The intent here is simply to recall its principles and, in a brief way, to indicate its
applicability and utility. Its calculation is illustrated by the graph in Fig. 7.26 (Beranek [1954]).
This plot shows several spectral densities laid off on a special frequency scale. The frequency scale is
similar to the mel (pitch) scale. It is experimentally partitioned into twenty bands that contribute
equally to intelligibility. The various spectral densities, or rms sound pressure levels per cycle, show:
(a) the threshold of audibility for continuous spectra sounds, (b) the peak, average and minimum
levels of speech for a man’s raised voice at a distance of one meter (see Section 4.1.7, Chapter 4),
and (c) an approximate overload spectrum level for the human ear.

In its simplest form, calculation of the articulation index proceeds as follows. The level and shape
of the plotted speech spectrum is modified according to the amplification and bandpass character-
istics of the transmission system. The spectrum level of any added masking noise is plotted onto
the graph. So long as the system response and noise level are such that all of the shaded “speech
region” (between minima and maxima) lies above threshold, above the masking noise, and below
overload, the intelligibility will be near perfect. In such a case the articulation index is 100%. If any
of the speech region is obscured by noise, threshold or overload, the articulation index is diminished
by the percentage of the area covered.

Having obtained a number for AI, it is necessary to relate it to intelligibility. The relation is

8Each triangle, for example, represents nine different combinations of modulation rate and harmonic content.
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Figure 7.26: Diagram for calculating the articulation index. (After (Beranek [1954]))

Figure 7.27: Several experimental relations between articulation index and speech intelligibility
(After (Kryter [1962]))
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an empirical one and is established from articulation tests. As mentioned earlier, articulation tests
are subject to considerable variability and their results depend strongly upon testing technique and
procedure. Absolute values of scores so derived must be used and interpreted with great discretion.
Usually it is more relevant to consider differences in intelligibility scores, arrived at by the same
technique, than to consider absolute values. Representative empirical relations between intelligibility
score and articulation index for a range of test conditions are shown in Fig. 7.27 (Kryter [1962])).

7.8 Supplementary Sensory Channels for Speech Perception

Supplementary methods for speech communication are of great importance to persons either totally
deafened or with partial auditory impairment. Not only is it difficult for them to hear the speech of
others, but they cannot hear their own speech. It consequently is common that they also experience
difficulty in speaking.

At least three avenues have been considered at the research level for providing supplementary
perceptual channels and machine aids for speech communication. They include visual, tactile, and
auditory approaches. The latter is oriented toward making use of whatever hearing ability may
remain. Each approach can be illustrated briefly by a specific example. Other interests and efforts
exist in the area.

7.8.1 Visible Speech Translator

One well-known technique for visually displaying speech information is the “Visible Speech” method
(Potter et al. [1947]). A real time sound spectrograph, called a Visible Speech Translator, produces
a running, continuous spectrographic display on a phosphor screen (Riesz and Schott [1946], Dudley
and Jr. [1946]). The format is similar to the conventional sound spectrogram (shown in Section 4.1.4,
Chapter 4) except that the pattern is “painted” continuously, either on a rotating cathode ray tube
or on a phosphor belt. As the trace advances with time, a given duration of the past speech is
retained and displayed by the persistence of the trace.

Some experiments have been made into the ability of viewers to “read” the direct-translator
displays (Potter et al. [1947]). The results showed that after relatively lengthy training, trainees
were able to converse among themselves by talking clearly and at a fairly slow rate. Within the
limits of their vocabulary, they learned to carryon conversations with about the same facility as a
similarly advanced class in a foreign language. The learning rates observed in the tests correspond
roughly to 350 vocabulary words per one hundred hours of training.

Real-time spectrographic displays appear to have more promise for speech teaching, that is,
articulatory training, than for speech reading. Some research has applied spectrographic methods
in teaching articulation to deaf children (Stark et al. [1968], Risberg [1959], Pickett [1969]).

Because of the complex apparatus and important training procedures, visible speech techniques
still remain in the realm of research. These and related methods–for example, the display of ar-
ticulatory data and of formant data–are all valid problems for research and may hold potential for
supplementary communication. Particularly promising are simple devices which signal rudimentary
speech features, such as voicing, fabriction and stop gap (Upton [1968]). At present, however, much
remains to be learned about modes of visual presentation of speech information.

7.8.2 Tactile Vocoder

The sense of touch offers another possibility for real-time communication. A filter bank analyzer,
similar to that used in a vocoder, is one means for supplying cutaneous information about the
short-time amplitude spectrum of speech (Pickett [1969]). The technique is shown in Fig. 7.28.
Ten contiguous bandpass filters, spanning the frequency range 100 to 8000Hz, receive the speech
signal. Their outputs are rectified and smoothed to obtain values of the short-time spectrum at
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Figure 7.28: Block diagram of a tactile vocoder. (After (Pickett [1969]))

Figure 7.29: A frequency-dividing tactile vocoder. (After (Kringlebotn [1968]))

ten frequency positions. The ten time-varying voltages are used to amplitude-modulate individual
sinusoidal carriers of 300Hz9. The modulated carriers are then applied to fingertip vibrators (actually
bone conduction transducers). The analyzing channel of lowest frequency is led to the small finger
of the left hand, and the channel of highest frequency connects to the small finger of the right hand.

After practice with the presentation, some subjects are able to make sound discriminations
comparable to, and sometimes better than, that achieved in lip reading. When the tactile information
is used in combination with lip reading, the ability to identify spoken words is considerably increased.
For example, in one measurement of discrimination among 12 words, the lip reading response was
about 60% correct. When supplemented by the tactile information, the response increased to 85%
(Pickett [1969]).

As in the visible speech method, the vocoder apparatus for tactile display is relatively complex.
A much simplified tactile device is shown in Fig. 7.29 (Kringlebotn [1968]). This device employs
only five vibrators applied to one hand. No filters are used, but stages of frequency division are
arranged to divide five frequency ranges of the speech signal so as to vibrate the fingers individually.
The vibrations on each finger are felt most strongly in the frequency range 200 to 400Hz. Because of
the successive frequency divisions, this sensitivity range corresponds to successively higher frequency
ranges in the input signal when distributed over the fingers, going from little finger to thumb. This
method probably transmits some frequency information about the speech signal in terms of tactile
frequency and other frequency information in terms of tactile location. Training tests with this
system have been carried out with deaf children (Kringlebotn [1968]).

9This tactile “carrier” is used because the frequency range of the skin’s vibratory sensitivity is limited to about
100 to 800Hz.
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A number of other efforts in kinesthetic and tactile communication are in progress. Although
many of these aim toward machine aids for the blind rather than for the deaf, the presentation of
sensory information involves problems common to both areas (Bliss [1962], Linvill [1969]).

7.8.3 Low Frequency Vocoder

The conventional electronic hearing aid is an amplifying and frequency shaping device. It facilitates
the use of whatever residual hearing a deafened person may have. In severe cases, however, the
residual hearing is often confined to a very small bandwidth, usually at the low-frequency end of the
audible spectrum. For example, a typical audiogram might show 60 to 80 db loss from 30 to 400Hz
and 110 db ahove 500Hz.

One proposal is to make maximal use of such residual hearing. Slowly varying signals that
describe the short-time speech spectrum (such as vocoder channel signals) are modulated either
onto sinusoidal carriers of very low frequency, or onto distinctive complex signals of relatively small
bandwith (Pimonow [1962]). In one implementation, seven spectrum channels extending to 7000Hz
are used. The rectified, smoothed outputs amplitude modulate the same number of low-frequency,
sinusoidal carriers. The carriers are spaced from 30 to 300Hz. The modulated carriers are summed
and presented as an auditory signal. In an alternative arrangement, the modulated signals are
non-sinusoidal and include a low-frequency noise band, a periodic pulse train, and a band of actual
speech. In one series of experiments, deafened subjects who could not use ordinary hearing aids
apparently learned to discriminate well among a limited ensemble of words (Pimonow [1962]).

Various devices for spectrum shifting, transposing or dividing have also been considered (Guttman
and Nelson [1968], Levitt and Nelson [1970]). These devices generally aim to recode high-frequency
information into a lower-frequency range where residual hearing exists. Like visible speech displays,
their value appears to lie more in articulatory training than in speech reception. Like the other
sensory aids discussed in this section, frequency scaling devices are still in the research stage. Ex-
tended experimentation and technical development will determine their potential as practicable aids
to hearing.
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Chapter 8

Automatic Speech Recognition

A human can listen to meaningful speech of a given language and set down a written equivalent
of what he hears. He performs a transformation on the acoustic input signal wherein distinctive
linguistic elements (phonemes) are recognized and re-encoded into a sequence of letter symbols.
Recognition of the linguistic elements is based upon a knowledge of the contextual, grammatical and
semantic constraints of the given language. It does not take much examination of sound spectrograms
to convince oneself that a unique relation generally does not exist between a given segment of the
acoustic signal and a linguistic clement. Neither are phonemic boundaries necessarily apparent in
the acoustic signal.

Automatic recognition of speech implies phonemic analysis by machine. It is possible to simulate
crudely the initial operations performed on the acoustic signal by the human (see the frequency
analysis and neural encoding performed at the ear’s periphery in Chapter 6) but, to date, not even
the most elaborate mechanical recognizers have been able to apply linguistic constraints comparable
in effectiveness to the human. This latter area represents an active field of research in theory of
grammar, semantics, and mechanical translation.

The difference (or, more precisely, the gulf) between phoneme recognition for a given language
and a straight-forward encoding of the acoustic signal, say in terms of vocal modes and excitation,
cannot be overemphasized. The former implies complete linguistic knowledge, the latter only that
the signal is produced by the human vocal mechanism. The latter is within the scope of present
speech analysis techniques. The former, as yet, is not. If phoneme recognition ultimately proves
possible, the import to efficient transmission is, of course, immense. (Recall it was suggested in
Section 1.2, Chapter 1, that the information rate associated with the utterance of independent,
equiprobable phonemes is on the order of 50 bits/sec. A coding exists for transmitting information
at this rate over a channel of about 5Hz bandwidth and 30 db signal-to-noise ratio, with as small
an error as desired.)

8.1 Historical Approaches

A number of research investigations have treated machines which are capable of recognizing limited
ensembles of speech sounds uttered by limited numbers of speakers (often only one). Generally
these devices make decisions about either the short-time spectrum of the acoustic signal or about
features of the time waveform. The constraints usually employed are ones more appropriate to the
vocal mechanism (i.e., acoustical constraints) than to linguistic structure. Without attempting to
be exhaustive, the state of the art can be outlined by several examples.

One effort toward a recognizer for a limited ensemble of sounds is a recognizer for spoken digits,
called Audrey (Davis et al. [1952]). The principle of operation is to make a rough measure of the
first and second formant frequencies as functions of time, and to compare the measured temporal
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Figure 8.1: Principle of operation of a spoken digit recognizer. (After (Davis et al. [1952]))

patterns (in the F1-F2 plane) with a set of stored reference patterns. The stored pattern affording
the best correlation is then chosen as the uttered digit.

The procedure is illustrated in Fig. 8.1. The speech signal is filtered into two bands, 900Hz
low pass and 1000Hz high pass. Limiting amplifiers in both channels peak clip the signals. Axis-
crossing measures approximate the frequencies of the first and second formants as functions of time.
The first-formant frequency range (from 200 to 800Hz) is quantized into six lOOHz segments. The
second-formant range (from 500 to 2500Hz) is quantized into five 500Hz steps. An F1-F2 plane
with 30 matrix elements is thereby produced. For a given digit utterance, the time that the F1-F2
trajectory occupies each elemental square is determined.

A reference “time-occupancy” pattern for each digit is stored in the machine. The storage
mechanism is 10 weighting resistors associated with each square. Through these resistors, charges
are accumulated on 10 separate condensers during the time the square is occupied. A cross correlation
of the stored and incoming patterns is effected by weighting the 10 conductances associated with
each square according to the average time-occupancy of that square by the respective digits. That is,
for each of the 30 squares, there are 10 relays which close charging paths to the 10 fixed condensers.
The conductance of a given path is weighted proportional to the time occupancy of that square by
a given digit. The condenser left with the greatest charge at the end of the utterance indicates the
pattern affording the highest correlation, and hence the spoken digit.

The machine does not have provisions for automatically adjusting its stored patterns to a given
speaker’s voice. This must be done manually. When it is done, however, the accuracy in recognizing
telephone quality uucrances of the digits ranges between 97 and 99% correct.

An extension of this technique is to correlate–on an instant-byinstant basis–a measured short-
time amplitude spectrum with stored spectral patterns (Dudley and Balashek [1958]). Instead of
the F1-F2 trackers, a set of bandpass filters (10 in this case, each 300 Hz wide) is used to produce
a short-time spectrum. Stored spectral patterns (again, 10) are continuously cross-correlated with
the short-time spectrum produced by the filters. The maximum correlation is taken as an indication
of the particular speech sound being produced. The pattern-matching procedure is illustrated in
Fig. 8.2. If F0(ωn) is the short-time amplitude spectrum produced by the n filter channels for a
given speech input, and Fj(ω) the j-th stored pattern, the circuit, in principle, approximates the
correlation quantity

φ0j(0) =
1

Ω

∫ Ω

0

F0(ω)Fj(ω)dω j = 1, 2, 3, . . .

by

φ0j(0) ≈ 1

n

∑

n

F0(ωn)Fj(ωn) j = 1, 2, 3, . . .

and selects the j that produces a maximum φ0j(0). The 10 sound patterns stored in this particular
development are all continuants and are /i,I,E,A,o,u,n,r,f,s/.
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Figure 8.2: Scheme for automatic recognition of spectral patterns and spoken digits. (After (Dudley
and Balashek [1958]))

A word recognizing device follows the spectral pattern recognizer to recognize the 10 digits.
Similar to the Audrey device, each selected spectral pattern is weighted according to its duration
in a given digit (see the lower part of Fig. 8.2). Again a maximum selection is made to recognize
the uttered digit. The word indication is developed as follows. When a particular spectral pattern
is energized, 10 charge paths are set up to 10 fixed condensers. The conductance of a given path is
proportional to the average time for which that spectral pattern appears in a given digit. The 10
condensers therefore accumulate charges proportional to the correlation between the 10 stored word
patterns and the measured pattern. At the end of the utterance, a maximum selection indicates
the best-fitting word. This device–designed as an elaboration upon the previous one–provides digit
recognition with good accuracy when set for a particular voice. In both devices the sequence of
spectral patterns and the recognized digits are displayed on electrical panel lights. Despite its early
date of conception and implementation, this device and the previously-described digit recognizer,
Audrey, still reflect present limitations in automatic speech recognition; namely, one can achieve
success if the vocabulary is isolated words, sufficiently small in number, and if the number of speakers
is sufficiently constrained.

Another speech recognizing device also compares spectral patterns with stored patterns repre-
sentative of specific speech phonemes (FRY and DENES). The comparison however, is made in a
different way, and the machine types out the identification in terms of special symbols. Selection of
a match is asynchronous and is initiated by the rate of change of the spectral patterns. More im-
portant, however, an attempt is made to exploit elementary linguistic constraints. A block diagram
of the device is shown in Fig. 8.3.

A filter-bank analyzer (20 channels) produces a short-time amplitude spectrum. Spectral patterns
appropriate to a given sound are produced by multiplying the outputs of two channels. The products
are scanned by a selector, and the maximum is chosen. The choice is typed out by the machine and
is remembered by a storage circuit. On the basis of the choice, the ensemble of stored patterns is
biased according to digram statistics for the language. Selection of the next phoneme is biased in
favor of its being the most probable one to follow the previous choice.

In the present machine 14 phonemes are recognized; four vowels, nine consonants and silence.
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Figure 8.3: Block diagram of speech sound recognizer employing elementary linguistic constraints.
(After (Fry and Denes [1958]))

A new selection is made whenever the product voltages have a rate of change greater than a given
threshold value. With the machine adjusted for a given speaker, the spoken input and printed output
have been compared. When the digram constraints are not used, the percentage correct response
on individual sounds and on words is 60% and 24%, respectively. When the digram constraints are
connected, these same scores rise to 72% and 44% for the single speaker. For a second and third
speaker, without readjusting the machine, the sound articulation scores fall to about 45%.

The linguistic information clearly improves the recognition when scored to give all phonemes
equal weight. If scored on the basis of information per phoneme, however, the digram constraints
could, under certain conditions, be detrimental. The most probable phoneme is favored, but it is
also the conveyor of the least information. The constraints also raise the question of sequential
errors and how they might be propagated. A certain level of accuracy in the acoustic recognition
is certainly necessary if the use of linguistic constraints is to lead to a decrease, rather than to an
increase, in error rate. Sequential errors of course occur in the human listener. A listener, once
embarked upon the wrong set of constraints in a particular sequence, may add one error to another
for quite a long stretch. In the machine, severe restriction of vocabulary reduces this possibility.

If the linguistic constraints to be incorporated into the recognition process are at all realistic, the
storage and processing functions become complex. Also if elaborate processings are to be carried
out on the acoustic signal, large storage and rapid computation are requisite. The digital computer
is adept at this, and a number of efforts have been made to capitalize upon its ability. One effort
in this direction is the programming of a digit recognizer (Denes and Mathews [1960])). Short-time
amplitude spectra are produced from a filter bank. The filter outputs are scanned sequentially, and
the spectral data are read into and stored in the machine. A speech spectrogram–quantized in time,
frequency and intensity–is laid down in the storage. Amplitude values are normalized so that the
sum of the squares over all time-frequency blocks is unity. The measured time-frequency-intensity
pattern is then crosscorrelated with stored spectrographic patterns. The correlation is effected
by multiplying the amplitude values of corresponding time-frequency elements and summing the
products over all elements of the time-frequency plane. The stored pattern yielding the maximum
correlation is chosen.

Provisions are made to time-normalize the data if desired. The beginning and the end of the
digit utterance are located, and the data are, in effect, stretched to fit a standard time duration
(actually 60 scans of the filter bank at 70Hz) . Without time normalization only the beginning of
each utterance is located, and the first 60 scans are used.

The reference pattern for each digit is obtained by averaging the spectral data for three utterances
of that digit by five men. These patterns are used to recognize different utterances by the same and
by different speakers. For different utterances by the same five speakers, the error rates are found to
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be 6% with time normalization and 13% without. When the reference patterns are set for a single
speaker, the digits uttered by that speaker are recognized essentially with no error.

A more linguistically-based approach, using a large on-line computer facility, performs a feature
analysis of segments of the speech waveform (Reddy [1967]). The wave is first divided into minimal
segments, l0-msec in duration. Minimal segments which are acoustically similar are grouped to
form larger segments representing either sustained parts or transitional parts. Features such as
voiced-unvoiced, pitch, intensity, formant frequency and amplitude are used to classify each segment
into four phoneme groups: stop, fricative, nasal-liquid and vowel. A very detailed algorithm is
then used to assign a phoneme label to each segment of a phoneme group. The object, literally,
is a speech to phoneme-like translation. This system, while recognizing the potential advantages
of phonetic feature classification and language element probabilities, is nevertheless faced with the
same problems of linguistic and semantic constraints that confront all recognizers. Its sophistication
pays off, however, in enlarging the speaker population and vocabularly which can be successfully
handled. The system has been demonstrated to yield 98% correct recognition on 500 isolated words
spoken by one individual (Reddy [1969]).

At least one similar word-recognition experiment has been carried out for the Russian language
(Velichko and Zagoruyko [1970]). In this case the energy-time-frequency dimensions of individually
spoken words are quantized. A distance functional between the unknown word and the stored
references for a word library of 203 words is computed. For two speakers, producing approximately
5000 utterances chosen from the 203 word library, the recognition accuracy was found to be about
95%. Computation time for each utterance was 2 to 4 sec.

The preceding discussion has attempted to indicate by example several stages of development
in automatic speech recognition. A sizeable number of related efforts have not been mentioned (for
example, (Smith [1951], Baumann et al. [1954], Olson and Belar [1961], Forgie and Forgie [1962],
Frick [1962], Dreyfus-Graf [1962], Martin et al. [1964], Lindgren [1965a,b,c]). Most share a common
point of departure, namely, the short-time spectrum. It is clear from the discussion that none of
the schemes tells us very much about how the human processes speech information, nor about how
he recognizes linguistic elements. None of the methods works well on an unrestricted number of
voices, nor on a large contextual vocabulary. The human, however, is proficient at handling both.
Nevertheless, the investigations do indicate what can be realized in the way of voiceactuated devices
for special applications–specifically, applications where vocabulary and number of voices may be
suitably restricted. It is clear, too, that for a given accuracy of recognition, a trade can be made
between the necessary linguistic constraints, the complexity of the vocabulary, and the number of
speakers.

Automatic speech recognition–as the human accomplishes it–will probably be possible only
through the proper analysis and application of grammatical, contextual, and semantic constraints.
These constraints, as yet, are largely unknown. Perhaps not surprisingly, research in speech synthesis
seems to be providing more insight into linguistic constraints than is speech recognition work. One
view of speech recognition (Pierce [1969]) makes the point that success will be very limited until the
recognizing device understands what is being said with something of the facility of a native speaker.

8.2 Classification of Short-Time Spectra

8.2.1 Optimality Criteria for Classification and Training

A “statistical speech recognizer” is a recognizer which picks the phoneme or word that has the
highest “probability” of matching the unknown utterance. In other words, if ot is the observed
spectrum at some time t, and if the possible phoneme hypotheses are λ1 =/i/ and λ2 =/a/, then a

statistical speech recognizer chooses a “best hypothesis” λ̂ according to the following rule:

λ̂ = argmax
λi

p(λi|ot) (8.1)
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There is no easy way to estimate p(λi|ot) directly, but using the definition of conditional probability,
we can express p(λi|ot) in terms of things that can be estimated:

p(λi|ot) =
p(ot|λi)p(λi)

p(ot)
(8.2)

Since the denominator p(ot) doesn’t depend on λ, it drops out of the classification rule:

λ̂ = arg max
λi

p(λi|ot) = argmax
λi

p(ot|λi)p(λi) (8.3)

The probability p(λi|ot) is called the a posteriori probability of λi, and equation 8.1 is called
the Maximum a Posteriori (or MAP) rule of classification. Notice that the MAP rule requires us to
know two probabilities: the a priori probability p(λi), and the conditional probability p(ot|λi).

p(λi) is a measure of how probable I think it is that the next thing you say will be an λi, before
I actually hear you say it. In speech recognition, p(λi) is called the “language model,” because it
represents our knowledge of the sequences of words or phonemes which are likely in a particular
language.

p(ot|λi) is the probability that a particular word or sequence of words (λi) will be represented
by a particular sequence of spectra (ot). Most of the technical machinery of speech recognition is
aimed at estimating this probability in a computationally efficient manner.

Suppose we believe that all speech sounds have equal a priori probabilities (an absurd hypothesis,
but sometimes this can be a useful simplification). In this case, equation 8.3 simplifies to the equation

λ̂ = argmax
λi

p(ot|λi) (8.4)

Equation 8.4 is the rule which says that we should choose whichever class λi makes the observed
data most “likely,” so it is sometimes called “maximum likelihood” classification rule (ML).

8.2.2 Gaussian Models of the Speech Spectrum

In order to use either ML or MAP classification rules, we need to create a model of the probability
p(o|λ) for each of the different possible classes λ. In statistical classification, the way we do this is
by gathering 10-1000 spectral vectors, on = [on(1), . . .], which we know for sure to be examples of
λ, computing statistics, and using the statistics as parameters in some probability model.

For example, p(o|λ) can be modeled using a Gaussian distribution. Given N training tokens
in class λ, we can create a Gaussian model by just finding the sample mean µi, and the sample
covariance matrix Ui:

µi =
1

N

N∑

n=1

on (8.5)

Ui =
1

N − 1

N∑

n=1

(on − µi)
′(on − µi) (8.6)

Then, if we want to know the probability that some new spectral vector o belongs to class λ, we
calculate p(o|λ) using the standard Gaussian formula:

p(o|λ) = N (o;µi, Ui) (8.7)

where N (o;µ,U) is notation for a Gaussian distribution with mean µ and covariance U :

N (o;µ,U) =
1√

(2π)p|U |
exp

(
−1

2
(o− µ)U−1(o− µ)′

)
(8.8)
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Figure 8.4: Contour plots of Gaussian and mixture-Gaussian probability densities.

If o has only two dimensions (c(1) and c(2)), it is possible to visualize the probability distribution
p(o|λ) by defining several “altitudes” θk, and drawing the contour lines

p(o|λ) = θk (8.9)

When p(o|λ) is a Gaussian probability distribution, the resulting contour plot is always an ellipse
in two dimensions, as shown in the upper left plot of figure 8.4.

A special case of particular interest is shown in the upper right plot of figure 2. If c(1) and c(2)
are independent of each other — that is, if ui(1, 2) = 0 – then the major and minor axes of the
ellipse are always parallel to the x1 and x2 axes. In the figure, for example, the major axis is x1,
and the minor axis is x2.

8.2.3 Mixture Gaussian Models

A Gaussian distribution is only a good model if the data is really distributed in an ellipse. A better
model for most distributions is a “mixture Gaussian model.” The mixture Gaussian model can
be thought of as a random choice between M different “Gaussian sub-classes.” The probability of
choosing sub-class Gjk is a constant, cjk:

p(Gjk|λj) = cjk (8.10)

Then, once we have chosen a particular sub-class, the probability of the output o is calculated using
the appropriate Gaussian model:

p(o|Gjk) = N (o;µjk , Ujk) (8.11)

Putting these together, we get

p(o|λj) =
M∑

k=1

p(o|Gjk)p(Gjk |λj) =
M∑

k=1

cjkN (o;µjk , Ujk) (8.12)

An example of a series of Gaussian probability densities which might be added together to give a
mixture Gaussian is shown in the bottom panel of figure 8.4. Notice that a mixture Gaussian can
represent a non-elliptical probability density; in fact, if M is large enough, a mixture Gaussian can
represent any probability density with arbitrarily good precision.
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Figure 8.5: Flow-chart and classification space of a single-neuron neural network

8.2.4 Sources of Error in Pattern Classification

8.2.5 Linear and Discriminant Features

8.2.6 Feedforward Neural Networks

Figure 8.5 shows the ith level-one neuron in a feed-forward neural network. The output of the
neuron model, yi(x1, x2) is the result of linearly combining x1 and x2, shifting by some constant a0,
and passing the result through a sigmoidal (S-shaped) nonlinearity f():

yi(x1, x2) = f(a0 + a1x1 + a2x2), f(x) ≈
{

0 x < 0
1 x > 1

(8.13)

yi(x1, x2) is a classification function, which is one over almost half of the (x1, x2) plane, zero over
almost half of the plane, and between one and zero in some transition region (shaded in Fig. 2):

yi(x1, x2) =






0 a0 + a1x1 + a2x2 < 0
0 < yi < 1 transition region
1 a0 + a1x1 + a2x2 > 1

(8.14)

8.2.7 Talker Adaptation

8.3 Recognition of Words

Now suppose that, instead of a single spectrum, you are given a sequence of spectra, of the form

O = [o1, . . . , ot, . . . , oT ] (8.15)

For simplicity, let’s start by assuming that O is the spectrogram of a single word. Remember that,
in order to do maximum likelihood speech recognition, we need “models” λi of every possible word.
Each of these “models” must consist of a functional specification and a list of trainable parameters
which will allow us to compute p(O|λi). The functional specification must allow us to classify
sequences of unknown length, since we don’t know in advance how long T may be.
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Figure 8.6: A model which generates a random sequence of ones and twos.

8.3.1 Linear Time Warping

8.3.2 Dynamic Time Warping

8.3.3 Hidden Markov Models: Testing

Imagine a process in which some person or computer is writing the words “ONE” and “TWO,” in
random order on a strip of paper. What is the probability of observing the sequence of symbols
“ONE ONE TWO ONE TWO TWO ONE”?

The person or computer writing these symbols can be modeled as a simple finite state machine,
as shown in figure 8.3.3.

Note the following facts:

• The model satisfies the Markov assumption. The Markov assumption states that the proba-
bility that the state at time t+ 1 is qt+1 = j is a function only of qt. This probability is called
the “transition probability” aij :

P (qt+1 = j|qt = i, qt−1 = h, . . .) = P (qt+1 = j|qt = i) ≡ aij (8.16)

• Notice that we must make a distinction between the state qt and the observed symbol ot,
because states 1 and 7 output the same symbol (“O”), but their transition probabilities are
quite different.

• The state qt+1 = j can be reached only if the model executes a transition from i to j, where
i is whatever the current state happens to be. The probability P (qt+1 = j) can be calculated
by summing over i:

P (qt+1 = j) =
N∑

i=1

P (qt = i)aij or, in matrix notation, Pt+1 = PtA (8.17)

Pt = [P (qt = 1), . . . , P (qt = N)], A =




a11 . . . a1N

...
...

...
aN1 . . . aNN


 (8.18)

• Given the transition probabilities aij and the initial state probabilities πi = P (q1 = i), the
probability of any particular sequence of states is

P (q1 = i, q2 = i, q3 = k, . . .) = πiaijajk . . . , πi ≡ P (q1 = i) (8.19)
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1:/w/ 2:/a/ 3:/n/

4:_

5:/t/ 6:/u/

Figure 8.7: A model of a process which speaks the words “one” and “two” in random order

The probability of being in state m at time t is the sum over all intermediate states,

P (qt = m) =

N∑

i=1

N∑

j=1

. . .

N∑

l=1

πiaij . . . alm, or, in matrix notation, Pt = At−1Π (8.20)

Π = [π1, . . . , πN ], A =




a11 . . . a1N

...
...

...
aN1 . . . aNN


 (8.21)

• For example, using the process shown, the sequence of observations

O = [o1, o2, . . . , oT ] = “ ONE TWO” (8.22)

corresponds to the sequence of states

Q = [q1, q2, . . . , qT ] = [4, 1, 2, 3, 4, 5, 6, 7] (8.23)

which occurs with a probability of

P (Q|q1 = 4) = a41a12a23a34a45a56a67 = (1/2)(1)(1)(1)(1/2)(1)(1) = 1/4 (8.24)

The example above is “timed” such that there is one clock tick per symbol. In speech, there
is no master clock to tell us when a new symbol has been spoken; instead, we need to analyze the
speech signal in fixed time increments of, say, 10ms each. If each state now represents one phoneme,
then it becomes necessary to introduce self-loop transition probabilities aii in order to model the
variable duration of a phoneme. For example, if the words “one” and “two” are transcribed /w/a/n/
and /t/u/, the model above becomes something like the model shown in figure 8.7. Transition
probabilities are not shown, but if the frame size is only 10ms, then aii ≫ aij for any i 6= j.

An “ergodic” process is a process in which any state can be reached (eventually) from any other
state, as shown above. A process which generates one word and then quits can be modeled as a
“left-to-right” process, as shown below. A “left-to-right” process is a process in which the transition
matrix A is upper triangular, so that all transitions have to happen from left to right.
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LR Model of "one:"

LR Model of "two:"

1:_ 2:/w/ 3:/a/ 4:/n/ 5:_

1:_ 2:/t/ 3:/u/ 4:_

Figure 8.8: Left-to-right Markov models of the words “one” and “two”

In the models above, we assumed that the state qt is directly observable. In speech, the “states”
are not observed — instead, all that we observe are the “outputs,” which are vectors vk containing
the spectral, cepstral, or LPC information at time t.

Suppose that that there are only M possible spectral vectors, numbered from v1 to vM . Then
a hidden Markov model is defined by the initial probabilities Π = [πi], the transition probabilities
A = [aij ], and the discrete observation probabilities B = [bj(k)]:

λ = (πi, aij , bj(k)), 1 ≤ i ≤ N, 1 ≤ j ≤ N, 1 ≤ k ≤M (8.25)

πi = p(q1 = i) (8.26)

aij = p(qt = j|qt−1 = i) (8.27)

bj(k) = p(ot = vk|qt = j) (8.28)

Example 8.3.1 Discrete Hidden Markov Model

Consider an experiment in which your friend is tossing two coins behind a curtain, and yelling out
the result of each coin toss. Your friend is switching back and forth between two coins, but he is
not going to tell you when he switches. All you know is that the probability of a coin change on any
given toss is always 25%:

A =

[
a11 a12

a21 a22

]
=

[
0.75 0.25
0.25 0.75

]
(8.29)

Furthermore, you do not know exactly which two coins your friend is using. You know that one of
the coins is fair, but the other coin might be the “head-weighted” coin (which produces heads 75%
of the time) or the “tail-weighted” coin (which produces tails 75% of the time). The two models
you have available are:

B1 =

[
b1(H) b1(T )
b2(H) b2(T )

]
=

[
0.5 0.5
0.75 0.25

]
, B2 =

[
b1(H) b1(T )
b2(H) b2(T )

]
=

[
0.5 0.5
0.25 0.75

]
(8.30)

Finally, you are told that your friend always starts with the unfair coin, regardless of which unfair
coin he is using:

Π1 = [P (q1 = 1), P (q1 = 2)] = [0, 1] (8.31)

If your friend yells out the following sequence, is he using the head-weighted coin or the tail-weighted
coin?

O = [o1, . . . , oT ] = [H,T ] (8.32)
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1:b1(k) 2:b2(k) 3:b3(k) 4:b4(k) 5:b5(k)

v7v42

v932

v302

v12

v834

v61 v220

v42

v932

Figure 8.9: A hidden Markov model generates spectral vectors based on some internal state; the
internal state of the model can never be known with certainty.

• Case 1: Head-weighted coin. The probability of the sequence “HT” is

P (O|λ1) =

2∑

j=1

2∑

i=1

bj(T )aijbi(H)πi =

2∑

j=1

bj(T )a2jb2(H) = (0.5×0.25×0.75)+(0.25×0.75×0.75) =
15

64

(8.33)

• Case 2: Tail-weighted coin. The probability of the sequence “HT” is

P (O|λ2) =

2∑

j=1

bj(T )a2jb2(H) = (0.5 × 0.25 × 0.25) + (0.75 × 0.75 × 0.25) =
11

64
(8.34)

So the sequence “HT” is more likely to be produced if your friend starts with the head-weighted
coin — model 1.

The observations in a hidden Markov model may be continuous random variables, distributed
according to a mixture Gaussian distribution:

bj(o) = p(ot = o|qt = j) =

M∑

k=1

cjkN (o;µjk , Ujk), 1 ≤ j ≤ N (8.35)

In this case, rather than specifying a set of discrete probabilities bj(k), a model is specified by
finding the mixture weights, the means, and the covariance matrices:

λ = (πi, aij , cjk, µjk, Ujk), 1 ≤ i ≤ N, 1 ≤ j ≤ N, 1 ≤ k ≤M (8.36)
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4/5 1/3

2/31/5

/a/ /i/ Model of "ai"

1/3 4/5

1/52/3

/i/ /a/ Model of "ja"

Figure 8.10: Simple Markov models of the words “hai” (/Ai/, if we ignore the /h/) and “ja” (/ia/,
if we pretend that /j/ and /i/ are the same). Transition probabilities are designed so that the /i/
states last an average of 1.5 frames, and the /A/ states last an average of 5 frames.

Suppose that you have hidden Markov models of two words. The word “one” is represented
by the model λ1 = (A1, B1, π1). The word “two” is represented by the model λ2 = (A2, B2, π2).
Suppose, finally, that you observe a sequence of spectral vectors of the form:

O = [o1, . . . , ot, . . . , oT ] (8.37)

Speech recognition (given that you have already somehow trained the models λ1 and λ2) boils down
to the following problem: Given two models, λ1 and λ2, which model is most likely to have produced
the observation sequence O? That is, which model maximizes the likelihood p(O|λ)?

Suppose we know for a fact that the model went through the following state sequence:

Q = [q1, q2, . . . , qT ] (8.38)

The probability of O given Q and λ is

p(O|Q, λ) = bqT
(oT )bqT−1(oT−1) . . . bq1(o1) (8.39)

The probability of Q is

p(Q|λ) = aqT−1qT
. . . aq1q2πq1 (8.40)

Combining these two equations, we get the following:

p(O,Q|λ) = bqT
(oT )aqT−1qT

bqT−1(oT−1) . . . aq1q2bq1(o1)πq1 (8.41)

Example 8.3.2 Phone Recognition Using an HMM

As a simple application of the HMM, consider a system which records a person saying “yes” in either
Japanese or Swedish, and then identifies the language.

Being the polyglot that you are, you know that yes in Japanese is “hai,” and yes in Swedish
is “ja.” In order to keep complexity down, let’s assume that “hai” is approximately an /a/ sound
followed by an /i/ sound, while “ja” is approximately an /i/ sound followed by an /a/ sound, as
shown in figure 8.10. Suppose further that both models always start in the first state shown, i.e.
“hai” always starts in /a/, and “ja” always starts in /i/.

The only spectral measurement available is the second formant frequency, F2. Means and stan-
dard deviations of F2 for /i/ and /a/ can be approximated by combining the data of Peterson and
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Frame o (kHz) N (o; 2.54, 0.352) N (o; 1.15, 0.152)
1 1.8 0.12 0.014
3 1.5 0.00022 0.17

Table 8.1: Column 3 is an estimate of the probability that the F2 values in column 2 are produced
as part of an /i/ vowel. Column 3 is an estimate of the probability that the F2 values are produced
as part of an /a/ vowel. Both columns 3 and 4 show probability density per kilohertz, assuming
Gaussian distributions.

Barney (1952) for adult male and female speakers, yielding the following observation probability
densities:

b/i/(o) = N (o; 2540Hz, (350Hz)2) (8.42)

b/a/(o) = N (o; 1160Hz, (150Hz)2) (8.43)

Now suppose that we are given the following (very short!) unknown utterance:

O = [ 1800, 1500 ] (8.44)

Which language is this person speaking?
The only information we have about the distribution of F2 is its mean and standard deviation,

so let’s use Gaussian observation probability densities. The observation probability densities of the
/i/ model in “ja” and the /i/ model in “hai” happen to be exactly the same (in speech recognition,
we say that these two states have “tied” observation densities), as are the distributions of /a/ in
both “ja” and “hai.” The observation densities b/i/(o) and b/a/(o) are given in table 8.1.

If the person is speaking Japanese, the model must have started in /a/; it might have stayed in
/a/ for the second frame, or it might have transitioned to /i/. Adding up the likelihoods of both
possibilities, we get:

p(O|“hai”) = b/a/(1800)a/a/a/b/a/(1500) + b/a/(1800)a/a/i/b/i/(1500) (8.45)

= 0.00026 (8.46)

Likewise, the likelihood that the person is speaking Swedish is

p(O|“ja”) = b/i/(1800)a/i/i/b/i/(1500) + b/i/(1800)a/i/a/b/a/(1500) (8.47)

= 0.0101 (8.48)

The observed falling F2 pattern seems much more likely to have come from the word “ja” than
from the word “hai.” If the two words have equal a priori probabilities, then we can be pretty
confident in declaring that the word was “ja.”

Maximum Likelihood Recognition: The Forward Algorithm

In order to do ML classification correctly, we need the probability p(O|λ). p(O|λ) can be obtained
from p(O,Q|λ) by summing over all possible state sequences Q:

P (O|λ) =
∑

Q

P (O,Q|λ) (8.49)

=
∑

qT

. . .
∑

q2

∑

q1

bqT
(oT )aqT−1qT

bqT−1(oT−1) . . . bq2(o2)aq1q2bq1(o1)πq1 (8.50)
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Suppose that we decide to add up all of the information from time t = 1 as soon as we have it,
then add up all of the information from time t = 2, and so on. At time t = 1, we define

α1(j) = p(o1, q1 = j|λ) = bj(o1)πj (8.51)

At time t = 2, we have

α2(j) = p(o1, o2, q2 = j|λ) = bj(o2)
N∑

i=1

aijα1(i) (8.52)

Likewise, at every new time until t = T , we have

αt(j) = p(o1, . . . , ot, qt = j|λ) = bj(ot)

N∑

i=1

aijαt−1(i) (8.53)

Finally, at time T , we see that

p(O|λ) = p(o1, . . . , oT |λ) =

N∑

i=1

αT (i) (8.54)

Equations 8.51 through 8.54 are called the “forward algorithm,” because the iteration moves
forward in time; the same thing could also be done backward in time.

The Backward Algorithm

Equation 8.50 can also be broken down into a recursion which moves backward in time:

P (O|λ) =
∑

q1

πq1bq1(o1)
∑

q2

aq1q2bq2(o2) . . .
∑

qT

aqT−1qT
bqT

(oT ) (8.55)

This recursion is written most simply if we define the backward variable βt(i):

βt(i) ≡ P (ot+1, ot+2, . . . , oT |qT = i, λ) (8.56)

Then equation 8.55 is calculated using:

1. Initialization

βT (i) = 1, 1 ≤ i ≤ N (8.57)

2. Induction

βt(i) =

N∑

j=1

aijbj(ot+1)βt+1(j) (8.58)

3. Termination

P (O|λ) =
N∑

i=1

πibi(o1)β1(i) (8.59)

The calculation of this procedure is about the same as the forward algorithm, but it is not used as
often in recognition, because the recursion works backward in time. However, this algorithm is often
used in segmentation and training.
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8.3.4 Approximate Recognition: The Viterbi Algorithm

Suppose that, for whatever reason, we don’t want to do the addition in equation 8.53 at every time
step for every possible combination of states. If this is the case, we can do a sort of approximate
maximum likelihood classification. Instead of finding p(O|λ), we find p(O,Q|λ) for the best possible
state sequence, which we can call Q∗(O, λ):

Q∗(O, λ) = argmax
Q

p(O,Q|λ) (8.60)

P ∗(O, λ) = max
Q

p(O,Q|λ) (8.61)

= max
qT

. . .max
q2

max
q1

bqT
(oT )aqT−1qT

bqT−1(oT−1) . . . bq2(o2)aq1q2bq1(o1)πq1 (8.62)

Then, in order to decide which sequence of words is the correct sequence, we just look for the model
which gives us the largest P ∗.

Suppose we decide to do the maxq1 operation as soon as we have all of the information from time
t = 1, and then do the maxq2 operation as soon as we have all of the information from time t = 2,
and so on. At time t = 1, we can define

δ1(i) = πibi(o1) (8.63)

Then, at every new time t until t = T , we find the best path which ends up in state j. δt(j) keeps
track of the maximum probability, and ψt(j) is a “back-pointer” which points backward from state
j to the best previous state:

δt(j) = bj(ot) max
1≤i≤N

δt−1(i)aij (8.64)

ψt(j) = arg max
1≤i≤N

δt−1(i)aij (8.65)

Finally, at time T , we see that the best final probability is

P ∗(O|λ) = max
1≤i≤N

δT (i) (8.66)

and the best state in which to end up is:

q∗T = arg max
1≤i≤N

δT (i) (8.67)

We can find out what state sequence yielded P ∗ by working our way backward in time, from time
t = T to time t = 1, following the “back-pointers” given by the ψt(i) variables:

q∗t = ψt+1(q
∗
t+1), 1 ≤ t ≤ T − 1 (8.68)

Q∗(O|λ) = [ q∗1 , q∗2 , . . . q
∗
T ] (8.69)

Local Recognition: The Forward-Backward Algorithm

Suppose we are only interested in finding the state at time t which maximizes:

γt(i) = P (qt = i|O, λ) =
P (O, qt = i|λ)

P (O|λ) (8.70)

This can be calculated as follows:

P (O, qt = i|λ) = P (o1, o2, . . . , ot, qt = i, ot+1, ot+2, . . . , oT |λ) (8.71)

= P (o1, o2, . . . , ot, qt = i|λ)P (ot+1, ot+2, . . . , oT |qT = i, λ) (8.72)

= αt(i)βt(i) (8.73)
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therefore,

γt(i) =
P (O, qt = i|λ)

∑N
i=1 P (O, qt = i|λ)

=
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(8.74)

The most likely state qt at time t is therefore the state which maximizes γt(i).
Now suppose we are only interested in finding the most likely two-frame sequence of states. In

other words, we would like to find i and j to maximize

ξt(i, j) = P (qt = i, qt+1 = j|O, λ) =
P (qt = i, qt+1 = j, O|λ)

P (O|λ) (8.75)

By calculations similar to the calculations for γt(j), we can show that this probability is

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ) (8.76)

So the most likely two-state sequence at times t and t+ 1 is the sequence which maximizes ξt(i, j).
Notice that the likely two-frame sequence qt = i, qt+1 = j may not be part of a likely state

sequence spanning the entire utterance. If you want to find a state sequence which spans the entire
utterance, you have to use the Viterbi algorithm.

Duration Probabilities and Transition Probabilities

In the original HMM model, the probability of remaining in state i for di time steps is a geometric
PMF:

pi(d) = (1 − aii)a
d−1
ii if aii independent of d (8.77)

The geometric PMF is a bad model of the distribution of real phonemes or phone-like units. For
this reason, it is sometimes useful to train and use an explicit model of the duration PMF. Given an
explicit model of pi(d), it is possible to calculate duration-dependent transition probabilities aij(d)
as follows:

aij(d) =

{
P (di > d|di ≥ d) j = i

P (di = d, qt+1 = j|di ≥ d) j 6= i
(8.78)

If we assume that the model still has no long-term memory, except that aii(d) is a function of
duration, then the following formulas result:

aij(di) =






1−
Pdi

d=1 pi(d)

1−
Pdi−1

d=1 pi(d)
j = i

ǎij(1 − aii(di)) j 6= i

(8.79)

where the parameters ǎij are transition probabilities conditioned on a change in state:

ǎij ≡ P (qt+1 = j|qt = i, qt+1 6= i) (8.80)

Suppose that, in T time steps, an HMM sequentially visits S states:

qt = rs, ts < t ≤ ts + ds (8.81)

Suppose that the model remains in state rs for ds time steps before transitioning to some other
state. Then the event Q is the intersection of two events: a “transitions” event R, and a “durations”
event D:

Q = R ∩D, R = [r1, . . . , rS ], D = [d1, . . . , dS ] (8.82)

Assuming that the various state durations and transitions are independent, the probabilities of these
two events are
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P (R|λ) =
S∏

s=1

ǎrs−1rs
, ǎr0r1 ≡ πr1 (8.83)

P (D|λ,R) =

S∏

s=1

prs
(ds) (8.84)

The probability of any particular state sequence Q can be calculated in terms of the probabilities
pi(d) and ǎij :

P (O,Q|λ) =
S∏

s=1

(
ǎrs−1rs

prs
(ds)

ds∏

τ=1

brs
(ots+τ )

)
(8.85)

= P (D|λ,R)

T∏

t=1

ãqt−1qt
bqt

(ot) (8.86)

= P (D|λ,R)P (O,Q|λ̃) (8.87)

where the pseudo-model λ̃ is

λ̃ ≡ [πi, ãij , bj(o)], ãij ≡
{

1 i = j
ǎij i 6= j

(8.88)

The recognition probability P (O|λ) is computed by adding up P (O,Q|λ) over all possible Q:

P (O|λ) =
∑

all Q

P (D|λ,R)P (O,Q|λ̃) (8.89)

Approximate Duration Modeling using Viterbi and Forward Algorithms Equation 8.89
can be expressed as a recursion, similar to the forward algorithm, but the computational complexity
of the resulting algorithm is so high that it is rarely used (essentially, the HMM is augmented to
include ND states, where D is the maximum possible state duration). Instead, many recognizers
use the Viterbi algorithm in parallel with the forward algorithm in order to compute an approximate
recognition probability.

In the parallel approximation, P (O|λ) is computed as follows:

P (O|λ) ≈ P (D∗|λ,R∗)
∑

all Q

P (O,Q|λ̃) = P (D∗|λ,R∗)P (O|λ̃) (8.90)

The quantity P (O|λ̃) can be computed using the forward algorithm. P (D∗|λ,R∗) is the probability
of the state durations associated with the single maximum-likelihood state sequence Q∗, as returned
by a Viterbi search:

Q∗ = argmax
Q

P (O,Q|λ), Q∗ = D∗ ∩R∗ (8.91)

8.3.5 Hidden Markov Models: Training

The goal of training a hidden Markov model is that the parameter πi, for example, should be
proportional to the number of times that the model started in state i out of all of the observed
training tokens. In other words, we would like to have model parameters which look something like
this:
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πi =
number of times in state i at time (t = 1)

total number of training utterances
(8.92)

aij =
number of transitions from state i to state j

total number of transitions out of state i
(8.93)

cjk =
number of times we choose Gaussian sub-class k while in state j

total number of times in state j
(8.94)

µjk =
sum of ot for all frames spent in class j, sub-class k

total number of times spent in class j, sub-class k
(8.95)

Ujk =
sum of (ot − µjk)

′(ot − µjk) for all frames spent in class j, sub-class k

total number of times spent in class j, sub-class k
(8.96)

The big problem with equations 8.92 through 8.96 is that we don’t know how often the model is
in state j — remember, the state transitions are “hidden”! There are (at least) two different ways
to solve this problem: the segmental K-means algorithm (which is typically used to initialize the
parameters of an HMM), and the Baum-Welch re-estimation procedure (which is typically used to
refine a previously-estimated set of parameters).

Initializing the Observation Densities: Segmental K-Means

The segmental K-means algorithm is based on equations 8.92 through 8.96. In segmental K-means,
we use the Viterbi algorithm to figure out which state the model is in at any given time, in a sort
of boot-strapping procedure which goes like this:

1. Divide each of the training utterances into N segments, where N is the number of states in the
model. Any arbitrary segmentation will work, although a phonetically motivated segmentation
often leads to faster convergence.

2. In order to initialize state number j, gather observation vectors from the jth segment in each
segmented training utterance. Call these training vectors ynj ,

ynj = ot iff t is in segment number j of some training utterance (8.97)

3. For each state j, cluster the training vectors ynj into M regions Vjk using a bottom-up clus-
tering algorithm. Let Njk be the number of vectors in Vjk, and let xjk be the centroid of Vjk;
then the new observation density parameters are

cjk =
Njk
Nj

(8.98)

µjk = xjk (8.99)

Ujk =
1

Njk

∑

yn,j∈Vjk

(ynj − xjk)
′(ynj − xjk) (8.100)

4. Given the new parameter estimates, use the Viterbi algorithm to resegment each of the training
utterances. If the new segmentation is different from the previous segmentation, go to step
number 2.
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Refining the Model: Baum-Welch Algorithm

There are several algorithms available for training hidden Markov model parameters, depending
on the criterion which you want to optimize. The most common algorithm is the Baum-Welch
algorithm, also called the Expectation-Maximization (EM) method. The algorithm works like this:
suppose we define the function

f(O,Q, λ2) = logP (O,Q|λ2) (8.101)

A reasonable goal of parameter re-estimation would be to maximize the expected value of f over all
possible Q, given the model λ2:

E[f(O,Q, λ2)|λ2] =
∑

Q

P (O,Q|λ2) logP (O,Q|λ2) (8.102)

Unfortunately, given the structure of an HMM, equation 8.102 can not be maximized in just one
step. Instead, the Baum-Welch algorithm tries to maximize equation 8.102 iteratively: first we guess
a model λ1, then we find a new model λ2 which maximizes

E[f(O,Q, λ2)|λ1] =
∑

Q

P (O,Q|λ1) logP (O,Q|λ2) (8.103)

Iterating equation 8.103 several times moves the model λ2 toward a local maximum of equation 8.102.
It can be shown that, given λ1, the function in equation 8.103 is maximized if the parameters of

λ2 are as follows:

π̄i = expected number of times in state i at time (t = 1) (8.104)

āij =
expected number of transitions from state i to state j

expected number of transitions out of state i
(8.105)

b̄j(k) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(8.106)

These expectations can be calculated:

E[# times in state i at time t = 1] = P (q1 = i|O, λ) = γ1(i) (8.107)

E[# times in state i] =
T∑

t=1

P (qt = i|O, λ) =
T∑

t=1

γt(i) (8.108)

E[# times in state i and observing ot = vk] =

T∑

t=1

P (qt = i, ot = vk|O, λ) =
∑

t s.t. ot=vk

γt(i)(8.109)

E[# transitions from i to j] =

T∑

t=1

P (qt = i, qt+1 = j|O, λ) =

T∑

t=1

ξt(i, j) (8.110)

(8.111)

Usually, we train an HMM in two steps. In the first step, the parameters of the mixture-
Gaussian observation densities are initialized using the segmental K-means” algorithm — this is
the algorithm used in the HTK program HInit, for example. The reason we don’t stop there is
that the segmental K-means algorithm assumes that the Viterbi algorithm will pick out all of the
spectra which correspond to a particular state. In fact, the Viterbi algorithm only picks out the
spectra which are most likely to have come from a particular state — the less likely spectra are
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usually assigned to the neighboring state. This means that the segmental K-means algorithm tends
to underestimate the amount of variability which is really present in the training data.

In the second step, therefore, the Baum-Welch re-estimation procedure is used to refine the
parameter estimates in order to find a “local maximum” of the conditional probability of the training
data, E[log p(O|λ)]. The words “local maximum” mean that, once you’ve run the Baum-Welch
algorithm, if you then make a small change in the parameters, the performance of the recognizer
will always get worse. It’s entirely possible, however, that if you make a big change in the parameters,
the performance might get better – in fact, this often happens! This odd and problematic behavior
is the reason we initialize parameters first using the segmental K-means algorithm.

Gaussian Densities in a Hidden Markov Model

The observations in a hidden Markov model may be continuous random variables, distributed ac-
cording to a Gaussian distribution:

bj(o) = p(o|qt = j) = N (o;µj , Uj), 1 ≤ j ≤ N (8.112)

If we are given a model λ which includes initial estimates of µj and Uj for each state, it is possible
to calculate the forward and backward variables αt(j) and βt(j), and to multiply them to find

γt(j) = P (qt = j| O, λ) =
αt(j)βt(j)

P (O| λ) 1 ≤ j ≤ N, 1 ≤ t ≤ T (8.113)

Using the statistic γt(j), the expected number of times that the model visits state j in T time steps
is

E[Nj | O, λ] =
T∑

t=1

1 × P (qt = j| O, λ) + 0 × P (qt 6= j| O, λ) =
T∑

t=1

γt(j) 1 ≤ j ≤ N (8.114)

Suppose we wish to re-estimate the value µj , the mean of o in state j. A good estimate would be

µ̄j is something like

(
1

Nj

) ∑

t s.t. qt=j

ot 1 ≤ j ≤ N (8.115)

Unfortunately, both the numerator and the denominator are random variables, so we need to take
expected values:

µ̄j =
E
[∑

t s.t. qt=j
ot|O, λ

]

E[Nj| O, λ]
=

∑T
t=1 otγt(j)∑T
t=1 γt(j)

1 ≤ j ≤ N (8.116)

This turns out to be the maximum-likelihood re-estimation value µ̄j . The maximum-likelihood
updated estimate of the covariance, Ūj, is

Ūj =
E[
∑

t s.t. qt=j
(ot − µj)(ot − µj)

′|O, λ]
E[Nj |O, λ]

=

∑T
t=1(ot − µj)(ot − µj)

′γt(j)∑T
t=1 γt(j)

1 ≤ j ≤ N

(8.117)

Mixture Gaussian Densities

Re-estimation for a mixture Gaussian model depends on the training statistic:

γt(j, k) = P (qt = j,Gt = k|O, λ) = γt(j)P (Gt = k|qt = j, O, λ) = γt(j)

[
cjkN (ot;µjk, Ujk)∑M
k=1 cjkN (ot;µjk, Ujk)

]

(8.118)
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Notice that

γt(j) =

M∑

k=1

γt(j, k) (8.119)

Consider the number Njk, the number of times that the model moves from state qt = j to Gaussian
Gt = k. The re-estimation probabilities for the mixture Gaussian parameters are then

c̄jk =
E[Njk|O, λ]
E[Nj |O, λ]

=

∑T
t=1 γt(j, k)∑T
t=1 γt(j)

1 ≤ j ≤ N, 1 ≤ k ≤M (8.120)

µ̄j =
E
[∑

t s.t. qt=j,Gt=k
ot|O, λ

]

E[Njk|O, λ]
=

∑T
t=1 otγt(j, k)∑T
t=1 γt(j, k)

1 ≤ j ≤ N, 1 ≤ k ≤M (8.121)

Ūj =
E[
∑

t s.t. qt=j,Gt=k
(ot − µj)(ot − µj)

′|O, λ]
E[Njk|O, λ]

=

∑T
t=1(ot − µj)(ot − µj)

′γt(j, k)∑T
t=1 γt(j, k)

1 ≤ j ≤ N, 1 ≤ k ≤M

(8.122)

Multiple Observation Sequences

Suppose we want to train a model using data from K different waveform files. Each waveform file
is a sequence of data vectors,

O(k) = [o
(k)
1 , . . . , o

(k)
T ], 1 ≤ k ≤ K (8.123)

and the total dataset consists of the “sequence of sequences,”

O = [O(1), . . . , O(K)] (8.124)

The expected values needed for Baum-Welch re-estimation are:

E[# times in state i at time t = 1] =
K∑

k=1

P (q1 = i|O(k), λ) =
K∑

k=1

γ
(k)
1 (i) (8.125)

E[# times in state i] =

K∑

k=1

T∑

t=1

P (qt = i|O(k), λ) =

K∑

k=1

T∑

t=1

γ
(k)
t (i) (8.126)

E[# times in state i and observing ot = vk] =

K∑

k=1

T∑

t=1

P (qt = i, ot = vk|O(k), λ) =

K∑

k=1




∑

t s.t. ot=vk

γ
(k)
t (i)



(8.127)

E[# transitions from i to j] =

K∑

k=1

T∑

t=1

P (qt = i, qt+1 = j|O(k), λ) =

K∑

k=1

T∑

t=1

ξ
(k)
t (i, j) (8.128)

(8.129)

where

γ
(k)
t (i) = P (qt = i|O(k), λ) =

α
(k)
t (i)β

(k)
t (i)

P (O(k)|λ) (8.130)

ξ
(k)
t (i, j) = P (qt = i, qt+1 = j|O(k), λ) =

α
(k)
t (i)aijbj(o

(k)
t+1)β

(k)
t+1(j)

P (O(k)|λ) (8.131)

Essentially, the algorithm is exactly the same as it would be with one file, except that if you are
only using one file, the formulas for āij , b̄j(ok), and π̄i simplify in ways which are not possible if you
are using multiple files.
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Probability Scaling in the Forward-Backward Algorithm

Remember that the induction steps for the forward-backward algorithm are

αt(i) = bi(ot)

N∑

j=1

αt−1(j)aji, 1 ≤ i ≤ N (8.132)

βt(i) =

N∑

j=1

aijbj(ot+1)βt+1(j), 1 ≤ i ≤ N (8.133)

(8.134)

If, for example, bj(ot) is calculated using a Gaussian density with covariance matrix Uj , then

bj(ot) <
1

|Uj |1/2(2π)p/2
= bmax (8.135)

and therefore

αt(i) < btmax, βt(i) < bT−t
max (8.136)

If |Uj | > 1 (as is usually the case), then αt(i) and βt(i) approach zero very quickly; within 5-10 time
steps, they can easily be smaller than the floating point resolution of the computer.

The solution involves computing scaled forward and backward variables, α̂t(i) and β̂t(i). The
scaled forward algorithm essentially re-normalizes the αs at every time step so that

N∑

i=1

α̂t(i) = 1 (8.137)

We can get this normalization by calculating a scaling constant ct at each time step, as follows:

1. Initialization

α̂1(i) = c1α1(i), c1 =
1

∑N
i=1 α1(i)

(8.138)

2. Induction

ˆ̂αt(i) = bi(ot)

N∑

j=1

α̂t−1(j)aji (8.139)

α̂t(i) = ct ˆ̂αt(i), ct =
1

∑N
i=1

ˆ̂αt(i)
(8.140)

Recognition Using the Scaled Forward Algorithm In the scaled forward algorithm, the
scaling factors accumulate over time, so that

α̂t(i) = αt(i)
T∏

τ=1

cτ (8.141)

The termination step in the normal forward algorithm is

P (O|λ) =

N∑

i=1

αT (i) =

∑N
i=1 α̂T (i)
∏T
t=1 ct

(8.142)
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However, remember that the constants cT are chosen so that

N∑

i=1

α̂T (i) = 1 (8.143)

Therefore

P (O|λ) =
1

∏T
t=1 ct

(8.144)

The Scaled Backward Algorithm It turns out that training works best if the backward algo-
rithm uses the same scaling factors ct as the forward algorithm, as follows:

1. Initialization

β̂T (i) = cT , c1 =
1

∑N
i=1 α1(i)

(8.145)

2. Induction

β̂t(i) = ct

N∑

j=1

aijbj(ot+1)β̂t+1(j), ct =
1

∑N
i=1

ˆ̂αt(i)
(8.146)

Re-Estimation Using Scaled Parameters Remember that the original re-estimation algorithm
for aij was

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(8.147)

where the training statistics ξt and γt are defined to be

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ) (8.148)

γt(i) =
αt(i)βt(i)

P (O|λ) =

N∑

j=1

ξt(i, j) (8.149)

(8.150)

The scaled and unscaled forward and backward parameters are related by products of ct, as follows:

α̂t(i) = αt(i)

t∏

τ=1

cτ , β̂t+1(j) = βt+1(j)

T∏

τ=t+1

cτ , P (O|λ) =
1

∏T
t=1 ct

(8.151)

By combining equations 8.148 and 8.151, it is possible to write ξt(i, j) in terms of α̂ and β̂:

ξt(i, j) = αt(i)aijbj(ot+1)βt+1(j)

T∏

t=1

ct = α̂t(i)aijbj(ot+1)β̂t+1(j) (8.152)

Calculating γt(j) is a little trickier. γ is still the sum of ξ, but it is not simply the product of α̂ and

β̂:

γt(i) =

N∑

j=1

ξt(i, j) = α̂t(i)

N∑

j=1

aijbj(ot+1)β̂t+1(j) =
α̂t(i)β̂t(i)

ct
(8.153)
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8.3.6 Pronunciation Modeling

In very large vocabulary recognizers, it is hard to find enough training data to train models of every
word. Often, a better approach is to train models of phone-like units, and then create each word
model by stringing together appropriate phone models.

Recognition

Suppose you want to test the hypothesis that the sequence of words in a test utterance is

W = [w1, w2, . . . , wq, . . . , wQ] (8.154)

In a phone-based recognizer, the first step in recognition is to find each of the words wq in a
look-up table called a “lexicon.” The “lexicon” gives all of the known possible pronunciations of
the word, as sequences of phone-like units Pn(wq) = [p1, . . . , pr, . . . , pR]. Since there are several
possible pronunciations of each word, the lexicon also gives a probability for each of the possible
pronunciations:

wq → Pn(wq) with probability p(Pn|wq) (8.155)

Normal pronunciations of a word are usually listed in the lexicon. Once a sentence is constructed,
however, unusual phonemes in word wq−1 or wq+1 may cause unusual changes to the pronunciation of
word wq. For example, “did you” is often pronounced as D-IH-JH-AX (“didja”). Most such changes
can be accounted for using a small set of phonological rules, which are applied to a sentence after
all of the words have been converted into phone transcriptions using an appropriate table lookup.

Finally, each candidate sequence of phones, P = [P (w1), . . . , P (wQ)], is converted into a sequence
of HMM states by looking up the phones in another lookup table. This results in a single giant HMM
network of states, with three types of state transitions: transitions which remain inside a phone,
transitions which cross from one phone to the next inside a word, and transitions from one word to
the next. Transitions which remain inside a phone occur with a probability aij which is specified by
the model

p(qt = j|qt−1 = i) = aij if i, j both states in the model for phone pr (8.156)

Transitions from one phone to the next phone occur with a probability specified by the lexical
probability:

p(qt = j|qt−1 = i) = p(qt = j|pr)p(pr|pr−1, wq) if i in pr−1, j in pr, both in wq(8.157)

=
p([. . . , pr−1, pr, . . .]|wq)
p([. . . , pr−1, . . .]|wq)

× πj|pr
(8.158)

Finally, transitions from one word to the next word occur with a probability specified by the language
model.

Training

Few training databases are transcribed with the beginning and end times of individual phones,
so phone models are trained using an “embedded re-estimation” procedure. In “embedded re-
estimation,” the word sequence in any training token is first parsed to generate a sequence of phones,
then the sequence of phones is parsed to generate a sequence of Markov states, and then finally,
the Markov states are matched to the utterance, and the state parameters are updated using the
Baum-Welch algorithm.

Similarly, initialization of a phone model uses an “embedded” version of the segmental K-means
algorithm:
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Figure 8.11: A network of triphone models representing the phrase “one cat.” Phones are written
in the TIMIT transcription system (Zue et al. [1990]).

1. Look up the phone transcription of each word in a training utterance.

2. If there are N phone in the phonemic transcription of a sentence, divide the training utterance
into N equal-length segments.

3. Estimate model parameters using the K-means algorithm, or using the Baum-Welch re-estimation
procedure within the specified segment.

4. Re-segment using the Viterbi algorithm.

5. If the segmentation has changed since the previous iteration, go back to step 3.

8.3.7 Context-Dependent Recognition Units

In fluent speech, the articulators move smoothly from one phoneme target to another, stopping only
briefly (if at all) at each phoneme target. As a result, most of the acoustic signal in continuous
speech is composed of phoneme transitions.

Transitions can be modeled explicitly by creating diphone or triphone models instead of phone
models. A triphone model pL−p+pR is a model of the center phone, p, in the context of a particular
phone on the left, pL, and a particular phone on the right, pR. For example, the phrase “one cat”
might be expanded into the network of phone models shown in figure 8.11 (where the phonemes are
written in the ARPABET transcription system, and the symbol /H#/ means silence):

The problem with diphone and triphone models is that there are often not enough data to
robustly train a separate HMM for every phone in every context. If there are insufficient training
data (at least one new speaker per ten HMM models, according to one study), then recognition
accuracy may be very high on the training data, and very low on any test data independent of the
training set.

If there is insufficient data to train all of the triphones, triphone models may be combined in one
of several ways:

1. Triphones which are not well represented in the training data may be replaced by appropriate
left-context or right context diphone models, either pL − p or p + pR. If there is insufficient
data to train a diphone model, then use an isolated phone model p.

2. Triphones may be clustered based on acoustic similarity. Initially, all triphones in the database
are modeled separately; then triphones are combined, one at a time, in the order which causes
the smallest decrease in P (O|λ) measured on the training database.

8.3.8 Landmarks, Events, and Islands of Certainty

8.4 Recognition of Utterances

In connected word recognition, we seek to find a single word sequence W (T ) which maximizes the
probability of the observation vectors OT :

OT = [o1, o2, . . . , oT ], T = number of frames (8.159)

W (T ) = WQ = [w1, w2, . . . , wQ], Q = number of words in time T (8.160)
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P ∗
A = max

Q,WQ

(P (OT |WQ)) (8.161)

W ∗ = arg max
Q,WQ

(P (OT |WQ)) (8.162)

In order to calculate P ∗
A and W ∗ in a practical system, it is useful to define two intermediate

probabilities called αt(i, v) and PA(t, v):

αt(i|v) = max
W (t−1)

P (Ot, qt = i | W (t− 1), w(t) = v) (8.163)

PA(t|v) = max
W (t−1)

P (Ot | W (t− 1), w(t) = v) =

Nv∑

i=1

αt(i|v) (8.164)

(8.165)

If we assume that there are V different word models, then the optimum word sequence probability
P ∗
A can be written as

P ∗
A = max

1≤v≤V
PA(T |v) = max

1≤v≤V

Nv∑

i=1

αT (i|v) (8.166)

8.4.1 Static Search Graph: Finite State Methods

αt(i| v) can be calculated using the following recursion, which is sort of a combination of the Viterbi
and the forward algorithms. Many variations of this algorithm exist, and go by names such as the
“one-pass algorithm” and the “frame-synchronous level-building algorithm (FSLB).”

1. Initialization

α1(i|v) = πivbiv(o1) (8.167)

PA(1|v) =

Nv∑

i=1

α1(i|v) (8.168)

where Nv is the number of states in word model λv, πiv is the initial-state probability given
w1 = v, and biv(o1) is the probability of observing o1 given qt = i and wt = v.

2. Recursion

At each time step, the model can either remain in the same word, in which case w(t) = wq, or
change to a different word, in which case w(t) = wq+1. The accumulated word probability is
the maximum of these two choices:

PA(t|v) = max (PA(t|v = w(t− 1)), PA(t|v 6= w(t − 1))) (8.169)

If the model remains in the same word, then the normal forward algorithm is used:

αt(i|v = w(t− 1)) = biv(ot)

Nv∑

j=1

αt−1(j|v)aji (8.170)

If the model changes words, then we require, by convention, that the model must make a
transition from the last state of one word to the first state of the next word. In this case,

αt(i|v 6= w(t − 1)) =






b1v(ot) max
1≤wq≤V

αt−1(Nwq
, wq)P (v|Wq) i = 1

0 i 6= 1
(8.171)



258 CHAPTER 8. AUTOMATIC SPEECH RECOGNITION

where P (v|Wq) is the word transition probability, also known as the “language model:”

P (v|Wq) ≡ P (wq+1 = v|w1, . . . , wq) (8.172)

In either case, we have that

PA(t|v) =

Nv∑

i=1

αt(i|v) (8.173)

Combining equations 8.169 to 8.173, we obtain the following recursion:

PA(t|v) = max




N∑

i=1

biv(ot)

Nv∑

j=1

ajiαt−1(j|v), b1v(ot) max
1≤wq≤V

αt−1(Nwq
|wq)P (v|Wq)



(8.174)

ψt(v) = arg max




N∑

i=1

biv(ot)

Nv∑

j=1

ajiαt−1(j, v), b1v(ot) max
1≤wq≤V

αt−1(Nwq
, wq)P (v|Wq)



(8.175)

3. Termination

P ∗
A = max

1≤v≤V
PA(T |v) (8.176)

w∗
t = arg max

1≤v≤V
PA(T |v) (8.177)

4. Backtracking
w∗
t = ψt+1(w

∗
t+1) (8.178)

8.4.2 Regular Grammars for Dialog Systems

It is possible to create an intuitively pleasing language model by grouping words together into
phrases. For example, the sentence

“I would like to fly to San Francisco tomorrow morning.” (8.179)

Might be parsed as shown in figure 8.4.2.
In figure 8.4.2, the words have been parsed in several levels:

1. Part of Speech

Each word wq can be parsed as belonging to a particular part of speech cq (e.g. PRO=pronoun,
AUX=auxiliary verb, DAY, TIME, etc.), with the associated probability

P (wq|cq) (8.180)

2. Phrase Composition

Each sequence of word class tokens, Cn = [ cn,1, . . . , cn,M ], can be parsed as being part of a
particular phrase, φn. For example, in the figure above, the phrases are

Φ = [φ1, . . . , φN ] = [ Subject, Verb Phrase, Goal, Place Phrase, Time Phrase ] (8.181)

Each of these phrases is mapped to a word-class sequence C with the associated probability

P (Cn = [cn,1, . . . , cn,M ] | φn) (8.182)
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Sentence

toI would like to tomorrowSan Francisco morningfly

PRO PREPVERMODVERAUX TIMEDAYPLACE

GoalVerbSubject  TimeDestination

Figure 8.12: A detailed model of word transition probabilities can be created by parsing words into
phrases, and phrases into complete sentences.

Since the phrase structure of human languages is often recursive (phrases may contain phrases),
the computation of P (C|φ) may also be designed in a recursive fashion; recursion complicates
the Viterbi algorithm, but the system designer may decide that the added generality of the lan-
guage model justifies the added complication. For example, if Cn = [cn,1, φsub], the probability
P (Cn|φn) might be computed as:

P (Cn | φn) = P ([cn,1, φsub] | φn)P (Csub | φsub) (8.183)

3. Sentence Composition

The entire phrase sequence composes a “sentence” Φ = [φ1, φ2, . . . , φN ] (since system users
do not always speak in grammatical sentences, Φ may or may not be a complete sentence).
If the probability of a particular phrase sequence is P (Φ), then the probability of the word
sequence W is

P (W ) = P (Φ)

N∏

n=1

P (Cn|φn)
M∏

m=1

P (wn,m|cn,m) (8.184)

Training

The language model includes three probabilities: P (Φ), P (C|Φ), and P (wq|cq). All three probabili-
ties can trained from data using a version of the segmental K-means algorithm:

1. The system designer must make initial estimates of the probabilities P (Φ), P (C|φ), and
P (wq|cq):

• Since there is a potentially infinite set of phrase sequences Φ and word-class sequences C,
the designer must specify the possible sequences at each of these two levels, and assign
approximate probabilities for each possible sequence.

• The word-class probabilities P (wq |cq) are difficult to control during training, so these
probabilities should be set conservatively. For any given word wq, P (wq|cq) should be
non-zero for the minimum possible number of word classes (often only one).
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2. Based on the initial probabilities, the Viterbi algorithm is used to find the most likely phrase-
level and class-level transcriptions, Φ∗ and C∗, of each sentence.

3. The model probabilities are re-estimated based on frequency of occurrence.

4. If there has been a change in any of the model probabilities, repeat from step 2.

5. The final phrase-level transcriptions should be checked by hand, to identify mistakes. Mistakes
in the final transcription often result from the speaker’s use of a grammatical structure which
the designer didn’t consider possible. Such problems are usually easy to spot, because they
will usually prevent the Viterbi algorithm from finding a path with non-zero probability.

8.4.3 N-Grams and Backoff

The most common language model is a model in which the probability of each word depends only
on the N − 1 preceding words:

P (wq|Wq−1) = P (wq|wq−N+1, . . . , wq−1) (8.185)

The N-gram probabilities are typically stored in a lookup table. If N is too large, the lookup table
becomes impossible to use in a practical situation. Most coders therefore use either a bigram (N = 2)
or trigram (N = 3) language model.

The N-gram model may be trained from either speech data or, if you have a text database which
reflects the kinds of utterances you expect people to say, it may be trained from text. Training
involves counting N(w1, w2, w3), the number of times that word w3 follows words w1 and w2:

P̄ (w3|w1, w2) =
N(w1, w2, w3)

N(w1, w2)
(8.186)

If the number of possible words is large, many valid trigram combinations will be rare or nonex-
istant in the training data. If the language model is trained using 8.186, trigrams which do not exist
in the training data will be marked as impossible, and will never be recognized correctly if they
occur in the test data. In order to avoid this problem, the trigram probabilities may be estimated
by interpolating the relevant trigram, bigram, and unigram frequencies, as follows:

P̄ (w3|w1, w2) = p1
N(w1, w2, w3)

N(w1, w2)
+ p2

N(w2, w3)

N(w2)
+ p3

N(w3)∑
w3
N(w3)

(8.187)

The interpolation probabilities may vary depending on the word frequencies N(w1, w2, w3), but they
should always be normalized so that

p1 + p2 + p3 = 1 (8.188)

Perplexity

A speech recognizer with a vocabulary of V words does not need to consider V different possibilities
for every new word wq. Intuitively, the recognizer only needs to consider words for which the
language model probability P (wq |Wq−1) is large. This intuition can be formalized by defining the
entropy of the language model:

HQ = −E[log2 P (wQ|WQ−1)] = −
V∑

wQ=1

P (wQ|WQ−1) log2 P (wQ|WQ−1) (8.189)

where Q is chosen so that, for the particular language model in question,

HQ = lim
q→∞

Hq (8.190)
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The entropy HQ can be interpreted as a measure of the difficulty encountered by the recognizer in
trying to identify each new word. In particular, a recognition task with entropy HQ can be said to
be as difficult as a task in which words are chosen randomly from a vocabulary of B words, where

B = 2HQ (8.191)

B is called the “perplexity” or “branching factor” of the language model. It is possible to build
quite accurate speech recognizers with very large vocabularies if the task is constrained in such a
way that the branching factor B is low.

Class N-Gram

The N-gram model is the most direct language model possible, but unless given infinite training
data, it will often miss important language constraints and possibilities. For example, if the training
data contains the sentences “cats drink milk” and “dogs swim in water,” one might hope that the
language model will assign a non-zero probability to the word string “dogs drink water,” even if that
sentence is not found in the training data.

This kind of generalization is possible if every word wj is assigned to a word class C(wj) before
training. The language model probabilities are then

P̄ (w3|C(w1), C(w2)) =
N(C(w1), C(w2), C(w3))

N(C(w1), C(w2))
(8.192)

The classes might be syntactic (“noun” and “verb”), or, for a more precise model, they can combine
syntactic and semantic information (“animal,” “drinkable liquid”). If the classes are designed to fit
the application, language models built in this way can be extremely accurate.

8.4.4 Dynamic Search Graph: Stack-Based Methods

8.4.5 Dynamic Search Graph: Bayesian Networks

8.4.6 Multi-Pass Recognition

8.4.7 System Combination

8.5 Automatic Recognition and Verification of Speakers

The previous discussion pointed up the notion that the spectral patterns of one speaker are not
always adequate to recognize the speech of another. This fact suggest that spectral data might
be used to recognize or identify different speakers. A number of efforts along these lines have
been made–mainly with the use of digital computers. By way of illustration, one study produced
quantized time-frequency-intensity (spectrographic) patterns from a 17-channel filter bank scanned
at a rate of 100Hz (Pruzansky [1963]). Ten key words were excerpted from context for 10 different
speakers (three women, seven men). For each talker, three utterances of the 10 key words were used
to establish the reference patterns for that individual.

For talker identification, the spectrographic pattern of a different key-word utterance by an
unknown speaker of the ten-member group was cross-correlated with the reference patterns (again
by multiplying amplitudes at each time-frequency element of the spectrogram), and the maximum
correlation was taken. Because the utterances varied in length, alignment of patterns was done
by matching them at the maximum overall amplitude points. Results showed that among the 10
speakers for whom the reference library was formed, the identification was correct in 89% of the
cases.
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In the same study, the three dimensional time-frequency-intensity patterns were reduced to two
dimensions by summing over the time of the utterance for each filter channel. The summation
produces a graph of integrated intensity-versus-frequency for each utterance. It was found that this
operation still afforded a recognition score of 89%.

It is of course difficult to draw conclusions about human recognition of speakers from such
an experiment. Again, however, for a limited, specific application, where speaker ensemble and
vocabulary are restricted, such a technique could be effectively applied.

A few experiments have measured human recognition of speakers from visual inspection of speech
spectrograms. In one of these (Kersta [1948, 1962a]) a group of speakers (either 5, 9 or 12) was asked
to utter 10 key words four times. Conventional bar spectrograms and contour spectrograms were
made of their utterances (see Section 4.1.4). For each word a randomized matrix of spectrograms
consisting of four utterances of each speaker was displayed. Subjects were asked to identify the
utterances of each individual speaker. The errors in grouping the prints according to speaker ranged
from 0.35% to 1.0% for bar prints and from 0.37% to 1.5% for contour spectrograms. When the test
words were excerpted from context, the error was still about the same order of magnitude.

A second experiment was modeled after fingerprint identification procedures, although the anal-
ogy is a tenous one. A file of “voice prints” of five key words was compiled for 12 speakers. Subjects
then identified a different set of utterances by an unknown member of the group through compar-
isons to the reference sets. Using the groups of five cue words, the misidentifications were less than
1%. Identifications based upon two 5-word groups in tandem gave errors of about one-half percent.
Preliminary investigations were also made into the ability to recognize disguised voices. The re-
sults suggest that adults have certain invariant linguistic and physiological characteristics which the
spectrograph may display even when an effort is made to alter the voice.

These experiments, through a combination of publicity and private development, captured the
notice of various law-enforcing organizations, who saw in the method a new means for identifying
criminals. Several efforts were made to introduce the technique into legal proceedings with contro-
versial results. Independent experiments were conducted to test the method, and the findings were
at variance with the original experiments (Young and Campbell [1967]). Most opinion holds that
more research is needed to accurately establish the utility of human recognition of speakers from
sound spectrograms (Bolt [1970]). Subsequent efforts continue in this direction (TOSI). These latter
experiments have treated a variety of experimental conditions (for example, closed sets versus open
sets) and the error rates in visual identification vary from 1% to 30%, depending upon the experi-
mental constraints. This error range, when analyzed in terms of experimental conditions, appears
consistent with previous data.

A problem perhaps more interesting and presently more tractable than speaker recognition is
automatic verification of speakers (Doddington [1971], Lummis [1971], Das and Mohn [1969]). In
the usual context of this problem one has a restricted population of “customers” who want to be
verified (i.e., a cooperative situation), and they are willing to state a prearranged phrase (secret if
desired) chosen to be advantageous for the machine. (The voice banking, and voice validation of
credit cards are applications in point). In the verification situation unknown caller, x, claims to be
customer, Ci. The machine must decide to accept or reject x as Ci. The decision can be weighted
according to the importance of the verification (for example, whether the sum charged is large or
small) and a predetermined mix of error types (i.e., rejecting a true speaker versus accepting a false
speaker) can be specified.

The most important aspect of the verification problem, and the one which distinguishes it from
the recognition problem, is that no matter what the size of the impostor population, the average
percent correct verification tends to be constant. The performance is determined by the average
consistencies of the known speakers and by how each of them differs from the average of the impostor
population. In a recognition situation, on the other hand, where the unknown must be identified by
successive comparisons to all members of a known set, the probability of error is monotonely related
to the number of speakers in the set, and the probability of a recognition error approaches unity as
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the user population becomes large.
One experiment on verification (Doddington [1971]) has made use of pitch, formant and intensity

data to form reference patterns for the known speakers. Frequency data (i.e., formants and pitch)
were considered attractive because they are resistant to variations in the amplitude-frequency char-
acteristics of a voice communication link. A novel non-linear time-warping of the utterance of an
unknown speaker was used to compare (register) it with a stored reference pattern corresponding
to the claimed identity. The non-linear warp was achieved on digital computer by a steepest-ascent
algorithm. The algorithm warped the pattern of the unknown speaker to maximize its correlation
with the stored reference pattern. A mean square error measure was then made for the registered
patterns and the speaker was accepted or rejected depending upon whether the mean square error
was less than greater than a threshold chosen for a specified mix of errors (i.e., reject true versus
accept false).

Fig. 8.13 shows how the formant, pitch and intensity (gain) data are compared for a verification
phrase; namely, the voiced sentence “We were away a year ago.” In Fig. 8.13a the unknown utterance
(solid curve) has been given a linear time stretch to make its duration equal to the reference (dashed
curve). Poor internal registration is evident. In Fig. 8.13b, the non-linear warp has been applied
to register the second formant tracks with maximum correlation. The registration of the other
parameters is similarly improved. The remaining differenc and the amount of non-linear warp
applied are indicative of the similaritie of the two patterns. A square error measure is formulated
to indicat a “distance” between the registered patterns.

Using this technique, with a population of 40 male speakers, correct verification was achieved
98.5% of the time on the verification phrase “We were away a year ago” used by all subjects. Identical
twins included in the experiment were differentiated 100% of the time.

If more sophisticated “distance measures” are used to characterize the differences between the
registered patterns for the unknown and reference, a comparable performance can be obtained on
simple measures, easily made in real time. A subsequent experiment on the population of 40 speakers,
and using more elaborate distance measures on only intensity, pitch and non-linear warp, achieved
99% correct verification (Lummis [1971]).

A natural query is “How well would human listeners perform in the same task?” To answer this, a
completely parallel auditory experiment was conducted with the same 40 speakers, but using human
listeners instead of a computer to make the verification decision. The listeners performed with
greater error rate than the machine and achieved approximately 96% correct verification (Rosenberg
[1971a]).

Results of these and related verification experiments suggest that automatic machine verification
may have practical value. An obvious and further question is how easily might accomplished mimics
deceive the machine and be erroneously accepted. Continuing research is aimed at this question.

A number of features seem to distinguish one speaker from another. The size and shape of the
vocal tract vary considerably among persons. Characteristic damping, mouth and glottal dimensions
also vary. Individual nasal coupling, size and damping of the nasal tract are other relevant features.
Temporal patterns of intensity (stress) and pitch (inflection) are still others. Vocal obstructions and
variations in dental work may contribute still further differences. Some or all these factors might be
used to recognize or verify a speaker. It is probable that machine and human do not use the same
features to equal effect. The machine, for example, might make use of data the human ear cannot
assimilate.

As suggested earlier, the speech-recognition and speaker-identification experiments described
here tell us little about the perceptual processing which the human accomplishes. They do not, for
example, suggest the temporal span of the recognition unit used by the human. Neither do they
indicate subjective techniques for measuring whether the unit is the phoneme, word, sentence, or
something larger. The automatic machine methods deal mainly with advantageous processings of
essentially the acoustic signal, and not with perception as the human practices it.

The mechanism of human perception of speech is difficult to analyze and present understanding
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Figure 8.13: Effects of nonlinear warp in registering speech parameter patterns. The dashed curves
are reference data for an individual. The solid curves are a sample utterance from the same individ-
ual. (a) Linear stretch to align end points only. (b) Nonlinear warp to maximize the correlation of
the F2 patterns. (After (Doddington [1971]))
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is meager. The discussion of Chapter 6 showed that for signals with simple temporal and spectral
structure, reasonably close correlations can be made between subjective behavior and the known
physiology of the peripheral ear. To a modest extent, similar relations can be established for speech
signals. (For example, one can identify features such as voice pitch, formant frequency and voiced-
unvoiced excitation in terms of the basilar membrane motion.) But how the neural data are stored
and processed alter leaving the periphery is a completely open question. Continued research on the
electrophysiology of the auditory tract, and on human response to meaningful speech signals, will
hopefully provide some of the answers.
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8.6 Homework

Problem 8.1

Days are either Good (G) or So-so (S). The probability that today is a good day depends only
on whether or not yesterday was a good day:

P (qt = G| qt−1 = G) = 3/4, P (qt = G| qt−1 = S) = 1/4 (8.193)

Unfortunately, you have no way of directly measuring whether a given day is Good or So-so. You
have noticed, however, that on Good days, the cafeteria is more likely to serve your favorite lunch
(filet mignon with fresh asparagus, truffles, and slivered almonds):

P (ot = filet | qt = G) = 3/4, P (ot = filet | qt = S) = 1/4 (8.194)

You have also noticed that the first day of a new quarter is always a good day:

P (q1 = G) = 1 (8.195)

Given this model, what is the probability that the cafeteria will serve your favorite lunch for the
first two days of a semester?

Problem 8.2

Write a program that uses a Gaussian model of each spectral frame in order to classify a wave-
form. Use a perceptually-motivated cepstral feature vector, such as PLP (Hermansky [1990]) or
MFCC (Davis and Mermelstein [1980]).

Record examples of your own voice saying the words “yes” and “no,” twenty times each.
Create a simple push-to-talk interface that allows you to press a button to start recording, then

say a word. Create a “voice activity detector” that examines the energy of the signal in each 10ms
frame, and chops off leading and trailing silences.

After chopping off leading and trailing silences, your user interface should pass waveforms to the
Gaussian classifier. The mixture Gaussian classifier should compute the values of p(“yes”|x1, . . . , xT )
and p(“no”|x1, . . . , xT ). Assume that the words “yes” and “no” have equal a priori probability, and
that the observation vectors are independent given class label, i.e.,

p(x1, . . . , xT |“yes”) =

T∏

t=1

p(xt|“yes”) (8.196)

How accurate is your recognizer? Find an example of a waveform that was mis-classified by the
recognizer, and plot the cepstral distances d2(test, “yes”) and d2(test, “no”) as a function of time.
Line up these distance measures with the spectrogram. Can you figure out why the recognizer made
a mistake?

Problem 8.3

Write a program that uses dynamic time warping to compute the cepstral distance between two
waveforms. Use a perceptually-motivated cepstral feature vector, such as PLP (Hermansky [1990])
or MFCC (Davis and Mermelstein [1980]).

Record examples of your own voice saying the phrases “supercalifragilistic,” “soup magic,” and
“supertragic.”
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Experiment with different constraints on the warping costs. For very low warping costs, can
you convince the recognizer that “supertragic” is closer to “supercalifragilistic” than it is to “soup
magic?”
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Chapter 9

Speech Synthesis

Ancient man often took his ability of speech as a symbol of divine origin. Not unnaturally, he
sometimes ascribed the same ability to his gods. Pagan priests, eager to fulfill great expectations,
frequently tried to make their idols speak directly to the people. Talking statues, miraculous voices
and oracles were well known in the Greek and Roman civilizations–the voice usually coming to
the artificial mouth via cleverly concealed speaking tubes. Throughout early times the capacity of
“artificial speech” to amaze, amuse and influence its listeners was remarkably well appreciated and
exploited.

As the civilized world entered the Renaissance scientific curiosity developed and expanded. Man
began to inquire more seriously into the nature of things. Human life and physiological functions
werefair targets of study, and the physiological mechanism of speech belonged in this sphere. Not
surprisingly, the relatively complex vocal mechanism was often considered in terms of more tractable
models. These early models were invariably mechanical contrivances, and some were exceedingly
clever in design.

9.1 Mechanical Speaking Machines

One of the earliest documented efforts at speech synthesis was by Kratzenstein in 1779. The Impe-
rial Academy of St. Petersburg offered its annual prize for explaining the physiological differences
between five vowels, and for making apparatus to produce them artificially. As the winning solution,
Kratzenstein constructed acoustic resonators similar in shape to the human vocal tract. He acti-
vated the resonators with vibrating reeds which, in a manner analogous to the human vocal cords,
interrupted an air stream.

A few years later (1791), von Kempelen constructed and demonstrated a more elaborate machine
for generating connected utterances (Apparently von Kempelen’s efforts antedate Kratzenstein’s,
since von Kempelen purportedly began work on his device in 1769 (Kempelen [1791], Tarnoczy
[1950])). Although his machine received considerable publicity, it was not taken as seriously as it
should have been. Von Kempelen had earlier perpetrated a deception in the form of a mechanical
chess-playing machine. The main “mechanism” of the machine was a concealed, legless man–an
expert chess player.

The speaking machine, however, was a completely legitimate device. It used a bellows to supply
air to a reed which, in turn, excited a single, hand-varied resonator for producing voiced sounds.
Consonants, including nasals, were simulated by four separate constricted passages, controlled by
the fingers of the other hand. An improved version of the machine was built from von Kempelen’s
description by Sir Charles Wheatstone (of the Wheatstone Bridge, and who is credited in Britain
with the invention of the telegraph). It is shown in Fig. 9.1.

269
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Figure 9.1: Wheatstone’s construction of von Kempelen’s speaking machine

Briefly, the device was operated in the following manner. The right arm rested on the main
bellows and expelled air through a vibrating reed to produce voiced sounds. (See the lower diagram
in Fig. 9.1.) The fingers of the right hand controlled the air passages for the fricatives /S/ and /s/,
as well as the “nostril” openings and the reed on-off control. For vowel sounds, all the passages
were closed and the reed turned on. Control of vowel resonances was effected with the left hand by
suitably deforming the leather resonator at the front of the device. Unvoiced sounds were produced
with the reed off, and by a turbulent flow through a suitable passage. In the original work, von
Kempelen claimed that approximately 19 consonant sounds could be made passably well.

Von Kempelen’s efforts probably had a more far-reaching influence than is generally appreci-
ated. During Alexander Graham Bell’s boyhood in Edinburgh, Scotland (latter 1800’s), Bell had
an opportunity to see the reproduction of von Kempelen’s machine which had been constructed by
Wheatstone. He was greatly impressed with the device. With stimulation from his father (Alexander
Melville Bell, an elocutionist like his own father), and his brother Melville’s assistance, Bell set out
to construct a speaking automaton of his own.

Following their father’s advice, the boys attempted to copy the vocal organs by making a cast
from a human skull and molding the vocal parts in gutta-percha. The lips, tongue, palate, teeth,
pharynx, and velum were represented. The lips were a framework of wire, covered with rubber which
had been stuffed with cotton batting. Rubber checks enclosed the mouth cavity, and the tongue was
simulated by wooden sections–likewise covered by a rubber skin and stuffed with batting. The parts
were actuated by levers controlled from a keyboard. A larynx “box” was constructed of tin and had
a flexible tube for a windpipe. A vocal cord orifice was made by stretching a slotted rubber sheet
over tin supports.

Bell says the device could be made to say vowels and nasals and could be manipulated to
produce a few simple utterances (apparently well enough to attract the neighbors). It is tempting to
speculate how this boyhood interest may have been decisive in leading to U.S. patent No. 174,465,
dated February 14, 1876–describing the telephone, and which has been perhaps one of the most
valuable patents in history.

Bell’s youthful interest in speech production also led him to experiment with his pet Skye terrier.
He taught the dog to sit up on his hind legs and growl continuously. At the same time, Bell
manipulated the dog’s vocal tract by hand. The dog’s repertoire of sounds finally consisted of the
vowels /A/ and /u/, the diphthong /oU/ and the syllables /mA/ and /gA/. His greatest linguistic
accomplishment consisted of the sentence, “How are you Grandmamma?” The dog apparently
started taking a “bread and butter” interest in the project and would try to talk by himself. But
on his own, he could never do better than the usual growl. This, according to Bell, is the only
foundation to the rumor that he once taught a dog to speak.

Interest in mechanical analogs of the vocal system continued to the twentieth century. Among
those who developed a penetrating understanding of the nature of human speech was Sir Richard
Paget. Besides making accurate plaster tube models of the vocal tract, he was also adept at simu-
lating vocal configurations with his hands. He could literally “talk with his hands” by cupping them
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Figure 9.2: Mechanical vocal tract of Riesz

Figure 9.3: Key control of Riesz’s mechanical talker

and exciting the cavities either with a reed, or with the lips made to vibrate after the fashion of
blowing a trumpet.

Around the same time, a different approach to artificial speech was taken by people like Helmholtz,
D. C. Miller, Stumpf, and Koenig. Their view was more from the point of perception than from
production. Helmholtz synthesized vowel sounds by causing a sufficient number of tuning forks to
vibrate at selected frequencies and with prescribed amplitudes. Miller and Stumpf, on the other
hand, accomplished the same thing by sounding organ pipes. Still different, Koenig synthesized
vowel spectra from a siren in which air jets were directed at rotating, toothed wheels.

In 1937, Riesz (Riesz and Watkins [1939]) developed the mechanical talker shown in Fig. 9.2.
Air under pressure is brought from a reservoir at the right. Two valves, V1 and V2 control the flow.
Valve V1 admits air to a chamber L1 in which a reed is fixed. The reed vibrates and interrupts the
air flow much like the vocal cords. A spring-loaded slider varies the effective length of the reed and
changes its fundamental frequency. Unvoiced sounds are produced by admitting air through valve
V2. The configuration of the vocal tract is varied by means of nine movable members representing
the lips (1 and 2), teeth (3 and 4), tongue (5, 6, and 7), pharynx (8), and velar coupling (9).

To simplify the control, Riesz constructed the mechanical talker with finger keys to control the
configuration, but with only one control each for lips and teeth (i.e., members 1-2 and 3-4 of Fig. 9.2
worked as opposing pairs). The simplified arrangement with control keys is shown in Fig. 9.3. The
dark surface regions indicate soft rubber linings to accomplish realistic closures and dampings. Keys
4 and 5 operate excitation valves V4 and V5, arranged somewhat differently from V1 and V2 in
Fig. 9.2. Valve V4 admits air through a hole forward in the tract (below element 6) for producing
unvoiced sounds. Valve V5 supplies air to the reed chamber for voiced excitation. In this case pitch is
controlled by the amount of air passed by valve V5. When operated by a skilled person, the machine
could be made to simulate connected speech. One of its particularly good utterances was reported
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Figure 9.4: Schematic diagram of the Voder synthesizer (After (Riesz and Watkins [1939])

to be “cigarette”1.

Probably the first electrical synthesizer which attempted to produce connected speech was the
Voder (Riesz and Watkins [1939]). It was basically a spectrum-synthesis device operated from a
finger keyboard. It did, however, duplicate one important physiological characteristic of the vocal
system, namely, that the excitation can be voiced or unvoiced. A schematic diagram of the device
is shown in Fig. 9.4.

The “resonance control” box of the device contains 10 contiguous band-pass filters which span
the speech frequency range and are connected in parallel. All the filters receive excitation from either
the noise source or the buzz (relaxation) oscillator. The wrist bar selects the excitation source, and
a foot pedal controls the pitch of the buzz oscillator. The outputs of the band-pass filters pass
through potentiometer gain controls and are added. Ten finger keys operate the potentiometers.
Three additional keys provide a transient excitation of selected filters to simulate stop-consonant
sounds.

This speaking machine was demonstrated by trained operators at the World’s Fairs of 1939 (New
York) and 1940 (San Francisco). Although the training required was quite long (on the order of a
year or more), the operators were able to “play” the machines–literally as though they were organs
or pianos–and to produce intelligible speech.2.

9.2 Unit Selection Synthesis

The sanatorium in Heliopolis, during the time of the Roman Empire, included an underground
chamber where worshippers could sleep under the protection of the gods. It was said, at the time,
that worshippers would be visited there by gods during the night, and that the gods would whisper,

1Personal communication, R. R. Riesz.
2H. W. Dudley retired from Bell Laboratories in October 1961. On the completion of his more than 40 years in

speech research, one of the Voder machines was retrieved from storage and refurbished. In addition, one of the original
operators was invited to return and perform for the occasion. Amazingly, after an interlude of twenty years, the lady
was able to sit down to the console and make the machine speak.
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into their ears, instructions that they must follow in order to improve their health. In fact, however,
the “voices of the gods” were supplied by over-zealous priests and acolytes, who spoke to sleeping
clients through a network of cleverly concealed speaking tubes (THIS STORY IS MARK’S MEMORY
– NEEDS TO BE VERIFIED).

In some ways, modern telephone dialog systems rely on a technology remarkably similar to that
of Roman Heliopolis: the only way we are able to generate completely natural speech is by bringing
an actor to a recording studio, and asking him or her to record every utterance that the dialog
system is expected to produce. Storage is cheap. The cost of storing ten or twenty hours of recorded
speech is inconsequential—far less, in fact, than the cost of hiring the actor to sit in a recording
studio for twenty hours, reading prompt sentences from cue cards.

Pre-recorded utterances are fine for a dialog system with a limited repertoire of utterances, but
one would imagine that this technology is useless for a system that requires infinite flexibility: a
system that requires, for example, the ability to read books or newspapers. The most economically
successful speech synthesis technology of the twentieth-century was a set of methods that convert
a corpus of pre-recorded speech waveforms into an infinitely flexible speech synthesizer. The basic
idea of a “corpus-based synthesizer” is that utterances should be generated by cutting and pasting
waveform segments from a large database of recorded speech. Waveform units are chosen to be as
long as possible—entire sentences, if possible. The corpus itself is as large as possible—typically
ten to twenty hours—and is designed to provide complete coverage of the vocabulary and common
utterances of the intended dialog system. Automatic speech recognition is applied in two ways:
first, to label phone boundaries and word boundaries in the recorded corpus, and second, to select
the sequence of waveform units that will synthesize a desired utterance with the fewest possible cut
points.

9.2.1 Search Algorithms for Unit Selection

9.2.2 Unit Selection Criteria for Affective and Expressive Speech

9.2.3 Text Analysis

9.3 Spectrum Reconstruction Techniques

Section 9.2 discussed unit-selection synthesis: a set of methods capable of generating arbitrary
utterances by cutting and pasting units from a large recorded corpus, with no additional signal
processing. Corpus-based synthesis is arguably the most financially successful speech synthesis algo-
rithm ever, but it has important limitations. First, a corpus-based synthesizer can only simulate the
voice of the person who recorded the speech corpus. It is impossible, using corpus-based synthesis,
to synthesize the voices of all characters in an animated film; likewise, it is impossible to create a
personalized speech synthesizer using the voice of a person who has just undergone tracheotomy. Sec-
ond, notwithstanding the methods described in Sec. 9.2.2, it is very difficult to synthesize expressive
speech using unit selection. A skilled actor expresses emotion through a wide range of voice qualities
and intonational contours; there has never yet been an actor who was willing to sit in a recording
studio long enough to record every word in the English language with every possible combination
of intonational contours and voice quality characteristics. Third, a corpus-based synthesizer is only
useful on a computer with enough disk space to store a large corpus of recorded speech. Hand-held
devices typically require a speech synthesizer with much lower memory requirements. All of these
problems can be solved by applying the signal processing techniques from Chapter 4 in order to
modify recorded speech waveforms. Signal modifications usually reduce the perceived naturalness
of the synthesized speech; most current commercial research in the field of speech synthesis aims to
develop signal processing techniques that generate natural-sounding speech.
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9.3.1 Short-Time Spectral Reconstruction Techniques

Investigators such as Helmholtz, D. C. Miller, R. Koenig and Stumpf had earlier noted that speech-
like sounds could be generated by producing an harmonic spectrum with the correct fundamental
frequency and relative amplitudes. In other words, the signal could be synthesized with no compelling
effort at duplicating the vocal system, hut mainly with the objective of producing the desired percept.
Among the first to demonstrate the principle electrically was Stewart, who excited two coupled
resonant electrical circuits by a current interrupted at a rate analogous to the voice fundamental. By
adjusting the circuit tuning, sustained vowels could be simulated. The apparatus was not elaborate
enough to produce connected utterances. Somewhat later, Wagner devised a similar set of four
electrical resonators, connected in parallel, and excited by a buzz-like source. The outputs of the
four resonators were combined in the proper amplitudes to produce vowel spectra.

Speech analysis by the sound spectrograph was described at some length in Chapter 4. Since–
as Helmholtz and others observed–intelligibility is largely preserved in the short-time amplitude
spectrum, speech synthesis from spectrographic plots is immediately suggested. Coupled with this
notion is the question of the extent to which spectrograms of real speech might be abstracted or
“caricatured” without destroying intelligibility. Several devices for automatically “playing” sound
spectrograms have been designed. One uses a line source of light, parallel to the frequency axis of the
spectrogram, to illuminate a variable density spectrographic pattern (Riesz and Schott [1946], Schott
[1948]). Contiguous photocells behind the pattern develop amplitude control signals for a set of
band-pass filters (such as in the Voder). Voiced-unvoiced selection and pitch control information are
represented in additional tracks. A similar scheme has been used to control a Voder-type synthesizer
in an arrangement called Voback (Borst [1956]).

A somewhat different type of spectrogram playback has been used in extensive studies on speech
synthesis (Cooper [1950], Liberman and Borst [1951]). The speech wave is effectively simulated by a
Fourier series

∑
nAn cos(nω0t+Φn). The coefficients An are time varying and are determined by the

spectrogram intensity at a given instant. The sound generation is accomplished by the arrangement
shown in Fig. 9.5a.

The regular time-frequency-intensity pattern is illuminated by 50 contiguous light spots. The
spots are sinusoidally modulated in intensity at harmonically related frequencies. The contiguous
spots are produced by illuminating a “tone-wheel” with a line source. The tone wheel has 50
concentric, variable-density bands. The innermost band has four sinusoidal cycles, the next 8,
the next 12, and on up to 200 for the 50th band. The tone wheel is rotated at 1800 rpm so
the fundamental frequency is 120Hz. Light from the tone wheel can be either reflected from the
spectrographic pattern or transmitted by it. The reflected (or transmitted) light is sensed by a
collector and photocell which effectively sums the fifty terms of the Fourier series. The collected
components are amplified and transduced.

Because of the constant rotation of the tone wheel, the pitch is monotone. Also, the phase
relations of the harmonic components are fixed by the tone-wheel bands. Unvoiced sounds are
simulated from a random time and intensity modulation of the frequency componentssimilar to the
spectrographic representation of a noise burst. Spectrograms of both real speech and its abstracted
version can be played on the machine. A sample of each is shown in Fig. 9.5b. In the abstracted
spectrogram, in the lower part of the figure, the dark bars represent the speech formants, and the
patches of fine, irregular dots produce the noise bursts. Intelligible monotone speech can be produced
by the machine, and it has been used in extensive perceptual studies. Some of these results will
discussed in Chapter 7.
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Figure 9.5: (a) Functional diagram of a spectrogram play-back device. (After (Cooper [1950])) (b)
Spectrograms of real speech and an abstracted, hand-painted version of the same. Both displays
can be synthesized on the pattern play-back machine. (After (Borst [1956]))

9.3.2 Unit-Concatenative Synthesis for Embedded Applications

9.3.3 Signal Modification for Affective and Expressive Speech

9.3.4 Talker Morphing

9.4 “Terminal Analog” Synthesizers

In Chapter 3 linear circuit theory was applied to the acoustic analysis of the vocal tract. The results
show that for simple geometries the transmission properties can be stated in a straightfoward form.
Complex geometries, on the other hand, may be approximated by quantizing the vocal tube as
short, abutting cylindrical sections. Effects of losses and yielding walls can be included as discussed
in Section 3.8.3.

The tract behavior can be considered either in terms of its over-all transmission, or in terms of
its detailed distributed properties. Speech synthesis may be based upon either view. The former
approach attempts to duplicate–usually with a unilateral electrical circuit–the transmission prop-
erties of the tract as viewed from its input and output terminals. Synthesizers designed in this
manner have, for lack of a better term, been named “terminal-analogs” (Flanagan [1957c]). The
second view attempts to duplicate, on a one-for-one basis, the geometry and distributed properties
of the tract. Electrical synthesizers designed according to this approach are bilateral, nonuniform
transmission-line models of the system. The present section proposes to discuss the terminal analog
approach, while the following section will treat the transmission-line device.

Both approaches to synthesis must take account of sound radiation and the vocal sources of
excitation. These factors, common to both modellings of speech production, will be discussed
subsequently.
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9.4.1 Terminal Properties of the Vocal Tract

The unconstricted, glottally-excited tract can be approximated as a straight pipe, closed at the vocal
cords (Zg = ∞) and open at the mouth (Zr = 0). For such a case the results of Chapter 3 show
that the ratio of mouth and glottal volume velocities has a frequency-domain representation

Um
Ug

=
1

cosh γl
, (9.1)

where l is the length of the tube, γ = (α + jβ) = [(Ra + jωLa)(Ga + jωCa)]
1
2 , and Ra, La, Ga

and Ca are the per-unit-length acoustical parameters of the pipe (see Fig. 3.23 and Eq. (3.61)].
It will be convenient in the subsequent discussion to treat frequency as a complex variable. Let
jω → s = σ + jω and rewrite γ as

γ(s) = [(Ra + sLa)(Ga + sCa)]
1
2

which for low-loss conditions is
γ(s) ≈

(
α+

s

c

)

where c = 1/
√
LaCa is the sound velocity [see Eq. ( 3.8)].

Since the vocal tract is a distributed system, its transmission characteristics involve transcenden-
tal functions. However, to represent the terminal behavior by lumped-constant electrical networks,
it is necessary to describe the vocal transmission in terms of rational, meromorphic functions. Be-
cause the transcendental transfer functions for the vocal tract are meromorphic, and because their
numerator and denominator components are generally integral functions (i.e., analytic for all finite
values of the complex variable), it is possible to approximate the transmission by rational functions.
A relation in function theory (Titchmarsh [1932]) says that if f(z) is an integral function of the
complex variable z, and meets certain restrictions, it can be represented by the product series

f(z) = f(0)ez
f′(0)
f(0)

∞∏

m=1

(
1 − z

zm

)
ez/am (9.2)

where the am’s are the ordered, simple zeros of f(z). For the vocal transmission (9.1), the zeros of
the denominator (or the poles of the transmission) occur for

γ(s) = ±j (2n− 1)π

2l
, n = 1, 2, . . . 3

or

γ2(s) = − (2n− 1)2π2

4l2
= (Ra + sLa)(Ga + sCa)

or, dropping the subscript a’s,

sn = −
(
R

2L
+

G

2C

)
± j

[
(2n− 1)2π2

4l2LC
−
(
R

2L
− G

2C

)2
] 1

2

, n = 1, 2, . . .

= −σn + jωn (9.3)

3In Chapter 3 this result was written

γ = ±j
(2n+ l)π

2l
, n = 0, 1, 2, . . .

(see Eq. (3.62)). For the present discussion it will be convenient to write (2n−1), n = 1, 2, . . .. This has the mnemonic
nicety that n may also represent the formant number.
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Figure 9.6: Feedback circuit for producing a transmission having uniformly spaced complex conjugate
poles

For small loss

sn ≈ −αc± j
(2n− 1)πc

2l
, n = 1, 2, . . . (9.4)

which [except for the change to (2n − l), n = 1, 2, . . .] is the same as Eq. (3.63) in Chapter 3.
Substituting the result (9.3) in (9.2) gives

cosh z =

∞∏

n=1

[
1 − z

±j (2n−1)π
2

]
, (9.5)

where z = γ(s)l. [The initial two terms of (9.2) yield unity, and the final term multiplies to unity
because the roots of f(z) are conjugate imaginaries.] For small loss γ(s)l ≈ (α+ s/c)l and

1

cosh γ(s)l
=
∏

n

±j(2n− 1)πc/2l

s+ αc± j (2n−1)πc
2l

(9.6)

=
∏

n

ω2
n

(s− sn)(s− s∗n)

≈
∏

n

sns
∗
n

(s− sn)(s− s∗n)

which is Eq. (3.64) in Chapter 3.
As (9.4) indicates, the poles for the straight pipe are uniformly spaced at πc/l intervals along the

jω-axis. In this particular case, a very simple electrical circuit will realize the transmission function,
namely the feedback circuit shown in Fig. 9.6. Its transmission is

e0
e1

= H(s) = 1 − ae−sD + a2e−2sD − . . . =
1

1 + ae−sD
, (9.7)

where a is a positive-real gain less than unity, and D is a simple delay equal to twice the sound
transit time through the pipe. The impulse response therefore simulates the multiple reflections,
with some loss, that occur at the ends of the pipe. The poles of H(s) occur at

sn = − 1

D
ln

1

a
± j

(2n− 1)π

D
, n = 1, 2, . . . (9.8)

If D = 2l/c and a = e−2αl, the poles are identical to (9.4).
For a nonuniform pipe, the transmission (9.6) will generally have its poles spaced nonuniformly

in frequency. In such a case, one simple way to realize the vocal transmission with electrical circuits
is by “building up” the function in terms of the individual pole-pairs. This can be done by cascading
individual, isolated electrical resonators, suitably tuned. This approach has the advantage of a one-
to-one relation between speech formants and resonator poles, and it provides for non-interacting
control of the resonances.
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9.4.2 Spectral Contribution of Higher-Order Poles

On perceptual grounds it is usually sufficient to simulate only the first several (three to five) modes
of the tract. The remaining modes can be accounted for by a single multiplicative term representing
their summated influence upon the amplitude (magnitude) spectrum (Fant [1960]). This factor,
following the technique of Fant, then becomes simply a frequency-equalizing network. Assuming the
higher modes to be approximately those of a straight pipe, the nature of the equalizer can be set
down directly.

Write Eq. (9.6) as two product series:

P (s) =

k∏

n=1

sns
∗
n

(s− sn)(s− s∗n)
·

∞∏

n=k+1

sns
∗
n

(s− sn)(s− s∗n)
(9.9)

= Pk(s) ·Qk(S),

where sn = (−σn + jωn). For s = jω,

Qk(jω) =

∞∏

n=k+1

ω2
0n

(ω2
0n − ω2) + j2σnω

(9.10)

where ω2
0n = (σ2

n + ω2
n).

Taking the magnitude,

|Qk(jω)| =

∞∏

n=k+1

ω2
0n

[(ω2
0n − ω2)2 + (2σnω)2]

1
2

(9.11)

For low loss σn ≪ ωn, and

|Qk(jω)| ≈
∞∏

n=k+1

1(
1 − ω

ω2
n

) (9.12)

Taking the logarithm of both sides gives

ln |Qk(jω)| = −
∞∑

n=k+1

ln

(
1 − ω

ω2
n

)

Expanding the logarithm as a series and taking only the first term (to approximate the behavior at
frequencies ω < ωn) yields

ln |Qk(jω)| ≈ ω2
∞∑

n=k+1

1

ω2
n

where

ωn = (2n− 1)ω1 =
(2n− 1)πc

2l
, n = 1, 2, . . .

(that is, the modes for the straight pipe of length l). Alternatively, the logarithm may be written

ln |Qk| ≈
(
ω

ω1

)2 ∞∑

n=k+1

1

(2n− 1)2
(9.13)

But
∞∑

1

1

(2n− 1)2
=
π2

8
,
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Figure 9.7: Front excitation of a straight pipe by a pressure source

and the sum in (9.13) may be written

∞∑

1

1

(2n− 1)2
=
π2

8
−

k∑

1

1

(2n− 1)2
(9.14)

Therefore,

ln |Qk| ≈
(
ω2

ω2
1

)[
π2

8
−

k∑

1

1

(2n− 1)2

]
=

(
ω2

ω2
1

)
[R(k)]

or

|Qk| ≈ e(ω/ω1)
2R(k) (9.15)

where R(k) is a positive-real function of k, the highest pole accounted for on an individual basis.

9.4.3 Non-Glottal Excitation of the Tract

The discussion of Chapter 3 showed that if the vocal excitation occurs at some point other than at
the end of the tract, the transmission function will exhibit zeros as well as poles. This can be simply
illustrated for front excitation of a straight pipe by a pressure source, as shown in Fig. 9.7. The
ratio of mouth current to the source pressure is simply the driving point impedance of the mouth,
or

Um(s)

pt(s)
=

1

Z0
tanh γ(s)l (9.16)

=
1

cos γ(s)l
· sinh γ(s)l

Z0

= P (s) · Z(s).

Since P (s) has no zeros, the zeros of the transmission are the zeros of Z(s) and occur for

(e2γl − 1) = 0 (9.17)

γ = ±jmπ
l
, m = 0, 1, 2, . . .

γ2 =
−m2π2

l2
= [(R + sL)(G+ sC)] .

The zeros therefore lie at

sm = −
(
R

2L
+

G

2C

)
± j

[
m2π2

l2LC
−
(
R

2 :
− G

2C

)2
] 1

2

,
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or, again for small losses,

sm ≈
(
−αc± j

mπc

l

)
m = 0, 1, 2, . . . . (9.18)

The poles of the transmission are the same as given in Eq. (9.4), and the poles and zeros in this
instance alternate in the jω-direction.

Applying the product series formula in Eq. (9.2) gives

sinh z = z

∞∏

m=1

(
1 − z

±jmπ

)
,

where

z = γl ≈
(
αl + s

l

c

)
. (9.19)

Then

sinh γl =

(
αls

l

c

) ∞∏

m=1

(
1 − αl + s lc

±jmπ

)
(9.20)

=
l

c
(αc+ s)

∞∏

m=1

(
s+ αc± jmπc

±jmπcl

)

≈ l

c
(s+ s0)

∏

m=1

∞ (s− sm)(s− s∗m)

sms∗m
,

where s0 = −αc.

9.4.4 Spectral Contribution of Higher-Order Zeros.

The series for the zero terms can be “truncated” as described previously for pole terms, and a spectral
correction factor can be obtained for higher-order zeros. Following the technique of Eq. (9.9),

Z(S) ≈ 1

cZ0
(s+ s0)

k∏

m=1

(s− sm)(s− s∗m)

sms∗m
· |Yk(s)|,

where

ln |Yk(jω)| ≈ −
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m=k+1

ω2

ω2
m

(9.21)

≈ −ω
2

ω2
1

∞∑

m=k+1

1

m2

and where ω1 = πc/l.
The summation may be rewritten as

ln |Yl(jω)| ≈ −ω
2

ω2
1

[
π2

6
−

k∑

m=1

1

m2

]
,

or
|Yk(jω)|2 ≈ e−(ω2/ω2

1)T (k), (9.22)

where T (k) is a positive-real function of the zero number k. Except for the sign of the exponent, this
is the same form as (9.15). The factor |Yk(jω)| can therefore be realized by a frequency-equalizing
network in conjunction with the variable poles and zeros of a formant synthesizer.
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Figure 9.8: Simplified configuration illustrating coupling between oral and nasal cavities

This simple example of front excitation illustrates that the vocal transmission, in general, involves
poles [P (s)] as well as zeros [Z(s)]. In the example, the zeros (like the poles) are uniformly distributed
in frequency. For the nonuniform vocal tract, the mode frequencies will generally be irregularly
distributed. Besides being dependent upon source location, zeros of transmission can also arise from
side-branch paths coupled to the main transmission path. Cases in point are nasal consonants,
nasalized vowels and perhaps liquids such as /l/4. In all cases where the sound radiation is from a
single port (i.e., either mouth or nostril), the vocal transmission is minimum phase. For simultaneous
radiation from mouth and nostril (as in a nasalized vowel) the transmissions to individual ports
are minimum phase, but the combined response at a fixed point in front of the speaker may be
nonminimum phase.

9.4.5 Effects of a Side-Branch Resonator

The effect of a nasal or oral side branch can be simply illustrated by the circuit of Fig. 9.8a. For
very low frequencies the circuit may be treated in terms of lumped-constant approximations to the
major cavities and constrictions, as illustrated in Fig. 9.8b. The poles occur at frequencies where
the sum of the admittances at any network node is zero. The velar junction is a convenient point to
consider. Neglecting losses, the respective admit- tances for the low-frequency approximation are

Yn =
s2 + 1

L5C3

sL3

[
s2 + 1

C3

(
1
L3

+ 1
L5

)] (9.23)

Ym =
s2 + 1

L4C2

sL2

[
s2 + 1

C2

(
1
L2

+ 1
L4

)]

Yp = sC1

or for real frequencies s→ jω,

Yn =
ω2
n0 − ω2

jωL3(ω2
np − ω2)

(9.24)

Ym =
ω2
m0 − ω2

jωL2(ω2
mp − ω2)

Yp = jωC1

where ωn0 and ωm0 are the zeros of the nasal and mouth admittances respectively, and ωnp and ωmp
are the poles of the nasal and mouth admittances.

4The cul-de-sac formed by the tongue can act as a side-branch resonator.
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The poles of the system occur at frequencies for which

∑
Y = Yn + Ym + Yp = 0

or

ω2C1 =
ω2
n0 − ω2

L3(ω2
np − ω2)

+
ω2
m0 − ω2

L2(ω2
mp − ω2)

(9.25)

The low-frequency zero of Un/Um is ωmp, and the zero of Um/Ug is ωnp.

It is instructive to consider the loci of the low frequency modes for a highly simplified situation.
Suppose the pharyngeal, oral and nasal cavities (C1, C2, C3) are held fixed in size, and the mouth and
velar constrictions (L2, L3, L4) are varied. Suppose the velar areas are such that (An+Am) = A0 =
constant, so that L2 and L3 are inversely related. Assume that all tube lengths are held fixed so
that area variations alone constitute the lumped element variation. Consider the low frequency
mode behavior corresponding to the sequence: vowel → nasalized vowel → nasal, as in /Am/. The
simplified articulatory sequence is: vowel, with the nasal tract decoupled and sealed off and the
mouth open; nasalized vowel, with the velum partially open and the mouth still open; and nasal,
with the velum full open and the mouth closed.

For the vowel, the nasal coupling is nil and L3 ≈ ∞. The frequencies ωn0 and ωnp are equal (i.e.,
the pole and zero are coincident) and Yn = 0. The poles of the glottis-to-mouth transmission occur
at frequencies where Ym = Yp. As the vowel is nasalized, the velum opens, L3 diminishes and L2

increases. ωn0 remains fixed, but ωnp parts from ωn0 and moves up in frequency. ωn0 becomes the
zero of glottis-to-mouth transmission. In a similar manner ωm0 remains fixed, but ωmp moves down.
The exact trajectories of the system modes depend upon the relative sizes or the nasal and oral
cavities, but, in general, the original vowel poles move up in frequency. A new pole is introduced in
the region above ωn0 by the parting of ωn0 and ωnp.

As the mouth closes to produce the nasal, L4 becomes infinite and all sound radiation transfers
to the nostril. The closed oral cavity now acts as a side branch resonator for the glottis-to-nostril
transmission. ωm0 now goes to zero, and ωmp becomes lower. ωmp is the zero of glottisto-nostril
transmission. The first system pole is relatively low in frequency, and the second resides in the
vicinity of ωmp. The third is generally somewhat higher than ωnp. A more detailed computation,
using an idealized vocal configuration, has been given previously in Fig. 3.38. Representative fre-
quency positions for a nasal such as /m/ are approximately 250, 1100, 1350 and 2000Hz for the
first four poles and 1300Hz for the zero. More extensive analyses of nasals can be round in the
literature (Fujimura [1962]).

So long as the radiation is from a single port, the dc transmission to that port is essentially unity.
For simultaneous radiation from mouth and nostril, the sound energy divides according to the oral
and nasal admittances, and the dc transmission to a single port is determined by the respective
branch losses.

9.4.6 Cascade Type Synthesizers

The intent of these elementary considerations is to indicate that for all configurations and excitations,
the vocal transmission T (s) may be approximated in terms of its first few (low-frequency) poles and
zeros, that is, the first several roots of P (s) and Z(s). A straightforward means for simulating the
vocal transmission electrically is to build up the product functions in terms of the individual poles
and zeros by cascading individual electrical resonators. As the preceding discussion showed, the
transmission function for a vowel sound can be written

T (s) = P (s) =
∏

n

sns
∗
n

(s− sn)(s− s∗n)
.
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Figure 9.9: (a) Cascade connection of isolated RLC resonators for simulation of vocal transmission
for vowel sounds. Each pole-pair or vocal resonance is simulated by a series circuit. (b) Cascaded
pole and zero circuit for simulating low frequency behavior of a side branch resonator. The zero pair
is approximated by the transmission of a simple series circuit

Such a function can be represented in terms of its individual poles by the isolated, cascaded, series
RLC resonators shown in Fig. 9.9a. Here the transmission of a single resonant circuit is

e0(s)

ei(s)
=

1
LC

s2R
L

s 1
LC

=
sns

∗
n

(s− sn)(s− s∗n)
,

where

ωn =

√
1

LC
− R2

4L2
, σn =

R

2L
(9.26)

and
sn = −σn + jωn.

Control of the formant tuning is effected by changes in the tuning capacitor C. Control of formant
bandwidth is accomplished by variation of R. For the serial connection of resonators, specification
of the pole frequencies sn implies specification of the spectral peaks, or formant amplitudes, as well.
This point has been treated in some detail in the literature (Fant [1956], Flanagan [1957c]). The
results of Chapter 3 and the preceding discussion (Fig. 9.8) suggest that sounds such as unvoiced
consonants, nasals, nasalized vowels, and perhaps liquids, may have at least one low-frequency zero
which might be perceptually significant5. In particular, a pole-zero pair additional to the usual vowel
formants is commonly associated with nasals and nasalized vowels. The transmission of the vowel
resonator string of Fig. 9.9a can be simply modified to accomodate this condition. A resonance
and an antiresonance–as shown in the upper part of Fig. 9.9b–can be included in the synthesizer
circuit (Flanagan et al. [1970]). So long as a pure vowel is to be produced, the added pole and
zero are made coincident in frequency, and their transmission is unity. For nasal production they
are pulled apart and set to appropriate values corresponding to the relations for the side branch
resonator.

Practically, the complex conjugate zero can be approximated by the electrical circuit shown in
the lower part of Fig. 9.9b. Its transmission is

e0(s)

ei(s)
= LC

(
s2 + s

R

L
+

1

LC

)
(9.27)

which is the reciprocal of the conjugate pole. As in the pole-pair resonator, the low frequency
(dc) gain is made unity–which is proper so long as radiation occurs from a single port, and is
approximately correct for the mouth radiation of nasalized vowels.

5The perceptual effects of spectral zeros–both of the excitation and of the system–have not been thoroughly
established. The extent to which the quality of synthetic speech depends upon these factors is a current problem in
research. It will be discussed further in a later section.
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Figure 9.10: Circuit operations for simulating the time-domain response of Eq. (9.30)

The front-excited voiceless sounds can also be approximated in terms of their poles and zeros.
Following the results of the previous discussion and of Chapter 3, a reasonable approximation is
given by

T (s) = P (s) · Z(s) = K · s ·
∏
m(s− sm)(s− s∗m)∏
n(s− sn)(s− s∗n)

, (9.28)

where an m and n of order 1 or 2 often suffice perceptually (in addition to higher-order pole and
zero corrections). The zero at zero frequency arises because of the essentially closed back cavity (see
Fig. 3.31). The amplitude scale factor K is accounted for by an over-all amplification.

9.4.7 Parallel Synthesizers

The vocal tract transmission has been represented as a ratio of product series which, when truncated,
produce rational meromorphic functions. Because the poles are simple, the transmission can be
expanded as a partial fraction with first-degree terms

T (s) = P (s)Z(s) =
∑

n

An
(s− sn)

+
A∗
n

(s− s∗n)
, n = 1, 2, . . .

=
∑

n

2ans+ 2(σnan + ωnbn)

s2 + sσns+ (σ2
n + ω2

n)
, (9.29)

where sn = (−σn + jωn), and An = (s− sn)T (s)|s→sn
= (an + jbn) is the residue in the n-th pole

and is a function of all the poles and zeros. The inverse transform is

h(t) =
∑

n

2|An|e−σnt cos(ωnt+ φn),

where

An = |An|ejφn

Expanding the cosine term, h(t) may be rewritten

h(t) =
∑

n

2|An|e−σnt [cosφn cosωnt− sinφn sinωnt] . (9.30)

Each term of the latter expression can be realized by the operations shown in Fig. 9.10, where the
filters represented by the boxes are simple resonant circuits.

If the transmission function is for pure vowels, Z(s) → 1 and T (s) → P (s) and the transmission
has only poles. Its numerator is not a function of s, but only of the sn, that is,

∏
n sns

∗
n = f(sn).

The residue in the q-th pole is then

Aq =
f(sn)

2jωq
∏
n6=q

[
(σn − σq)2 + (ω2

n − ω2
q) + 2jωq(σq − σn)

] . (9.31)
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Figure 9.11: Circuit for simulating the vowel function impulse response [see Eq. (9.33)]

If the σ’s are essentially equal (a reasonable approximation for the lower modes of the vocal tract),
then

Aq ≈
f(sn)

2jωq
∏
n6=q(ω

2
n − ω2

q)
,

or

Aq ≈
f(sn)

2jωq(−1)q−l
1∏

n6=q |ω2
n − ω2

q |
. (9.32)

The residues are therefore pure imaginary (i.e., cosωn = 0) and their signs alternate with pole
number. The inverse transform (impulse response) for this transmission

h(t) =
∑

n

(−1)n−12|An|e−σnt sinωnt, (9.33)

where each term can by synthesized by the electrical operations in Fig. 9.11. This circuit is essentially
the lower branch of the previous circuit where now −sinφn = − sin [(−1)n(π/2)] = (−1)n−1, and
the RCL resonator has an impulse response (ωne

−σnt sinωnt). Summation of the outputs of similar
circuits, one for each n, produces the response (9.33).

The magnitude of the residue bears a simple approximate relation to the spectral magnitude at
the formant frequency. Recall the residue magnitude is

|An| = |(s− sn)T (s)|s→sn
,

which for small damping σ ≪ ωn is approximately

|(s− sn)T (s)|s→jωn
= |(jωn − sn)T (jωn)| ≈ |an| ,

or
σn |T (jωn)| ≈ |An| . (9.34)

If the transmission function exhibits zeros, as exemplified by Eq. (9.28), the residues are then

A′
q = (s− sq)T (s)|s→sq

= Z(s) · (s− sq)P (s)|s→sq
(9.35)

= Z(sq) ·Aq = Ksq

[
∏

m

(sq − sm)(sq − s∗m)

]
Aq

= AqKsq ·
∏

m

[
(σq − σm)2 + (ω2

m − ω2
q) + j2ωq(σq − σm)

]
.

Again, if the σ’s are nearly the same,

A′
q = AqKsq ·

∏

m

(ω2
m − ω2

q), (9.36)
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and the sign of A′
q is determined by the relative magnitudes ωm and ωq. Or,

A′
q = Aq(−1)pKsq

∏

m

∣∣ω2
m − ω2

q

∣∣ , (9.37)

where p is the number of zeros lying below the pole ωp. Or, substituting for Aq from Eq. (9.32),

A′
q =

f(sn)(−1)pKsq
∏
m |ω2

m − ω2
q |

2jωq(−1)q−1
∏
n6=q |ω2

n − ω2
q |
, (9.38)

and the net sign of the residue is determined by the difference between the numbers of poles and zeros
lying below the q-th pole. Again the residue bears a simple approximate relation to the realfrequency
spectrum evaluated at the pole frequency. That is,

An = (s− sn)T (s)|s→sn
,

but for low damping sn → jωn,
An ≈ (jωn − sn)T (jωn) (9.39)

An ≈ σnT (jωn) = σn |T (jωn)|∠T (jωn)

An = |An|ejφn

A number of terminal-analog synthesizers, both of the parallel and cascade types, have been
constructed and operated. (See for example, (Fant [1959a], Bastide and Smith [1955], Lawrence
[1953], Stead and Jones [1961], Campanella et al. [1962], Chang [1956], Flanagan [1956a, 1960b]).)
Most of the devices utilize one or more of the relations discussed–either by overt recognition of the
principles or by qualitative implication. The transmission relations commonly exploited involve the
formant frequency and the magnitude of the residue, or the formant frequency and amplitude.

At least one study has considered use of the complex residue, that is, the angle or sign of the
residue. In this case, analysis of the short-time phase spectrum of speech6–in conjunction with the
short-time amplitude spectrum–is used to gain naturalness. Specification of the complex residues, as
implied by Eq. (9.29), is equivalent to specification of spectral zeros. A parallel formant synthesizer,
implemented as described by Eq. (9.30) and using pitch-synchronous spectral analysis to obtain
formant frequency and complex residue, produced speech of improved quality (Flanagan [1965]).

9.4.8 Digital Techniques for Formant Synthesis

The approximations made of vocal transmission in Section 9.4 can be represented by linear differ-
ential equations with constant coefficients. In turn, such equations can be approximated as linear
difference equations. The difference equations can be programmed in a digital computer as arith-
metic operations upon discrete values of the variables7. As an example, the input and output
voltages for the series electrical resonator shown in Fig. 9.9a are related by

ei = LC
d2e0
dt2

+RC
de0
dt

+ e0 (9.40)

If the derivatives are approximated by differences between successive values of the dependent
variable–sampled at uniform, discrete values of the independent variable–the equation can be written
as

ei = e0 +RC∆e0 + LC∆2e0,

6See Eq. (4.4), Chapter 4, for a definition of the short-time phase spectrum.
7Alternatively, special purpose digital hardware can accomplish the arithmetic operations.



9.4. “TERMINAL ANALOG” SYNTHESIZERS 287

where ∆ is the first backward difference divided by the sampling interval. Explicitly,

ei(tn) = e0(tn) +RC

[
e0(tn) − e0(tn−1)

(tn − tn−1)

]
+ LC

[
e0(tn) − 2e0(tn−1) + e0(tn−2)

(tn − tn−1)(tn−1 − tn−2)

]
(9.41)

Collecting terms

ein = e0n

[
1 +

RC

D
+
LC

D2

]
− e0(n−1)

[
RC

D
+

2LC

D2

]
+ e0(n−2)

[
LC

D

]
, (9.42)

= ae0n + be0(n−1) + ce0(n−2)

where D = (tn − tn−1) is the sampling interval and e0n = e0(tn).
The theory of linear difference equations (Hildebrand [1952]) shows that the unforced homoge-

neous solution (ein = 0) of Eq. (9.42) is a linear combination of exponential terms

e0n = K1β
n
1 +K2β

n
2 , (9.43)

where β1 and β2 are the roots of the determinantal equation

aβ2 + bβ + c = 0,

K1 and K2 are arbitrary constants, and a, b and c are defined in (9.42). In the present instance the
roots will be complex conjugate, and

β = −b± j
√

4ac− b2

2a
= er1±jr2 , (9.44)

where

er1 =

√
c

a

and

r2 = tan−1

√
4ac− b2

−b .

Therefore,

e0n = er1n (K ′
1 cos r2n+K ′

2 sin r2n) ,

where K ′
1 and K ′

2 are linear combinations of K1 and K2, and the response samples are those of a
damped sinusoid. Following through the arithmetic gives

er1 =

[
1

1 + 2αD + ω2
0D

2

] 1
2

,

where

α =
R

2L
and ω2

0 =
1

LC
,

and

r1 = −1

2
ln
[
1 + 2αD + ω2

0D
2
]
. (9.45)

Expanding the logarithm as a series for ln(l + x), −1 < x < 1, and taking the first term yields

r1 ≈ −D
(
α+

ω2
0D

2

)
.
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For a sufficiently small sampling interval D,

ω2
0D

2
≪ α

and

r1 ≈ −αD,

and the response samples are damped approximately as e−αnD, which is similar to the solution for
the continuous equation.

In the same fashion

r2 = tan−1D






(
1
LC − R2

4L

)

1 + RD
L + R2D2

4L2






1
2

(9.46)

r2 = tan−1D

{
(ω2

0 − α2)

1 + 2αD + α2D2

} 1
2

r2 = tan−1 Dω

(1 + αD)
.

so that for small values of sampling interval

r2 ≈ Dω

1 + αD

and for small damping r2 ≈ Dω. The response samples are then approximately those of a damped
sinusoid with angular frequency ω, which is the continuous equation solution. One notices, however,
that if the sampling is coarse the solution to the difference equation begins to depart substantially
from the sampled values of the continuous system. This situation can be improved by more sophisti-
cated approximations to the derivative (which of course require additional computation). The trades
which can be made between sampling rate and derivative approximation is a topic area worthy of
study.

A different approach permits one to compute exact samples of the continuous impulse response.
If, in addition, the sampling rate exceeds twice the bandwidth of the continuous signal, the contin-
uous response can be reconstructed by low-pass filtering. The approach employs the z-transform.
Consider the same series RLC formant resonator used in the preceding discussion [see Fig. 9.9a].
Its transfer function, in terms of a Laplace transform, is

e0(s)

ei(s)
= F (s) =

s1s
∗
1

(s− s1)(s− s∗1)
=

A1

(s− s1)
+

A∗
1

(s− s∗1)
(9.47)

where where

s1 = −σ1 + jω1 is the pole frequency,

Al = lim
s→s1

(s− s1)F (s) is the complex residue in pole s1,

and the asterisk denotes complex conjugate. The inverse transform of F (s) is the impulse response
f(t). Sampled values of the latter can be described as impulses with areas equal to the function at
the sampling instants, that is,

f †(t) =

∞∑

n=0

f(t)δ(t− nD) (9.48)
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where δ(t) is a unit area impulse and f †(t) is a periodic impulse train with period D representing
the sample values f(nD). The transform of f †(t) is the complex convolution of the transform of its
components, or

L
[
f †(t)

]
= F †(s) = F (s) ∗ L

{
∑

n

δ(t− nD)

}
.

But

L
{
∑

n

δ(t− nD)

}
= 1 + e−sD + e−2sD + . . .

= ∆(s) =
1

1 − e−sD

which has poles at s = ±j2mπ/D, m = 0, 1, . . .. The convolution to be computed is

F †(s) =
1

2πj

∫ c+j∞

c−j∞

F (λ)∆(s − λ)dλ. (9.49)

Using the residue theorem and recognizing that the circuit is linear and passive so that the poles of
F (s) lie in the left half plane, the integral can be evaluated for a contour of integration enclosing
only the poles of F (s).

F †(s) =
∑

k!poles of F (λ)

Res [F (λ)∆(s− λ)]λ=λk
,

or

F †(s) =
∑

k

[
1

1 − e−D(s−λk)

]
Res [F (λ)]λ=λk

. (9.50)

Making the substitution esD = z, Eq. (9.50) can be rewritten

F (z) =
∑

k

[
1

1 − eλkDz−1

]
Res [F (λ)]λ=λk

. (9.51)

For the example at hand (that is, the single formant resonator)

Res [F (s)]s=s1 = A1 =

(
σ2

1 + ω2
1

j2ω1

)
,

and

F (z) =
σ2

1 + ω2
1

ω1

{
e−σ1Dz−1(sinω1D)

1 − 2e−σ1D(cosω1D)z−1 + e−2σ1Dz−2

}
. (9.52)

Notice also that Eq. (9.49) can be written

F †(s) =
1

2πj

∫ c+j∞

c−j∞

F (s− λ)∆(λ)dλ,

and that the poles of ∆(λ) are

λ = ±j 2mπ

D
, m = 0, 1, 2, . . . ,∞.

If the integration contour is selected to enclose the jω-axis poles of ∆(λ), then the integral is

F †(s) =
1

D

∞∑

m=−∞

F

(
s− j

2mπ

D

)
, (9.53)
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Figure 9.12: Digital operations for simulating a single formant resonance (pole-pair) (a) implemen-
tation of the standard z-transform; (b) practical implementation for unitydc gain and minimum
multiplication

because the residue in any pole of ∆(λ) is 1/D.
The system function represented by Eq. (9.50), or by Eq. (9.53), is a transform relating discrete

samples of the input and output of the continuous system. Since z−l = e−sD is a delay of one
sample interval, D, the digital operations necessary to simulate the sampled response of the single
formant resonator, given by Eq. (9.52), involve only delays, multiplications and summations. They
are shown in Fig. 9.12a. If the F (z) function in Eq. (9.52) is thought of in terms of the transmission
of a common negative feedback amplifier,

G =
K

1 + βK
,

the return circuit connections in Fig. 9.12a become apparent.
The resonator of Fig. 9.12a has an impulse response equal to the sampled impulse response of

the continuous function of Eq. (9.47). The frequency behavior for the two relations, however, are
somewhat different. For example, their dc gains are

F (s)|s→0 = 1

and

F †(s)
∣∣
s→0

=
1

D

∑

m=−∞

F

(
−j 2mπ

D

)
,

respectively. Digital resonators can, however, be specified in terms of their frequency behavior and
without direct reference to continuous resonators (GOLD and RADER). Since the formant resonance
must correspond to prescribed bandwidth and frequency, and since its de gain must be essentially
unity, it is convenient in practice to modify (9.52) to

e0(z)

ei(z)
= F (z) =

1 − 2e−σ1D cosω1D + e−2σ1D

1 − 2e−σ1D(cosω1D)z−1 + e−2σ1Dz−2
. (9.54)

This relation can be programmed for a minimum of two multiplications as shown in Fig. 9.12b. The
origin of the configuration of Fig. 9.12b is easily seen by noting the output e0(z) is given by

e0(z) = (2e−σ1D cosω1D)(z−1e0 − ei)

−(e−2σ1D)(z−2e0 − ei) + ei,

where, as before, z−1 is the delay operator e−sD.
The reciprocal of F (z) has zeros where F (z) has poles, so that the sampled-data equivalent of a

simple complex conjugate zero is the reciprocal of Eq. 9.52

1

F (z)
=

(
ω1

σ2
1 + ω2

1

)[
1 − 2e−σ1D(cosω1D)z−1 + e−2σ1Dz−2

e−σ1Dz−1 sinω1D

]
. (9.55)
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Figure 9.13: Digital operations for simulating a single anti-resonance (zero-pair)

Figure 9.14: Block diagram of a computer-simulated speech synthesizer. (After (Flanagan et al.
[1970]))

This response is physically unrealizable because the z−1 in the denominator implies an output
prior to an input. Multiplication by z−1 to incur a unit sample delay does not alter the s-plane
zero positions and makes the transmission function realizable by the digital operations shown in
Fig. 9.13. As in the sampled data pole-pair, the frequency data ω1 and the bandwidth control σ1 are
supplied to the multipliers. As with the digital resonator, it is practically convenient to have unity
gain at zero frequency. The final gain multiplication in Fig. 9.13 can therefore be alternatively made
(l− 2e−σ1D cosω1D+ e−2σ1D)−1 to correspond to the reciprocal of the practical resonator shown in
Fig. 9.12 b and in Eq. (9.54).

These basic pole and zero operations have been used to simulate a complete formant-vocoder syn-
thesizer on a digital computer. One configuration of the synthesizer is shown in Fig. 9.14 (FLANA-
GAN, COKER, and BIRD). Voiced sounds are generated by the top branch which contains four
variable poles and one variable zero. A fixed pole, not shown in the diagram, is included for high-
frequency compensation. For vowels the final pole-zero pair is tuned coincidently so that its combined
transmission is unity. Three poles therefore represent vowel spectra, in accordance with the acoustic
relations developed in Section 3.8. For voiced nonvowels, such as the nasals, the final pole-zero
pair is parted and positioned to represent relations given in Section 3.8.6. In general the pole-zero
pair does not critically influence perception, provided the formant data are accurate, but is largely
important to obtain realistic overall shape of the synthesized spectrum. Fundamental frequency, F0,
and amplitude of voicing, Av are also controlled.

The unvoiced sounds are produced by the lower branch composed of one zero and either one or
two poles. The amplitude of the noise is controlled by An. As Fig. 9.12 and 9.13 indicate, control of
frequencies co; and bandwidths an is effected by supplying these values to the multiplying elements
in the digital circuits. Image poles, produced at multiples of the sampling frequency [see Eq. (9.53)]
make further correction for higher vocal resonances unnecessary. This feature, which must be treated
explicitly in analog synthesizers (see Section 9.4.1), comes free in the digital representation.

A typical listing of control data–as supplied to the computer on punched cards–is shown in
Table 9.1. The data represent approximately 1 sec of synthetic speech. The first column is time in
tens of milliseconds; the second, pitch inHz; the next two columns, relative amplitudes of buzz and
hiss; and finally, the pole and zero frequencies inHz. Each value entered in the table is held by the
circuit until a new value is specified. The control functions are interpolated between specified values
in 2.5 msec steps. The sampling rate for the simulation is l/D = 10KC. A spectrogram of synthetic
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Figure 9.15: Spectrograms of synthetic speech produced by a computer-simulated formant synthe-
sizer and of the original utterance. (After FLANAGAN, COKER and BIRD)

speech produced from such data is shown in Fig. 9.15. Also shown is the original speech from which
the control functions were derived.

Digitally-simulated formant synthesizers–implemented either by programmed operations in general-
purpose computers or as special-purpose digital hardware–have been used in a variety of forms (for
example, (Jr. and Gerstman [1961], Flanagan et al. [1970], Rabiner [1968a,b])). Analog hardware
synthesizers, controlled by digital computers, have over the past had even more extensive use (for
example, (Coker and Cummiskey [1965], Holmes [1958], Mattingly and Shearme [1964], Dixon and
Maxey [1968], Lee [1969], Ochiai and Kato [1949], Nakata [1961], Fujisaki [1960])). Digital imple-
mentations, however, have distinct advantages in stability and accuracy, and current advances in
digital circuitry make commitment to full digital operation irresistible.

Much of the formant synthesis work over the past several years has made extensive use of inter-
active laboratory computers (see, for example, various work referenced in (Flanagan et al. [1970])).
Expecially valuable have been small interactive computers of integrated circuit design. Their ability
for high-speed arithmetic and logic operations, and their ability to store sizeable amounts of infor-
mation (both in primary and secondary memories) has substantially aided work in speech analysis
and synthesis (Flanagan [1971]). The interactive computer has become a common laboratory tool,
and as digital technology continues to develop, laboratory computers will expand in sophistication
and utility.

Formant synthesizers, digitally implemented or controlled, have been used in many studies of
speech synthesis-by-rule and in computer synthesis from stored formant data. In synthesis-by-rule,
discrete symbols representing each speech phoneme, its duration and pitch are supplied as input.
Each specified phoneme calls up from storage a set of formant values appropriate to that phoneme.
Transitions of the formant and excitation functions from one phoneme to another are determined by
stored rules designed to approximate the constraints of natural speech. The ultimate in synthesis-
by-rule is to convert printed language to speech.

Several studies have treated the problem of converting printed English to continuous speech
(Teranishi and Umeda [1968], Coker et al. [1971], Lee [1969], Allen [1971]). In one of these (Coker
et al. [1971]) a computer program uses a pronouncing dictionary to convert printed English text
into discrete phonemic symbols, each carrying its own modifiers for pitch and duration. The text
conversion is accomplished through a programmed syntax analysis and a prosodic feature determi-
nation. A dynamic model of the vocal tract (shown previously in Fig. 4.43) responds to the discrete
phoneme commands to produce sequences of area changes similar to the real vocal tract. A difference
equation solution of the Webster horn equation is periodically made to obtain continuous formant
(eigenfrequency) data, and the latter are used to control a digital formant synthesizer to produce
the synthetic speech.

A result of the automatic conversion of printed English into discrete control symbols for the
synthesizer is shown in Table 9.2. These control symbols actuate articulatory motions in the vocal
tract model of Fig. 4.43. The resulting synthetic output, compared with a similar human utterance
is shown in Fig. 9.16. Formant motions, word durations and pitch are seen to be realisticaliy similar
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Table 9.1: Typical listing of control data for the computer-simulated synthesizer of Fig. 9.14
Time Pitch AV AN F1 F2 F3 PN ZN ZF PF

-20 107 0 170 1290 2190 750 1000 1750 3500
4
5 100
7 180 1260 2170 850 950
8 210 1470 2270 900 900
9 390 1550 2300

10 400 1620 2380
11 1690 2410
12 1700 2460
19 1690 2500
23 410 1510 2430
24 350 1490 2410
25 300 1475 2400
26 250 1490
28 230 1510
32 215 1620 2390
35 210 1700 2330
36 0 25
37 610 610
41 1655 3310
46 1500 2950
47 1400 2800
48 0 320 1420 1800
51
52 25 975 1950
54 960 1920
56 120 925 1850
57 100 0
58 118 1390 1750
61 112 450 1200 1700
65 107 600 1140 1710
70 690 1115 1910
72 700 1150 2000
78 1305 2070
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Table 9.2: Discrete control symbols for synthesis from printed text. (After (Coker et al. [1971]))
English text Syntax and prosodic rules output
the 4dh 4a
north 6n $4aw 2er 6th
wind 6w *qq5i 4n 4d
and 4aa -n -d
the -dh 4a
sun 6s *qq5uh 6n
were 4w 4er
arguing 4: $q6ah -r -g -y 4uu 4i 6ng
one 4w &5uh 4n
day 6d *q9ay qq9<
, $,
when 2h 2w &5eh 4n
a 4a
traveler 4t 4tr *q7aa -v 40 -I 4er
came 4k &4ay 4< 4m
along 4a 41 8aw 4ng
, s ,
wrapped 6r $q8aa 4p 4t
in 4i -n
a 4a
warm 6w $5ah 2er 6m
coat 6k *q20h qq20h 61

to natural speech.

In synthesis from stored formant data, libraries of formant-analyzed words, phrases or sylla-
bles reside in the machine along with rules for concatenating these elements into connected speech
(Schafer and Flanagan [1971]). This approach has the advantage of using naturally-spoken signals
to derive the so-called “segmental” information (i.e., the vocal resonances) rather than calculating
these data. Additional storage is the price paid.

Input to the system is the English text for the word string to be generated, as illustrated in
Fig. 9.17. From the library of words, stored as control functions for a formant synthesizer, the
program selects and concatenates the sequence demanded. Formant functions must be interpolated
naturally, word durations must be adjusted and pitch variations must be calculated for the connected
utterance. The resulting control parameters are supplied to the formant synthesizer for conversion
to speech.

Fig. 9.18 illustrates one technique of concatenating formant-analyzed words. At the top is a
naturally-spoken sentence. At the bottom is a sentence produced from the same words spoken in
isolation, formant analyzed and synthesized, and merely abutted in sequence. The differences are
obvious and marked. The center is the result of concatenation of the same isolated words, but where
the program imposes formant interpolation, word duration and pitch according to stored rules. The
result is much more like the natural signal. In particular one can examine the effects on the /�/
vowel in ” ... away a year ...”, seen at about 1000 msec in the top spectrogram. Mere abuttment
renders this particularly badly at about 1400 msec in the bottom spectrogram. By rule, however, in
the middle spectrogram, the sound is produced relatively well at about 1000 msec. This method of
concatenation has been used successfully as an automatic answer back system for speaking seven-
digit telephone numbers (Schafer and Flanagan [1971]).

Synthesis-by-rule and concatenation methods both depend critically upon the adequacy of rules
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Figure 9.16: Spectrograms comparing natural speech synthesized directly from printed text. (After
(Coker et al. [1971]))

Figure 9.17: Programmed operations for synthesis from stored formant data. (After (Schafer and
Flanagan [1971]).)

Figure 9.18: Computer synthesis by concatenation of formant coded words. (After (Schafer and
Flanagan [1971]).)
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for calculating prosodic information; i.e., duration, pitch and intensity variations. This problem
represents a whole field of study in itself, and it is the focus of considerable interest in phonetics
research.

9.5 Computer Simulation of the Articulatory System

9.5.1 Reflection-Line Analogs of the Vocal Tract

Formant synthesizers represent the input-output characteristics of the vocal tract. For this reason
they are sometimes called “terminal” analogs. In many instances it is desirable to represent the
distributed nature of the vocal system. Such representation is particularly important in efforts to
model articulatory dynamics of speech (where the primary input data are physiological factors, such
as the area function).

Distributed aspects of the system can be treated directly in terms of the wave-equation for one-
dimensional wave propagation in a nonuniform pipe (i.e., Webster’s horn equation, Eq. (3.1)), or in
terms of bilateral transmission-line models of the system (see Section 9.5.2). In the first instance,
steady-state solutions can be used to obtain the undamped eigen (formant) frequencies of non-nasal
sounds, and transient solutions can be used to compute pressure and volume velocity distributions
as functions of time. The Webster equation is

∂2p

∂x2
+

1

A

∂p

∂x

∂A

∂x
=

1

c2
∂2p

∂t2
, (9.56)

where p = p(x, t) is the sound pressure as a function of distance and time and A(x) is the vocal
tract area as a function of distance8. For steadystate behavior p = p(x)ejωt.

For convenient numerical solution on a computer, the differential equation can be approximated
by a difference equation. A number of possibilities exist for making the approximation. Consider
space to be quantized into uniform small intervals ∆x = l. Let a central second difference approxi-
mate the second derivatives and a first back difference approximate the first derivative, i.e.,

d2f(x)

dx2

∣∣∣∣
x=xi

=

(
fi+1 − 2fi + fi−1

l2

)

and
df(x)

dx

∣∣∣∣
x=xi

=

(
fi − fi−1

l

)
. (9.57)

Then the steady-state pressure at point x = xi+1 can be written as the recursion formula

pi+l =

[
pi

(
1 − ω2l2

c2
+
Ai−1

Ai

)
−
(
Ai−1

Ai

)
pi−1

]
. (9.58)

This formulation has been used to calculate the undamped eigenfrequencies of the non-uniform tract
(Coker [1968]). Typical boundary conditions for the pressure are pglottis 6= 0, pmouth = 0. Assuming
non-zero pressure at the glottis, the pressures at successive points along the tract are calculated
from the recursion formula. By iteration, the value of ω is found that satisfies the mouth boundary.
Convergence to the eigenfrequencies is facilitated by observing the number of pressure nodes along
the tract which a given value of ω produces. That is, the first eigenfrequency corresponds to a
quarter-wave resonance with no pressure nodes along tract; and the second formant to a three-
quarter wave resonance with one node. This computation is repeated periodically as the A(x)
function changes with time.

8The volume velocity satisfies an analogous equation

A
∂

∂x

„

1

A

∂U

∂x

«

=
1

c2
∂2U

∂t2
.
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Figure 9.19: Ladder network corresponding to a difference-equation approximation of the Webster
wave equation

Figure 9.20: Representation of an impedance discontinuity in terms of reflection coefficients

It is relevant to note that the difference equation (9.58), so formulated, corresponds to represent-
ing the tract by a simple L-section ladder network with the LC elements shown in Fig. 9.19. The
node equation relating the pressures pi−1, pi, pi+1 is identical to Eq. (9.58).

Another technique, useful for digital calculation of the transient sound pressure along the vocal
tract, is a representation in terms of reflection coefficients (Jr. and Lochbaum [1962a]). This
approach depends upon initially approximating the non-uniform pipe by right-circular elements and
assuming plane-wave propagation in each section, as discussed in Chapter 3.

Consider a plane wave moving from the left in the pipe shown in Fig. 9.20a and encountering an
impedance discontinuity at x = 0. The steady-state pressure and volume velocity in the left tube
must satisfy

pi(x) =
(
p+e−jkx + p−ejkx

)

Ui(x) =
1

Zi

(
p+e−jkx − p−ejkx

)

where p+ and p− are the magnitudes of plane progressive waves moving to the right and the left
respectively in the tube section with area Ai, k = ω/c and Zi is the characteristic impedance of the
left tube. (The pressure and particle velocity in a plane wave are linked by dp/dx = −jωρu.) Since
pressure and volume velocity are continuous at the boundary,

pi(0) = pi+1(0) =
(
p+ + p−

)

Ui(0) = Ui+1(0) =
1

Zi

(
p+ − p−

)
, (9.59)
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where the subscripts i and i+1 correspond to the tube elements Ai and Ai+1. If the right-hand tube
were infinitely long with characteristic impedance Zi+1 a plane wave transmitted and continuing to
the right would have magnitude pT = (p+ + p−) and must satisfy

pT
Ui+1

= Zi+1 =
Zi(p

+ + p−)

p+ − p−
. (9.60)

Then, the left-going wave in the left pipe is

p− =

(
Zi+1 − Zi
Zi+1 + Zi

)
p+ = Ri+1p

+

and
pT =

(
p+ + p−

)
= (1 +Ri+1) p

+, (9.61)

where Ri+1 is the reflection coefficient at the junction of Ai and Ai+1. If the tubes are lossless, their
characteristic impedances are real

Zi = ρc/Ai; Zi+1 = ρc/Ai+1

and

Ri+1 =

(
Ai −Ai+1

Ai +Ai+1

)
. (9.62)

For a plane wave coming originally from the right, instead of the left, the sign of Ri+1 is changed.
The Eq. (9.61) can therefore be used to represent each junction in a cascade of right-circular

elements which approximate the non-uniform tract. The relations for right and left going waves are
given in Fig. 9.20b, where the delay τ is the transit time through each section, τ = l/c, and the
unilateral amplifier boxes denote multiplication by the indicated parameters. (The τ/2 delays can
be lumped into single τ delays, one in the lower branch, one in the upper branch without altering
the behavior.)

For any section of the quantized pipe, recursion equations describe the transient values of the (+)
and (−) waves. The temporal sampling times correspond to the transit times through the uniform
sections. Using i as the spatial index and j as the temporal index, the difference equations are

p+
i,j = −Rip−i,j−1 + p+

i−1,j−1(1 +Ri)

p−i,j = Ri+1p
+
i,j−1 + p−i−1,j−1(1 −Ri+1)

pi,j = (p+
i,j + p−i,j),

(9.63)

or, more conveniently for digital computation,

p+
i+1,j = Ri+1(p

+
i,j−1 − p−i+1,j−1) + p+

i,j−1

p−i,j = Ri+1(p
+
i,j−1 − p−i+1,j−1) + p−i+1,j−1.

(9.64)

The last pipe element of the line terminates in a load that is the radiation impedance of the mouth.
Let AL be the area of the last pipe element and ZL the terminating radiation load. At the load
terminals (the end of pipe AL), the right-going and left-going pressure waves satisfy

pL
UL

= ZL =
AL(p+

L + p−L )

ρc(p+
L − p−L )

.

If ZL is written in terms of a z-transform, the reflected wave p−L can be obtained in terms of
weighted and delayed values of p+

L ; that is, a reflection coefficient relation can be set down in which
p−L = p+

Lf(z−1). The load pressure (p+
Lp

−
L ) produces a mouth volume velocity UL through ZL,

which, when differentiated, represents the radiated pressure. Formulations such as these have been
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Figure 9.21: T-circuit equivalents for a length l of uniform cylindrical pipe. (a) Exact circuit, (b)
first-term approximations to the impedance elements

used in a phoneme-driven vocal-tract synthesizer (Jr. and Lochbaum [1962a]) and in a simulation
of articulatory activity (Mermelstein [1969]).

A further useful approach for digital representation of the distributed vocal tract follows the
bilateral transmission line developed in Chapter 3. Once the line composed of elemental T or
Π sections is set down, transient solutions of pressure and volume velcoity along the line may
be obtained from difference equation approximations to the differential equations for the network.
Area variations are reflected in network element changes. This approach also permits duplication of
absolute acoustic impedances. For this reason it has been used in a vocal-tract synthesizer to study
the acoustics of vocal-cord vibration and turbulent sound generation (Cherry [1969]).

9.5.2 Transmission-Line Analogs of the Vocal System

A different method for simulating the vocal transmission is the nonuniform electrical transmission
line. The discussion in Chapter 3 indicated how the nonuniform acoustic tubes of the vocal and nasal
tracts can be represented by abutting right-circular cylinders (see Fig. 3.35). The approximation to
the nonuniform tract is better the more numerous the cylindrical elements.

Each cylindrical section of length l can be represented by its T-equivalent as shown in Fig. 9.21a,
where Za = Z0 tanhγl/2 and Zb = Z0cschγl. A practical electrical realization of the individual
T-section is obtained by taking the first terms in the series expansions of the hyperbolic quantities.
For a hard-walled tube this gives za ≈ 1

2 (R+ jωL)l and zb ≈ 1/(G+ jωC)l where the R, L, G and
C are the per-unit-length acoustic parameters of the tube, as previously discussed. The resulting
network is Fig. 9.21b9.

For practical realization, the characteristic impedance of the analogous electrical line may be
scaled from the acoustic value by a convenient constant, i.e., Z0e = kZ0a, where the superscripts
e and a distinguish electrical and acoustical quantities. For low-loss conditions, Z0a ≈

√
La/Ca =

ρc/A. Since La = ρ/A and Ca = A/ρc2, a given simulated cross-sectional area is equal ρc
√
Ca/La.

The losses R and G require knowledge of the circumference as well as the cross-sectional area of the
tract [see Eq. (3.33)]. They can also be introduced into the electrical circuit and their impedances
scaled after the fashion just indicated. Given the shape factor, all analogous electrical elements can
be determined from the A and l data-pairs, or from area data for a given number of fixed-length
cylindrical sections.

A vocal tract representation in terms of equivalent electrical sections forms the ladder networks of
Fig. 9.22. The upper circuit is for glottal excitation of the tract by a volume-velocity source Ug and
with internal impedance Zg. The lower circuit is for forward fricative excitation by a pressure source
Pt with internal impedance Zt. Both circuits can be solved–at least in principle–by straightforward
matrix methods. If voltage (pressure) equations are written for each circuit loop, beginning at the
glottis and ending at the mouth and nose, the number of independent equations is equal the number
of loops. The transmissions from glottis to mouth, from glottis to nostril, and from front noise

9Section 3.8.3 derives a technique for including the effects of a yielding wall.
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Figure 9.22: Ladder network approximations to the vocal tract. The impedance elements of the
network are those shown in Fig. 9.21b

source to mouth are, respectively,
Um
Ug

=
Zg∆1m

∆
(9.65)

Un
Ug

= Zg
∆1n

∆

Um
Pt

=
∆jm

∆
,

where ∆ is the impedance determinant (characteristic equation) for the network having impedance
members z11, z12, etc., where z11 is the self-impedance of loop 1, z12 is the mutual impedance between
loops 1 and 2, etc., and ∆xy is the cofactor of the x-th row and y-th column of the determinant ∆.
As mentioned earlier, all the transmissions of Eq. (9.65) are minimum phase functions10.

Several electrical transmission-line synthesizers have been constructed. The first such device
consisted of 25 uniform T-sections (Dunn [1950]). Each section represented a tract length of 0.5 cm
and a nominal area of 6 cm2. A variable inductance could be inserted between any two sections to
simulate the tongue construction. Another variable inductance at the mouth end of the line repre-
sented the lip constriction. Radiation from the mouth was simulated by taking the output voltage
across a small series inductance. For voiced sounds, the synthesizer was excited by a high-impedance
sawtooth oscillator whose fundamental frequency could be controlled. The source spectrum was ad-
justed to fall at about -12 dB/octave (recall Fig. 3.17). To simulate unvoiced and whispered sounds,
a white noise source was applied at an appropriate point along the line.

At least two other passive line analogs, similar to Dunn’s device, have been constructed(Stevens
et al. [1953], Fant [1960]). These synthesizers incorporate network sections which can be varied in-
dependently to simulate the tract geometry in detail. At least one effort has been made to develop a
continuously-controllable transmission-line analog. Continuous variation of the network elements by
electronic means permits the device to synthesize connected speech (Rosen [1958], Hecker [1962]).
This device utilizes saturable-core inductors and electronically-variable capacitors as the line ele-
ments. A nasal tract is also provided. The number of network sections and their control points are
shown in Fig. 9.23. Control of the synthesizer can be effected either from an electronic data-storage
circuit (Rosen [1958]) of from a digital computer (Dennis [1962]).

The transmission-line synthesizer has outstanding potential for directly incorporating the con-
straints that characterize the vocal mechanism. Success in this direction, however, depends directly
upon deriving a realistic model for the area and for the dynamic motions of the vocal tract. Research

10The functions are the responses of passive ladder networks. They can have zeros of transmission only for zeros of a
shunt element or for poles of a series element. All these poles and zeros must lie in the left half of the complex-frequency
plane.
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Figure 9.23: Continuously controllable transmission line analog of the vocal system. (After (Rosen
[1958], Hecker [1962]))

on one such model has been described in Section 4.7. Also, the usefulness of a transmission-line
synthesizer in a complete analysis-synthesis system depends upon how accurately vocal tract area
data, or its equivalent, can be derived automatically from connected speech. Some progress has been
made toward analyzing speech signals in articulatory terms from which area and length numbers
can be derived (see Section 4.7, Chapter 4).

Besides obvious application in a bandwidth compression system, the transmission-line synthe-
sizer, along with other synthesis devices, has potential use as a computer output device for man-
machine communication; as a stimulus generator for psychoacoustic and bioacoustic experimenta-
tion; or, as a standard sound generator for speech pathology, therapy or linguistics studies. The
possibility of specifying the control functions in articulatory terms makes applications such as the
latter particularly attractive.

All transmission-line synthesizers of early design have been implemented as analog network de-
vices. Digital techniques, on the other hand, offer many advantages in stability and accuracy. One
of the first digital transmission-line synthesizers was programmed on a computer in terms of the
reflection coefficients at the junctions of cylindrical tube-elements (Jr. and Lochbaum [1962a]).

Another computer implementation has duplicated the bilateral properties of the transmission
line by a difference-equation equivalent. Because absolute impedance relations are preserved in this
formulation, it has been useful in studying the acoustic interaction between the vocal tract and the
vocal cords. The same formulation has also been used as a complete synthesizer for voiced and
unvoiced sounds (Flanagan and Landgraf [1968], Cherry [1969]).

Further discussion of digital representation of transmission-line synthesizers is given in Sec-
tion 9.5.

TO DO: This section also needs to discuss the transmission-line and ABCD matrix synthesizers
of Sondhi and Schroeter (Sondhi and Schroeter [1987]) and Qiguang Lin (Fant and Lin [1987, 1988],
Lin et al. [1988], Lin [1990])

9.5.3 Nonlinear Simulations of the Vocal Tract System

This section will describe in more detail the nonlinear models of Pelorson (Pelorson et al. [1994])
and especially Huang and Levinson (Huang and Levinson [1999])

9.6 Excitation of Terminal Analog and Articulatory Synthe-

sizers

The preceding sections have discussed simulation of the vocal transmission both from the transfer-
function point of view and from the transmission-line approach. Having implemented one or the
other for electrical synthesis of speech, the system must be excited from signal sources analogous to
those of the vocal tract. This section considers vocal source characteristics that appear relevant in
synthesis.
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Figure 9.24: Single periods of measured glottal area and calculated volume velocity functions for
two men (A and B) phonating the vowel /æ/ under four different conditions of pitch and intensity.
F0 is the fundamental frequency and Ps the sub glottal pressure. The velocity wave is computed
according to the technique described in Section 3.5.2. (After (Flanagan [1958]))

9.6.1 Simulation of the Glottal Wave

The results of Chapter 3 suggested that the vocal cord source is approximately a high-impedance,
constant volume-velocity generator. Hence, to a first-order approximation, the vocal tract and
glottal source can be assumed not to interact greatly. To the extent that this is true (and we shall
subsequently discuss this matter further), the source and system can be analyzed independently,
and their characteristics can be simulated individually.

The shape and periodicity of the vocal cord wave can vary considerably. This is partially il-
lustrated by the single periods of glottal area and volume-velocity waves shown in Fig. 9.24. The
extent to which variability in period and shape affect speech naturalness and quality is an important
research question. In many existing electrical synthesizers, the properties of the vocal cord source
are approximated only in a gross form. It is customary to specify the vocal pitch as a smooth,
continuous time function and to use a fixed glottal wave shape whose amplitude spectrum falls at
about -12 dB/octave. In many synthesizers the source is produced by repeated impulse excitation of
a fixed, spectral-shaping network. Such lack of fidelity in duplicating actual glottal characteristics
undoubtedly detracts from speech naturalness and the ability to simulate a given voice.

Spectral Properties of Triangular Waves

Under some conditions of voicing (commonly, mid-range pitch and intensity), the glottal wave is
roughly triangular in shape. The spectral properties of triangular waves therefore appear to have
relevance to voiced excitation. They have been studied in some detail with a view toward bet-
ter understanding the relations between waveform and spectrum in real glottal waves(Dunn et al.
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Figure 9.25: Triangular approximation to the glottal wave. The asymmetryfactor is k

[1962])11.
Fig. 9.25 shows a triangular approximation to the glottal wave. The opening time is τ1, the

closing time τ2 = kτ1, and the total open time τ0 = (1 + k)τ1. The amplitude of the wave is a and
its period T . Its Laplace transform is

F (s) =
a

s2

[
1

τ1
−
(

1

τ1
+

1

τ2

)
e−sτ1 +

1

τ2
e−s(τ1+τ2)

]
. (9.66)

The spectral zeros are the complex values of s which make F (s) = 0. Except for the s = 0 root, the
zeros are the roots of the bracketed expression, or the roots of

[
e−(k+1)sτ1 − (k + 1)e−sτ1 + k

]
= 0. (9.67)

Because the equation is transcendental it can be solved exactly only for special values of the asym-
metry constant, k. In particular, solutions are straightforward for values of k which can be expressed
as the ratio of small whole numbers. In less simple cases, the roots can be obtained by numerical
solution.

Let
x = e−sτ1 = e−(σ+jω)τ1 = e−στ1(cosωτ1 − j sinωτ1). (9.68)

The (9.67) becomes
x(k+1) − (k + 1)x+ k = 0. (9.69)

When k is an integer, (9.69) will yield (k + 1) values of x. These can then be put into (9.68), and
both στ1 and ωτ1 found by equating real and imaginary parts in separate equations.

For integers up to k = 5, (9.69) can be solved by straightforward algebraic methods. In the
case k = 5, (9.69) is a sixth degree equation in x, but a double root exists at x = 1, and a fourth
degree equation is left when these are removed. For higher values of k, roots can be approximated
by known methods.

However, k need not be an integer. Suppose only that it is a rational number (and it can always
be approximated as such). Then (k + 1) is also rational. Let

k + 1 =
p

q
(9.70)

where p and q are positive integers, and p ≥ q, since k cannot be less than zero. Then (9.69) can be
written

x
p
q − p

q
x+

p− q

p
= 0. (9.71)

11It should be emphasized again that the implication here is not that the glottal pulse is a neat triangular wave,
but only that this analytical simplification permits tractable and informative calculations. These data are included
because they are not avaliable elsewhere.
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Let y = x1/q, so that (9.71) becomes

yp − p

q
yq +

p− q

p
= 0 (9.72)

and by (9.68)

y = e−
1
q
στ1

(
cos

1

q
ωτ1 − j sin

1

q
ωτ1

)
. (9.73)

Eq. (9.72) has integer exponents, and can be solved for y. Then (9.73) can be solved for

1

q
στ1 and

1

q
ωτ1

which need only to be multiplied by p to get στ0 and ωτ0.
The preceding methods become awkward when p is larger than 6. The following is more suitable

for numerical approximation by digital computer. Equating the real and imaginary parts of (9.67)
separately to zero gives the equations

e−(k+1)στ1 cos(k + 1)ωτ1 − (k + 1)e−στ1 cosωτ1 + k = 0, (9.74)

e−(k+1)στ1 sin(k + 1)ωτ1 − (k + 1)e−στ1 sinωτ1 = 0, (9.75)

Both of these equations must be satisfied by the pair of values of στ1 and ωτ1 which represent a
zero. Eq. (9.75) can be solved for στ1

στ1 =
1

k
log

sin(k + 1)ωτ1
(k + 1) sinωτ1

. (9.76)

A series of values of ωτ1 is put into (9.76) and the στ1 computed for each. Each pair of values is
substituted into (9.74) to find those which satisfy it. The solutions can be approximated as closely
as desired by choosing suitably small increments of ωτ1, and by interpolation. A modest amount of
computation time on a digital computer produces the first half-dozen roots.

Repetition and Symmetry of the Zero Pattern

Let ω be the imaginary part of a zero that (together with its real part σ) simultaneously satisfies
(9.74) and (9.75). Also let k be related to integers p and q as in (9.70). Consider another imaginary
part ω′ such that

ω′τ1 = 2qπ + ωτ1.

Then
ω′τ0 = (k + l)ω′τl =

p

q
ω′τ1 = 2pπ + (k + 1)ωτ1 (9.77)

Both sines and cosines of ω′τ1 and (k + l)ω′τ1 are the same as those of ωτ1 and (k + 1)ωτ1. Hence,
with no change in σ, ω′ also represents a zero. The pattern of zeros between ωτ0 = 0 and ωτ0 = 2pπ
will be repeated exactly in each 2pπ range of ωτ0, to infinity, with an unchanged set of σ’s.

Again supposing ω is the imaginary part of a zero, let ω′ be a frequency such that

ω′τ1 = 2qπ − ωτ1. (9.78)

Now the cosines of ω′τ1 and (k + l)ω′τ1 are the same as those of ωτ1 and (k + 1)ωτ1 while the sines
are both of opposite sign. Both (9.74) and (9.75) will still be satisfied, and ω′ represents a zero
having the same σ as that of ω. In each 2pπ interval of ωτ0, the zeros are symmetrically spaced
about the center of the interval (an odd multiple of pπ), each symmetrical pair having equal values
of σ. There may or may not be a zero at the center of symmetry, depending upon whether p is odd
or even.
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Zeros of the Reversed Triangle

If f(t) is the triangular wave, then f(−t) is the wave reversed in time, and

L [f(t)] = F (s)

and,
L [f(−t)] = F (−s) (9.79)

Therefore, the zeros of the reversed triangle are the negatives of those for the original triangle. Since
the zeros of the original triangle occur in complex conjugate pairs, the reversed triangle has the same
zeros as the original triangle, but with the signs of the real parts reversed.

Also, the asymmetry constant for the reversed triangle, is l/k, where k is the asymmetry of the
original triangle.

Zeros of the Right Triangle

When k = 0, the triangle is right and has a transform

F (s) =
a

s2τ0

[
1 − e−sτ0(1 + sτ0)

]
(9.80)

Its zeros occur for
(1 + sτ0) = esτ0 . (9.81)

Equating real and imaginary parts,

1 + στ0 = eστ0 cosωτ0, (9.82)

ωτ0 = eστ0 sinωτ0. (9.83)

[Note the solution ω = 0, σ = 0 cannot produce a zero because of the s2 in the denominator of
(9.80).] As before, the roots can be approximated numerically with the computer. Note that with σ
and ω real, and taking only positive values of ω, sinωτ0 is positive according to (9.83). Also, since
ωτ0 is larger than sinωτ0, στ0 must be positive and the real parts of the zeros must be positive, or
they must lie in the right half s-plane. Then by (9.82) cosωτ0 is also positive which means that all
zeros must occur for ωτ0 in the first quadrant.

For k = ∞, the triangle is also right, but reversed in time. Its zeros are therefore the same as
those for k = 0, but with the signs of the real parts reversed.

Loci of the Complex Zeros

Using the foregoing relations, enough zeros have been calculated to indicate the low-frequency be-
havior of the triangular wave. A complexfrequency plot of the zero loci–normalized in terms of
ωτ0 and στ0 and with the asymmetry k as the parameter–is shown in Fig. 9.26. In this plot the
asymmetry is restricted to the range 0 ≤ k ≤ 1. For k > 1, these loci would be mirrored in the
vertical axis, that is, the signs of σ would be reversed.

For the symmetrical case (k = 1), the zeros are double and fall on the jω-axis at even multiples
of 2π; i.e., at 4π, 8π, 12π, etc. They are represented by the small concentric circles at these points.
In terms ofHz, the double zeros lie at 2/τ0, 4/τ0, etc., and the amplitude spectrum is (sin2x/x2).
As k is made smaller than unity, the double zeros part-one moving initially into the right half plane
and the other into the left. Their paths are plotted.

As the order of the zero increases, the s-plane trajectory also increases in length and complexity
for a given change in k. A given reduction in k from unity causes the first zero to move into the
right half plane where it remains. The same change in k may cause a higher order zero, say the
sixth, to make several excursions between right and left half planes. For the first, second and third
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Figure 9.26: Complex frequency loci of the zeros of a triangular pulse. The s-plane is normalized in
terms of ωτ0 and στ0. The asymmetry constant k is the parameter. (After (Dunn et al. [1962]))

Figure 9.27: Imaginary parts of the complex zeros of a triangular pulse as a function of asymmetry.
The imaginary frequency is normalized in terms of ωτ0 and the range of asymmetry is 0 ≤ k ≤ ∞.
(After (Dunn et al. [1962]))
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Figure 9.28: Amplitude spectra for two triangular pulses, k = 1 and k = 11/12. (After (Dunn et al.
[1962]))

zeros, values of k from 1.0 to 0.0 are laid off along the paths. For k = 0, the triangle is right, with
zero closing time, and all zeros have terminal positions in the right half plane. Note, too, that in
the vicinity of the jω-axis, a relatively small change in symmetry results in a relatively large change
in the damping of the zeros.

All imaginary-axis zeros are double and the degree of the zeros never exceeds two. This point
is further emphasized in a plot of the loci of the imaginary parts of the zeros as a function of the
asymmetry factor k. The pattern is shown in Fig. 9.27. It is plotted for values of k between 0.1 and
10. All points of tangency represent double jω-axis zeros. The average number of zeros is one per
every 2π interval of ωτ0. The pattern of imaginary parts is symmetrical about the k = 1 value, with
the right and left ordinates showing the zeros of the right triangles, i.e., for k = 0 and k = ∞.

To illustrate the sensitivity of the amplitude spectrum to a specific change in the asymmetry
constant, Fig. 9.28 shows amplitude spectra |F (jω)| for two values of asymmetry, namely, k = 1
and k = 11/12 (or 12/11). For k = 1 the zeros are double and are spaced atHz frequencies of 2/τ0,
4/τ0, 6/τ0, etc. The spectrum is sin2x/x2 in form. A change in k to 11/12 (or to 12/11) causes
each double zero to part, one moving into the right half plane and the other into the left. Their
jω-positions are indicated by the ticks on the diagram. The increase in real parts is such as to
provide the spectral “fill” indicated by the dotted curve. In this case a relatively small change in
symmetry results in a relatively large spectral change.

Other approximations to the Glottal Pulse

The preceding comments have exclusively concerned triangular approximations to the glottal wave.
In reality the glottal wave can take on many forms, and it is instructive to consider the zero patterns
for other simple approximations. The triangle has three points where slope is discontinuous. What,
for example, might be the effect of eliminating one or more of these discontinuities by rounding or
smoothing the wave?

There are several symmetrical geometries that might be considered realistic approximations to
glottal waves with more rounding. Three, for example, are pulses described respectively by a half
(rectified) sine wave, a half ellipse, and a raised cosine. The waveforms are plotted in the top part
of Fig. 9.29. The first two have two points of discontinuous slope; the latter has none. They can be
described temporally and spectrally as follows.

Half-sine wave

f(t) =

{
a sinβt, 0 ≤ t ≤ π

β , β = π
τ0

0, elsewhere
(9.84)
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Figure 9.29: Four symmetrical approximations to the glottal pulse and their complex zeros

F (ω) =

(
βa

β2 − ω2

)(
1 − e−jπω/β

)
,

where the zeros occur at:

ω = ± (2n+ 1)π

τ0
= ±(2n+ 1)β, n = 1, 2, . . . 12

Half-ellipse

f(t) =





4
πτ0

[
1 −

(
2t
τ0

)2
] 1

2

, |t| ≤ τ0/2

0, elsewhere

(9.85)

F (ω) =
2J1(ωτ0/2)

ωτ0/2
,

where, except for ω = 0, the zeros occur at the roots of J1(ωτ0/2).

Raised Cosine

f(t) =

{
a(1 − cosβt), 0 ≤ t ≤ 2π

β , β = 2π
τ0

= 0, elsewhere
(9.86)

F (ω) = a

[
β2

jω(β2 − ω2)

] [
1 − e−j2πω/β

]

and the zeros occur at:

ω = ±nβ = ±2nπ

τ0
, n = 2, 3, . . .

The complex zeros for these functions are plotted in the lower part of Fig. 9.29. The plots suggest
that relatively small changes in rounding and pulse shape can have appreciable influence upon the
zero pattern and upon the low-frequency behavior of the glottal spectrum. Although the zeros may
shift around, the average number of zeros in a given frequency interval (above a frequency of about
1/τ0) still remains the same for all the waves, namely one per 1/τ0Hz13.

12For all these symmetrical waves, the zeros lie on the jω-axis.
13The spectra given here are for single pulses, that is, continuous spectra given by the Laplace or Fourier transforms
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Figure 9.30: Effect of glottal zeros upon the measured spectrum of a synthetic vowel sound. (a)
τ0 = 4.0 msec. (b) τ0 = 2.5 msec, (After FLANAGAN, 1961b)

The Liljencrants-Fant Model

Asymptotic Density of Source Zeros

This average density of zeros also holds at high frequencies. Consider an arbitrary glottal pulse,
f(t), which is finite and nonzero in the interval 0 < t < τ0 and zero elsewhere. Since

∫∞

0 f(t)e−stdt
must be finite, the function can have no poles. Suppose the second derivative of f(t) is bounded
inside the same interval and that the slope is discontinuous at t = 0 and t = τ0 Except at s = 0, two
differentiations of f(t) leave the zeros the same, and produce impulses of areas f ′(0+) and f ′(τ0−)
at the leading and trailing edges of the pulse. The transform of the twice-differentiated pulse is
therefore

s2F (s) =

∫ ∞

0

f ′′(t)e−stdt = f ′(0+) + f ′(τ0−)e−sτ0 +

∫ τ0−

0+

f ′′(t)e−stdt.

Since f ′′(t) is bounded in 0 < t <∞, the integral of the third term must be of order 1/s or less. At
high frequencies it becomes small compared to the first two terms and the transform is approximately

s2F (s) ≈
[
f ′(0+) + f ′(τ0−)e−sτ0

]
,

with zeros at

s = − 1

τ0
ln

∣∣∣∣
f ′(0+)

f ′(τ0−)

∣∣∣∣± j
(2n+ 1)π

τ0
, n = 0, 1, . . . (9.87)

At low frequencies, however, the zero positions may be much more irregular, as the previous com-
putations show.

Perceptual Effects of Glottal Zeros

A relevant question concerns the effect of glottal zeros in real speech. Are they perceptually sig-
nificant? Should they be taken into account in speech analysis techniques such as spectral pattern
matching? Are they important for synthesizing natural speech? The complete answers to these
questions are not clear and comprehensive subjective testing is needed. It is clear, however, that
under particular conditions (which can sometimes be identified in sound spectrograms), a glottal
zero may fall proximate to a speech formant and may alter both the spectrum and the percept.

of the pulses. For periodically repeated pulses, the spectra are discrete harmonic lines whose amplitudes are given
by (1/T )F (mΩ0) where F (mΩ0) is the Fourier transform of a single pulse evaluated at the harmonic frequencies
mΩ0 = m2π/T , m = 1, 2, 3, . . . .
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Figure 9.31: Method for manipulating source zeros to influence vowel quality. Left column, no zeros.
Middle column, left-half plane zeros. Right column, right-half plane zeros. (After (Flanagan [1961]))

The formant nullifying potential of a glottal zero can easily be demonstrated in synthetic speech.
Fig. 9.30 shows a four-resonance vowel synthesizer circuit. The circuit is excited by an approximately
symmetrical, triangular glottal wave. The amplitude spectra actually measured with a wave analyzer
are shown for two conditions of open time of the glottal wave. The vowel is /2/. In case (A), the
open time is chosen to position the first double glottal zero near to the first formant (τ0 ≈ 4 msec).
In case (B), the first glottal zero is positioned between the first and second formants (τ0 ≈ 2.5 msec).
The relative pole-zero positions are shown for the first two formants in the s-plane diagrams. The
first formant peak is clearly suppressed and flattened in the first case14. A significant difference in
vowel quality is obvious in listening to the two conditions.

If an even more artificial situation is posed, the effect of source zeros can be made still more
dramatic. For example, suppose the synthesizer is set for the vowel /�/ which has nearly uniformly-
spaced poles. Suppose also that the excitation is brief, double pulses described by f(t) = a(t) +
b(t− δ), where a(t) and b(t) are impulses with areas a and b, respectively. The frequency transform
of f(t) is F (s) = (a+ be−sδ) which has zeros at

s =

[
−1

δ
ln
a

b
± j

(2n+ 1)π

δ

]
, n = 0, 1, . . . (9.88)

That is, this excitation produces the same zero pattern as the asymptotic high frequency spacing
given in Eq. (9.87). By suitable choice of a/b and δ, the source zeros can be placed near the
formants. Three different excitation conditions (including a single pulse) are shown in three columns
in Fig. 9.31. The input excitation and the resulting synthetic sound waveforms are also shown. In
the first case the vowel is clearly heard and identified as /�/. In the second and third cases, the vowel
quality and color are substantially altered. Cases 2 and 3 differ very little perceptually, although
the sound waveforms are greatly different. From the perceptual standpoint there appears to be a
relatively narrow vertical strip, centered about the jω-axis, in which a glottal zero has the potential
for substantially influencing the percept15. The double pulse excitation provides a simple means
for manipulating the zero pattern for subjective testing. Also, to a very crude approximation, it is
somewhat similar to the phenomenon of diplophonia (Smith [1958]).

As emphasized earlier in this section, the perceptual importance of glottal wave detail and of
source zeros has not been thoroughly established. At least one speech analysis procedure, however,

14In neither case does the measured amplitude spectrum go to zero at the frequency of the zeros. The laboratory-
generated glottal wave was not precisely symmetrical and its zeros did not lie exactly on the jω-axis.

15Symmetric glottal pulses produce zeros on the jω-axis, as described in the preceding discussion. In natural speech
this region appears to be largely avoided through vocal-cord adjustments.
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Figure 9.32: Best fitting pole-zero model for the spectrum of a single pitch period of a natural vowel
sound. (After (Mathews and Walker [1962]))
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has taken glottal zeros into account to obtain more precise spectral analyses (Mathews and Walker
[1962]). A pole-zero model, with an average zero density of one per 1/τ0Hz, is fitted in a weighted-
least-square sense to real speech spectra (see Section 4.5.1). A typical pole-zero fit to the spectrum
of a single pitch period of a natural vowels is shown in Fig. 9.32. The analysis procedure does not
discriminate between right and left half-plane zeros, and all zeros are plotted in the left half-plane.
An open time of the glottal wave of about 0.4 times the pitch period is suggested by the result.

Whether the precise positions of source zeros are perceptually significant remains a question
for additional study. Only their influence on over-all spectral balance and gross shape may be the
important factor. The vocal excitation may vary in waveform so rapidly in connected speech that
the zero pattern is not stationary long enough to influence the percept. A speaker also might adjust
his glottal wave by auditory feedback to minimize unwanted suppression of formant frequencies.

One experiment leads to the view that the glottal wave can be represented by a fixed analytical
form, and that period-to-period irregularities in the pitch function can be smoothed out(Rosenberg
[1971a]). Natural speech was analyzed pitch-synchronously. Pitch, formant frequencies and an
inverse-filter approximation to the glottal wave were determined for each period. The glottal wave
shape was “cartoonized” and characterized by fixed, smooth, analytical functions, whose glottis-
open times depended only upon pitch period16. Using the analyzed pitch and formant data, the
speech was synthesized with this artificial characterization of the glottal wave. Listening tests were
then conducted.

Subjects preferred asymmetric wave characterizations with one slope discontinuity (correspond-
ing to cord closure) and with opening and closing times equal to 40% and 16% of the pitch period.
The subjects were relatively insensitive to variations in the precise shape and open-close times. Very
small opening or closing times, and approximately equal opening and closing times were clearly
not preferred. The latter, as discussed above, leads to spectral zeros near the jill-axis. The re-
sults also demonstrated that elimination of fine temporal detail in the glottal wave shape does not
degrade speech quality. These results appear consistent with data on factors found important in
formant-synthesized speech (Holmes [1961]).

Another experiment, using the same analysis techniques, determined the amount of averaging of
pitch and formant data that is perceptually tolerable in synthetic speech (Rosenberg [1971a]). In
the vowel portions of syllables in connected speech, averaging over as much as four to eight pitch
periods did not degrade quality. This averaging completely eliminated fine detail (period-to-period
fluctuations) in the pitch and formant data. Longer averaging, which modified the underlying pitch
and formant trajectories, did definitely impair quality.

Acoustic interaction between the vocal cords and vocal tract contributes some temporal details
to the glottal volume flow waveform. This interaction also influences the temporal variation of voice
pitch. These experiments suggest that the fine structure, both in wave shape and in pitch-period
variation, is not perceptually significant, but that variations in values averaged over several pitch
periods are significant.

One point should perhaps be emphasized in considering inverse-filter estimates of glottal wave
shape. The fundamental hypothesis is that the source and system are linearly separable, and that
the acoustic properties of each can be uniquely assigned. The glottal wave is usually obtained from
the inverse filter according to some criterion such as minimum ripple. Such criteria are completely
acceptable within the frame of a particular analysis model; that is, by specifically defining non-
interactive source and system. On the other hand, if the objective is an accurate estimate of the
real glottal flow, which in fact may have substantial ripple and detail, then the inverse-filter method
can be treacherous. Properties justly belonging to the source might be assigned to the system, and
vice versa.

16Note that the spectral zeros of such waves vary in frequency position as the fundamental frequency changes. Only
for monotone pitch are the spectral zeros constant in position.
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Figure 9.33: Schematic diagram of the human vocal mechanism. (After (Flanagan et al. [1970]))

Figure 9.34: Network representation of the vocal system

Model for Voiced Excitation

Increased insight into vocal-tract excitation can be obtained from efforts to model the acoustics
of human sound generation (Flanagan and Landgraf [1968], Cherry [1957], Ishizaka and Flanagan
[1972a], Flanagan [1969]). Such efforts are also directly relevant to speech synthesis by vocal-tract
simulation.

Following the analyses of Chapter 3, voiced excitation of the vocal system can be represented as
in Fig. 9.33. The lungs are represented by the air reservoir at the left. The force of the rib-cage
muscles raises the air in the lungs to subglottal pressure Ps. This pressure expells a flow of air
with volume velocity Ug through the glottal orifice and produces a local Bernoulli pressure. The
vocal cords are represented as a symmetric mechanical oscillator, composed of mass M , spring K
and viscous damping, B. The cord oscillator is actuated by a function of the subglottal pressure
and the glottal Bernoulli pressure. The sketched waveform illustrates the pulsive form of the Ug
flow during voiced sounds. The vocal tract and nasal tract are shown as tubes whose cross-sectional
areas change with distance. The acoustic volume velocities at the mouth and nostrils are Um and
Un respectively. The sound pressure P in front of the mouth is approximately a linear superposition
of the time derivatives U̇m and U̇n.

Following the transmission-line relations derived in Chapter 3, the acoustic system of Fig. 9.33
can be approximated by the network of Fig. 9.34. The lung volume is represented by a capacity and
loss whose sizes depend upon the state of inflation. The lungs are connected to the vocal cords by
the trachea and bronchi tubes, represented in the figure as a single T-section. The impedance of the
vocal cords Zg is both time-varying and dependent upon the glottal volume velocity Ug. The vocal
tract is approximated as a cascade of T-sections in which the element impedances are determined
by the cross-sectional areas A1 . . . An. The value of N is determined by the precision to which the
area variation is to be represented. The line is terminated in a radiation load at the mouth Zm,
which is taken as the radiation impedance of a circular piston in a plane baffle. Um is the mouth
current and, for simulation of d.c. quantities, a battery Pa represents atmospheric pressure.

The nasal tract is coupled by the variable velar impedance Zv. The nasal tract is essentially
fixed in shape, and the nostril current Un flows through the radiation impedance Zn.

This formulation of the vocal system can simulate respiration as well as phonation. The glottis



314 CHAPTER 9. SPEECH SYNTHESIS

Figure 9.35: Acoustic oscillator model of the vocal cords. (After (Flanagan and Landgraf [1968]))

is opened (Zg is reduced), the rib cage muscles enlarge the lung capacitor (volume), and the atmo-
spheric pressure forces a charge of air through the tract and onto the capacitor. The glottis is then
clenched and increased in impedance; the rib cage muscles contract, raising the voltage (pressure)
across the lung capacity, and force out a flow of air. Under proper conditions, the vocal-cord oscilla-
tor is set into stable vibration, and the network is excited by periodic pulses of volume velocity. The
lung pressure, cord parameters, velar coupling, and vocal tract area all vary with time during an
utterance. A differenceequation specification of the network, with these variable coefficients, permits
calculation of the Nyquist samples of all pressures and volume velocities, including the output sound
pressure (FLANAGAN and LANDGRAF).

To simplify computation and to focus attention on the properties of the vocal-cord oscillator, the
cords can be represented by a single moveable mass as shown in Fig. 9.35 (it being understood that
the normal movement is bilaterally symmetric with the opposing cord-mass experiencing identical
displacement). The cords have thickness d and length l. Vertical displacement x, of the mass changes
the glottal area Ag, and varies the flow Ug. At rest, the glottal opening has the phonation neutral
area Ag0.

The mechanical oscillator is forced by a function of the subglottal pressure and the Bernoulli
pressure in the orifice. The Bernoulli pressure is dependent upon U2

g which, in turn, is conditioned
by the nonlinear, time-varying acoustic impedance of the glottal opening. In qualitative terms, the
operation is as follows: the cords are set to the neutral or rest area, and the subglottal pressure
applied. As the flow builds up, so does the negative Bernoulli pressure. The latter draws the mass
down to interrupt the flow. As the flow diminishes, so does the Bernoulli pressure, and the spring
acts to retrieve the mass. Under appropriate conditions, stable oscillation results.

The undamped natural frequency of the oscillator is proportional to (K/M)
1
2 . It is convenient

to define a vocal-cord tension parameter Q, which scales the natural frequency by multiplying the
stiffness and dividing the mass. This is loosely analogous to the physiological tensing of the cords,
which stiffens them and reduces their distributed mass. Since the trachea-bronchi impedance is
relatively low (compared to that of the glottal orifice), and since the large lung volume is maintained
at nearly constant pressure over short durations, a source of constant pressure can approximate the
subglottal system. For voiced, non-nasal sounds, this modification to the network is shown in
Fig. 9.36.

The acoustic impedance of the glottal orifice is characterized by two loss elements, Rv and Rk,
and an inertance, Lg

17. The values of these impedances depend upon the time-varying glottal area
Ag(t). In addition, Rk is dependent upon |Ug|. The glottal area is linked to Ps and to Ug through the
differential equation that describes the vocal-cord motion and its forcing function. The values of the
tension parameter Q and of the phonation-neutral area Ag0 are also introduced into this equation.
In other words, the dashed box of Fig. 9.36 represents iterative solutions to the differential equation
for the system described in Fig. 9.35.

This continuous system can be represented by (m + 2) differential equations, which, in turn,

17See Section 3.5.2
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Figure 9.36: Simplified network of the vocal system for voiced sounds. (After (Flanagan and Land-
graf [1968]))

Figure 9.37: Glottal area and acoustic volume velocity functions computed from the vocal-cord
model. Voicing is initiated at t = 0

can be approximated by difference equations. These difference equations are programmed for simul-
taneous solution on a digital computer. The program accepts as input data time-varying samples
of the subglottal pressure Ps, the cord tension Q, the neutral area Ag0 and the vocal tract areas
(A1 . . . Am), and it computes sampled values of all volume velocities, including the glottal flow and
mouth output. The resulting functions can be digital-to-analog converted and fed to a display scope
or loudspeaker. A typical glottal area and volume velocity, plotted by the computer for a vocal-tract
shape corresponding to the vowel /A/, is shown in Fig. 9.37. This figure shows the initial 50 msec
of voicing.

The top curve is the glottal area result, and the lower curve the glottal flow. The calculation is
for a subglottal pressure of 8 cm H20, a neutral area of 0.05 cm2 and a tension value that places the
cord oscillation in the pitch range of a man. One notices that by about the fourth period a steady
state is achieved. One sees, in this case, irregularities in the glottal flow that are caused by acoustic
interaction at the first formant frequency of the tract. One also notices that this temporal detail in
the volume flow is not noticeably reflected in the mechanical behavior, that is in the area wave.

The behavior of the vocal-cord model over a range of glottal conditions suggests that it duplicates
many of the features of human speech. Furthermore, the parameters necessary for complete synthesis
of foiced sounds are now reduced to the articulatory quantities: tract areas, A1 . . . Am; subglottal
pressure, Ps; cord tension, Q; and phonation neutral area Ag0. A spectrogram of the audible output
for a linear transition in vocal tract shape from the vowel /i/ to the vowel /A/ is shown in Fig. 9.38.
The glottal conditions in this case are constant and are: Ps = 8 cn H20, Ag0 = 0.05 cm2 and
Q = 2.0. The resulting fundamental frequency of these sounds is not only a function of the glottal
parameters, but also of the tract shape; this is, a function of the acoustic loading that the tract
presents to the vocal cords. The spectral sections indicate realistic formant and pitch values.

The single-mass model of the cords, because of its simplicity and because it produces many
features of human speech, is attractive for use in transmission-line synthesizers. It does not, however,
represent physiological details such as phase differences between the upper and lower edges of the
real cords. Also, its acoustic interaction with the vocal system is critically dependent upon the
relations assumed for intraglottal pressure distribution. (The values determined by VAN DEN
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BERG were used in the above simulations.) If a more detailed simulation of the physiology and
the acoustic interaction is needed, the acoustic oscillator concept can be extended to multiple mass-
spring representations of the cord mass and compliance (Flanagan and Landgraf [1968]). A two-
mass oscillator, stiffness coupled, has been found to represent with additional accuracy the real-
cord behavior (Ishizaka and Matsudaira [1968], Dudgeon [1970], Ishizaka and Flanagan [1972a]).
Continuing research aims to use this additional sophistication in synthesis.

9.6.2 Simulation of Unvoiced Excitation

The discussion of Chapter 3 pointed out the uncertainties in our present knowledge of unvoiced
sources of excitation. Existing measurements (Heinz [1958]) suggest that the source for voiceless
continuants (fricatives) has a relatively flat spectrum in the mid-audio frequency range, and that the
source impedance is largely resistive. In electrical synthesis of speech, these sounds are commonly
generated by having a broadband random noise source excite the simulated vocal resonances. Stop
sounds, on the other hand, are often produced by a transient excitation of the resonators, either with
electrical pulses or brief noise bursts. Voiced fricatives, since they are excited by pitch-synchronous
noise bursts in the real vocal tract, can be simulated by multiplying the simulated glottal wave with
an on-going broadband noise signal.

With slight modification, and with no additional control data, the system of Fig. 9.36 can be
arranged to include fricative and stop excitation. Fricative excitation is generated by turbulent air
flow at a constriction, and stop excitation is produced by making a complete closure, building up
pressure and abruptly releasing it. The stop release is frequently followed by a noise excitation owing
to turbulence generated at the constriction after the release.

Experimental measurements indicate that the noise sound pressure generated by turbulence is
proportional to the square of the Reynolds number for the flow (see Section 3.6). To the extent that a
one-dimensional wave treatment is valid, the noise sound pressure can be taken as proportional to the
square of the volume velocity and inversely proportional to the constriction area. Measurements also
suggest that the noise source is spatially distributed, but generally can be located at, or immediately
downstream of the closure. Its internal impedance is primarily resistive, and it excites the vocal
system as a series pressure source. Its spectrum is broadly peaked in the midaudio range and falls
off at low and high frequencies (Heinz [1958]).

The transmission-line vocal tract, including the vocal-cord model, can be modified to approximate
the nonlinearities ofturbulent flow (FLANAGAN and CHERRY). Fig. 9.39 shows a single section of
the transmission line so modified. A series noise source Pn, with internal resistance Rn is introduced
into each section of the line. The area of the section is An and the volume current circulating in
the right branch is Un. The level of the noise source and the value of its internal resistance are
functions of Un and An. The noise source is modulated in amplitude by a function proportional
to the squared Reynolds number; namely, U2

n/An. The source resistance is a flow-dependent loss
similar to the glottal resistance. To first order, it is proportional to |Un| and inversely proportional to
A2
n. The diagram indicates that these quantities are used to determine Pn and Rn. In the computer

simulation they are calculated on a sample-by-sample basis.

By continually noting the magnitudes of the volume currents in each section, and knowing the
corresponding areas, the synthesizer detects conditions suitable to turbulent flow. Noise excitation
and loss are therefore introduced automatically at any constriction. Small constrictions and low
Reynolds numbers produce inaudible noise. The square-law dependence of Pn upon Un has the
perceptual effect of a noise threshold. (A real threshold switch can be used on the noise source,
if desired.) The original control data, namely, vocal-tract shape, subglottal pressure, neutral area
and cord tension, in effect, determine the place of the constriction and the loss and noise introduced
there.

The Pn source is taken as Gaussian noise, bandpassed between 500 and 4000 Hz. Also, to ensure
stability, the volume flow Un is lowpass filtered to 500 Hz before it modulates the noise source. In
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Figure 9.38: Spectrogram of a vowel-vowel transition synthesized from the cord oscillator and vocal
tract model. The output corresponds to a linear transition from the vowel /i/ to the vowel /A/.
Amplitude sections are shown for the central portion of each vowel

Figure 9.39: Modification of network elements for simulating the properties of turbulent flow in the
vocal tract. (After (Cherry [1969])
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Figure 9.40: Waveforms of vocal functions. The functions are calculated for a voiced fricative
articulation corresponding to the constricted vowel /A/. (After (Cherry [1969]))

other words, the noise is produced by the low-frequency components of Un including the dc flow.
This noise excitation works equally well for voiced and unvoiced sounds. The operation for

voiced fricatives includes all features of the formulation, and is a good vehicle for illustration. For
example, consider what happens in a vowel when the constriction is made substantially smaller than
normal, giving rise to conditions favorable for turbulent flow. Since we have already shown results
for the vowel /A/, consider the same vowel with the constriction narrowed. (This configuration is
not proposed as a realistic English sound, but merely to illustrate the effect of tightening the vowel
constriction.) The situation is shown in Fig. 9.40. All glottal conditions are the same as before, but
the constriction is narrowed to less than half the normal vowel constriction (namely, to 0.3 cm2).

The top trace shows the glottal area, and one notices that it settles to a periodic oscillation in
about four periods. The final pitch here is somewhat less than that in Fig. 9.37 because the acoustic
load is different. The second trace from the top shows the glottal flow. The glottal flow is about
the same in peak value as before and is conditioned primarily by the glottal impedance and not by
the tract constriction. At about the third period, noise that has been produced at the constriction
by the flow buildup has propagated back to the glottis and influences the Ug flow. Note, too, that
noise influence on the mechanical oscillator motion (i.e., the area function) is negligible.

The third trace shows the output of the noise source at the constriction. This output is propor-
tional to the constriction current squared, divided by the constriction area. The fourth trace shows
the low-passed constriction current that produces the noise. One sees that the tendency is for the
noise to be generated in pitch-synchronous bursts, corresponding to the pulses of glottal volume
flow. The result is a combined excitation in which the voicing and noise signals are multiplicatively
related, as they are in the human.

The final trace is the volume flow at the mouth, and one can notice noise perturbations in the
waveform. Note, too, that the epoch of greatest formant excitation corresponds to the falling phase
of the glottal flow. A spectrogram of this audible output is compared with that for a normal /A/ in
Fig. 9.41. The normal vowel is shown on the left; the constricted vowel on the right. Note in the
constricted, noisy /A/ that: (1) the first formant has been lowered in frequency, (2) the fundamental
frequency is slightly lower, and (3) pitch-synchronous noise excitation is clearly evident, particularly
at the higher frequencies.

Voiceless sounds are produced in this cord-tract model simply by setting the neutral area of the
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Figure 9.41: Sound spectrograms of the synthesized output for a normal vowel /A/ (left) and the
constricted /A/ shown in Fig. 9.40 (right). Amplitude sections are shown for the central portion of
each vowel

Figure 9.42: Spectrograms for the voiced-voiceless cognates /Z/ and /S/. Amplitude sections are
shown for the central portion of each sound
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Figure 9.43: Sound spectrogram for the synthesized syllable /Zi/. Amplitude sections are shown for
the central portion of each sound. (After (Cherry [1969]))

vocal cords (Ag0) to a relatively large value, for example 1 cm2. As this is done, the Bernoulli
pressure in the glottal orifice diminishes, the oscillations of the vocal cords decay, and the cord dis-
placement assumes a steady large value. Control of Ag0 therefore corresponds to the voiced-voiceless
distinction in the model. Measurements on real speech suggest this kind of effect in passing from
voiced to voiceless sounds (Sawashima [1968]). Corresponding exactly to this change, spectrograms
of the audible output for the voiced-voiceless cognates /Z/ and /S/ are compared in Fig. 9.42. The
vocal-tract shape is the same for both sounds. One sees a pronounced voice bar in /Z/ (left spectro-
gram) that, of course, is absent in /S/ (right spectrogram). The eigenfrequencies of the two systems
are similar but not exactly the same because of the difference in glottal termination. Lower reso-
nances are not strongly evident in the /S/ output, because its transmission function, from point of
constriction to mouth, exhibits low-frequency zeros.

The dynamics of continuous synthesis can be illustrated by a consonant-vowel syllable. Fig. 9.43
shows the syllable /Zi/ synthesized by the system. In this case, the subglottal pressure, the phonation
neutral area and cord tension are held constant and the vocal tract area function is changed linearly
from the configuration for /Z/ to that for /i/. Heavy noise excitation is apparent during the tightly
constricted /Z/, and the noise diminishes as the articulation shifts to /i/. Also in this case, the
high front vowel /i/ is characterized by a relatively tight constriction and a small amount of noise
excitation continues in the /i/. This same effect can be seen in human speech.

This model also appears capable of treating sounds such as glottal stops and the glottal aspiration
that accompanies /h/. In the former, the tension control can cause an abrupt glottal closure and
cessation of voicing. Restoration to a normal tension and quiescent glottal opening permits voicing
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to again be initiated. In the latter, the flow velocity and area at the glottis can be monitored just
as is done along the tract. When conditions suitable for turbulence exist, a noise excitation can be
introduced at the glottal location. Note, too, that the central parameters lor the voiceless synthesis
are exactly the same as for voiced synthesis; namely, A1 . . . Am, Ps, Q and Ag0. No additional
control data are necessary. Place and intensity of voiceless excitation are deduced from these data.

Although crude in its representations of acoustic nonlinearities, this model for voiced and voice-
less excitation appears to give realistic results. It is applicable to speech synthesis by vocal tract
simulation and it provides a point of departure for further study of sound generation in the human
vocal tract.

9.7 Vocal Radiation Factors

Electrical synthesizers usually attempt to account for source characteristics, vocal transmission and
mouth-nostril radiation. In a terminal-analog synthesizer, the radiation factor is essentially the
functional relation between sound pressure at a point in space and the acoustic volume current
passing the radiating port. A transmission-line analog, on the other hand, should be terminated
in an impedance actually analogous to the acoustic load on the radiating port. For most speech
frequencies, the latter is adequately approximated as the radiation load on a piston in a large baffle
(see Section 3.3). The former, for frequencies less than about 4000Hz, is adequately approximated
by the relations for a small spherical source (see Section 3.4). That is, the pressure at a point in
front of the speaker is proportional to the time derivative of the mouth volume velocity.

To simulate the radiation function in terminal-analog synthesizers, a frequency equalization pro-
portional to frequency (i.e., a 6 dB/oct boost) can be applied to the vocal transmission function.
Similarly in the transmission-line analog, the current through the radiation load can be differentiated
to represent the output sound pressure (alternatively, the voltage directly across the radiation load
can be taken as the pressure). Because the mouth and nostrils are spatially proximate (a fraction of
a wavelength apart at the lower speech frequencies), the effect of simultaneous radiation from these
two points can be approximated by linearly superposing their volume currents or sound pressures.
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9.8 Homework

Problem 9.1

In this problem, you will explore the relationship between the LPC reflection-line synthesis filter
and the transmission-line model of the vocal tract.

Recall that the reflection-line filter iteratively removes the redundancy from the speech signal
S(z) in order to calculate the forward prediction error, E(i)(z), and the backward prediction error,
B(i)(z):

E(i)(z) = E(i−1)(z) − kiz
−1B(i−1)(z) (9.89)

B(i)(z) = z−1B(i−1)(z) − kiE
(i−1)(z) (9.90)

E(0)(z) = B(0)(z) = S(z) (9.91)

a. Suppose you are given as inputs the forward error of order (i) and the backward error of order
(i − 1), E(i)(z) and B(i−1)(z), and you are asked to synthesize E(i−1)(z) and B(i)(z). By
re-arranging the equations above, devise a filter structure to accomplish this. Draw the filter
structure.

b. Suppose you are given only the forward error of order (2), E(2)(z), and asked to synthesize
the speech signal S(z) and the backward error B(2)(z). Devise a lattice filter structure to
accomplish this.

c. Fig. 2 shows a section of a digital concatenated tube model, similar to the model shown in R&S
Fig. 3.40, but with a delay on the backward arc rather than the forward arc. Suppose that the
left-hand nodes are the (i)th order LPC prediction errors, A(z) = E(i)(z) and B(z) = B(i)(z).
Show that the right-hand nodes are C(z) = γE(i−1)(z) and D(z) = γB(i−1)(z), for some
constant γ. What is the value of γ?
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Figure 2: Section of a digital concatenated tube model.

d. Find values of the reflection coefficients rG, r1, r2, and rL such that the transfer function of
the concatenated tube model in Fig. 3.40c of your text is

Ul(z)

Ug(z)
= z−3/2G

S(z)

E(2)(z)
(9.92)

where S(z) and E(2)(z) are as defined in part (b) of this problem, and G is a constant.

e. In the concatenated tube model of part (d), what is the acoustic impedance at the lips? at the
glottis? (you may express one or both impedances in terms of the cross-sectional tube areas,
if necessary).

f. The concatenated tube elements in your model of part (d) are lossless elements, and yet the
impulse response of the system decays gradually over time, implying that at least one element
in the system must be lossy. Where are the losses occurring? In a real vocal tract, where else
would losses occur?



Chapter 10

Speech Coding

The discussions in Chapters 3 and 6 considered the basic physics of the mechanisms for speech
production and hearing. The topics of Chapters 4, 9, 7, and 8 set forward certain principles relating
to the analysis, artificial generation, and perception of speech. The present and final chapter proposes
to indicate how the foregoing results, in combination, may be applied to the efficient transmission
of speech.

Efficient communication suggests transmission of the minimum information necessary to specify
a speech event and to evoke a desired response. Implicit is the notion that the message ensemble
contains only the sounds of human speech. No other signals are relevant. The basic problem is
to design a system so that it transmits with maximum efficiency only the perceptually significant
information of speech.

One approach to the goal is to determine the physical characteristics of speech production,
perception and language and to incorporate these characteristics into the transmission system. As
such, they represent information that need not be transmitted. Ideally, the characteristics are
described by a few independent parameters, and these parameters serve as the information-bearing
signals. Transmission systems in which a conscious effort is made to exploit these factors are generally
referred to as analysis-synthesis systems.

In the ideal analysis-synthesis system, the analysis and synthesis procedures are presumably
accurate models of human speech production. To the extent this is true, the resulting signal is
coded and synthesized in a distortionless form. Additional economies in transmission can accrue
from perceptual and linguistic factors. The pure analysis-synthesis system therefore has the great-
est potential for bandsaving, and its analysis and synthesis processings typically require complex
operations.

In contrast, other transmission systems aim for modest or little band savings, with terminal ap-
paratus which is simple and inexpensive. Such systems typically exploit fewer properties of speech,
hearing and language than do the pure analysis-synthesis systems. Nevertheless, they are of consid-
erable interest and importance, and their potential applications range from mobile radio and scatter
links to various commercial wire circuits. Although emphasis in this chapter is given to analysis-
synthesis techniques, systems of the latter category are also brought in for discussion, especially in
the context of digital coding and transmission.

The results of Chapter 3 and 6 showed that speech signals can be described in terms of the
properties of the signal-producing mechanism, that is, the vocal tract and its excitation. This
characterization suggests important possibilities for efficient encoding of speech. In fact, it forms
the common basis for a large class of bandwidth-compression systems. The idea is schemetized in
Fig. 10.1. Three operations are involved. First, the automatic analysis of the signal into quantities
that describe the vocal excitation and mode structure; second, the multiplexing and transmission of
these parameters; and finally, the reconstruction of the original signal from them.

323
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Figure 10.1: Source-system representation of speech production

In a parallel manner, the discussion in Chapter 6 suggested that the ear performs a kind of
short-time frequency analysis at its periphery. The analysis includes a mechanical filtering, the
equivalent of a rectification, and a neural encoding which–apparently at an early stage–involves
an integration. In such a process, certain details of the original speech wave are lost and are not
perceptually significant. Presumably a transmission system might also discard this information
without noticeably influencing the preceived signal. It might thereby effect an economy in requisite
channel capacity.

In a similar fashion, other aspects of the signal–for example, the sequential constraints on the
sounds of a given language, or the natural pauses in connected speech–might be used to advantage. In
short, practically all aspects of speech production, hearing and language have relevance to analysis-
synthesis telephony. The following sections propose to discuss complete analysis-synthesis systems,
and a number of these factors will be put in evidence.

10.1 Assessment of Speech Perceptual Quality

Deciding on an appropriate measurement of quality is one of the most difficult aspects of speech coder
design, and is an area of current research and standardization. Early military speech coders were
judged according to only one criterion: intelligibility. With the advent of consumer-grade speech
coders, intelligibility is no longer a sufficient condition for speech coder acceptability. Consumers
want speech that sounds “natural.” A large number of subjective and objective measures have
been developed to quantify “naturalness,” but it must be stressed that any scalar measurement
of “naturalness” is an oversimplification. “Naturalness” is a multivariate quantity, including such
factors as the metallic vs. breathy quality of speech, the presence of noise, the color of the noise
(narrowband noise tends to be more annoying than wideband noise, but the parameters which predict
“annoyance”are not well understood), the presence of unnatural spectral envelope modulations (e.g.
flutter noise), the absence of natural spectral envelope modulations, etc.

10.1.1 Psychophysical Measures of Speech Quality (Subjective Tests)

The final judgment of speech coder quality is the judgment made by human listeners: if consumers
(and reviewers) like the way the product sounds, then the speech coder is a success. The reaction
of consumers can often be predicted to a certain extent by evaluating the reactions of experimen-
tal listeners in a controlled psychophysical testing paradigm. Psychophysical tests (often called
“subjective tests”) vary depending on the quantity being evaluated, and the structure of the test.
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Intelligibility

Speech coder intelligibility is evaluated by coding a number of prepared words, asking listeners
to write down the words they hear, and calculating the percentage of correct transcriptions (an
adjustment for guessing may be subtracted from the score). The Diagnostic Rhyme Test (DRT)
and Diagnostic Alliteration Test (DALT) are intelligibility tests which use a controlled vocabulary
to test for specific types of intelligibility loss (Voiers [1983, 1991]). Each test consists of 96 pairs of
confusable words spoken in isolation. The words in a pair differ in only one distinctive feature, where
the distinctive feature dimensions proposed by Voiers are voicing, nasality, sustention, sibilation,
graveness, and compactness. In the DRT, the words in a pair differ in only one distinctive feature
of the initial consonant, e.g. “jest” and “guest” differ in the sibilation of the initial consonant. In
the DALT, words differ in the final consonant, e.g. “oaf” and “oath” differ in the graveness of the
final consonant. Listeners hear one of the words in each pair, and are asked to select the word from
two written alternatives. Professional testing firms employ trained listeners who are familiar with
the speakers and speech tokens in the database, in order to minimize test-retest variability

Intelligibility scores quoted in the speech coding literature often refer to the composite results
of a DRT. In a comparison of two Federal standard coders, the LPC 10e algorithm resulted in 90%
intelligibility, while the FS-1016 CELP algorithm had 91% intelligibility (Kohler [1997]). An evalu-
ation of waveform interpolative (WI) coding published DRT scores of 87.2% for the WI algorithm,
and 87.7% for FS-1016 (Kleijn and Haagen [1995]).

Numerical Measures of Perceptual Quality

Perhaps the most commonly used speech quality measure is the Mean Opinion Score (MOS). A Mean
Opinion Score is computed by coding a set of spoken phrases using a variety of coders, presenting all
of the coded speech together with undegraded speech in random order, asking listeners to rate the
quality of each phrase on a numerical scale, and then averaging the numerical ratings of all phrases
coded by a particular coder. The five-point numerical scale is associated with a standard set of
descriptive terms: 5=Excellent, 4=Good, 3=Fair, 2=Poor, and 1=Bad. A rating of 4 is supposed to
correspond to standard toll-quality speech, quantized at 64 kbps using ITU standard G.711 (ITU-T
[1993a]).

Mean opinion scores vary considerably depending on background noise conditions: for example,
CVSD performs significantly worse than LPC-based methods in quiet recording conditions, but
significantly better under extreme noise conditions (Tardelli and Kreamer [1996]). Gender of the
speaker may also affect the relative ranking of coders (Tardelli and Kreamer [1996]). Expert listeners
tend to give higher rankings to speech coders with which they are familiar, even when they are not
consciously aware of the order in which coders are presented (Tardelli and Kreamer [1996]). Factors
such as language and location of the testing laboratory may shift the scores of all coders up or
down, but tend not to change the rank order of individual coders (ISO/IEC [1998e]). For all of
these reasons, a serious MOS test must evaluate several reference coders in parallel with the coder
of interest, and under identical test conditions. If an MOS test is performed carefully, inter-coder
differences of approximately 0.15 opinion points may be considered significant. Figure 10.2 is a plot
of MOS as a function of bit rate for coders evaluated under quiet listening conditions in five published
studies (one study included separately tabulated data from two different testing sites (Tardelli and
Kreamer [1996])).

The diagnostic acceptability measure (DAM) is an attempt to control some of the factors which
lead to variability in published MOS scores (Voiers [1977]). The DAM employs trained listeners,
who rate the quality of standardized test phrases on ten independent perceptual scales, including
six scales which rate the speech itself (fluttering, thin, rasping, muffled, interrupted, nasal), and
four scales which rate the background noise (hissing, buzzing, babbling, rumbling). Each of these
is a 100-point scale, with a range of approximately 30 points between the LPC-10e algorithm (50
points) and clean speech (80 points) (Tardelli and Kreamer [1996]). Scores on the various perceptual
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Figure 10.2: Mean opinion scores from five published studies in quiet recording conditions:
JARVINEN (Jarvinen et al. [1997]), KOHLER (Kohler [1997]), MPEG (ISO/IEC [1998e]),
YELDENER (Yeldener [1999]), and the COMSAT and MPC sites from Tardelli et al. (Tardelli
and Kreamer [1996]). (A) Unmodified speech, (B) ITU G.722 Subband ADPCM, (C) ITU G.726
ADPCM (D) ISO MPEG-II Layer 3 subband audio coder, (E) DDVPC CVSD, (F) GSM Full-rate
RPE-LTP, (G) GSM EFR ACELP, (H) ITU G.729 ACELP, (I) TIA IS-54 VSELP, (J) ITU G.723.1
MPLPC, (K) DDVPC FS-1016 CELP, (L) sinusoidal transform coding, (M) ISO MPEG-IV HVXC,
(N) INMARSAT Mini-M AMBE, (O) DDVPC FS-1015 LPC-10e, (P) DDVPC MELP.

scales are combined into a composite quality rating. DAM scores are useful for pointing out specific
defects in a speech coding algorithm. If the only desired test outcome is a relative quality ranking
of multiple coders, a carefully controlled MOS test in which all coders of interest are tested under
the same conditions may be as reliable as DAM testing (Tardelli and Kreamer [1996]).

Comparative Measures of Perceptual Quality

It is sometimes difficult to evaluate the statistical significance of a reported MOS difference between
two coders. A more powerful statistical test can be applied if coders are evaluated in explicit A/B
comparisons. In a comparative test, a listener hears the same phrase coded by two different coders,
and chooses the one which sounds better. The result of a comparative test is an apparent preference
score, and an estimate of the significance of the observed preference: for example, in a recent study,
WI coding at 4.0 kbps was preferred to 4 kbps HVXC 63.7% of the time, to 5.3 kbps G.723.1
57.5% of the time (statistically significant differences), and to 6.3 kbps G.723.1 53.9% of the time
(not statistically significant) (Gottesman and Gersho [1999]). It should be noted that “statistical
significance” in such a test refers only to the probability that the same listeners listening to the same
waveforms will show the same preference in a future test.

10.1.2 Objective Measures: Broadband

Psychophysical testing is often inconvenient; it is not possible to run psychophysical tests to evaluate
every proposed adjustment to a speech coder. For this reason, a number of algorithms have been
proposed which approximate, to a greater or lesser extent, the results of psychophysical testing.
The most universal of these measures, though shunned in the speech coding literature, is signal-
to-noise ratio (SNR). An easily computed measure with much better perceptual relevance is the
segmental SNR (SEGSNR); because of its simplicity, SEGSNR is one of the most widely cited
objective measures in the speech coding literature.

Psychological experiments suggest that the ability of listeners to detect the noise in a signal is
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well predicted by their ability to detect a change in the loudness of the signal. Specifically, listeners
can detect the difference between signals x[n] and x̂[n] if there is any period of N samples such that

∆L <

∣∣∣∣∣10 log10

∑N−1
n=0 x̂

2[n]
∑N−1

n=0 x
2[n]

∣∣∣∣∣ (10.1)

That is, listeners detect a difference if the difference in signal power, over any N -sample period,
is at least ∆L dB (in fact, equation 10.1 is done separately in each frequency band, but we will
ignore frequency dependence for now). Experiments show that there is a signal-dependent tradeoff
between the threshold ∆L and the length of the integrating window N . For transient and noisy
sounds, N ≈ 5 − 10ms, and ∆L ≈ 1 dB (indeed, the reason that acousticians measure in decibels
instead of Bels, centibels, or millibels, is that 1dB is a good approximation to ∆L). For longer,
tonal, periodic sounds, N ≈ 20 − 50ms, and ∆L ≈ 0.1dB (one centibel).

Psychologists model signal comparisons using equation 10.1; audio engineers model signal com-
parisons using SNR. Converting from equation 10.1 to an equation in terms of SNR requires some
approximations. First, assume that x[n] and e[n] are uncorrelated, so that

10 log10

∑N−1
n=0 x̂

2[n]
∑N−1

n=0 x
2[n]

≈ 10 log10

(
1 +

∑N−1
n=0 e

2[n]
∑N−1

n=0 x
2[n]

)
(10.2)

Second, use the Taylor expansion of log(1 + z) to obtain

10 log10
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2[n]
∑N−1

n=0 x
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≈ 10
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(10.3)

So, from equation 10.1, noise is audible if

log(10)∆L

10
<

∑N−1
n=0 e

2[n]
∑N−1
n=0 x

2[n]
(10.4)

Taking the logarithm of both sides, we find that noise is audible if

dB SNRN−1
0 < 10 − 10 log10(log(10)∆L) (10.5)

For transient or noise-like signals, we find that noise is audible when the SNR in any given 5-10ms
frame (within any frequency band) is less than about 5.5dB. For tonal signals, we find that noise is
audible when the SNR in any given 20-30ms frame is less than 15.5dB.

The signal to noise ratio of a frame of N speech samples starting at sample number n may be
defined as

SNR(n) =

∑n+N−1
m=n s2(m)

∑n+N−1
m=n e2(m)

(10.6)

High-energy signal components can mask quantization error which is synchronous with the signal
component, or separated by at most a few tens of milliseconds. Over longer periods of time, listeners
accumulate a general perception of quantization noise, which can be modeled as the average log
segmental SNR:

SEGSNR =
1

K

K−1∑

k=0

10 log10 SNR(kN) (10.7)
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10.1.3 Objective Measures: Critical Band

High-amplitude signal components tend to mask quantization error components at nearby frequen-
cies and times. A high-amplitude spectral peak in the speech signal is able to mask quantization
error components at the same frequency, at higher frequencies, and to a much lesser extent, at lower
frequencies. Given a short-time speech spectrum S(ejω), it is possible to compute a short-time
“masking spectrum” M(ejω) which describes the threshold energy at frequency ω below which noise
components are inaudible. The perceptual salience of a noise signal e(n) may be estimated by fil-
tering the noise signal into K different subband signals ek(n), and computing the ratio between the
noise energy and the masking threshold in each subband:

NMR(n, k) =

∑n+N−1
m=n e2k(m)∫ ωk+1

ωk
|M(ejω)|2dω (10.8)

where ωk is the lower edge of band k, and ωk+1 is the upper band edge. The band edges must be
close enough together that all of the signal components in band k are effective in masking the signal
ek(n). The requirement of effective masking is met if each band is exactly one Bark in width, where
the Bark frequency scale is described in many references (Rabiner and Juang [1993], Moore [1997]).

Fletcher has shown that the perceived loudness of a signal may be approximated by adding
the cube roots of the signal power in each one-Bark subband, after properly accounting for mask-
ing effects (Fletcher [1953]). The total loudness of a quantization noise signal may therefore be
approximated as

NMR(n) =

K−1∑

k=0

( ∑n+N−1
m=n e2k[m]∫ ωk+1

ωk
|M(ejω)|2dω

)1/3

(10.9)

10.1.4 Automatic Prediction of Subjective Measures

The ITU Perceptual Speech Quality Measure (PSQM) computes the perceptual quality of a speech
signal by filtering the input and quantized signals using a Bark-scale filterbank, nonlinearly com-
pressing the amplitudes in each band, and then computing an average sub-band signal to noise
ratio (ITU-T [1998b]). The development of algorithms which accurately predict the results of MOS
or comparative testing is an area of active current research, and a number of improvements, al-
ternatives, and/or extensions to the PSQM measure have been proposed. An algorithm which has
been the focus of considerable research activity is the Bark Spectral Distortion measure (Wang et al.
[1992], Yang et al. [1998], Yang and Yantorno [1999], Novorita [1999]). The ITU has also proposed
an extension of the PSQM standard called Perceptual Evaluation of Speech Quality (PESQ) (Rix
et al. [2000]), which will be released as ITU standard P.862.

10.1.5 Computationally Efficient Measures

Not all types of distortion are equally audible. Many types of speech coders, including LPC-AS
coders, use simple models of human perception in order to minimize the audibility of different types
of distortion. In LPC-AS coding, two types of perceptual weighting are commonly used. The first
type, perceptual weighting of the residual quantization error, is used during the LPC excitation
search in order to choose the excitation vector with the least audible quantization error. The
second type, adaptive post-filtering, is used to reduce the perceptual importance of any remaining
quantization error.
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Perceptual Weighting of the Residual Quantization Error

The excitation in an LPC-AS coder is chosen to minimize a perceptually weighted error metric.
Usually, the error metric is a function of the time domain waveform error signal

e(n) = s(n) − ŝ(n) (10.10)

Early LPC-AS coders minimized the mean-squared error

∑

n

e2(n) =
1

2π

∫ π

−π

|E(ω)|2dω (10.11)

It turns out that the MSE is minimized if the error spectrum, E(ω), is white—that is, if the error
signal e(n) is an uncorrelated random noise signal, as shown in Figure 10.24.

Not all noises are equally audible. In particular, noise components near peaks of the speech
spectrum are hidden by a “masking spectrum” M(ω), so that a shaped noise spectrum at lower
SNR may be less audible than a white noise spectrum at higher SNR. The audibility of noise may
be estimated using a noise-to-masker ratio |Ew|2:

|Ew|2 =
1

2π

∫ π

−π

|E(ω)|2
|M(ω)|2 dω (10.12)

The masking spectrum M(ω) has peaks and valleys at the same frequencies as the speech spectrum,
but the difference in amplitude between peaks and valleys is somewhat smaller than that of the
speech spectrum. A variety of algorithms exist for estimating the masking spectrum, ranging from
extremely simple to extremely complex (ITU-T [1998b]). One of the simplest model masking spectra
which has the properties just described is as follows (Atal and Remde [1982]):

M(z) =
|A(z/γ2)|
|A(z/γ1)|

, 0 < γ2 < γ1 ≤ 1 (10.13)

where 1/A(z) is an LPC model of the speech spectrum. The poles and zeros of M(z) are at the
same frequencies as the poles of 1/A(z), but have broader bandwidths. Since the zeros of M(z)
have broader bandwidth than its poles, M(z) has peaks where 1/A(z) has peaks, but the difference
between peak and valley amplitudes is somewhat reduced.

The noise-to-masker ratio may be efficiently computed by filtering the speech signal using a
perceptual weighting filter W (z) = 1/M(z). The perceptually weighted input speech signal is

Sw(z) = W (z)S(z) (10.14)

Likewise, for any particular candidate excitation signal, the perceptually weighted output speech
signal is

Ŝw(z) = W (z)Ŝ(z) (10.15)

Given sw(n) and ŝw(n), the noise-to-masker ratio may be computed as follows:

|Ew|2 =
1

2π

∫ π

−π

|Sw(ω) − Ŝw(ω)|2dω =
∑

n

(s2w(n) − ŝ2w(n)) (10.16)

Adaptive Post-Filtering

Despite the use of perceptually weighted error minimization, the synthesized speech coming from an
LPC-AS coder may contain audible quantization noise. In order to minimize the perceptual effects of
this noise, the last step in the decoding process is often a set of adaptive post-filters (Ramamoorthy
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and Jayant [1984], Chen and Gersho [1995]). Adaptive post-filtering improves the perceptual quality
of noisy speech by giving a small extra emphasis to features of the spectrum which are important
for human-to-human communication, including the pitch periodicity (if any) and the peaks in the
spectral envelope.

A pitch post-filter (or long-term predictive post-filter) enhances the periodicity of voiced speech
by applying either an FIR or IIR comb filter to the output. The time delay and gain of the comb filter
may be set equal to the transmitted pitch lag and gain, or they may be recalculated at the decoder
using the reconstructed signal ŝ(n). The pitch post-filter is only applied if the proposed comb filter
gain is above a threshold; if the comb filter gain is below threshold, the speech is considered unvoiced,
and no pitch post-filter is used. For improved perceptual quality, the LPC excitation signal may
be interpolated to a higher sampling rate in order to allow the use of fractional pitch periods; for
example, the post-filter in the ITU G.729 coder uses pitch periods quantized to 1/8 sample.

A short-term predictive post-filter enhances peaks in the spectral envelope. The form of the
short-term post-filter is similar to the form of the masking function M(z) introduced in the previous
Section: the filter has peaks at the same frequencies as 1/A(z), but the peak-to-valley ration is less
than that of A(z).

Post-filtering may change the gain and the average spectral tilt of ŝ(n). In order to correct
these problems, systems which employ post-filtering may pass the final signal through a one-tap
FIR pre-emphasis filter, and then modify its gain, prior to sending the reconstructed signal to an
A/D converter.

10.2 Quantization

A memoryless quantizer is an audio decoder that converts each speech sample x[n] into a code word
q[n], and hence into one synthesized audio sample x̂[n], using a time-invariant mapping called a
“codebook.” Since the mapping is time-invariant, we can drop the n dependence, and just write
that

q → x̂q, 0 ≤ q ≤ Q− 1 (10.17)

In order to use a memoryless dequantizer, it is necessary that both the quantizer and dequantizer
are using the same codebook: that is, both quantizer and dequantizer know the values x̂0, . . . , x̂Q−1.
If both quantizer and dequantizer know the codebook values, then the minimum mean-squared-error
quantization rule is given by

x→ q such that (x− x̂q)
2 = min

0≤i≤Q−1
(x− x̂i)

2 (10.18)

The quantization process given in equation 10.18 is sometimes referred to as “rounding x[n] to the
nearest reconstruction level.” In the case of uniform quantization, equation 10.18 is actually most
easily implemented using an integer rounding function.

Equation 10.18 can also be written in terms of a set of “thresholds” T1, . . . , TQ−1:

q →






0 x < T1

q Tq ≤ x < Tq+1, 1 ≤ q ≤ Q− 1
Q− 1 TQ−1 ≤ x

(10.19)

where, in order to minimize mean-squared synthesis error, the thresholds must be set so that

Tq =
1

2
(x̂q−1 + x̂q) , 1 ≤ q ≤ Q− 1 (10.20)

In order to uniquely transmit the integers q[n], it is necessary to transmit at least B bits per
sample, where

B = ceil log2Q (10.21)
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Figure 10.3: Memoryless quantization encodes an audio signal by rounding it to the nearest of a set
of fixed quantization levels.

where the notation means that B is the smallest integer greater than or equal to log2Q. Given B
bits per sample, there are Q = 2B codewords available to be used. It might seem that the use of any
value of Q less than 2B is a waste of codewords, but almost every existing audio coding standard
uses Q = 2B − 1, for reasons we will discuss later. Note that a data rate of B bits per sample
corresponds to a data rate of BFs bits/second, where Fs is the sampling frequency.

10.2.1 Uniform Quantization

Uniform quantization (also called “linear quantization”) is memoryless quantization defined by the
following set of codebook values:

x̂q = x̂0 + q∆ (10.22)

= Tq +
∆

2
(10.23)

= Tq+1 −
∆

2
(10.24)

where

∆ =
TQ − T0

Q
(10.25)

Notice that equation 10.25 defines two additional thresholds, T0 and TQ, that bound the range of
effective quantization. T0 and TQ are not used for quantization: it is still true that q = 0 whenever
x < T1, as shown in equation 10.19. Instead, T0 and TQ are abstract codebook definition parameters
that are only really useful because of their definition in equation 10.25.

Uniform quantization is the most common type of quantization for two reasons. First, it is not
necessary to explicitly store the codebook at both coder and decoder. Instead it is sufficient to
store any three of the following four quantities: T0, TQ, ∆, Q. Indeed, it is not even necessary to
explicitly find the minimum-MSE reconstruction level: instead, one simply rounds off x[n] to the
nearest reconstruction level:

q[n] = min

(
Q− 1,max

(
0, floor

(
x[n] − T0

∆

)))
(10.26)

where floor(x) truncates x to the greatest integer less than or equal to x.
Second, the signal to noise ratio of a uniform quantizer can be computed from theory, and the

theoretical SNR is very accurate. There are two types of errors to be concerned about. “Clipping
error” occurs when x < T0 or x > TQ. Clipping errors can be very large, so T0 and TQ should
be chosen such that the probability P (x < T0 or x > TQ) is as small as possible; usually, this
means choosing the range TQ − T0 to be as large as possible. “Quantization error” occurs when
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T0 ≤ x ≤ TQ. Quantization error is proportional to ∆, which is proportional to TQ − T0, and
therefore the range TQ−T0 should be chosen to be as small as possible. Obviously, the objectives of
minimum clipping and minimum quantization error are in conflict. Balancing these two conflicting
goals requires a detailed analysis of the probability density of x. The analysis below will set up the
problem formulation, and then suggest a standard solution.

The total probability of clipping may be computed by integrating the probability density function
of x over the clipping regions:

Pclip =

∫ T0

−∞

p(x)dx +

∫ ∞

TQ

p(x)dx (10.27)

Pclip can be minimized by choosing T0 and TQ so that they cover the range of values for which p(x)
is largest.

Given that clipping does not occur, the probability density function of the error is obtained from
p(x) by adding up the Q different ways in which an error can occur:

p(e|not clipped) =

Q−1∑

q=0

p

(
x− x̂q

∣∣∣∣ |x− x̂q| <
∆

2

)
(10.28)

In most audio applications, p(x) is symmetric with respect to its mean, and therefore when the
various overlapping PDFs in equation 10.28 are added together, the result is uniformly distributed
between ∆/2 and −∆/2:

p(e|not clipped) =

{
1
∆ −∆

2 ≤ e ≤ ∆
2

0 otherwise
(10.29)

and the error power is given by

E[e2|not clipped] =
∆2

12
(10.30)

If T0 and TQ are set so that Pclip ≈ 0, then the signal to noise ratio of the quantizer is

dB SNR = 10 log10

12σ2
x

∆2
if Pclip ≈ 0 (10.31)

where σ2
x is the signal power. It is often useful to write the SNR in terms of the number of quanti-

zation levels. The result is:

dB SNR = 10 log10

12σ2
xQ

2

(TQ − T0)2
if Pclip ≈ 0 (10.32)

Remember that the threshold levels T0 and TQ must be chosen so that Pclip is as small as possible.
Often, T0 and TQ are chosen so that TQ − T0 is some multiple of the signal standard deviation σx.
Define the “safety ratio” to be

R =
TQ − T0

σx
√

12
(10.33)

then the SNR is given by

dB SNR = 10 log10

Q2

R2
if Pclip ≈ 0 (10.34)

It is also interesting to compute the power spectrum of the error. Consider first the two extreme
cases: Q = 0, and Q very large. When Q = 0, there are zero bits transmitted, so the synthesized
signal is x̂[n] = 0 always. The error is therefore e[n] = −x[n], and the power spectrum is Re(ω) =
Rx(ω). At the other extreme, when Q is large enough, x̂[n] 6= x̂[n− 1] for all n. Unless there is an
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unusual relationship between p(x) and the reconstruction levels x̂q, it will generally be the case that
the errors x̂[n] − x[n] and x̂[n− 1] − x[n− 1] are uncorrelated random variables, thus

re[τ ] = σ2
eδ[τ ] if Q large enough (10.35)

Re(ω) = σ2
e (10.36)

where δ[τ ] is the Dirac delta function. In between these two extremes, for values of Q between about
2 ≤ Q ≤ 16, the power spectrum of Re(ω) is gradually smoothed: detailed spectral features (e.g.,
harmonics of a periodic signal) disappear even at low values of Q, while broad peaks and valleys in
the spectrum disappear if Q is larger.

10.2.2 Zero-Mean Uniform Quantization

Audio signals x[n] are distributed symmetrically around x[n] = 0, so almost all audio coders choose
reconstruction levels that are also symmetric with respect to 0:

T0 = −TQ (10.37)

x̂0 = −x̂Q−1 (10.38)

With this choice, the “safety ratio” is defined to be

R =
TQ

σx
√

3
(10.39)

The safety ratio, in this case, has a very simple interpretation. Since x is zero-mean, the probability
of clipping is just

Pclip = Prob(|x| >
√

3Rσx) (10.40)

If x is a Gaussian random variable, for example, then given R, it is possible to look up the probability
of clipping in the Gaussian cumulative density tables that one can find in the back of any statistics
textbook. Recall that the SNR is

dB SNR = 10 log10

Q2

R2
if Pclip ≈ 0 (10.41)

Decreasing R decreases the no-clipping SNR, but increases the probability of clipping. The trade-
off between clipping and SNR is different for different coders; typical values used in audio coder
range from R ≈ 1 (Pclip ≈ 0.05, dB SNR≈ 10 log10Q

2) to R ≈
√

3 (Pclip ≈ 0.001, dB SNR
≈ 10 log10Q

2/3).
Uniform quantizers used for audio coding always use one of two possible codebooks. The first

codebook, called a “mid-riser” quantizer, sets Q equal to a power of two (Q = 2B, where B is the
number of bits per sample). The result of this choice is that zero is a threshold value: TQ/2 = 0.
The smallest available reconstruction levels are x̂Q/2−1 = −∆/2 and x̂Q/2 = ∆/2. During silent
portions of the audio signal, when x[n] ≈ 0, the reconstructed signal can not be set exactly equal to
zero; instead, it randomly switches back and forth between ∆/2 and −∆/2. Since there is nothing
else happening in the signal, this low-level random switching is often audible.

In order to avoid low-level random switching, most audio coders use a “mid-tread” quantizer,
defined by an odd number of quantization levels Q = 2B − 1. The result of this choice is that zero
is a quantization level (x̂(Q−1)/2 = 0), and therefore silent portions of the signal can be exactly
reconstructed as x̂[n] = 0. The disadvantage of this choice is that, in a sense, one reconstruction
level is “wasted.” In particular, a one-bit mid-tread quantizer is absolutely useless: the number of
reconstruction levels is 21 − 1 = 1, and the single available reconstruction level is x̂ = 0.

The signal to noise ratio of a mid-riser quantizer is

dB SNR = 10 log10

(22B)

R2
(10.42)
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Figure 10.4: µ-law companding function, µ=0,1,2,4,8,. . . ,256.

Since 10 log10 4 ≈ 6, the SNR of a mid-riser quantizer is often written as

dB SNR = 6B − 20 log10R (10.43)

The signal to noise ratio of a mid-tread quantizer is

dB SNR = 10 log10

(2B − 1)2

R2
≤ 6B − 20 log10R (10.44)

Many audio engineers use the approximation that dB SNR≈ 6B for fast mental computations.
Equation 10.43 demonstrates that dB SNR= 6B exactly when a mid-riser quantizer is designed with
a safety ratio of R = 1. Thus, for example, an 8-bit uniform quantizer has 48dB SNR; a 16-bit
uniform quantizer has 96dB SNR.

10.2.3 Companded PCM

Companded PCM is the name given to coders in which the reconstruction levels ŝk are not uniformly
distributed. Such coders may be modeled using a compressive nonlinearity, followed by uniform
PCM, followed by an expansive nonlinearity:

s(n) → Compress → t(n) → Uniform PCM → t̂(n) → Expand → ŝ(n) (10.45)

It can be shown that, if small values of s(n) are more likely than large values, expected error
power is minimized by a companding function which results in a higher density of reconstruction
levels x̂k at low signal levels than at high signal levels (Rabiner and Schafer [1978]). A typical
example is the µ-law companding function ((ITU-T [1993b]), Figure 10.4), which is given by

t(n) = Smax
log (1 + µ|s(n)/Smax|)

log(1 + µ)
sign(s(n)) (10.46)

where µ is typically between 0 and 256 and determines the amount of non-linear compression applied.

10.2.4 Optimum Quantization

10.2.5 Vector Quantization

Equation 10.43 demonstrates that the SNR of an 8-bit linear quantizer with a safety ratio of R = 1
is 48dB. Most non-professional listeners, listening over headphones, can easily hear the quantization
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noise in an 8-bit quantized musical signal. Equation 10.5 demonstrates, on the other hand, that
quantization noise is only audible if the SNR in any given frequency band, in any given 20ms frame,
is less than 15.5dB. We can infer, therefore, that the only reason that noise is audible in a 48dB
SNR signal is that the SNR is not always 48dB. Specifically, the quantization noise always has the
same noise power (∆2/12), but the signal energy changes dramatically from one frame to the next,
and from one frequency band to the next.

Suppose that σ2
x is the long-term average signal power, but the the signal power in any particular

N-sample frame is

σ2
x(f) =

1

N

fS+N−1∑

n=fS

(x[n] − E[x])2 (10.47)

then the SNR in frame number f is

dB SNR(f) = 6B − 20 log10R+ 10 log10

σ2
x(f)

σ2
x

(10.48)

In audio signals, it is quite common for the signal power σ2
x(f) to vary by 60dB from frame to frame;

thus, even if the long-term SNR is 48dB, the SNR in any given frame may be as low as -12dB.
A remarkably simple, relatively effective perceptual audio coder may be created by separately

coding the maximum amplitude TQ(f) in any given 10ms “block,” then using a 6-bit uniform quan-
tizer (6 bits means approximately 36dB SNR) to code the block of normalized samples yf [n]:

TQ(f) = max
fN≤n≤fN+N−1

|x[n]| (10.49)

yf [n] =
1

TQ(f)
x[n] fN ≤ n ≤ fN +N − 1 (10.50)

yf [n] is usually quantized with uniform quantization on a linear scale, but equation 10.48 suggests
that TQ(f) should be quantized on a logarithmic scale, not a linear scale. Log quantization is achieved
by simply using a uniform quantizer to quantize logTQ(f), with quantization levels spanning the
range between logTmin and logTmax. The values of Tmin and Tmax vary depending on application.
As a common example, consider what happens if x[n] are 16-bit signed integer samples; then the
lowest meaningful value of |x[n]| is Tmin = 1, and the highest meaningful value is Tmax = 215.
A simple four-bit quantization of logTQ(f) is achieved by transmitting the position of the highest
nonzero bit in the binary integer representation of TQ(f).

The total bit rate of a block uniform quantizer is

bits per second = BFs +
BaFs
N

(10.51)

where B is the number of bits per sample of yf [n], Ba is the number of bits per amplitude parameter
logTQ(f), Fs is the sample rate, and Fs/N is the frame rate. The total number of bits/sample is
B +Ba/N .

Variation of SNR from one frame to the next is measured explicitly by the SEGSNR (segmental
SNR). A B-bit uniform quantizer may boast a long-term SNR of 6B, but SEGSNR is usually much
lower. Block quantization explicitly controls SEGSNR by controlling the SNR in each frame, thus
long-term SNR and SEGSNR are both approximately equal to 6B.

10.3 Transform and Sub-Band Coding

One approach to describing a signal with the fewest independent parameters is to approximate the
signal, in some sense, by a series of orthogonal functions. The coefficients of the expansion then
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become the information-bearing quantities. The orthogonal functions chosen for the representation
presumably should capitalize upon some known characteristic of the signal.

The orthogonal function approach has been considered for describing both the speech waveform
and the amplitude spectrum. A precise waveform description holds relatively small potential for
bandwidth reduction–unless information such as phase is discarded and use is made of voiced-
unvoiced and pitch tracking measurements. The spectral description , or its time-domain equivalent,
promises more. The relationships between short-time spectral analysis and correlation analysis
suggest techniques for efficient description of the speech spectrum.

10.3.1 Analytic Rooter

Another technique for frequency division of formant bands of speech is called analytic rooting
(SCHROEDER, FLANAGAN and LUNDRY). The processing is done in terms of the analytic signal.
This approach avoids characteristic degradations that frequency division methods such as used in
the Vobanc introduce.

The analytic signal σ(t) of a real, bandlimited signal s(t) is defined as

σ(t) = s(t) + jŝ(t), (10.52)

where ŝ(t) is the Hilbert transform of s(t). In polar form the analytic signal is

σ(t) = a(t)ejΦ(t), ) (10.53)

where

a(t) = [s2(t) + ŝ2(t)]
1
2

Φ(t) = tan−l[ŝ(t)/s(t)].

It follows that
s(t) = a(t) cos[Φ(t)], and ŝ(t) = a(t) sin[Φ(t)]. (10.54)

A real signal s1/n(t) corresponding to the n-th root of the analytic signal can be defined as

s1/n(t) = ℜ[σ(t)]1/n (10.55)

= ℜ[s(t) + jŝ(t)]1/n

= [a(t)]1/n cos[Φ(t)/n].

The analytic signal rooting therefore implies division of the instantaneous frequency by a factor n,
and taking the nth root of the signal envelope1. For the case n = 2 the relations are particularly
tractable for computer simulation.

s 1
2
(t) = [a(t)]

1
2 cos[

1

2
Φ(t)] (10.56)

= [a(t)]
1
2 [

1

2
(1 + cosΦ(t))]

1
2 .

Since a(t) cosΦ(t) = s(t), one may write (10.56) as

s 1
2
(t) =

(
1

2

) 1
2

[a(t) + s(t)]
1
2 (10.57)

1Note that for those cases where perceived pitch is determined by the envelope of the signal waveform, this process
leaves the pitch unaltered. This method is therefore attractive for restoring speech distorted by a helium atmosphere,
such as breathed by a deep-sea diver.
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Similarly, it can be shown that the Hilbert transform ŝ 1
2
(t) of s 1

2
(t) is

ŝ 1
2
(t) =

(
1

2

) 1
2

[a(t) − s(t)]
1
2 (10.58)

Eq. (10.58) also follows from (10.57) by the observation that multiplication of s(t) by -1 is equivalent
to a phase shift of π and that, according to (10.56), this corresponds to a phase shift of π/2 in s 1

2
(t),

i.e., a Hilbert transformation.
Eq. (10.57) is a simple relation which is easy to simulate on a computer and amenable to straight-

forward instrumentation–except for one difficulty: the sign of the square root and therefore of s 1
2
(t),

according to (10.57), is indeterminate.
The proper sign can be recovered by changing the sign of the square root in (10.57) every time

the phase Φ(t) of the original signal s(t) goes through 2π (or an integer multiple of 2π). According
to (10.54) this is the case when ŝ(t) = 0, while s(t) < 0.

A remaining phase ambiguity of π in s 1
2
(t) is unavoidable and is a direct consequence of the 2π

phase ambiguity in the original signal s(t). This phase ambiguity has no practical consequence.
The inverse operation of analytic-signal rooting is given by

sn(t) = ℜ [s(t) + jŝ(t)]
n
. (10.59)

By writing
sn(t) = [a(t)]

n
cos [nΦ(t)] , (10.60)

and by comparing (10.60) with (10.55), the inverse relationship is evident.
For n = 2, (10.59) yields

s2(t) = ℜ
[
s2(t) + 2js(t)ŝ(t) − ŝ2(t)

]
, (10.61)

or
s2(t) = s2(t) − ŝ2(t).

If process (10.61) is applied to s 1
2
(t), the original signal s(t) is recovered. This can be verified

by substituting s 1
2
(t) and ŝ 1

2
(t) from (10.57) and (10.58) into (10.61):

s2(t) =
1

2
{[a(t) + s(t)] − [a(t) − s(t)]} ,

or
s2(t) = s(t). (10.62)

The Hilbert transform of the original signal can be recovered by multiplying s 1
2
(t) and ŝ 1

2
(t):

2s 1
2
(t) · ŝ 1

2
(t) = {[a(t) + s(t)][a(t) − s(t)]} 1

2 (10.63)

=
{
a2(t) − s2(t)

} 1
2

= s(t).

For a signal whose bandwidth is narrow compared to its center frequency, the original signal can be
approximately recovered by squaring s 1

2
(t) and subsequent bandpass filtering. From (10.57),

2s21
2
(t) = a(t) + s(t). (10.64)

If the spectrum of a(t) does not overlap that of s(t), which is approximately true for narrowband
signals, then s(t) can be recovered by bandpass filtering.
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Figure 10.5: Diagram for computer simulation of the analytic rooter. (After (Flanagan and Lundry
[1967]))

A complete transmission system based upon the foregoing principles has been simulated on
a digital computer. In the simulation, the speech spectrum is first divided into four contiguous
passbands, each nominally containing no more than one formant. Each bandpass signal is then
analytically rooted, band-limited, and recovered in accordance with the previous explanation.

To accomplish square rooting of the signal, and a band reduction of 2-to-1, a typical channel
in the flow diagram for the simulation program is shown in Fig. 10.5. The bandpass filter BPF1
separates a spectral segment which nominally contains no more than one formant. The Hilbert
transform of this signal is formed by a transversal filter HT1. Since the Hilbert transform filter
ideally has a response which is neither time-limited nor band-limited, an approximation is made to
the transform which is valid over the frequency range of interest and which is truncated in time.

In a parallel path, the bandpass signal s(t) is delayed by an amount DEL1 equal to one-half the
duration of the impulse response of the Hilbert filter. It, too, is squared and (s2 + ŝ2) is formed by
ADD1. The square root of this result yields a(t) in accordance with (10.53), and the addition of
the delayed s(t) in ADD2 gives [a(t) + s(t)]. Multiplication by 1

2 and the subsequent square rooting
form s 1

2
(t), according to (10.57).

Selection of the sign of s 1
2
(t) is accomplished by the following logical decisions in SWITCH.

The algebraic sign of s 1
2
(t) is changed whenever ŝ(t) goes through zero while s(t) < 0. The signal

s 1
2
(t), so signed, is then applied to BPF1

2 , having cutoff frequencies, and hence bandwidth, equal to
one-half the values for BPF1.

Analytic squaring of this band-limited version of s 1
2
(t) is accomplished in accordance with (10.61).

The Hilbert transform is produced by HT2, which is similar to HT1 except that the duration of the
impulse response of the former is twice that of the latter. Subtracting ŝ2(t) from s2(t) recovers an
approximation to the original bandpassed signal s(t).

The programmed operations in all four channels are identical except that the bandpass filters,
Hilbert transform filters, and delays are chosen in accordance with the desired passband characteris-
tics. In the computer implementation, eighth-order Butterworth filters with cutoff frequencies listed
in Table 10.1 are used for the bandpass filters.

The Hilbert filters are realized from a band-limited and time-limited approximation to the Hilbert
transform. Ideally, the impulse response (inverse) of the Hilbert transform is h(t) = 1/πt, and the
magnitude of the transform is unity at all frequencies. Truncating the spectrum of the transform at
frequency ωc produces an impulse response h̃(t) = (cosωct− 1)/πt, which although band-limited is
not time-limited. The function h̃(t) is asymmetric and its even Nyquist samples are identically zero.
Odd Nyquist samples have the value 2/πnT , where n is the sample number and T is the Nyquist
interval. The response h̃(t) can be truncated (limited) in time at a sufficiently long duration so that
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Table 10.1: Eighth-order Butterworth filter cutoff frequencies in Hz
BPF1 BPF1

2 Formants nominally
in passband

Channel 1 238-714 119-357 F1
Channel 2 714-1428 357-714 Fl or F2
Channel 3 1428-2142 714-1071 F2 or F 3
Channel 4 2142-2856 1071-1428 F3

Table 10.2: Impulse response durations for the Hilbert filters
τ in ms

HTl HT2
Channel 1 5.0 10.0
Channel 2 2.5 5.0
Channel 3 1.3 2.5
Channe1 4 0.9 1.7

over the frequency range of interest the transform remains acceptable.

For programming ease, the transform is realized by an asymmetric transversal filter whose even
(Nyquist) coefficients are zero and whose odd coefficients are 2/πnT , weighted with a Hamming
window of duration T . Specifically,

h̃(nT ) =
1

πnT

{
0.54 − 0.46 cos

(
2π(nT + τ/2)

τ

)}
, (10.65)

where n = l, 2, 3, . . . , τ/2T represents values for one-half the coefficients of the asymmetrical filter.
The simulation is for a 10-kHz bandwidth (ωc) and T = 0.5 × 10−4 second. The values of the
Hamming window used for each of the four bands are given in Table 10.2.

A typical result from the system, with the BPF1
2 filters included in the transmission path, is

shown by the spectrograms in Fig. 10.6. The upper spectrogram shows an input sentence to the
system. The lower spectrogram shows the signal recovered from the half-bandwdith transmission. As
the spectrograms show, original formant structure and pitch information is preserved relatively well
in the recovered signal. The result is a transmission of respectable quality over a channel bandwidth
equal to one-half that of the original signal.

At least one practical hardware implementation of the analyticrooter, using solid-state circuitry,
has been constructed and tested (SASS and MACKIE).

10.3.2 Transform Coding: Error Analysis

10.3.3 Expansion of the Speech Waveform

A general method has been described in the literature for representing signal waveforms by orthogo-
nalized, exponential functions (Huggins [1957], Kautz [1954]). The method has been applied to the
analysis of single pitch periods of voiced sounds (Dolansky [1960]). If f(t) is a single pitch period,
then the approximation

f(t) ≈
∑

m

cmgm(t) (10.66)
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Figure 10.6: Sound spectrograms of speech analyzed and synthesized by the analytic rooter. The
transmission bandwidth is one-half the original signal bandwidth. (After (Flanagan and Lundry
[1967]))

is made, where the gm(t) are the set of orthogonalized, exponential functions. Their Laplace trans-
forms of odd and even orders are given by

G2n−1(s) =
√

2αn
s+ |sn|

(s− sn)(s− s∗n)

n−1∏

j=1

(s+ sj)(s+ s∗j )

(s− sj)(s− s∗j )
(10.67)

G2n(s) =
√

2αn
s− |sn|

(s− sn)(s− s∗n)

n−1∏

j=1

(s+ sj)(s+ s∗j )

(s− sj)(s− s∗j )

where
sn = (−αn + jβn) .

The inverse transforms of Eq. (10.67) are

g2n−1(t) =
n∑

k=1

1

βk
|K2n−1(sk)| e−αkt sin [βkt− θ2n−1(sk)] (10.68)

g2n(t) =
n∑

k=1

1

βk
|K2n(sk)| e−αkt sin [βkt− θ2n(sk)]

where
Km(sk) =

{
Gm(s)

[
(s+ α2

k) + β2
k

]}
s=sk

and

θm(sk) =
ℜKm(sk)

|Km(sk)|
The first two gm(t)’s, therefore, are simple damped sinusoids which differ in amplitude and phase.
The product-series components of Gm(s) are seen to be all-pass functions. An n of 7 (or an m of
14) is considered to be adequate for the speech wave approximation (Dolansky [1960]). The critical
frequencies sn are fixed and are chosen to span the voice frequency range, typically in intervals of a
few hundred Hz2.

2A relevant question might inquire as to the potential of this technique if the sn could be derived in an adaptive
way; that is, if the sn could be varied to match the signal.
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Assuming f(t) is zero for t < 0, and since

∫ ∞

0

gp(t)gq(t)dt = 1; p = q

= 0; p 6= q

the k-th coefficient of the orthonormal series is given by

ck =

∫ ∞

0

f(t)gk(t)dt. (10.69)

One straightforward, but impractical, means for measuring the coefficients is apparent. Suppose the
signal f(t) is filtered with a realizable filter whose impulse response is gk(t), the result is

O(t) =

∫ ∞

0

gk(τ)f(t− τ)dτ. (10.70)

If, however, the time-reversed signal f(−t) is filtered, the result is

O(t) =

∫ ∞

0

gk(τ)f(t+ τ)dτ. (10.71)

The value O(0), that is, the result at the instant when the time reversed f(t) ends, is the value of
ck. This measurement, performed for all the gm(t)’s, provides the requisite coefficients.

A perhaps more practicable, real-time application of the orthogonal function for speech waveform
transmission is shown by the system in Fig. 8.l3a (Manley [1962]). For voiced sounds the input
speech is led to a pitch extractor which generates an impulse train at the fundamental frequency.
These impulses produce the set of orthogonal functions gm(t) by exciting realizable networks having
the functions as their impulse responses. Approximations to the coefficients of the series (10.66) are
obtained by calculating.

ck =

∫ T

0

gk(t)f(t)dt, (10.72)

where T is a given pitch period. The calculation is carried out by the multipliers, the reset integrators
and the sample-and-hold elements shown in the diagram. The pitch pulses reset the integrators and
trigger the sampling circuits to read and store the value of the integral at the end of period T .
Before multiplexing and transmission, the pitch pulse frequency is converted into an analog signal
by a frequency meter, and the time-varying coefficients c1(t), c2(t) . . . cm(t) are further smoothed by
low-pass filtering.

At the receiver, in Fig. 10.7b, the signal is reconstructed, pitch period by pitch period, according
to Eq. (10.66). A pitch-modulated pulse generator excites an identical set of gm(t) networks and
their outputs are respectively modulated by the cm(t) coefficients. The sum is an approximation to
the original voiced sound.

The processing of unvoiced, aperiodic sounds is slightly different. Ideally they are treated as if
their waveforms constituted one pitch period. The onset of an unvoiced sound is detected and, if the
unvoiced sound is relatively brief, as in a stop, only one pitch pulse is generated in the transmitter
and in the receiver. The unvoiced indication is signalled to the receiver by the u(t) parameter. If
the unvoiced sound is sustained (for example, a fricative), the pulse generators are made to continue
generating pulses with periods long enough that the periodicity is not significant perceptually.

10.3.4 Expansion of the Short-Time Amplitude Spectrum

At least one orthogonal-function description of the short-time amplitude spectrum has been proposed
as a bandsaving means for coding speech (Pirogov [1959a,b]). The approach is particularized to a
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Figure 10.7: System for transmitting speech waveforms in terms of orthogonal functions. (Af-
ter (Manley [1962])) (a) Analyzer. (b) Synthesizer

Figure 10.8: Method for describing and synthesizing the short-time speech spectrum in terms of
Fourier coefficients. (After (Pirogov [1959a]))
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Fourier series description where, in effect, a spectrum of the amplitude spectrum is obtained. The
technique is illustrated in Fig. 10.8.

A short-time amplitude spectrum is produced as a time function by scanning at a frequency
1/T . The operation can be implemented as in the formant extractor described in Section 4.5, or
in the manner of the “scan vocoder” discussed in Section 10.4.1, or even with a single scanning
filter. The frequency 1/T would normally range from 25 to 50 Hz, depending upon the requirements
imposed on the quality of transmission. As in the “scan vocoder,” the spectral description set) is
transmitted over a restricted bandwidth channel. A bandwidth between 75 and 250 Hz is reported
to be adequate. Excitation information, that is, pitch and voiced-unvoiced indications, must also be
transmitted. As in the conventional vocoder, a bandwidth of 25 to 50 Hz is expected to be adequate
for these data. Synchronizing information about the scanning must also be made known to the
receiver.

At the receiver, a Fourier series description of the amplitude spectrum is computed, namely,

s(t) =
a0

2
+

N∑

n=1

[an cosnΩt+ bn sinnΩt] , (10.73)

where, as usual, the coefficients are

an =
2

T

∫ T

0

s(t) cosnΩtdt

bn =
2

T

∫ T

0

s(t) sinnΩtdt,

and Ω = 2π/T . Practically, the Fourier coefficients are obtained by multiplying s(t) by the outputs
of several harmonic oscillators each synchronized to the scanning frequency Ω. An N = 3 to 5 is
claimed to provide an adequate spectral description (Pirogov [1959a]).

The coefficients vary relatively slowly with time. They are used to control an electrical network
so that its frequency response is approximately the same as the measured spectral envelope of the
speech signal. The network is then excited in a manner similar to the conventional vocoder, that is,
either by periodic pulses or by noise. The reconstructed speech is the output of the variable network
shown in Fig. 10.8.

The operation of the controllable network is based upon the fact that s(t) is actually a spectral
amplitude S(ω), 0 ≤ ω ≤ ωmax. Hence, Ω = 2π/T = 2π/ωmax, so that Eq. (10.73) can be rewritten
as

S(ω) =
a0

2
+

N∑

n=1

an cos
2πnω

ωmax
+ bn sin

2πnω

ωmax
(10.74)

If the excitation amplitude spectrum is G(ω), then the output of the variable network should be
S(ω)·G(ω). Assuming the excitation spectrum is flat and of unity amplitude, a given sine component
ω1 in the excitation spectrum should produce an output time function

f1(t) =
a0

2
sinω1t+ sinω1t

N∑

n=1

an cos
2πnω1

ωmax
+ sinω1t

N∑

n=1

bn sin
2πnω1

ωmax
. (10.75)

Expanding the second and third terms as sums and differences of angles gives

2f1(t) = a1 sinω1t+

N∑

n=1

an

[
sin

(
ω1t−

2πnω1

ωmax

)
(10.76)

+ sin

(
ω1t+

2πnω1

ωmax

)]
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Figure 10.9: Techniques for realizing the variable electrical network of Fig. 10.8

+

N∑

n=1

bn

[
cos

(
ω1t−

2πnω1

ωmax

)
− cos

(
ω1t+

2πnω1

ωmax

)]
.

The second terms of the arguments, i.e., 2πnω1

ωmax
, correspon to time advances and delays of

nτ = n · 2π

ωmax

The time function can therefore be constructed by the circuit shown in Fig. 10.9. The cosine terms
of Eq. (10.76) are obtained by Hilbert transforming a difference of sine terms (i.e., by incurring
a broadband π phase shift). Although (10.76) is particularized for a given spectral component of
excitation, namely ω1, the process is the same for all other components. It is reported that with a
spectral description of N = 4 or 5, the synthesized speech quality is natural enough to satisfy the
requirements of ordinary voice channels.

10.3.5 Expansion of the Short-Time Autocorrelation Function

For an on-going time function f(t), the discussion of Chapter 4 derived the relation between the
short-time autocorrelation function (defined for positive delays)

φ(τ, t) =

∫ t

−∞

f(λ)f(λ − τ)k(t− λ)dλ, τ ≥ 0 (10.77)

and the measurable short-time amplitude spectrum

F (ω, t) =

∫ t

−∞

f(λ)h(t− λ)e−jωλdλ. (10.78)

For the specific weighting function

k(t) = h2(t) = 2σe−2σt,

the short-time correlation and spectrum are linked by the weighted Fourier cosine transform

|F (ω, t)|2 =

∫ ∞

−∞

e−σ|τ |φ(τ, t) cosωτdτ (10.79)

=
1

2π
|H(ω)|2 ∗ Φ(ω, t),
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Figure 10.10: Expansion coefficients for the short-time auto-correlation function

where H(ω) and Φ(ω, t) are the Fourier transforms of h(t) and φ(τ, t), respectively. The transform-
pair (10.79) implies that φ(τ, t) is an even function of τ .

The preceding section described a technique for representing the short-time amplitude spectrum
|F (ω, t)| in terms of an orthogonal function expansion. Since the correlation function and power
spectrum are uniquely linked, it might be expected that a related orthonormal expansion can be
written for the correlation function. This expansion leads to an alternative time-domain represen-
tation of the signal. In particular, Laguerre functions have been found a convenient expansion for
this description (Lee [1960], Manley [1962], Kulya [1962a,b]).

Suppose the short-time correlation function of f(t) for positive delays is expanded in terms of a
realizable function set {ξi(t)}, orthonormal on the internal 0 ≤ τ ≤ ∞ and zero for τ < 0. Then

φ(+τ, t) =

∞∑

i=0

ai(t)ξi(τ), τ ≥ 0. (10.80)

Because of the orthogonal properties

ai(t) =

∫ ∞

0

φ(+τ, t)ξi(τ)dτ (10.81)

=

∫ ∞

0

ξi(τ)dτ

∫ t

−∞

f(λ)f(λ− τ)k(t − τ)dλ.

Changing the order of integration and substituting γ = (λ− τ) gives

ai(t) =

∫ t

−∞

f(λ)k(t − λ)dλ

∫ λ

−∞

f(γ)ξi(λ− γ)dγ. (10.82)

The coefficients ai(t) are therefore obtained by first filtering f(t) with a network whose impulse
response is ξi(t), multiplying the result by f(t) and then filtering the product with a network whose
impulse response is k(t). The operations are illustrated in Fig. 10.10.

The ai(t) coefficients obtained from (10.82) describe φ(τ, t) for positive delays (τ ≥ 0). If, as
defined and as discussed in Chapter 4, φ(τ, t) is an even function of τ , the correlation for negative
delay may be written

φ(−τ, t) =

∞∑

i=0

ai(t)ξi(−τ), τ < 0, (10.83)

and the correlation function for all T is

φ(τ, t) = φ(+τ, t) + φ(−τ, t) (10.84)

=

∞∑

i=0

ai(t) [ξi(τ) + ξi(−τ)]

The Fourier transform of φ(τ, t) is the power spectrum

Φ(ω, t) =

∞∑

i=0

ai(t)

∫ ∞

−∞

[ξi(τ) + ξi(−τ)] e−jωτdτ (10.85)
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=

∞∑

i=0

ai(t) {Ξi(ω) + Ξ∗
i (ω)}

where Ξi(ω) is the Fourier transform of ξi(T ).
The spectrum Φ(ω, t) is related to the measurable power spectrum of Eq. (10.79) such that

|F (ω, t)|2 =

∞∑

i=0

ai(t) {Ξ′
i(ω) + Ξ′∗

i (ω)} , (10.86)

where Ξ′
i(ω) is the Fourier transform of [e−σ|τ |ξi(τ)].

Writing Ξi(ω) in terms of its magnitude and phase,

Ξi(ω) = αi(ω)e−jβi(ω). (10.87)

Then

Φ(ω, t) =
∞∑

i=0

ai(t)αi(ω)
[
e−jβi(ω) + e+jβi(ω)

]
(10.88)

= 2

∞∑

i=0

ai(t)αi(ω) cosβi(ω)

Thus the coefficients ai(t) of an orthonormal expansion of the auto correlation function [Eq. (10.80)]
are also the coefficients of a Fourier series expansion of the power spectrum.

So far, the orthogonal filter functions ξi(t) have not been particularized. They have only been
assumed to be physically realizable impulse responses. One simple set of orthonormal filters–and
one that leads to a familiar result–is an ideal delay line with radian bandwidth B and with delay
taps spaced at the Nyquist interval 1/2B. The frequency response at the i-th tap is

Ξi(ω) =






e−j(
iω
2B ), 0 ≤ ω ≤ B

ej(
iω
2B ), −B ≤ ω ≤ 0

0, elsewhere

(10.89)

The impulse response at the i-th tap is therefore

ξi(t) =
B

π

sin
(
Bt− i

2

)
(
Bt− i

2

) (10.90)

As prescribed by Eq. (10.89), the amplitude response is αi(ω) = 1, and the phase response is

βi(ω) =

(
iω

2B

)

The power spectrum expansion of Eq. (10.88) is therefore the Fourier series

Φ(ω, t) = 2
∑

i

ai(t) cos

(
iω

2B

)
. (10.91)

The ai(t), on the other hand, which are computed according to the operations of Fig. 10.10, are
simply values of the short-time autocorrelation function φ(τ, t) for τ = (iω/2B). These coefficients
could be supplied directly to the left side of the synthesizer of Fig. 10.9 and used to generate the
spectrum Φ(ω, t). In this case, one has a correlation-vocoder synthesizer as described in Section 10.4.

Ideal broadband delay lines are neither physically wieldy nor particularly easy to construct.
It is consequently of interest to consider other orthonormal function sets which might be useful in
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Figure 10.11: Realization of Laguerre functions by RC networks [see Eq. (10.93)]

representing the short-time autocorrelation function or the power spectrum. Preferably, the functions
should be realizable with simple lumped-element networks. The choice of Laguerre functions has
advantages in this connection (Lee [1960]).

Such an orthogonal set is
{ξi(t)} = {li(t)} ,

where the li(t) are described by

li(t) = (2λ)
1
2 e−λt

i∑

n=0

(−1)n(2λt)i−n(i!/n!)

[(i− n)!]2
. (10.92)

Its frequency transform is

Li(ω) =
(2λ)

1
2

2π
· (λ− jω)i

(λ+ jω)i+1
(10.93)

= (−1)i
1

π(2λ)
1
2

(
λ

jω + λ

)(
jω − λ

jω + λ

)i

= Ai[u(ω)][v(ω)]i.

The function (10.93) can be realized by cascading RC circuits of the type shown in Fig. 10.11,
together with an amplification Ai.

If (10.93) is put in the form
Li(ω) = αi(ω)ejβi(ω), (10.94)

then

Li(ω) =
(2λ)

1
2

2π
· 1

(ω2 + λ2)
1
2

· ej[(2i+1) tan−1 ω
λ ]. (10.95)

Further,

[Li(ω) + L∗
i (ω)] =

(2λ)
1
2

π
· 1

(ω2 + λ2)
1
2

· cos
[
(2i+ 1) tan−1 ω

λ

]
. (10.96)

The spectrum Φ(ω, t) according to (10.85) and (10.88) is

Φ(ω, t) = 2

∞∑

i=0

ai(t)αi(ω) cosβi(ω)

=

(
2

π2λ

) 1
2 ∑

i

ai(t)
cos
[
(2i+ 1) tan−1 ω

λ

]

(
1 + ω2

λ2

) 1
2

(10.97)

To show how the positive frequency domain is spanned by the Laguerre functions, the first several
terms of the final factor in (10.97) are plotted in Fig. 10.12 (Manley [1962]). The functions are
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Figure 10.12: Plot of the final factor in Eq. (10.97) showing how the positive frequency range is
spanned by the first several Laguerre functions. (After (Manley [1962]))

seen to have the desirable feature that they attenuate with increasing frequency, as does the speech
spectrum.

A transmission system based upon these relations can be constructed. The assumption is that
the spectrum-squaring operation, that is, the synthesis of a signal having a spectrum Φ(ω, t), is
perceptually acceptable. (See Sections 10.4.1 and 10.4 for other comments on spectrum squaring.)
Such a signal is

φ(τ, t) =

∞∑

i=0

ai(t) [li(τ) + li(−τ)] ,

having the spectrum

Φ(ω, t) =
∞∑

i=0

ai(t) [Li(ω) + L∗
i (ω)] . (10.98)

The correlation φ(τ, t) is an even function of τ and is produced from li(τ), τ ≥ 0. But with the
circuits of Fig. 10.11, it is not possible to generate li(−τ). However, the ear is relatively insensitive
to modest phase differences, and it suffices perceptually to generate a spectrum whose modulus is the
same as Φ(ω, t). Such a spectrum can be obtained from the odd function [lm−i(τ)+lm+i+1(τ)] (Kulya
[1963]). The corresponding spectrum is then

Φ′(ω, t) =

∞∑

i=0

ai(t) [Lm−i(ω) + Lm+i+l(ω)] ,

where, from Eq. (10.95),
[Lm−i(ω) + Lm+i+1(ω)]

=
(2λ)

1
2

π

1

(ω2 + λ2)
1
2

[
ej2(m+1) tan−1 ω

λ

]
cos
[
(2i+ 1) tan−1 ω

λ

]
. (10.99)

Except for the phase angle
[
ej2(m+1) tan−1 ω

λ

]
, Eq. (10.99) is identical to Eq. (10.96). The complete

transmission system is therefore the circuit shown in Fig. 10.13. In Fig. 10.13a, the Laguerre
expansion coefficients are developed according to Eq. (10.98) and after the fashion of Fig. 10.10. A
pitch signal p(t) is also extracted. The coefficients and pitch data are multiplexed and transmitted to
the synthesizer in Fig. 10.13b. As in the vocoder, the synthesizer excitation is either wide-band noise
or pitchmodulated pulses. By resorting to the odd function [lm−i(τ) + lm+i+1(τ)], the synthesizer
imposes the spectrum Φ′(ω, t) upon the broadband excitation. Similar results can be obtained
from an orthonormal expansion of the correlation function in terms of Tschebyscheff polynomials
(KULYA).
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Figure 10.13: A Laguerre function vocoder. (a) Analyzer. (b) Synthesizer. (After (Kulya [1963]))

10.4 Correlation Vocoders

The channel vocoder demonstrates that speech intelligibility, to a large extent, is carried in the shape
of the short-time amplitude spectrum. Any equivalent specification of the spectral shape would be
expected to convey the same information. One equivalent description of the squared amplitude
spectrum is the autocorrelation function. The correlation function can be obtained strictly from
time-domain operations, and a spectral transformation is not required. Time-domain processing
therefore offers simplicities in implementation. The relations linking these quantities have been
discussed in detail in Section 4.1, Chapter 4. A short-time autocorrelation specification of the
speech signal might therefore be expected to be a time-domain equivalent of the channel vocoder.

In Chapter 4, a short-time autocorrelation function of the function f(t) was defined for the delay
parameter, τ , as

φ(τ, t) =

∫ t

−∞

f(λ)f(λ+ τ)k(t − λ)dλ, (10.100)

where k(t) = 0 for t < 0 and is a weighting function or time apperture [usually the impulse response of
a physically realizable low-pass filter, see Eq. (4.15)]. Under the special condition k(t) = 2αe−2αt =
h2(t), φ(τ, t) can be related to the measurable short-time power spectrum

Ψ(ω, t) = |F (ω, t)|2 ,

where

F (ω, t) =

∫ t

−∞

f(λ)h(t− λ)e−jωλdλ. (10.101)

In fact, it was shown that

φ(τ, t) =
eα|τ |

2π

∫ ∞

−∞

Ψ(ω, t)ejωτdτ ; (10.102)
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Figure 10.14: Autocorrelation vocoder. (After (Schroeder [1959, 1962]))

and

Ψ(ω, t) =

∫ ∞

−∞

e−α|τ |φ(τ, t)e−jωτdτ. (10.103)

In this case the measurable short-time power spectrum–which is essentially the quantity dealt with
in the channel vocoder (or rather the square root of it)–is the Fourier transform of the product of
the weighting e−α|τ | and the short-time autocorrelation function φ(τ, t). The spectral information
might therefore be specified in terms of the correlation. Several transmission methods for utilizing
this relation have been examined (Huggins [1954], Schroeder [1959, 1962], Kock [1956, 1959, 1962],
Biddulph [1954]).

One method for applying the principle is shown in Fig. 10.14. In the top branch of the circuit, the
input speech is submitted to pitch extraction. This information is derived and employed in a manner
identical to the channel vocoder. In the lower branch of the circuit, the input signal is put through
a spectral equalizer which, in effect, takes the square root of the input signal spectrum. The basis
for this operation is that the ultimate processed signal is going to be a correlation function whose
Fourier transform is the power spectrum (or, the squared amplitude spectrum) of the input signal.
Although spectrum-squared speech is generally quite intelligible, it has an unnatural intensity or
stress variation. Since the spectrum squaring is inherent in the process, it is taken into account at
the outset.

After spectral square-rooting, the short-time autocorrelation function of the signal is computed
for specified delays. This is done by multiplying the appropriate output of a properly terminated
delay line with the original input, and low-pass filtering the product (in this case with a 20-Hz low-
pass filter). The impulse response of the low-pass filter is the k(t) as given in Eq. (10.100). Since
the autocorrelation function is bandlimited to the same frequency range as the signal itself, the
correlation function is completely specified by sampling at the Nyquist interval (i.e., 1/2BW ). For a
3000 Hz signal, therefore, a delay interval ∆τ = 0.167 msec is sufficient. The greatest delay to which
the function needs to be specified, practically, is on the order of 3 msec (Schroeder [1962]). Thus a
total of 18 delay channels–each using about 20 Hz bandwidth–are required. The total bandwidth is
therefore 360 Hz and is about the same as required by the channel vocoder.

At the synthesizer, voiced sounds are produced by generating a periodic waveform in which the
individual pitch period is the correlation function described by the values existing on the nτ -channels
at that instant. The waveform is generated by letting the pitch pulses of the excitation “sample” the
individual τ -channels, The sampling is accomplished by multiplying the excitation and each channel
signal. The samples are assembled in the correct order by a delay line, and are low-pass filtered
to yield the continuous correlation function. Since the correlation function is even, the synthesized
wave is made symmetrical about the τ0 sample. This can be done practically with the delay line
correctly terminated at its output end, but unterminated and completely reflecting at the far end, as
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Figure 10.15: Block diagram of the original spectrum channel vocoder. (After (Dudley [1939]))

shown in Fig. 10.14. Low-pass filtering of the samples emerging from the line recovers the continuous
signal.

Because a finite delay is used in the analysis, the measured correlation function is truncated, and
discontinuities will generally exist in the synthesized waveform. This leads to a noticeable distortion.
The distortion can be reduced by weighting the high-delay correlation values so that they have less
influence in the synthesized wave. The discontinuities are thereby smoothed, and the processed
speech obtained approaches that from channel vocoders of the same bandwidth compression3.

10.4.1 Channel Vocoders

Analysis-synthesis telephony came of age, so to speak, with Dudley’s invention of the Vocoder (Dud-
ley [1939]). In recent years, the name Vocoder (for Voice Coder) has become largely a generic term,
commonly applied to analysis-synthesis systems in which the excitation and system functions are
treated separately (see Fig. 10.1). The original Vocoder–now referred to as a spectrum channel
vocoder-has probably been described in the literature more times than any other single system.
Nevertheless, for the sake of completeness, as a convenient point of departure, and because it set
forth, at such an early time, an important philosophy in voice transmission, a brief description of
the idea will be repeated once more.

Following the coding scheme illustrated in Fig. 10.1, the Vocoder incorporates one important
constraint of speech production and one of perception. It recognizes that the vocal excitation can be
a broadspectrum, quasi-harmonic sound (voiced), or a broad-spectrum, random signal (unvoiced).
It also recognizes that perception, to a large degree, is dependent upon preservation of the shape
of the short-time amplitude spectrum. A block diagram of an early Vocoder is shown in Fig. 10.15
(DUDLEY, 1939b).

The excitation information is measured by the top branch of the circuit. A frequency discrimi-
nator and meter measure the fundamental component of the quasi-periodic voiced sounds. Values of
the fundamental frequency and its temporal variations are represented by a proportional electrical
voltage from the meter. This “pitch” signal is smoothed by a 25 Hz low-pass filter. Unvoiced sounds
normally have insufficient power in the fundamental frequency range to operate the frequency meter.
Nonzero outputs of the pitch meter therefore indicate voicing as well as the value of the pitch.

Ten spectrum channels in the lower part of the circuit measure the short-time amplitude spec-
trum at ten discrete frequencies. Each channel includes a band-pass-filter (300 Hz wide originally),
a rectifier and a low-pass filter (25 Hz). The measured spectrum is therefore precisely that described
in Section 4.1, Chapter V. The predistorting equalizer pre-emphasizes the signal to produce nearly
equal average powers in the spectrum-analyzing filters. The spectrum-defining channel signals con-
sequently have about the same amplitude ranges and signal-to-noise ratios for transmission. The

3This truncation distortion in synthesis can be avoided if the correlation data are used to control a recursive filter.
See the technique devised for the Maximum Likelihood Vocoder (Itakura and Saito [1968]) in Section 10.6.2.
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Figure 10.16: Spectrogram of speech transmitted by a 15-channel vocoder

eleven 25-Hz wide signals occupy a total bandwidth of less than 300 Hz and must be multiplexed in
frequency or time for transmission.

At the receiver, the speech spectrum is reconstructed from the transmitted data. Excitation,
either from a pitch-modulated, constant average power pulse-generator, or from a broadband noise
generator, is applied to an identical set of band-pass filters. The outputs from the filters are am-
plitude modulated by the spectrum-defining signals. A short-time spectrum, approximating that
measured at the transmitter, is recreated.

With proper design the synthesized speech can be made surprisingly intelligible. An example of
speech transmitted by a 15-channel vocoder is shown by the spectrograms in Fig. 10.16. Important
features such as formant structure and voiced-unvoiced excitation are relatively well preserved.

10.4.2 Design Variations in Channel Vocoders

Since the original development of the Vocoder many different versions and variations have been
constructed. Number and spacing of the analyzing filters along the frequency scale, their bandwidths,
degree of overlap, and selectivity are all matters of design variation. Similarly, many different pitch
extraction and voiced-unvoiced detection circuits have been examined, as well as the characteristics
of the rectifier and low-pass filter. The number of channels used has ranged from as few as eight to
as many as 100, and the filter characteristics have ranged from broad, steep, flat-topped responses to
narrow, simple-tuned circuits. Space does not permit a detailed discussion of all these investigations.
However, typical analog hardware implementations include those of (Miller [1953], E. E. David
[1956], Vilbig and Haase [1956a,b], Slaymaker [1960], Shearme [1962], Shearme et al. [1962], Cooper
[1957], Werner and Danielsson [1958], L. A. Yaggi [1962], Steele and Cassel [1963a,b]). Digital
implementations have been nearly equally varied, and include (Golden [1963], Freudberg et al. [1967],
Rader [1967]). In particular, Fast Fourier Transform techniques have been found advantageous in
digital implementations.

Although intelligibility may be high, practical realizations of conventional channel vocoders gen-
erally exhibit a perceptible degradation of speech naturalness and quality. The synthetic speech
possesses a machine-like quality which is characteristic of the device. Several factors seem to be
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Table 10.3: Consonant intelligibility for a vocoder. Percent of initial consonants heard correctly in
syllables (togatoms). (After (Halsey and Swaffield [1948]))

b–90% l –97% r –100% w –100%
f–74 m–85 s–94 sh –100

h–100 n–99 t–91 th–43
k –85 p–77 y–96 none–70

Table 10.4: Vocoder consonant intelligibility as a function of digital data rate. (After (E. E. David
[1956]))

Number of quantizing levels
6 5 4 3

Binary pulse rate (bits/sec) 1300 1160 1000 788
Consonant intelligibility (%) 82 79 79 69

responsible. One is the coding of excitation data. Voiced-unvoiced discriminations often are made
with noticeable errors. Relevant structure in the pitch signal may not be preserved, and, under
certain conditions, octave errors may be made in the automatic pitch extraction. Voiced sounds are
synthesized from a pulse source whose waveform and phase spectrum do not reflect certain details
and changes of the real vocal cord wave. The spectral analysis also has a granularity, or lack of
resolution, imposed by the number, bandwidth and spacing of the analyzing filters. A given speech
formant, for example, might be synthesized with too great a bandwidth. Further, the large dy-
namic range of the amplitude spectrum may not be covered adequately by practical rectifiers and
amplifiers.

The basic channel vocoder design can be improved in several ways. The important excitation
problems can be obviated to a large extent by the voice-excitation technique to be discussed in
a following section. Also sophisticated pitch extraction methods, such as the cepstrum method
described in Section 4.6, Chapter 4, provide more precise pitch and voiced-unvoiced data. The
spectral representation problems can be lessened by careful filter design, or by the use of digital
techniques such as the Fast Fourier Transform.

10.4.3 Vocoder Performance

Although voice quality and naturalness normally suffer in transmission by vocoder, the intelligibility
of the synthesized speech can be maintained relatively high, often with a vocoder having as few as
ten channels. For a high-quality microphone input and a fundamental component pitch extractor,
typical syllable intelligibility scores for a ten-channel (250 to 2950 Hz) vocoder are on the order of
83 to 85 percent (Halsey and Swaffield [1948]). Typical intelligibility scores for initial consonants
range over the values shown in Table 10.3.

Weak fricatives such as T are not produced well in this system. The 30 percent error indicated
for no initial consonant (i.e., for syllables beginning with vowels) indicates imprecision in the voiced-
unvoiced switching. Such syllables were heard as beginning with consonants when in fact they did
not. Even so, the consonant intelligibilities are reasonably good.

Comparable performances can also be obtained when the vocoder signals are time-sampled
(scanned), quantized and encoded in terms of binary pulses. An early model 10-channel vocoder, ar-
ranged for digital transmission, gave typical consonant intelligibility scores shown in Table 10.4. The
data rates are exclusive of pitch information. Four different quantizing levels were used (E. E. David
[1956])

More elaborate designs provide somewhat higher intelligibilities. For example, a consonant intel-
ligibility of approximately 90 per cent is typical of a 16-channel vocoder whose channel signals are
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Figure 10.17: Filtering of a speech signal by contiguous band-pass filters

sampled 30 sec−1 and quantized to three bits (i.e., 1440 bits/sec) (E. E. David [1956]).

10.4.4 Phase Vocoder

A final frequency division-multiplication method makes use of the short-time phase derivative spec-
trum of the signal to accomplish the band saving. The method permits non-integer divisions as well
as integer values. It can be applied either to single voice harmonics or to wider subbands which
can include single formants. It also permits a flexible means for time compressing or expanding the
speech signal. The method is called Phase Vocoder (Golden [1966]).

If a speech signal f(t) is passed through a parallel bank of contiguous band-pass filters and then
recombined, the signal is not substantially degraded. The operation is illustrated in Fig. 10.17,
where BP1 . . . BPN represent the contiguous filters. The filters are assumed to have relatively flat
amplitude and linear phase characteristics in their pass bands. The output of the n-th filter is fn(t),
and the original signal is approximated as

f(t) ≈
N∑

n=1

fn(t). (10.104)

Let the impulse response of the n-th filter be

gn(t) = h(t) cosωnt, (10.105)

where the envelope function h(t) is normally the impulse response of a physically-realizable low-pass
filter. Then the output of the n-th filter is the convolution of f(t) with gn(t),

fn(t) =

∫ t

−∞

f(λ)h(t− λ) cos [ωn(t− λ)] dλ (10.106)

= ℜ
[
exp(jωnt)

∫ t

−∞

f(λ)h(t− λ) exp(−jωnλ)dλ
]
.

The latter integral is a short-time Fourier transform of the input signal f(t), evaluated at radian
frequency ωn. It is the Fourier transform of that part of f(t) which is “viewed” through the sliding
time aperture h(t). If we denote the complex value of this transform as F (ωn, t), its magnitude is the
short-time amplitude spectrum |F (ωn, t)|, and its angle is the short-time phase spectrum φ(ωn, t).
Then

fn(t) = ℜ [exp(jωnt)F (ωn, t)]

or
fn(t) = |F (ωn, t)| cos [ωnt+ φ(ωn, t)] . (10.107)

Each fn(t) may, therefore, be described as the simultaneous amplitude and phase modulation of a
carrier (cosωnt) by the short-time amplitude and phase spectra of f(t), both evaluated at frequency
ωn.
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Figure 10.18: Speech synthesis from short-time amplitude and phase-derivative spectra. (Af-
ter (Golden [1966]))

Experience with channel vocoders shows that the magnitude functions |F (ωn, t)| may be band-
limited to around 20 to 30 Hz without substantial loss of perceptually-significant detail. The phase
functions φ(ωn, t), however, are generally not bounded; hence they are unsuitable as transmission
parameters. Their time derivatives φ̇(ωn, t), on the other hand, are more well-behaved, and may
be band-limited and used to advantage in transmission. To within an additive constant, the phase
functions can be recovered from the integrated (accumulated) values of the derivatives. One practical
approximation to fn(t) is, therefore,

f̃n(t) = |F (ωn, t)| cos
[
ωnt+ φ̃(ωn, t)

]
, (10.108)

where

φ̃(ωn, t) =

∫ t

0

φ̇(ωn, t)dt.

The expectation is that loss of the additive phase constant will not be unduly deleterious.

Reconstruction of the original signal is accomplished by summing the outputs of n oscillators
modulated in phase and amplitude. The oscillators are set to the nominal frequencies ωn, and
they are simultaneously phase and amplitude modulated from band-limited versions of φ̇(ωn, t) and
|F (ωn, t)|. The synthesis operations are diagrammed in Fig. 10.18.

These analysis-synthesis operations may be viewed in an intuitively appealing way. The con-
ventional channel vocoder separates vocal excitation and spectral envelope functions. The spectral
envelope functions of the conventional vocoder are the same as those described here by |F (ω, t)|.
The excitation information, however, is contained in a signal which specifies voice pitch and voiced-
unvoiced (buzz-hiss) excitation. In the phase vocoder, when the number of channels is reasonably
large, information about excitation is conveyed primarily by the φ̇(ωn, t) signals. At the other
extreme, with a small number of broad analyzing channels, the amplitude signals contain more in-
formation about the excitation, while the φ̇ phase signals tend to contain more information about the
spectral shape. Qualitatively, therefore, the number of channels determines the relative amounts of
excitation and spectral information carried by the amplitude and phase signals. If good quality and
natural transmission are requisites, the indications are that the φ̇(ω, t) signals require about the same
channel capacity as the spectrumenvelope information. This impression seems not unreasonable in
view of experience with voice quality in vocoders.

A complete phase vocoder analyzer and synthesizer has been simulated on a digital computer.
In the analyzer, the amplitude and phase spectra are computed by forming the real and imaginary
parts of the complex spectrum

F (ωn, t) = a(ωn, t) − b(ωn, t),
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Figure 10.19: Programmed analysis operations for the phase vocoder. (After (Golden [1966]))

where

a(ωn, t) =

∫ t

−∞

f(λ)h(t− λ) cosωnλdλ

and

b(ωn, t) =

∫ t

−∞

f(λ)h(t− λ) sinωnλdλ (10.109)

Then,
|F (ωn, t)|2 = (a2 + b2)

1
2

and

φ̇(ωn, t) =

(
ȧb− ḃa

a2 + b2

)

The computer, of course, deals with sampled-data equivalents of these quantities. Transforming the
real and imaginary parts of (10.109) into discrete form for programming yields

a(ωn,mT ) = T

m∑

l=0

f(lT ) [cosωnlT ]h(mT − lT ) (10.110)

b(ωn,mT ) = T
m∑

l=0

f(lT ) [sinωnlT ]h(mT − lT ),

where T is the sampling interval. In the simulation, T = 10−4 sec. From these equations, the
difference values are computed as

∆a = a [ωn, (m+ 1)T ]− a [ωn,mT ] (10.111)

and
∆b = b [ωn, (m+ 1)T ]− b [ωn,mT ]

The magnitude function and phase derivative, in discrete form, are computed (10.110) and (10.111)
as

|F [ωn,mT ]| =
(
a2 + b2

) 1
2 (10.112)

∆φ

T
[ωn,mT ] =

1

T

(b∆a− a∆b)

a2 + b2
.

Fig. 10.19 shows a block diagram of a single analyzer channel as realized in the program. This block
of coding is required for each channel.

In the simulation, a sixth-order Bessel filter is used for the h(lT ) window. The simulation uses
30 channels (N = 30) and ωn = 2πn(100) rad/sec. The equivalent pass bands of the analyzing filters
overlap at their 6 dB down points, and a total spectrum range of 50 to 3050 Hz is analyzed.
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Figure 10.20: Speech transmitted by the phase vocoder. The transmission bandwidth is one-half the
original signal bandwidth. Male speaker: “Should we chase those young outlaw cowboys.” (After
(Golden [1966]))

Programmed low-pass filtering is applied to the amplitude and phase difference signals as defined
by Fig. 10.19. Simulation of the whole system is completed by the synthesis operations for each
channel performed according to

fn(mT ) = |F (ωn,mT )| cos

[
ωnmT + T

m∑

l=0

∆φ(ωn, lT )

T

]
. (10.113)

Adding the outputs of the n individual channels, according to (10.104), produces the synthesized
speech signal.

As part of the simulation, identical (programmed) low-pass filters were applied to the |F (ωn, lT )|
and (l/T )[∆φ(ωn, lT )] signals delivered by the coding block shown in Fig. 10.19. These low-pass
filters are similar to the h(lT ) filters except they are fourth-order Bessel designs. The cut-off fre-
quency is 25 Hz, and the response is -7.6 dB down at this frequency. This filtering is applied to the
amplitude and phase signals of all 30 channels. The total bandwidth occupancy of the system is
therefore 1500 Hz, or a band reduction of 2:1.

After band-limitation, the phase and amplitude signals are used to synthesize an output according
to (10.113). The result of processing a complete sentence through the programmed system is shown
by the sound spectrograms in Fig. 10.204. Since the signal band covered by the analysis and synthesis
is 50 to 3050 Hz, the phase-vocoded result is seen to cut off at 3050 Hz. In this example, the
system is connected in a “back-to-back” configuration, and the band-limited channel signals are not
multiplexed.

Comparison of original and synthesized spectrograms reveals that formant details are weli pre-
served and pitch and voiced-unvoiced features are retained to perceptually significant accuracy.
The quality of the resulting signal considerably surpasses that usually associated with conventional
channel vocoders.

A frequency-divided signal may be synthesized by division of the [ωnt +
∫
φ̇ndt] quantities by

some number q. This frequency-divided synthetic signal may be essentialiy restored to its original
spectral position by a time speed-up of q. Such a speed-up can be accomplished by recording at one
speed and replaying q-times faster. The result is that the time scale is compressed and the message,
although spectrally correct, lasts 1/q-th as long as the original. An example of a 2:1 frequency
division and time speed-up is shown by the sound spectrograms in Fig. 10.21.

Time-scale expansion of the synthesized signal is likewise possible by the frequency multiplication
q[ωnt +

∫
φ̇ndt]; that is, by recording the frequency-multiplied synthetic signal and then replaying

it at a speed q-times slower. An example of time-expanded speech is shown by the spectrograms in
Fig. 10.22.

4The input speech signal is band limited to 4000 Hz. It is sampled at 10000 Hz and quantized to 12 bits. It is
called into the program from a digital recording prepared previously.
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Figure 10.21: Phase vocoder time compression by a factor of 2. Male speaker

Figure 10.22: Phase vocoder time expansion by a factor of 2. Female speaker

An attractive feature of the phase vocoder is that the operations for expansion and compression
of the time and frequency scales can be realized by simple scaling of the phase-derivative spectrum.
Since the frequency division and multiplication factors can be non-integers, and can be varied with
time, the phase vocoder provides an attractive tool for studying non-uniform alterations of the time
scale (Hanauer and Schroeder [1966]).

A number of multiplexing methods may be used for transmission. Conventional space-frequency
and time-division methods are obvious techniques. A “self multiplexing” method is also possible in
which, say, a two-to-one frequency-divided synthetic signal is transmitted over an analog channel
of t the original signal bandwidth. Re-analysis, frequency expansion and synthesis at the receiver
recovers the signal5. Further, at least one digital implementation of the phase vocoder has been made.
The phase and amplitude functions were sampled, quantized and framed for digital transmission at
digital rates of 9600 bits/sec and 7200 bits/sec. These transmission rates were compared in listening
tests to the same signal coded as log-PCM. The results showed the digital phase vocoder to provide
a signal quality comparable to log-PCM at bit rates two to three times higher (Carlson [1968]).

10.4.5 Linear Transformation of Channel Signals

A related approach attempts to discover the dependence among the channel signals and to eliminate
this redundancy in a smaller number of signals (Kramer and Mathews [1956]). For n-channel signals,
a set of m signals, where m ≤ n, are formed which are a linear combination of the original n. The co-
efficients of the linear transformation constitute an (m×n) matrix of constants. The transformation
matrix is realized practically with an (m× n) array of fixed resistors. Decoding of the m signals to
retrieve an approximation to the original n is also accomplished by a linear transformation, namely,

5The greatest number q by which the ωn and φ̇n’s may be divided is determined by how distinct the side-bands
about each ωn/q remain, and by how well each φ̇n/q and |Fn| may be retrieved from them. Practically, the greatest
number appears to be about 2 or 3 if transmission of acceptable quality is to be realized.
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Figure 10.23: Structure of a perceptual subband speech coder (Tang et al. [1997]).

the transpose of the (m×n) matrix. The coefficients of the transformation are obtained to minimize
the mean square difference between the original n signals and the reconstructed n signals.

The technique was applied to the spectrum signals of a 16-channel vocoder (i.e., n = 16). For a
reduction to m = 6, it was reported that the output was almost completely understandable, although
quality was substantially less than that of the 16-channel vocoder. For m = 10, the quality was
judged to be bettcr than existing, conventional 10-channel vocoders. In the latter condition, the
additional saving in channel capacity is estimated to be in the ratio of 3 to 2.

Another related study used a Hadamard matrix transformation to reduce the redundancy among
the channel signals of a 16-channel vocoder (Crowther and Rader [1966]). The Hadamard trans-
formation produces unit-weight linear combinations of the channel signals. It therefore requires
no multiplications, but only additions and subtractions. This technique, implemented digitally in
a computer, was applied to two different 16-channel vocoders. The results showed that the qual-
ity provided by the vocoders when digitized for 4000 bits/sec could be retained in the Hadamard
transformation for a data rate as low as J 650 bits/sec. The Hadamard transformation is therefore
suggested as a simple, useful means for improving the quality of low bit-rate vocoders (Crowther
and Rader [1966]).

10.4.6 Sub-Band Coder

In subband coding, an analysis filterbank is first used to filter the signal into a number of frequency
bands and then bits are allocated to each band by a certain criterion. Because of the difficulty in
obtaining high-quality speech at low-bit rates using subband coding schemes, these techniques have
been mostly used for wideband medium-to-high bit rate speech coders and for audio coding.

An audio signal may only have energy in a small number of frequency bands; all other frequency
bands may have very low energy. It is usually possible to use fewer bits, for any given perceptual
quality level, by filtering the signal into K sub-bands, downsampling each sub-band by a factor of
K, and then allocating bits among the bands in order to minimize mean-squared error. For example,
G.722 is a standard in which ADPCM speech coding occurs within two subbands, and bit allocation
is set to achieve 7 kHz audio coding at rates of 64 kbps or less.

In (Cox et al. [1988, 1991], Gould et al. [1993]) subband coding is proposed as a flexible scheme for
robust speech coding. A speech production model is not used, ensuring robustness to speech in the
presence of background noise, and to non-speech sources. High-quality compression can be achieved
by incorporating masking properties of the human auditory system (Jayant et al. [1993], Tang et al.
[1997]). In particular, (Tang et al. [1997]) presents a scheme for robust, high-quality, scalable, and
embedded speech coding. Figure 10.23 illustrates the basic structure of the coder. Dynamic bit
allocation and prioritization and embedded quantization are used to optimize the perceptual quality
of the embedded bitstream, resulting in little performance degradation relative to a non-embedded
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implementation. A subband spectral analysis technique was developed that substantially reduces
the complexity of computing the perceptual model.

The encoded bitstream is embedded, allowing the coder output to be scalable from high quality
at higher bit rates, to lower quality at lower rates, supporting a wide range of service and resource
utilization. The lower bit-rate representation is obtained simply through truncation of the higher
bit-rate representation. Since source-rate adaptation is performed through truncation of the encoded
stream, interaction with the source coder is not required, making the coder ideally suited for rate
adaptive communication systems.

Almost every sub-band coder involves the following steps:

1. Filter x[n] into sub-band signals xk[n]. xk[n], the kth sub-band signal, is given by

xk[n] = hk[n] ∗ x[n], Xk(ω) = Hk(ω)X(ω) (10.114)

The sub-band filters are almost always created by modulating a prototype lowpass filter h[n]
in such a way that the resulting filters uniformly cover the frequency range from 0 to π:

hk[n] = 2h[n] cos

(
π(2k + 1)

2K
n+ φk

)
(10.115)

Hk(ω) = e−jφkH

(
ω +

π(2k + 1)

2K

)
+ ejφkH

(
ω − π(2k + 1)

2K

)
(10.116)

If the prototype lowpass filter h[n] has a cutoff frequency of ωc = π/2K, then the sub-band

filter hk[n] will have a passband of [πkK ,
π(k+1)
K ]. The filters cover the entire spectrum from −π

to π, and they have no intentional overlap.

2. The signals xk[n] are downsampled by a factor of K, creating signals dk[n]:

dk[n] = xk[Kn] (10.117)

Dk(ω) =
1

K

K−1∑

i=0

Xk

(
ω − 2πi

K

)
(10.118)

dk[n] are a set of K different signals, each sampled at a sampling rate of Fs/K samples per
second, for a total of Fs samples/second. Sub-band coding provides a lower bit rate for the
same audio quality if and only if dk[n] can be quantized with fewer average bits/sample than
x[n].

3. In frame number f , the coder transmits integer code words representing the clipping threshold
parameters TQ(f, k), the bit rates B(f, k), and the samples of signal dk[n]. The decoder uses

these parameters to synthesize d̂k[n].

4. d̂k[n] is upsampled to create:

vk[n] =

{
d̂k[n/K] n = multiple of K
0 otherwise

(10.119)

Vk(ω) = D̂k(Kω) (10.120)

5. Vk(ω) is filtered using a sub-band filterGk(ω) in order to get rid of all of the aliasing information

outside of the target sub-band of [πkK ,
π(k+1)
K ]. The filtered signal should be as nearly identical

as possible to xk[n], thus we write it as x̂k[n]:

x̂k[n] = gk[n] ∗ vk[n], X̂k(ω) = Gk(ω)Vk(ω) (10.121)
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Gk(ω) must have a passband of [πkK , π(k+1)
K ], identical to the passband of Hk(ω). One common

choice is
gk[n] = Khk[−n] (10.122)

Gk(ω) = KH∗
k (ω) = ejφkH∗

(
ω +

π(2k + 1)

2K

)
+ e−jφkH∗

(
ω − π(2k + 1)

2K

)
(10.123)

6. Finally, all of the reconstructed sub-band signals are added together to produce

x̂[n] =

K−1∑

k=0

x̂k[n] (10.124)

Avoiding Aliasing: Ideal Bandpass Filters

The goal of minimum-MSE audio coding is to reproduce x[n] as accurately as possible, that is, to
minimize E[(x̂[n] − x[n])2]. A sub-band coder introduces two types of error into the synthesized
signal. First, error may be introduced by quantization. Second, even if there is no quantization
(d̂k[n] = dk[n]), error may be introduced by aliasing.

Downsampling a signal results in aliasing (equation 10.118). Aliasing can be controlled, but only
if Hk(ω) and Gk(ω) are very carefully designed in order to minimize aliasing.

Suppose that there is no quantization, i.e., d̂k[n] = dk[n]. By combining all of the steps in the
algorithm, it is possible to write the output in terms of the input:

X̂k(ω) =
Gk(ω)

K

K−1∑

i=0

Hk

(
ω − 2πi

K

)
X

(
ω − 2πi

K

)
(10.125)

X̂(ω) =

K−1∑

k=1

X̂k(ω) (10.126)

“Aliasing” is any difference between X̂(ω) and X(ω) under the condition that d̂k[n] = dk[n]. The
goal of filter design, for a sub-band audio coder, is to design Hk(ω) and Gk(ω) so that the signal
X̂(ω) in equation 10.126 is equal to X(ω).

In order to better understand the aliasing problem, consider an ideal solution:

|Hk(ω)| =

{
1 πk

K ≤ |ω| < π(k+1)
K

0 otherwise
(10.127)

Gk(ω) = KH∗
k (ω) (10.128)

The filters in equations 10.127 and 10.128 result in the following simplification of equation 10.125:

X̂k(ω) = |Hk(ω)|2X(ω) (10.129)

By the definition of |H(ω)|, therefore, X̂(ω) = X(ω). Unfortunately, the filters in equation 10.127
can not be used in any practical system, because the impulse response hk[n] is infinite in length.

Pseudo Quadrature Mirror Filters (PQMF)

It turns out that, even though though it’s impossible to get x̂k[n] = xk[n] using non-ideal filters, it
is nevertheless possible to design Hk(ω) so that x̂[n] = x[n]. Consider the general formula for X̂(ω),

assuming no quantization (d̂k[n] = dk[n]), and assuming that Gk(ω) = KH∗
k(ω):

X̂(ω) =

K−1∑

k=0

X̂k(ω) (10.130)
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X̂(ω) =
K−1∑

k=1

H∗
k (ω)

K−1∑

i=0

Hk

(
ω − 2πi

K

)
X

(
ω − 2πi

K

)
(10.131)

Clearly, the only way that we can set X̂(ω) = X(ω) is by somehow getting rid of the aliased copies
X(ω − 2πi/K); the terms with i 6= 0 must not be allowed to “leak through” to the output. There
are two ways to get rid of the aliased copies: (1) use an ideal bandpass filter, or (2) use the aliased
terms from one band to cancel out the aliased terms from the neighboring band. Filters designed so
that the aliasing from one band cancels the aliasing from the neighboring band are called “pseudo
quadrature mirror filters (PQMF).” This section describes how to build PQMF.

Suppose that Hk(ω) and Gk(ω) both have “transition bands” of width roughly π/2K on either
side of their passbands, and that Hk(ω) ≈ 0 outside of the transition band. If the passband of Hk(ω)

is [πkK , π(k+1)
K ], then Hk(ω) should be very close to zero outside the frequency range [π(2k−1)

2K , π(2k+3)
K ].

Now, under this condition, consider equation 10.131 at frequencies ω ≈ πk0
K , for some particular

k0. Because of the stop-band condition on Gk(ω), only two bands contribute aliasing in the vicinity
of πk0K : band number k0−1, and band number k0. Furthermore, because of the stop-band condition

on Hk(ω), only two of the aliasing terms have energy near ω = pik0
K : the i = 0 term, and the i = k0

term. Near ω ≈ 2πk0
K , therefore, equation 10.131 reduces to a four-term sum:

X̂(ω) =
(
|Hk0−1(ω)|2 + |Hk0(ω)|2

)
X(ω)+ (10.132)

(
H∗
k0−1(ω)Hk0−1

(
ω − 2πk0

K

)
+H∗

k0(ω)Hk0

(
ω − 2πk0

K

))
X

(
ω − 2πk0

K

)
(10.133)

for ω ≈ πk0

K
, or more specifically,

π(2k0 − 1)

2K
< ω <

π(2k0 + 1)

2K
(10.134)

Suppose now that Hk(ω) is created by modulating a prototype lowpass filter, as shown in equa-
tion 10.116, reproduced here:

Hk(ω) = e−jφkH

(
ω +

π(2k + 1)

2K

)
+ ejφkH

(
ω − π(2k + 1)

2K

)
(10.135)

Suppose also that H(ω), the lowpass filter, is real-valued, meaning that h[n] is a non-causal even
function. Then the two aliased terms in equation 10.133 are

H∗
k0−1(ω)Hk0−1

(
ω − 2πk0

K

)
= e−2jφk0−1H

(
ω − π(2k0 − 1)

2K

)
H

(
ω − π(2k0 + 1)

2K

)
(10.136)

and

H∗
k0(ω)Hk0

(
ω − 2πk0

K

)
= e−2jφk0H

(
ω − π(2k0 + 1)

2K

)
H

(
ω − π(2k0 − 1)

2K

)
(10.137)

The only difference between these two terms is the phase term. These two aliasing terms cancel if

H∗
k0−1(ω)Hk0−1

(
ω − 2πk0

K

)
= −H∗

k0(ω)Hk0

(
ω − 2πk0

K

)
= (10.138)

which is accomplished if
e−2jφk0 = −e−2jφk0−1 (10.139)

Therefore the aliasing terms completely cancel out if the phase difference between neighboring bands
is an odd multiple of π2 , i.e.

φk − φk−1 =
(2r − 1)π

2
for integer r (10.140)
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Equation 10.140 says that the modulating sinusoids used to construct neighboring bands should be
90 degrees out of phase. Two sinusoids that are 90 degrees out of phase are said to be “in quadrature”
with respect to one another. Except for the quadrature term, filters Hk−1(ω) and Hk(ω) are mirror
images of one another reflected around the frequency πk

K , thus they are called “pseudo-quadrature
mirror filters” (PQMF).

A useful choice for the phases is

φk =
(2k + 1)rπ

4
(10.141)

for some odd-valued integer r.

Implementation Using the FFT

There are two methods for implementing a sub-band filtering algorithm using the FFT: one method
is more intuitively meaningful, and one is more computationally efficient. Let’s start with the
intuitively meaningful method.

The sub-band signals xk[n] are computed as

xk[n] =
∞∑

p=−∞

x[n− p]hk[p] (10.142)

Substituting in the value of hk[m] gives

xk[n] = 2
∞∑

p=−∞

x[n− p]h[p] cos

(
π(2k + 1)

2K
p+ φk

)
(10.143)

Remember that we only need the values of xk[n] at integer multiples of K, thus equation 10.143
only needs to be computed at samples number n = fK for integer values of f . Let us also define a
“window function” w[n] = h[−n], and substitute m = −p, then we get that

xk[fK] = 2

∞∑

m=−∞

x[fK +m]w[m] cos

(
−π(2k + 1)

2K
m+ φk

)
(10.144)

Remember that the short-time Fourier transform (STFT) was defined as

Xf (ω) =

∞∑

m=−∞

x[fK +m]w[m]e−jωm (10.145)

Comparing equations 10.144 and 10.145, we see that

xk[fK] = 2ℜ
{
ejφkXf

(
2π(2k + 1)

4K

)}
(10.146)

In other words, xk[fK] are the real parts of the odd-numbered frequency samples of the 4K-point
STFT, computed using a window of w[n] = h[−n], and phase-shifted by φk. All of the details of
this transformation should seem perfectly reasonable:

• Only the odd-numbered frequency samples are kept. A 4K-point DFT creates frequency
samples at ω = 0, π

2K ,
π
K ,

3π
2K ,

2π
K , . . .. Of these frequency samples, the even-valued samples

correspond to band edges (0, π
K , etc.) while the odd-valued samples correspond to the center

frequencies of the sub-bands ( π
2K , 2π

2K , etc.). It seems intuitively reasonable that the PQMF
computation should keep the STFT samples located at the centers of the band-pass filters,
and throw away the STFT samples located at the edges of the band-pass filters.
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• Only the real part of the STFT is retained because the filters are created by modulating h[n]
using cosines rather than using complex exponentials. For the same reason, it is only necessary
to keep the frequencies between 0 ≤ ω ≤ π (0 ≤ k ≤ K−1): the STFT is conjugate-symmetric,
so ℜ(X(ω)) = ℜ(X(2π − ω)).

• The window is w[n] = h[−n] because every filter is a modulated copy of h[n].

• The phase shift φk equals the phase of the modulating cosine.

Equation 10.146 is the most intuitively meaningful way to compute xk[fK], but it is not the most
computationally efficient method. The most computationally efficient method is to pre-modulate the

windowed signal using a complex exponential modulator e−
jπm
2K . The complex-valued time domain

signal x[fK +m]w[m]e−
jπm
2K is then Fourier transformed using a length-2K FFT:

xk[fK] = 2ℜ
{
ejφk

∞∑

m=−∞

x[fK +m]w[m]e−
jπm
2K e−

j2πkm
2K

}
(10.147)

Just as an FFT is the most efficient method for computing the sub-band filtered signals, an FFT
is also the most efficient method for synthesizing the output signal. Consider:

x̂[n] =

K−1∑

k=0

x̂k[n] =

K−1∑

k=0

∞∑

m=−∞

vk[m]gk[n−m] (10.148)

If there is no quantization, then vk[fK] = xk[fK] for integer values of f , and v[n] = 0 otherwise.
Substituting in gk[m] = Khk[−m], we find that equation 10.148 can be expanded to

x̂[n] = 2K

∞∑

f=−∞

h[fK − n]

K−1∑

k=0

xk[fK] cos

(
π(2k + 1)(fK − n)

2K
+ φk

)
(10.149)

There are a number of ways that equation 10.149 can be rewritten in terms of an FFT. Here is one:
define a short-time phase-shifted spectrum Yf

(
2πk
2K

)
as

Yf

(
2πk

2K

)
=

{
ejφkxk[fK] 0 ≤ k ≤ K − 1
0 otherwise

(10.150)

Second, define the inverse STFT of Yf (ω) to be

yf [m] =
1

K

2K−1∑

k=0

Yf

(
2πk

2K

)
e

j2πkm
2K (10.151)

Third, define the short-time signal x̂f [m] to be the windowed real part of the modulated inverse:

x̂f [m] = 2K2h[m]ℜ
{
e

jπm
2K yf [m]

}
(10.152)

Finally, create x̂[n] by flipping, shifting, and adding the short-time signals:

x̂[n] =

∞∑

f=−∞

x̂f [fK − n] (10.153)

We have not yet discussed the length of the window w[n]. Recall that w[n] = h[−n], therefore the
length of the window must equal the length of the prototype filter h[n]. Equations 10.147 and 10.152
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use length-2K Fourier transforms. In general, it may be difficult to achieve a narrow transition band,
as required by the PQMF theory, using a prototype filter h[n] as short as only 2K samples. The
MPEG-I and MPEG-II coding standards use K = 32 filters, with a prototype filter length of 512
samples. Fortunately, the length of the window really doesn’t effect the computational complexity
of equations 10.147 and 10.152 at all. In order to use equation 10.147 using a very long window,

the long windowed signal should be modulated by e−
jπm
2K , and then time-aliased down to a signal

of length 2K prior to applying the FFT. Similarly, in order to use equation 10.152, a 2K-sample
inverse FFT operation is used to compute an inverse signal of length 2K; the resulting signal is then

repeated periodically, modulated using the complex exponential e
jπm
2K , and its real part is windowed

using h[m].
Malvar has shown that a PQMF filter bank with a window length of 2K samples and phase

terms of φk = − 3π
2 (k+ 1

2 ) cancels out not just the aliasing between neighboring pairs of sub-bands,
but also the aliasing between every pair of sub-bands.

Sub-Band Quantization

If audio is quantized in sub-bands, the output signal is the sum of the reconstructed signals in all
different bands

x̂[n] =

K∑

k=1

x̂k[n] (10.154)

The true signal is the sum of all of the (unknown) true sub-band signals, i.e.

x[n] =

K∑

k=1

xk[n] (10.155)

Therefore the error is just the sum of the sub-band errors

e[n] =

K∑

k=1

ek[n] (10.156)

In the case of ideal bandpass filters, the sub-band signals occupy completely independent frequency
bands, thus they are completely uncorrelated. In this case the total error power is just the sum of
the sub-band error powers, i.e.

SNR =

∑K−1
k=0

∑N−1
n=0 x

2
k[n]

∑K−1
k=0

∑N−1
n=0 e

2
k[n]

(10.157)

It is possible to dynamically code the clipping threshold, TQ, and transmitting it as “side infor-
mation” once per frame. In a sub-band coder, the “side information” usually includes two types of
information: a clipping threshold for each band, TQ(k), and a different number of bits used to code
the audio in each band, B(k), for 0 ≤ k ≤ K − 1. Suppose that the clipping threshold is always
set to TQ(k) =

√
3Rσx(k), where R is some fixed constant “safety ratio” chosen in advance by the

system designer, and σ2
x(k) is the power of the sub-band signal xk[n]. Then, in this case, the total

SNR of a frame of audio is

SNR =

∑K−1
k=0 T 2

Q(k)

R2
∑K−1

k=0 T 2
Q(k)4−B(k)

(10.158)

The “minimum mean-squared error” bit allocation strategy is the strategy that maximizes equa-
tion 10.158, subject to a fixed-bit-rate constraint which says that the average number of bits per
sample of the audio signal must be Bave:

K−1∑

k=0

B(k) = KBave (10.159)
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Using Lagrange multipliers to minimize equation 10.158 subject to the constraint in equation 10.159
yields the following minimum-MSE bit allocation strategy:

B(k) = KBave

(
log(T 2

Q(k))
∑K−1

i=0 log(T 2
Q(i))

)
(10.160)

Equation 10.160 says that the number of bits allocated to any given channel should be propor-
tional to the channel’s log power, logT 2

Q(k). The base of the logarithm doesn’t matter, as long as
the numerator and denominator are computed using the same base. Notice that equation 10.160
is equivalent to the claim that the number of quantization levels, Q(f, k), should be proportional
to TQ(f, k). Equivalently, the quantization step size ∆(f, k), and the error variance ∆2/12, should
be made independent of the channel number. This is an intuitively reasonable result: total MSE is
minimized when every channel has the same MSE.

In sub-band coding, the coder consists of the following steps.

1. The audio signal x[n] is filtered through bandpass filter Hk(ω) to create sub-band signal xk[n],
0 ≤ k ≤ K − 1.

2. xk[n] is critically downsampled by K in order to create vk[n].

3. Once per frame, the maximum value of vk[n] is computed. The clipping threshold TQ(k) must
be chosen from a codebook of possible values, known to both the transmitter and receiver.
Typically, TQ(k) is set to the value, from this codebook, that is closest to the maximum
amplitude of vk[n]. Once all of the clipping thresholds have been chosen, the number of bits
in each band is determined using Eq. 10.160, or using an algorithm such as water-filling bit
allocation (next section). There are K different clipping thresholds per frame, and K different
bit allocations; these numbers are transmitted as side information.

4. vk[n] is quantized, using clipping threshold TQ(k) and B(k) bits. The code word qk[n] is
transmitted.

The decoder performs the same steps in reverse, i.e.,

1. v̂k[n] is computed using a dequantizer with maximum amplitude TQ(k), and with B(k) bits.

2. v̂k[n] is upsampled by a factor of K, then filtered by H∗
k (ω) in order to create x̂k[n]:

x̂k[n] = hk[−n] ∗ v̂k[n/K] (10.161)

3. The sub-band signals are added together to create x̂[n]:

x̂[n] =
K−1∑

k=0

x̂k[n] (10.162)

Water-Filling Bit Allocation

Equation 10.160 is impossible to implement in practice, because it specifies a non-integer number
of bits per channel. Two methods are commonly used to allocate an integer number of bits to each
channel. The first method computes an initial bit allocation by truncating equation 10.160; the
extra bits are allocated arbitrarily to any channel until the total is KBave. This algorithm may be
expressed as:

B(k) ≥ floor

(
KBave

(
log(T 2

Q(f, k))
∑K−1

i=0 log(T 2
Q(i))

))
(10.163)
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The second common method, called the “water-filling” bit allocation method, achieves the result
specified by equation 10.163, but with a slightly more principled distribution of the extra bits.
Water-filling bit allocation is based on the observation that noise power, in decibels, is equal to
signal power minus 6B:

10 log10

∆2(k)

12
= 10 log10

T 2
Q(k)

3
− 6B(k) (10.164)

Noise power may therefore be minimized using the following algorithm:

1. Initialize: Set the initial “water level” in each bin to

W (k) = 10 log10

T 2
Q(k)

3
(10.165)

2. Iterate: For b = 1, . . . ,KBave,

(a) Find the band k∗ with maximum W (k).

(b) Increment B(k∗).

(c) Subtract 6dB from W (k∗).

The final values of W (k) are estimates of the noise power in each channel. The resulting final bit
allocation is guaranteed to satisfy equation 10.163.

The rationale behind the water-filling bit allocation strategy is that W (k) is an estimate of the
noise power, in decibels, in band k. Notice that when B(k) = 0, W (k) is initialized to equal the
signal power in band k! A “zero bit quantizer” always creates the signal x̂[n] = 0. The error is
e[n] = x̂[n]− x[n] = −x[n], thus the quantization noise spectrum of a zero-bit quantizer is the same
as the spectrum of the input signal, x[n].

The “water-filling bit allocation” algorithm starts out with zero bits per sub-band, thus the
quantization noise power in each band is equal to the signal power in that band. The bits are
allocated one at a time. Each bit is allocated to the band with the highest remaining quantization
noise power. After each bit is allocated to a band, the quantization noise power in that band is
reduced by 6dB. Then the next bit is allocated, and so on, until all of the available bits have been
allocated.

Example 10.4.1 Water-Filling Bit Allocation

Consider the following signal:

x[n] = 3 cos(0.1πn) + cos(0.6πn) (10.166)

The autocorrelation and power spectrum of x[n] are given by

rx[n] =
9

2
cos(0.1πn) +

1

2
cos(0.6πn) (10.167)

Rx(ω) =
9

2
π [δ(ω − 0.1π) + δ(ω + 0.1π)] (10.168)

+
1

2
π [δ(ω − 0.6π) + δ(ω + 0.6π)] (10.169)

Suppose that x[n] is filtered into four bands. The signal intensities of the four band-pass filtered
signals are

Ix1 =
1

π

∫ π

0

Rx1(ω)dω =
9

2
10 log10(

9

2
) ≈ 6dB (10.170)
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Ix2 =
1

π

∫ π

0

Rx2(ω)dω = 0 10 log10(0) = −∞dB (10.171)

Ix3 =
1

π

∫ π

0

Rx3(ω)dω =
1

2
10 log10(

1

2
) ≈ −3dB (10.172)

At zero bits/sample, em[n] = xm[n] , so noise intensity is equal to the signal intensity in each
band, σ2

em
= σ2

xm
.

Suppose that we want to create a coder with an average of 1 bit/sample. The sub-band coder
has 4 bands, therefore we have a total of 4 bits to allocate among the 4 bands.

With the intensities given in the previous example, we find that bit #1 is allocated to band 1.
The residual noise in band 1 after allocation of this bit is 0dB.

Bit #2 is also allocated to band 1. The remaining noise intensity in band 1, after getting two
bits allocated to it, is -6dB.

Band #3 now has the highest residual quantization noise, so band #3 gets bit #3. The quanti-
zation noise in this band is reduced by 6dB, to -9dB.

Band #1 now has the highest residual quantization noise (-6dB), so the fourth bit is allocated
to band #1. The residual quantization noise in band #1 is now reduced to -12dB.

The resulting bit allocation uses 3 bits to code samples from band #1 (an 8-level quantizer), and
1 bit to code samples from band #3 (a two-level quantizer). Bands #2 and #4 have no bits at all,
so they are simply not transmitted; the reconstructed signal in these bands is set to 0.

Signal to Mask Ratio

Thus far, we have been allocating each bit to the sub-band with the highest residual quantization
noise energy,

Ixm =
1

π

∫ mπ
32

(m−1)π
32

Rx(ω)dω = Iem|0 Bits (10.173)

Another option would be to use a psychophysical model to estimate the perceptual noise “audi-
bility” or “loudness” in each band, and to allocate each bit to the band with the highest residual
noise audibility:

Axm =
1

π

∫ mπ
32

(m−1)π
32

Rx(ω)

Mx(ω)
dω = Aem|0 Bits (10.174)

where Mx(ω) is the “masking spectrum,” an estimate of the level of noise at freqeuncy ω that gets
masked by the signal in the same band.

The masking spectrum is defined so that noise is audible if and only if

Re(ω)

Mx(ω)
≥ 1 “Noise To Mask Ratio′′ (10.175)

There are three types of masking:

1. Masking of one tone by another tone at the same frequency and same time. This type of
masking has no name; we can call it “Simultaneous Same-Frequency Masking.”

2. Masking of one tone by another tone at the same time, but at a slightly different frequency.
This is called “Simultaneous Masking.”

3. Masking of sounds at one time by sounds at another time is called “Non-simultaneous Mask-
ing.”
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Figure 10.24: White noise at 5dB SNR may be audible, because the noise is louder than the signal
in some frequency bands. If the quantization noise is spectrally shaped, with a shape similar to the
shape of the speech spectrum, then it may be possible to completely mask the quantization noise so
that it is inaudible even at less than 5dB SNR.

Example 10.4.2 Simultaneous Same-Frequency Masking

x[n] = A cos(0.1πn) (10.176)

e[n] = B sin(0.1πn) (10.177)

x̂[n] = x[n] + e[n] (10.178)

The signals x[n] and x̂[n] are indistinguishable if the loudness levels of these two tones differ by less
than the intensity JND (just-noticeable-difference). The intensity JND is about 1dB, so x[n] and
x̂[n] are indistinguishable if

10 log10

(
A2 +B2

A2

)
< 1dB (10.179)

Expanding Eq. 10.179, we find that the noise is masked if

⇐⇒ Re(ω) <
1

4
Rx(ω) (10.180)

From the example above, we see that the masking spectrum is given by:

Mx(ω) ≈ 1

4
Rx(ω) (10.181)

e[n] Inaudible If
Re(ω)

Mx(ω)
< 1 For All Ω (10.182)

Simultaneous Masking occurs when a tone at one frequency (e.g., ω = 0.1π) masks noise at
nearby frequencies. Simultaneous masking is possible because of the spread of energy on the basilar
membrane: a tone at ω excites every point on the basilar membrane whose characteristic frequency
is within one ERB of ω, therefore noise centered at those other frequencies tends to be masked by
the strong tone at ω.

Remember that the sound power encoded on a particular auditory nerve fiber is computed by
filtering the input power spectrum through the local basilar membrane response. If the nerve fiber
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is tuned to frequency ω, then the sound power on that nerve in response to input spectrum Rx(ψ)
is approximately given by

P (ω) ≈ 1

π

∫ π

0

Rx(ψ)|Γω(ψ)|2dψ (10.183)

In Eq. 10.183, Γω(ψ) is the frequency response of the auditory filter centered at center frequency
ω. Recall from Chap. 6 that the frequency response of the auditory filter is well represented by the
response of a second-order gamma-tone filter,

|Γω(ψ)|2 =

∣∣∣∣∣

(
α(ω)

(j(ψ − ω) − α(ω))

)2

+

(
α(ω)

(j(ψ + ω) − α(ω))

)2
∣∣∣∣∣

2

(10.184)

γ[n] ∝ ne−αn cos(ωn) (10.185)

In Eq. 10.184, the parameter α(ω) is the 6dB bandwidth of the auditory filter centered at frequency ω,
expressed in units of radians/sample. Recall from Chap. 6 that the 6dB bandwidth of a gammatone
filter is proportional to its equivalent rectangular bandwidth:

α(ω) =
8

π
ERB(ω) (10.186)

The equivalent rectangular bandwidth, expressed in radians/sample, was shown by Moore and Glas-
burg (JASA, 1983) to be

ERB(ω) ≈ 10−6Fs

(
ω +

2π312

Fs

)(
ω +

2π14700

Fs

)
(10.187)

Quantization error will be inaudible if the difference between the quantized signal and the original
is less than about 1dB, i.e.

10 log10

(∫ π
0 (Rx(ψ) +Re(ψ))|Γω(ψ)|2dψ∫ π

0 Rx(ψ)|Γω(ψ)|2dψ

)
< 1dB (10.188)

Eq. 10.188 is equivalent to
∫ π

0

Re(ψ)|Γω(ψ)|2dψ < 1

4

∫ π

0

Re(ψ)|Γω(ψ)|2dψ (10.189)

Suppose that e[n] is caused by quantization noise with a relatively large number of bits per sample.
In that case, Re(ω) is relatively flat within a sub-band, so we can use this approximation:

∫ π

0

Re(ψ)|Γω(ψ)|2dψ ≈ Re(ω)

∫ π

0

|Γω(ψ)|2dψ = Re(ω)ERB(ω) (10.190)

because the ERB is defined to be the integral of the squared magnitude filter response. Substituting
Eq. 10.190 into Eq. 10.188 yields the result that noise is inaudible whenever Re(ω) < Mx(ω), where

Mx(ω) =
1

4ERB(ω)

∫ π

0

Rx(ψ)|Γω(ψ)|2dψ (10.191)

Schroeder proposed a series of approximations that lead to a computationally efficient method for
computing the masking spectrum. First, when performing computations in the positive-frequency
half of the power spectrum, ignore the negative-frequency half of the auditory filter:

|Γω(ψ)|2 ≈
∣∣∣∣

α(ω)

(j(ψ − ω) − α(ω))

∣∣∣∣
4

, ψ > 0 (10.192)
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Second, Schroeder proposed performed computing the masking spectrum in Bark units. Bark-
frequency is a nonlinear function, β(ω), defined so that one ERB corresponds to one Bark, i.e.

dω

dβ
= ERB(ω) (10.193)

Ignoring the quadratic term in Eq. 10.187, and integrating Eq. 10.193, yields:

β(ω) ≈ 11 log

(
1 +

Fsω

640π

)
(10.194)

ω(β) ≈ 640π

Fs

(
eβ/11 − 1

)
(10.195)

The power spectrum of the masking signal, Rx(ω), can be written in Bark. Because Rx(ω)
is a density rather than a mass function, the mapping from Rx(ω) to Rx(β) needs to take into
consideration the nonlinearity, as shown here:

Rx(β) =
dω

dβ
Rx(ω) = ERB(ω)Rx(ω) (10.196)

If Eq. 10.196 is applied to the positive-frequency auditory filters (Eq. 10.192), the result turns out to
be remarkably simple (by design—after all, this is the reason that Schroeder chose “Bark frequency”
as the units in which to work):

Γβ(φ) = Γ(φ− β) (10.197)

where the “smoothing function” Γ(φ) is given by

|Γ(φ)|2 ≈
∣∣∣∣

8
π

(jφ− 8
π )

∣∣∣∣
4

(10.198)

By plugging Eq. 10.197 into Eq. 10.191, we find that the masking spectrum is computed as

Mx(β) =
1

4ERB(ω)

∫ β(π)

0

Rx(φ)|Γ(β − φ)|2dφ (10.199)

Given Mx(β), one can then compute the linear-frequency masking spectrum as

Mx(ω) =
dβ

dω
Mx(β(ω)) =

Mx(β(ω))

ERB(ω)
(10.200)

Eq. 10.199 is a convolution in frequency. Eq. 10.199 can lead to two different types of really
dramatic computational savings. First, if we assume that the low-frequency components of the
signal don’t matter very much, then it is possible to write that

Mx(β) ≈ 1

2π

∫ β(π)

−β(π)

Rx(φ)|Γ(β − φ)|2dφ = F {rx(b)rγ(b)} (10.201)

where rx(b) and rγ(b) are the inverse Fourier transforms ofRx(β) and |Γ(β)|2, respectively. Eq. 10.201
can be computed by taking the inverse FFT of Rx(β), windowing it, and then taking the forward
FFT.

Unfortunately, Eq. 10.201 is usually not as good an approximation as Eq. 10.199, because
Eq. 10.201 smooths the low-frequency components of the power spectrum (Rx(β) at β < 1) in
a way that is perceptually unrealistic, and often unacceptable. Schroeder proposed, instead, that
audio coders should implement Eq. 10.199 directly, but that the masking smoother doesn’t need
to be quite as complicated as that given in Eq. 10.198. Instead, he proposed using the triangular
smoother:

|Γ(β)|2 = max(0, 1 − |β|) (10.202)
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Example 10.4.3 Masking Spectrum of a Sinusoid

Rx(ω) =
π

2
δ(ω − 0.64π) (10.203)

Suppose that the sampling frequency is Fs = 8000Hz. Then a tone at ω = 0.64π is a tone at 2560Hz,
which corresponds to 11 log(9) = 24.2 Bark.

Rx(β) =
π

2
ERB(0.64π)δ(β − 11 log(9)) (10.204)

Where the ERB at 2560Hz comes out to be 265Hz, or 0.066pi.

Using Schroeder’s convolution-in-frequency method, the masking spectrum is computed as

Mx(β) =
1

4ERB(0.64π)

∫ β(π)

0

Rx(ψ)|Γ(β − ψ)|2dψ (10.205)

=
π

8
|Γ(β − 11 log(9)))|2 (10.206)

= max
(
0,
π

8
(1 − |β − 11 log(9)|)

)
(10.207)

where the last line uses Schroeder’s triangular spread-of-masking function.

Mx(ω) can be computed by inverse-frequency-warping Mx(β). If Γ(β) is a triangle centered at
β(0.11π), then Γ(ω) will be a pseudo-triangle centered at ω = 0.64π:

Mx(ω) = max

(
0,

π

8ERB(ω)
(1 − |β(ω) − 11 log(9)|)

)
(10.208)

= max

(
0,

1

α
(1 − |β(ω) − 11 log(9)|)

)
(10.209)

≈ max

(
0,

1

α

(
1 − |ω − 0.64π|

0.066π

))
(10.210)

In the solution above, the first approximation makes the relatively benign assumption that
ERB(ω) ≈ ERB(0.11π) for all ω within one ERB of 0.11π. The second approximation assumes
that the pseudo-triangle is approximately a triangle in ω, with a base width equal to twice the
ERB. The second approximation is obviously a little more drastic than the first, but it is not un-
reasonable, considering that the triangular spread-of-masking function is itself only an approximate
representation of the true gammatone filter shape.

The solution demonstrates that a pure tone at a relatively high frequency (2560Hz) masks lower-
amplitude noise within one ERB on either side of the tone, i.e., within about ±10% of the tone’s
center frequency. Outside of this one-ERB range, a pure tone masks very little of the quantization
noise.

10.4.7 Sinusoidal Transform Coding

Audio synthesis in a sinusoidal transform coder consists of three steps. First, L or more continuous
frequency “tracks” are constructed by stringing together harmonics from consecutive frames. Second,
amplitudes and phases of the peaks in each track are smoothly interpolated, in order to avoid abrupt
discontinuities at phrase boundaries. Finally, the smoothly interpolated amplitudes and phases are
inserted into a Fourier series equation in order to synthesize the output audio waveform.
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STFT of Periodic Signals

Suppose x[n] is periodic with fundamental frequency ω0 = 2π/τ0, i.e.

x[n] =

L∑

l=1

γle
jlω0n (10.211)

Then

Xf (ω) =

∞∑

n=−∞

x[n+ fS]w[n]e−jωn

=
∞∑

n=−∞

w[n]e−jωn
L∑

l=1

γle
jlω0(n+fS)

=

L∑

l=1

γle
jlω0fS

∞∑

n=−∞

w[n]e−jn(ω−lω0)

=

L∑

l=1

γlfW (ω − lω0)

where the frame-synchronous Fourier series coefficient is defined as

γlf = γle
jlω0fS (10.212)

“Pitch-synchronous analysis” is analysis using a window length N that is an integer multiple of
the pitch period τ0. Pitch-synchronous analysis makes it possible to design much simpler, low-noise
analysis algorithms. The problem with pitch-synchronous analysis is that it is only possible if the
pitch period τ0 is known in advance. Many music analysis algorithms first estimate τ0 using an
arbitrary N , then go back and perform the STFT a second time using N = 2τ0.

The rectangular window spectrum WR(ω) has nulls at ω = 2πk/N for any nonzero integer k.
The Hanning and Hamming windows have nulls at ω = 2πk/N for k ≥ 2. The triangular window
WT (ω) has nulls at ω = 2πk/N for even values of k.

Suppose that N is an even multiple of τ0, meaning that N/τ0 is an even integer. Consider the
N -point DFT of the window:

W

(
2πk

N

)
=






W (0) k = 0
0 k = multiple of N/τ0
possibly nonzero otherwise

(10.213)

For example, in the typical “pitch-synchronous” case that N/τ0 = 2, the DFT of the window is
equal to zero for all frequency samples such that k is even. Remember that the k = 0 term is just
the DC value of the window:

W (0) =
∑

n

w[n] (10.214)

Putting this information into the formula for the STFT, we get

Xf

(
2πk

N

)
=

L∑

l=1

γlfW

(
2πk

N
− 2πl

τ0

)
=

L∑

l=1

γlfW

(
2π

N
(k − lN/τ0)

)
(10.215)

At the frequencies such that k = lN/τ0 (ω is an integer multiple of ω0), the STFT simplifies to

Xf

(
2πk

N

)
= γlfW (0) if k = lN/τ0 (10.216)
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Equation 10.216 suggests an algorithm for audio synthesis. First, estimate the pitch period τ0.
Second, compute the STFT using N/τ0 = 2. Third, compute coefficients of the Fourier series using
the formula

γlf =
Xf (2πl/τ0)

W (0)
(10.217)

Finally, resynthesize the time-domain waveform using the Fourier series formula:

x[n] =

L∑

l=1

γlfe
jlω0n, fS ≤ n ≤ (f + 1)S − 1 (10.218)

The Quatieri and McAulay method implements the analysis algorithm in equation 10.217 once
per frame, with the following simplification: Quatieri and McAulay normalize the window in advance,
so that W (0) = 1.

Analysis

The analysis part of the sinusoidal transform coder computes three sets of parameters in every
frame: a set of sine wave frequencies ωlf , the corresponding sine wave amplitudes Alf , and the
corresponding phases θlf (l is the harmonic number, f is the frame number). The frame rate is
usually about 30-100 frames/second. The number of peaks per frame ranges between about L = 10
(for low-bandwidth, low-quality coding) up to as much as L = N/2 (in which case the number of
parameters transmitted is equal to the dimension of the STFT; this case is used for high-quality
time-scale modification and other problems that do not require bandwidth compression).

ωlf = arg maxXf (ω), l = 1, ..., L, 0 ≤ ω ≤ π (10.219)

γlf =
Xf (ωlf )

W (0)
(10.220)

Alf = |γlf | (10.221)

θlf = ∠γlf (10.222)

Notice that there is no need to compute or transmit the amplitudes and phases of peaks in the
negative-frequency part of the spectrum; by conjugate symmetry,

|Xf (−ωlf )| = AlfW (0) (10.223)

∠Xf (−ωlf ) = −θlf (10.224)

Track Synthesis

Audio synthesis in a sinusoidal transform coder consists of three steps. First, L or more continuous
frequency “tracks” are constructed by stringing together harmonics from consecutive frames. Second,
amplitudes and phases of the peaks in each track are smoothly interpolated, in order to avoid abrupt
discontinuities at phrase boundaries. Finally, the smoothly interpolated amplitudes and phases are
inserted into a Fourier series equation in order to synthesize the output audio waveform.

The process of tracking assigns each harmonic to a “track number” i(l, f) dependent on both
the peak number l and the frame number f . Tracks are “grown” from left to right, by connecting
peaks in consecutive frames if their peak frequencies are not too far apart. The tracking algorithm
begins with i(l, 1) = 1, meaning that in the first frame, track number equals peak number. The
total number of tracks is initialized to I = L.
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After initializing the tracks, the following steps are performed for every frame f ≥ 1. First,
compute the forward match l(k) and the backward match k(l):

l(k) = argmin |ωl(k)f − ωk,f−1|, 1 ≤ k ≤ L (10.225)

k(l) = arg min |ωlf − ωk(l),f−1|, 1 ≤ l ≤ L (10.226)

If any pair is joined by both forward-match and backward-match (k(l(k)) = k), and if the peak
frequencies are not too far apart (|ωlf − ωk,f−1| ≤ ∆ for some threshold ∆), then they should be
joined together into the same track:

i(l(k), f) = i(k, f − 1) (10.227)

If the forward-match and backward-match disagree, but the peaks are not too far apart (|ωlf −
ωk,f−1| ≤ ∆), then try the second-best forward match. If that fails, try the second-best backward
match.

If any peak ωk,f−1 can not be coupled with any forward match such that |ωlf − ωk,f−1| ≤ ∆,
then the track i(k, f − 1) “dies out” and is never re-used.

If any peak ωl,f can not be coupled with any backward match such that |ωlf − ωk,f−1| ≤ ∆,
then the peak is assigned to a new track “born” in frame number f . Mechanically, “birth” of a new
track is represented by the steps

I = I + 1, i(l, f) = I (10.228)

Once all peaks have been assigned to tracks, the inverse map must be constructed. In every
frame, construct the inverse lookup table

l(i, f) =

{
l if ∃ l : i(l, f) = i
0 otherwise

(10.229)

Interpolation

Once the peaks have been assigned to tracks, peak amplitudes and phases are smoothly interpolated
between frame boundaries. In this section, the peak number l is assumed to always mean “the peak
corresponding to track number i.” For example, ωlf is a shorthand for ωl(i,f),f , while ωl,f+1 is a
shorthand for ωl(i,f+1),f+1.

Amplitude of track i in frame f is linearly interpolated between the peaks l(i, f) and l(i, f + 1):

Ai[n] =

(
n− fS

S

)
Alf +

(
(f + 1)S − n

S

)
Al,f+1, fS ≤ n ≤ (f + 1)S − 1 (10.230)

Tracks that “die” in frame f are linearly interpolated down to zero amplitude. Tracks that are
“born” in frame f + 1 are linearly interpolated up from zero amplitude.

Frequency is the derivative of phase: θlf is the phase in radians of peak number l at time n = fS,
and ωlf is the phase derivative of the same peak measured in radians per sample. Frequency and
phase can be interpolated together using a smooth cubic function

θi[n] = αif + βif (n− fS) + γif (n− fS)2 + δif (n− fS)3, fS ≤ n ≤ (f + 1)S − 1 (10.231)

where the constants αif , βif , γif , and δif are chosen so that both phase and frequency match the
boundary conditions at both ends of the frame:

θi[fS] = θlf = αif (10.232)

θ̇i[fS] = ωlf = βif (10.233)

θi[(f + 1)S] = θl,f+1 + 2πM = αif + βifS + γifS
2 + δifS

3 (10.234)

θ̇i[(f + 1)S] = ωl,f+1 = βif + 2γifS + 3δifS
2 (10.235)
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Equations 10.232 and 10.235 would completely specify the four parameters αif , βif , γif , and δif ,
except that the phase at the end of the frame is ambiguous: it is possible to add any integer multiple
of 2π to the phase without changing ejθl . The phase ambiguity is resolved by choosing the parameter
M so that the ending phase, θl,f+1 + 2πM , is as close as possible to the starting phase θlf plus the
average phase derivative:

M = arg min

∣∣∣∣θlf +
(ωl(i,f),f + ωl(i,f),f )

2
S − (θl,f+1 + 2πM)

∣∣∣∣ (10.236)

If a frequency track is born or dies during frame f , the frequency of the track stays the same
from beginning to end of frame f : consequently, the phase changes linearly all through the frame.

Synthesis

Once peaks have been arranged into tracks, and the phase and amplitude of each track are known
for every frame, then synthesis uses the time-varying Fourier series formula:

x̂[n] =

I∑

i=1

Ai[n] cos(θi[n]), fS ≤ n ≤ (f + 1)S − 1 (10.237)

where x̂[n] is the synthesized approximation to x[n], S is the frame spacing, and i is the “track”
number.

Time-Scale and Pitch Modification

When a sampled waveform is played back at B times its original sampling frequency, the waveform
changes in two ways. First, the waveform speeds up by a factor of B. Second, the pitch of the
waveform also increases by a factor of B. The pitch change associated with speedup or slowdown of
a waveform is sometimes called “wow,” or more colloquially, “the chipmunk effect.”

Using sinusoidal transform coding, it is possible to change the time scale of a waveform without
changing its pitch. The algorithm has three steps:

1. Perform analysis and peak tracking as described above.

2. Change the frame skip parameter from S samples to S/B samples.

3. Perform amplitude interpolation, phase interpolation, and Fourier series synthesis exactly as
described above, but using S/B instead of S as the frame skip parameter.

Likewise, it is possible to use sinusoidal transform coding to perform pitch modification. The
simplest pitch modification algorithm is as follows:

1. Modify the time-scale of the waveform by a factor of 1/B.

2. Play back the waveform at a sampling rate B times its original sampling rate.

10.5 Predictive Quantization

10.5.1 Delta Modulation

Considerable interest attaches to realizing the advantages of digital transmission in economical ways.
Multi-bit quantizers, such as used in PCM, are relatively expensive. In telephone communication
they normally are not dedicated to individual customers, but typically are shared in time-division
multiplex. This requires individual analog transmission to a central point where the digitizing occurs.
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Figure 10.25: Delta modulator with single integration

Figure 10.26: Waveforms for a delta modulator with single integration

In many instances it is desirable to digitize the signal immediately at the source (for example, in
some rural telephone systems). Inexpensive digital encoders which can be dedicated to individual
customers are therefore required. Delta modulation is one solution.

Delta modulation (DM) may be considered perhaps the simplest form of DPCM. Quantization
of the error signal is to one-bit only (i.e., a simple comparator), and a single or double integrator is
typically used as the predictor network, as shown in Fig. 10.25a. The transmitted binary samples, ei,
are either +1 or -1 and represent the sign of the error, e(t). The integrator can be implemented many
ways, including a simple analog storage capacitor. A digital implementation, using the terminology
employed in the earlier discussion of predictive quantizing, is shown in Fig. 10.25b. The box T is
a one-sample delay and al = 1 for an ideal integrator. A sample-and-hold converts the discrete
samples to a continuous function.

The local estimate provided by the integrator, ˆ̃s(t), is the staircase function shown in Fig. 10.26.
The step size of the staircase function is determined by the amplifier constant, k. The step-size is
typically chosen small compared to the input signal magnitude. Two types of distortion can occur
in the estimate -granular distortion and slope overload. The former is determined by the step size
of the quantization (that is, by the amplifier k). The latter is caused by the inability of the encoder
to follow the signal when its slope magnitude exceeds the ratio of step size to sampling period,

|ṡ| > k/T. (10.238)

These two types of distortion are indicated in Fig. 10.26.
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Figure 10.27: Adaptive delta modulator with single integration

Granular distortion can be made small by using a small step size. Slope overload can be reduced
by using a large step size or by running the sampler (clock) faster. The latter of course increases
the transmitted bit rate. In typical designs, for a prescribed bit rate, the step size is selected to
effect a compromise “mix” between quantizing distortion and slope overload. Perceptually, more
overload noise power is tolerable than granular noise power (JAYANT and ROSENBERG). During
granular distortion the samples of the error signal tend to be uncorrelated and the error signal power
spectrum tends to be uniform.

For high-quality speech transmission, say with signal-to-noise ratio of the order of 40 dB, the
resulting bit rate for simple DM is relatively high, typically greater than 200 Kbps. Tolerable
channel error rates are typically 10−4. The signal-to-quantizing noise present in the received signal
is strongly dependent upon the final low-pass filter. If simple low-pass filters are used for desampling,
the transmission bit rate must be pushed into the Mbps range to achieve high quality. Such high bit
rates cannot be supported in many transmission facilities. Consequently, there is strong interest in
techniques for reducing the bit rate of DM while at the same time retaining most of its advantages
in circuit simplicity. Adaptive delta modulation (ADM) is one such solution.

In ADM the quantizer step size is varied according to a prescribed logic. The logic is chosen to
minimize quantizing and slope distortion when the sampler is run at a relatively slow rate6. The
additional control is typically effected by a step size multiplier incorporated in the feedback loop, as
shown in Fig. 10.27. As in simple DM, the feedback network may be a single or double integration.
The step control logic may be discrete or continuous (Jayant [1970], Greefkes [1957], Greefkes and
de Jager [1968], de Jager [1952], Abate [1967]), and it may act with a short time constant (i.e.,
sample-by-sample) or with a time constant of syllabic duration (Greefkes [1957], Tomozawa and
Kaneko [1968]). Normally the step size is controlled by information contained in the transmitted
bit stream, but it may be controlled by some feature of the input signal; for example, the slope
magnitude averaged over several msec (de Jager [1952]). In this case, the control feature must be
transmitted explicitly along with the binary error signal.

The receiver duplicates the feedback (predictor) branch of the transmitter, including an identical
step size control element. In the absence of errors in the transmission channel, the receiver duplicates
the transmitter’s estimate of the input signal. Desampling by a low-pass filter to the original signal
bandwidth completes the detection.

The manner in which discrete adaptation is implemented is illustrated in Fig. 10.28. As long as
the slope of the input signal is small enough that the signal can be followed with the minimum step
size, k, the multiplier is set to Kn = K1 = 1. When the input signal slope becomes too great, the
step size multiplier is increased to permit more accurate following and to minimize slope overload.
In the logic illustrated, an increase in step size is made whenever three successive samples of ẽi
have the same polarity. At the point of greatest input signal slope, a step multiplication by K3 is
attained. Further increases can be accomplished in successive samples, if needed, until a maximum
multiplication of KN is achieved. Any situation where the current channel bit and the past two

6Adaptation is normally not applied to the feedback network, but this is an attractive possibility for further
improvement in the encoding.
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Figure 10.28: Waveform for an adaptive delta modulator with discrete control of the step size

Figure 10.29: Signal-to-noise ratios as a function of bit rate. Performance is shown for exponentially
adaptive delta modulation (ADM) and logarithmic PCM. (After (Jayant [1970]))

bits are not the same results in a reduction in step size. Reductions can likewise be accomplished
successively until the minimum value Kn = K1 = 1 is again attained.

Exponential adaptation logics have been found valuable for speech encoding (Jayant [1970]). In
this case, the multiplier is typically Kn = Pn−l, n = 1, . . .N . A typical value of P is in the order of
1.5 to 2.0. As few as eight (N = 8) discrete multiplier values are found adequate in some applications
of exponential ADM.

Because of the ability to “shift gears” automatically, ADM can be designed to yield signal quality
comparable to 7-bit log PCM at bit rates commensurate with PCM; typically, 56 Kbps for a 4 KC
signal band. At lower bit rates, ADM can surpass PCM in signal-to-noise (S/N) performance. This
relation results because S/N for ADM varies roughly as the cube of the sampling rate. For PCM
the growth in S/N is 6 dB/bit of quantizing. At low bit rates, ADM wins out. However, the range
of normally useful quality is restricted to rates greater than 20 Kbps. A S/N comparison is shown
for ADM and PCM in Fig. 10.29.

Because delta modulators can be implemented very economically in digital circuitry, they consti-
tute an attractive means for initial analog-todigital conversion of signals. However, other formats of
digital encoding are frequently used in digital communication systems. Techniques for direct digital
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Figure 10.30: Schematic of a DPCM coder

conversion from one signal format to another, with no intervening analog detection, are therefore of
great interest. Present work in digital communication includes direct digital transformation between
simple DM, ADM, linear PCM, log PCM, and DPCM (Shipley [1971], Goodman [1969]). These and
related studies aim to establish coding relations which make the transmission system and switching
network “transparent” to the signal, regardless of its digital form.

10.5.2 Differential PCM (DPCM)

Successive speech samples are highly correlated. The long-term average spectrum of voiced speech
is reasonably well approximated by the function S(f) = 1/f above about 500 Hz; the first-order
inter-sample correlation coefficient is approximately 0.9. In differential PCM, each sample s(n)
is compared to a prediction sp(n), and the difference is called the prediction residual d(n) (Fig-
ure 10.30). d(n) has a smaller dynamic range than s(n), so for a given error power, fewer bits are
required to quantize d(n).

Accurate quantization of d(n) is useless unless it leads to accurate quantization of s(n). In order
to avoid amplifying the error, DPCM coders use a technique copied by many later speech coders:
the encoder includes an embedded decoder, so that the reconstructed signal ŝ(n) is known at the
encoder. By using ŝ(n) to create sp(n), DPCM coders avoid amplifying the quantization error:

d(n) = s(n) − sp(n) (10.239)

ŝ(n) = d̂(n) + sp(n) (10.240)

e(n) = s(n) − ŝ(n) = d(n) − d̂(n) (10.241)

Two existing standards are based on DPCM. In the first type of coder, continuously varying slope
delta modulation (CVSD), the input speech signal is upsampled to either 16kHz or 32kHz. Values of
the upsampled signal are predicted using a one-tap predictor, and the difference signal is quantized
at one bit per sample, with an adaptively varying ∆. CVSD performs badly in quiet environments,
but in extremely noisy environments (e.g. helicopter cockpit), CVSD performs better than any LPC-
based algorithm, and for this reason it remains the US Department of Defense recommendation for
extremely noisy environments (Kohler [1997], Tardelli and Kreamer [1996]).

DPCM systems with adaptive prediction and quantization are referred to as adaptive differen-
tial PCM systems (ADPCM). A commonly used ADPCM standard is G.726 which can operate at
16, 24, 32, or 40 kbps (2-5 bits/sample) (ITU-T [1990a]). G.726 ADPCM is frequently used at
32 kbps in land-line telephony. The predictor in G.726 consists of an adaptive second-order IIR
predictor in series with an adaptive sixth-order FIR predictor. Filter coefficients are adapted using
a computationally simplified gradient descent algorithm. The prediction residual is quantized using
a semi-logarithmic companded PCM quantizer at a rate of 2-5 bits per sample. The quantization
step size adapts to the amplitude of previous samples of the quantized prediction error signal; the
speed of adaptation is controlled by an estimate of the type of signal, with adaptation to speech
signals being faster than adaptation to signaling tones.
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Figure 10.31: Predictive quantizing system. (After (McDonald [1966]))

10.5.3 Differential Pulse Code Modulation

Predictive quantizing, or feedback around the quantizer, is a method used in a wide class of digital
encoders for reducing the redundancy of a signal. The idea is to form an estimate of the sample
of the input signal, and quantize the difference between the signal and its estimate. For accurate
estimates, the variance of the difference, or error signal, is less than that of the input and fewer bits
are required to transmit the error. Estimators typically include linear prediction networks (both
adaptive and nonadaptive) and single or multiple integrators. Differential pulse code modulation
(DPCM) and delta modulation (DM) are special cases of predictive quantizing, the latter using
merely a 1-bit quantizer for the error signal.

Estimation or prediction of the signal requires knowledge of input signal statistics. In a non-
adaptive predictor these data are built into a fixed feedback network. In adaptive prediction, the
network is changed as the input signal changes its characteristics. Digital transmission can be made
relatively free of channel errors in well-designed systems. The controlling impairment is consequently
noise introduced by the quantization process.

Fig. 10.31 shows a predictive quantizing system (McDonald [1966]). Input signal samples are si;
the local (transmitter) estimate of the signal is ˆ̃si; the error signal is ei, which when quantized is
ẽi. The locally reconstructed signal is s̃i = (ej + ˆ̃sj). For transmission, ẽi coded into a prescribed
digital format and transmitted. Any digital errors in transmission cause a corrupted version of the
error signal, ẽ′i, to be received. Detection produces the reconstructed signal s̃′i.

This type of differential quantizing has the important feature that the quantization noise in the
reconstructed signal is the same as that in the error signal–that is, quantization noise does not
accumulate in the reconstructed signal. Quantization noise samples are

qi = (ei − ẽi) (10.242)

= (si − ˆ̃si − ẽi)

= (si − s̃i)

The quantization noise in the transmitted error signal is therefore identical to the quantization noise
in the reconstructed signal.

A logical measure of the effectiveness of the predictor in reducing signal redundancy is the amount
by which the power of the error signal is reduced below that of the input signal. This ratio is

ξ2 ≡ E[s2i ]

E[e2i ]
(10.243)
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where E[x] denotes the expected value of x. To assess this figure one needs to know explicitly
the predictor characteristics. Linear prediction represents a well known class of feedback networks.
For linear prediction the signal estimate is formed from a linear combination of past values of the
reconstructed input signal. That is,

ˆ̃si =

N∑

j=1

aj s̃i−j
7 (10.244)

=
N∑

j=1

aj [si−j − (ei−j − ẽi−j)]

=

N∑

j=1

ajsi−j −
N∑

j=1

ajqi−j

for an N -th order predictor. The variance of the error signal is

E
[
e2i
]

= E

[(
si − ˆ̃si

)2
]
. (10.245)

If the correlation between error samples is vanishingly small (i.e., if the power spectrum of the error
is uniform) and if the correlation between input and error samples is negligible, then

E
[
e2i
]
≈ E






si −
N∑

j=1

ajsi−j




2

+ e[q2i ]

N∑

j=1

a2
j . (10.246)

For a given signal, therefore, maximizing ξ2 is equivalent to minimizing E[e2i ]. Differentiation of
E[e2i ] with respect to aj and setting the resulting equations to zero gives

ρ1 = (1 + 1/R)a1 + a2ρ1 + a3ρ2 + · · · + aNρN−1

ρ2 = a1ρ1 + (1 + 1/R)a2 + a3ρ1 + · · · + aNρN−2

...
ρN = a1ρN−1 + a2ρN−2 + a3ρN−3 + · · · + (1 + 1/R)aN

(10.247)

where R = E[s2i ]/E[q2i ] is the signal-to-quantizing noise ratio, and ρj = E[sisi−j ]/E[s2i ] is the signal
autocovariance. The minimum of E[e2i ] can be written (McDonald [1966]).

E[e2i ]min = E[s2i ]



1 −
N∑

j=1

aj

(
ρj

(1 + 1/R)

)

 ,

so that

ξ2
∣∣
max

=



1 −
N∑

j=1

ajρj/(1 + 1/R)




−1

. (10.248)

The quantization noise power E[q2i ] depends upon properties of the quantizer. For example, for a
linear quantizer of L steps, of step size ∆l and step probability Pl. the quantizing noise power can
be shown to be (Carlson [1968])

E[q2i ] =

L∑

l=1

Pl
∆2
l

12
. (10.249)

7The absence of an a0 term implies delay around the loop.
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For relatively fine quantizing, the quantizer noise is negligible compared to other terms in E[e2i ].
Historically, a commonly-used feedback network in DPCM systems is a simple integrator or accu-
mulator. For this case N = 1 and

a1 = 1,

aj = 0, j 6= 1

and

ˆ̃si =

∞∑

j=1

ẽi−j

ei = si −
(
ˆ̃si−1 + ẽi−1

)
. (10.250)

The error power from (10.246) is

E[e2i ] = E[s2i ][2(l − ρ1)] + E[q2i−1]. (10.251)

Neglecting the quantizing noise,

ξ2 ≈ 1

2(1 − ρ1)
(10.252)

The optimum N = 1 predictor (in the least error power sense) is however

a1 =
ρ1

(1 + 1/R)
,

for which

ξ2 ≈ 1

(1 − ρ2
1)
. (10.253)

The optimum predictor therefore shows a slight advantage (for the case N = 1) over the simple ideal
integrator (McDonald [1966]).

Computer studies on speech show that DPCM with a fixed linear predictor network optimized
according to the preceding discussion gives approximately 10 log10 ξ

2 = 10dB. Over 9 dB of this
improvement is achieved by an N = 2 optimum predictor. Compared to a straight PCM encoding,
this means that 1 to 2 bits per sample may be saved in the encoding.

Predictive coding and quantizing has been applied in several forms to the digital transmission
of speech. Optimum nonadaptive linear predictors for speech have been studied to reduce the bit
rate for transmission below that of conventional PCM (McDonald [1966], Haskew [1969], Fujisaki
[1960]). Adaptive predictive coding has also been used in which the predictor is designed to repre-
sent the pitch of voiced sounds and the shape of the signal spectrum (Schroeder [1968], Kelly and
Miller [1967]). Predictive quantizing can be implemented with adaptive quantization as well as with
adaptive prediction.

10.5.4 Pitch Prediction Filtering

In an LPC-AS coder, the LPC excitation is allowed to vary smoothly between fully voiced conditions
(as in a vowel) and fully unvoiced conditions (as in /s/). Intermediate levels of voicing are often
useful to model partially voiced phonemes such as /z/.

The partially voiced excitation in an LPC-AS coder is constructed by passing an uncorrelated
noise signal c(n) through a pitch prediction filter (Atal [1982], Ramachandran and Kabal [1987]). A
typical pitch prediction filter is

u(n) = gc(n) + bu(n− T0) (10.254)
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Figure 10.32: Normalized magnitude spectrum of the pitch prediction filter for several values of the
prediction coefficient.

Figure 10.33: Two stage predictor for adaptive predictive coding. (After (Schroeder [1968]))

where T0 is the pitch period. If c(n) is unit-variance white noise, then according to Equation 10.254
the spectrum of u(n) is

|U(ejω)|2 =
g2

1 + b2 − 2b cosωT0
(10.255)

Figure 10.32 shows the normalized magnitude spectrum (1−b)|U(ejω)| for several values of b between
0.25 and 1. As shown, the spectrum varies smoothly from a uniform spectrum, which is heard
as unvoiced, to a harmonic spectrum which is heard as voiced, without the need for a binary
voiced/unvoiced decision.

In LPC-AS coders, the noise signal c(n) is chosen from a “stochastic codebook” of candidate
noise signals. The stochastic codebook index, the pitch period, and the gains b and g are chosen
in a closed-loop fashion in order to minimize a perceptually weighted error metric. The search for
an optimum T0 typically uses the same algorithm as the search for an optimum c(n). For this
reason, the list of excitation samples delayed by different candidate values of T0 is typically called
an “adaptive codebook” (Singhal and Atal [1984]).
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Figure 10.34: Adaptive predictive coding system. (After (Schroeder [1968]))

10.5.5 Adaptive Predictive Coding

Adaptive predictive coding has been used to reduce signal redundancy in two stages: first by a
predictor that removes the quasi-periodic nature of the signal, and second by a predictor that
removes formant information from the spectral envelope ((Schroeder [1968])). The first predictor is
simply a gain and delay adjustment, and the second is a linear combination of past values of the
first predictor output. The equivalent operations are shown in Fig. 10.33, where

P1(z) = αz−k

P2(z) =
N∑

j=1

ajz
−j

P (z) = {P1(z) + P2(z) [1 − P1(z)]} (10.256)

This predictor is used in the DPCM encoder form with a two-level (1 bit) quantizer for the error
signal, as shown in Fig. 10.34. The quantizer level is variable and is adjusted for minimum quan-
tization noise power in the error signal. The quantizer representation level Q is set to the average
absolute value of the error samples being quantized, i.e.,

Q =
1

N

N∑

j=1

|ej |. (10.257)

The coefficients for predictor P2(z) are calculated as described previously. Those for P1(z), i.e.,
α and k, are obtained by minimizing the error power from the first predictor

ǫ21 =
N∑

j=1

(sj − αsjk)2. (10.258)

The minimum is given by

α =

∑N
j=1 sjsjk∑
s2

j−k

∣∣∣∣∣
k=optimum

, (10.259)

where the optimum k maximizes the normalized correlation

ρ =

∑
j sjsj−k

{∑
j s

2
j

∑
j s

2
j−k

} 1
2

(10.260)
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Figure 10.35: Analysis and synthesis operations for the homomorphic vocoder. (After (Oppenheim
[1969]))

The optimum k is found by a search of computed and tabulated values of p.

One implementation of the predictive system has been made for digital transmission at 9600
bps and at 7200 bps (Kelly and Miller [1967]). The system was optimized in extensive computer-
simulation studies. It used the following parameters and quantization to achieve digital transmission
at 9600 bps: signal bandwidth = 2950 Hz; sampling rate = 6 kHz; prediction optimization interval
= 10 msec (N = 60 samples); P1(z) predictor quantization: α = 3 bits, k = 7 bits (determined by
maximum delay of 20 msec, or 120 samples at 6 kHz, for the computation of p; quantizer level= 4
bits; four P2(z) coefficients at 5 bits each; error signal = 60 bits/frame (i.e. 60 samples at 6 kHz);
parameter normalization = 2 bits (to normalize the P2(z) coefficients to a range of 1 for quantizing
accuracy). The transmission coding therefore included a total of 96 bits/frame and a frame rate
of 100sec−1, for a total bit rate of 9600 bps. By sampling at a slower frame rate, and using fewer
predictor coefficients [for P2(z)] and fewer bits for the error signal, the total bit rate could be reduced
to 7200 bps.

In subjective tests it was found that the 9600 bps predictive coding is equivalent in quality to
4.5 bit log PCM, corresponding to a signal-to-quantizing noise ratio of 16.9 dB. At 7200 bps, the
predictive coder was found equivalent in quality to 4.1 bit log PCM, with a corresponding signal-to-
quantizing ratio of 14.7 dB. Sensitivity to digital errors in the transmission channel was also studied.
Resulting error rates and associated qualities were found to be: 10−3 and lower, satisfactory; 10−2,
marginal performance; 10−1, unacceptable (Kelly and Miller [1967]).

10.6 Parametric Models of the Spectral Envelope

10.6.1 Homomorphic Vocoders

The analyzer and synthesizer operations for a complete homomorphic vocoder are shown in Fig. 10.35.
Fig. 10.35a illustrates the analysis. At successive intervals (typically every 20 msec), the input speech
signal is multiplied by a data window (a 40 msec Hamming window in this case) and the short-time
Fourier transform is computed8. For each analysis interval the logarithm of the spectral magnitude
is taken to produce the log-spectrum Ŝ(ω). A further inverse Fourier transform produces the real,
even time function ŝ(t) which is defined as the cepstrum (see Sections 4.5.1 and 4.6). The low-time
parts of ŝ(t) characterize the slow fluctuations in Ŝ(ω) due to the vocal-tract resonances, and the

8See Section 4.1.1 for properties of the short-time Fourier transform.
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high-time parts of ŝ(t) characterize the rapid fluctuations in Ŝ(ω) due to vocal excitation properties.
The high-time part of ŝ(t) is used for voiced-unvoiced analysis and for pitch extraction, in accordance
with the techniques described in Sections 4.5.1 and 4.6.

The final step in the analysis is to derive an equivalent minimum-phase description of the vocal-
tract transmission by truncating and saving the positive low-time part of the cepstrum9. This is
accomplished by multiplication with the time window h(t). The result is c(t) which together with the
excitation information constitute the transmission parameters. The transform of c(t) has a spectral
magnitude illustrated by the dashed curve in Ŝ(ω).

Synthesis is accomplished from c(t) and the excitation information as shown in Fig. 10.35b. Pe-
riodic pulses, generated at the analyzed pitch, are used for synthesis of voiced sounds, and uniformly
spaced pulses of random polarity are used for unvoiced sounds. The transmitted c(t) is Fourier
transformed, exponentiated (to undo the log-taking of the analysis), and an inverse transform yields
a minimum-phase approximation to the vocal-tract impulse response. This impulse response is
convolved with the excitation pulses to produce the output signal.

The system of Fig. 10.35 was implemented digitally on a general-purpose computer. Fast Fourier
transform techniques and fast convolution techniques were used for the computations. The spectral
analyses consisted of 512-point discrete Fourier transforms corresponding to a spectral resolution
of approximately 20 Hz. Cepstrum computations also consisted of 5l2-point inverse transforms.
Spectra and cepstra were computed at 20-msec intervals along the input speech waveform and c(t)
was described by the first 32 points of the cepstrum. Linear interpolation over the 20 msec intervals
was used for the excitation and impulse response data. Listening tests performed on the system in a
back-to-back mode yielded judgments of good quality and natural sound. In a separate experiment
the e(t) data were reduced to 26 in number and quantized to six bits each for a transmission rate of
7800 bits/sec. At this bit rate no noticeable degradation was reported (Oppenheim [1969]).

A further study of the homomorphic vocoder utilized a time-varying data window for analysis
and a digital implementation for transmission at 3700 bits/sec (J. C. Hammett [1971]). At this bit
rate, a signal of good quality was reported, with some reduction in naturalness.

Another study has applied predictive coding (see Section 10.5) to the transmission of the homo-
morphic vocoder signals. Using this technique, transmission of spectral information was digitally
implemented for a data rate of 4000 bits/sec with modest impairment in quality. Listening tests
concluded that spectral information digitized to around as 5000 bits/sec permits a quality indistin-
guishable from the unquantized system (Weinstein [1966]).

10.6.2 Maximum Likelihood Vocoders

All vocoder devices attempt to represent the short-time spectrum of speech as efficiently as possible.
Exact reproduction of the waveform is not necessary. Some devices, such as channel vocoders,
depend upon a frequency-domain transformation of the speech information, while others, such as
correlation vocoders (Section 10.4) and orthogonal function vocoders (Section8.6), use strictly a
time-domain representation of the signal.

In all vocoder devices, the greatest step toward band conservation derives from observing the
source-system distinctions in the production of speech signals (see Fig. 10.1). Vocal excitation
information and system function data are treated separately, and decisions about voiced-unvoiced
excitation and pitch-period measurement are typically made. Devices which do not make the source-
system distinction and which do not perform pitch extraction–such as the voice-excited vocoder and
some transmission methods described in later sections of this chapter–derive their bandsaving solely
from the ear’s acceptance of a signal having a short-time spectrum similar to that of the original
speech. Their representation of the signal is commensurately less efficient.

9The minimum-phase properties of this function are not obvious. A proof can be found in (Oppenheim et al.
[1968])
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Figure 10.36: Synthesis method for the maximum likelihood vocoder. Samples of voiced and voiceless
excitation are supplied to a recursive digital filter of p-th order. Digital-to-Analog (D/A) conversion
produces the analog output. (After (Itakura and Saito [1968]))

Differences among vocoder devices lie in how they attempt to represent the perceptually-important
information in the short-time speech spectrum. The channel vocoder merely samples the spectrum
at prescribed frequency intervals and transmits these values. An orthonormal expansion of the am-
plitude spectrum aims to give adeq uate definition of the spectrum through a few coefficients of
a prescribed set of basis functions. The formant vocoder assumes a pole-zero model for the vocal
transmission and aims to locate the first few formant frequencies to effect an efficient description
of the whole spectrum. The time-domain approach of the correlation vocoder transmits samples of
the correlation function and synthesizes a wave composed of the even, truncated correlation funci-
ton. The Laguerre vocoder, another time-domain method, uses an orthonormal expansion of the
short-time correlation function and attempts to represent it by a few coefficients.

Another technique, called the Maximum Likelihood Method (Itakura and Saito [1968]), attempts
to combine the advantages of time-domain processing and formant representation of the spectrum.
The method is also amenable to digital implementation.

An all-pole model of the power spectrum of the speech signal is assumed. Zeros are omitted
because of their lesser importance to perception and because their effect can be represented to any
accuracy by a suitable number of poles. The synthesizer includes a recursive digital filter, shown in
Fig. 10.36, whose transmission function in z-transform notation is

T (z) =
1

1 +H(z)

=

[
1

1 + a1z−1 + a2z−2 + · · · + apz−p

]
(10.261)

where z−l = e−sD is the delay operator, D is the sampling interval and s is the complex frequency
(see, for example, Section 9.5).

The complex roots of the denominator polynomial are the complex formants (bandwidths and
frequencies) used to approximate the speech signal. The coefficients, ai, of the denominator poly-
nomial are obtained from time-domain calculations on samples of a short segment of the speech
waveform; namely, sl, s2 . . . sN , where N ≫ p. Under the assumption that the waveform samples si
are samples of a random gaussian process, a maximum likelihood estimate is obtained for the ai’s.
This estimate corresponds to minimization of a function of the logarithmic difference between the
power spectrum of the filter |T (z)|2 and the short-time power spectrum of the signal samples

S(ω) =
1

2πN

∣∣∣∣∣

N∑

n=1

sne
jnωD

∣∣∣∣∣

2

. (10.262)

The minimization results in a fit which is more sensitive at the spectral peaks than in the valleys
between formants. Perceptually this is an important feature of the method. The fit of the all-pole
model to the envelope of the speech spectrum is illustrated in Fig. 10.37.



10.6. PARAMETRIC MODELS OF THE SPECTRAL ENVELOPE 389

Figure 10.37: Approximations to the speech spectrum envelope as a function of the number of poles
of the recursive digital filter. The top curve, S(f), is the measured short-time spectral density for
the vowel /A/ produced by a man at a fundamental frequency 140 Hz. The lower curves show the
approximations to the spectral envelope for p = 6, 8, 10 and 12. (After (Itakura and Saito [1970]))
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The maximum likelihood estimate of the filter coefficients is obtained from the short-time corre-
lation function

Φi =
1

N

N−i∑

j=1

sjsj+i, (i = 0, 1, . . . , N − 1) (10.263)

by solving the set of equations

p∑

i=1

Φ|i−j|ai = −Φj, (j = 1, 2, . . . , p) (10.264)

The maximum likelihood estimate also produces the amplitude scale factor for matching the
speech signal power spectrum, namely

A2 =

p∑

i=−p

AiΦi,

where

Ai =

p∑

j=0

ajaj+|i|; a0 = 1, ak = 0(k > p). (10.265)

As shown in Fig. 10.36, excitation of the synthesizer follows vocoder convention and uses a
pulse generator and a noise generator of the same average power. Extraction of pitch period T
is accomplished by a modified correlation method which has advantages similar to the cepstrum
method, but relies strictly upon time domain techniques and does not require transformation to
the frequency domain. A voicing amplitude signal, V , is also derived by the pitch extractor. The
voiced and voiceless excitations are mixed according to the amplitude of the voicing signal, V . The
unvoiced (noise) excitation level is given by UV =

√
l − V 2. The mixing ratio therefore maintains

constant average excitation power. Overall control of the mixed excitation, by amplitude signal A,
completes the synthesis10.

Typical parameters for the analysis and synthesis are: sampling rate of input speech, 1/D = 8
kHz; number of poles, p = 10; and number of analyzed samples, N = 240 (i.e., 30 msec duration).
For transmission purposes, the control parameters are quantized to: 9 bits for each of the 10 ai’s,
and 6 bits for each of the three excitation signals. Sampling these quantized parameters at 50 sec−1

yields a 5400 bit/sec encoding of the signal for digital transmission. The technique is demonstrated
to be substantially better than digitized channel vocoders (Itakura and Saito [1968]).

Furthermore, the maximum likelihood method has been shown to be valuable for automatic
extraction of formant frequencies and formant bandwidths. The complex roots zi of [1 +H(z)] in
(10.261) give the real and imaginary parts of the formant frequencies, i. e., their bandwidths and
center frequencies. Given H(z) as defined by the coefficients ai, a root-finding algorithm is applied
to determine the zi. Formant tracking tests on real speech show that the method with p = 10
produces accurate estimates of formant bandwidths and frequencies. An example of automatic
formant tracking for a five-vowel sequence is shown in Fig. 10.38 (Itakura and Saito [1970]).

10.6.3 Linear Prediction Vocoders

Another time-domain vocoder method for speech analysis and synthesis employs the properties
of linear prediction (Atal and Hanauer [1971a,b]). This method also utilizes an all-pole recursive
digital filter excited either by a pitch-modulated pulse generator or a noise generator to synthesize

10Note that while the coefficients ai are derived from the short-time correlation function Φi, the synthesis method
utilizes a recursive filter and avoids the “truncation” distortion present in the open-loop synthesis of the correlation
vocoder (see Section 10.4).
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Figure 10.38: Automatic tracking of formant frequencies determined from the polynomial roots for
p = 10. The utterance is the five-vowel sequence /a,o,i,u,e/. (After (Itakura and Saito [1970]))

Figure 10.39: Synthesis from a recursive digital filter employing optimum linear prediction. (After
citeAtal71b)

the signal. The filter coefficients in this case represent an optimum linear prediction of the signal.
The coefficients are determined by minimizing the mean square error between samples of the input
signal and signal values estimated from a weighted linear sum of past values of the signal11. That
is, for every sample of the input signal, sn, an estimate ŝn is formed such that

ŝn =

p∑

k=1

aksn−k.

The filter coefficients, ak, are determined by minimizing ¯(sn − ŝn)2 over an analysis interval that is
typically a pitch period, but which may be as small as 3 msec for p = 12 and a sampling rate of
10kHz. The ak’s are given as a solution of the matrix equation

Φa = ψ (10.266)

where a is a p-dimensional vector whose k-th component is ak, Φ is a (p× p) covariance matrix with
term φij given by

φij =
∑

n

sn−isn−j , i = 1, . . . , p; j = 1, . . . , p (10.267)

and ψ is a p-dimensional vector with the j-th component ψj = φj0 and the sum extends over all
speech samples N in a given analysis interval. Since the matrix Φ is symmetric and positive definite,
Eq. (10.266) can be solved without matrix inversion. These relations are similar to those obtained
from the Maximum Likelihood method [See Eq. (10.264)] except for the difference in the matrix Φ.
The two solutions approach each other for the condition N ≫ p.

Synthesis is accomplished as shown in Fig. 10.39. Excitation either by pitch-modulated pulses
or by random noise is supplied to a recursive filter formed from the linear predictor. The amplitude
level, A, of the excitation is derived from the rms value of the input speech wave. The filter
transmission function, is

T (z) =
1

1 −H(z)
, (10.268)

11A general discussion of the theory of optimum linear prediction of signals is given in Section 10.5.
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where

H(z) =

p∑

k=1

akz
−k

which, except for the sign convention, is the same as the Maximum Likelihood method (Sec-
tion 10.6.2). The filter coefficients ak account both for the filtering of the vocal tract and the
spectral properties of the excitation source. If en is the nth sample of the excitation, then the
corresponding output sample of the synthesizer is

s′n = en +

p∑

k=1

aks
′
n−k

where the primes distinguish the synthesized samples from the original speech samples. The complex
roots of [1 − H(z)] in (10.268) therefore include the bandwidths and frequencies of the speech
formants. The filter coefficient data can be transmitted directly as the values of the ak, or in terms
of the roots of [l−H(z)]. The latter requires a root-finding calculation. Alternatively, the coefficient
data can be transmitted in terms of the correlation functions φij . Further, it can be shown that the
recursive filter function describes an equivalent hard-walled pipe composed of right-circular sections
in cascade. Its area is expected to be similar to that of the real vocal tract. The area data therefore
provide an equivalent form for the coefficient information. Because they can insure a stable filter
function, the area and correlation functions are attractive for transmission and interpolation of the
control data.

In one implementation, extraction of the pitch period, T , is accomplished by calculating the
short-time autocorrelation function of the input speech signal after it has been raised to the third
power. This exponentiation emphasizes the pitch periods of voiced passages. The voiced-unvoiced
decision, V-UV, is based on the peak amplitude of the correlation function and on the density of zero
crossings in the speech wave. Another implementation uses the error (sn − ŝn) and a peak-picking
algorithm to determine the pitch period. Good-quality synthesis at a digital bit rate as low as 3600
bps has been reported for p = 12 (Atal and Hanauer [1971b]).

Because the roots of polynomial [1−H(z)] describe the complex formant frequencies, the linear
prediction method is also effective for extracting formant bandwidths and center frequencies. For
p = 12 the accuracy in obtaining formant frequencies is considered to be within perceptual tolerances.
An example of formant extraction from a voiced sentence is shown in Fig. 10.40 (Atal and Hanauer
[1971b]).

The Linear Prediction Vocoder and the Maximum Likelihood Vocoder implement their analysis-
synthesis procedures in much the same way. Markel has pointed out that they are fundamentally
similar, and that both utilize an analysis technique devised earlier by Prony (Markel [1971]). Further,
an inverse digital filter, designed along the principles of Eq. (10.261) and (10.268) and Fig. 10.36
and 10.39, has also been found useful for automatic formant extraction (Markel [1972]).

10.6.4 Articulatory Vocoders

An attractive approach to the general vocoder problem is to code speech in terms of articulatory
parameters. Such a description has the advantage of duplicating, on a direct basis, the physiolog-
ical constraints that exist in the human vocal tract. Continuous signals that describe the vocal
transmission would then produce all sounds, consonants and vowels.

The idea is to transmit a set of data which describes the tract configuration and its excitation
as functions of time. The nature of the analysis–although neither its completeness nor sufficiency–
is exemplified by the articulatory-domain spectral matching techniques described in Section 4.7,
Chapter 4. The synthesizer could be a controllable vocal tract model, such as described in Section 9.5,
Chapter 9, or some equivalent device. At the present time no complete vocoder system based upon
these principles has been demonstrated. However, the approach appears to be promising and to have
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Figure 10.40: Formant frequencies determined from the recursive filter coefficients. The utterance
is the voiced sentence “We were away a year ago” produced by a man at an average fundamental
frequency of 120 Hz. (After (Atal and Hanauer [1971b]))

much to recommend it. Its success will depend largely upon the precision with which articulatory
data can be obtained automatically from the acoustic signal. As the discussion of Chapter 4 has
indicated, computer techniques may provide the requisite sophistication for the analysis.

10.6.5 Pattern-Matching Vocoders

Another variation of the vocoder involves classification of the frequencyvs amplitude spectral infor-
mation of the channel signals into a limited number of discrete patterns citeSmith57. In one such
study (Dudley [1958]), spectral pattern are associated with phonetic units of speech. The sound
analysis is carried out according to the pattern recognition scheme described in Section 8.1, Chap-
ter V. At any instant, the best match between the short-time speech spectrum and a set of stored
spectral patterns is determined. A code representing the matching pattern is signaled to a vocoder
synthesizer, along with conventional pitch and voiced-unvoiced data. New information is signalled
only when the phonetic pattern changes. At the receiver, a set of spectral amplitude signals, ap-
proximating the signalled pattern, are applied to the modulators of the synthesizer. The pitch signal
supplies the appropriate excitation. Filter circuits are included to provide smooth transitions from
one sound pattern to the next.

An early version of the device used a ten-channel vocoder and only ten stored patterns. It
is illustrated in Fig. 10.41. The stored patterns corresponded to the steady-state spectra of four
consonant continuants and six vowels (/s,f,r,n/, and /i,I,E,A,o,u/, respectively). For one speaker
(from whose speech the spectral patterns were derived), digits uttered in isolation were recognized
by two listeners with scores of 97 and 99 per cent correct, respectively. On common monosyllables,
however, the intelligibility fell to around 50%. The addition of six more patterns increased the
score by a small amount. The bandwidth required for transmission was only on the order of 50Hz,
or around 60 times less than that for a conventional voice channel! While the intelligibility and
quality of the speech processed by the device are clearly inadequate for most applications, the
implementation does indicate the possibilities of narrow-band transmission for restricted message
ensembles and limited speaker populations.

The obvious question suggested by the rather surprising performance with only ten stored pat-
terns is how many stored spectral patterns would be needed to approach the performance of the
conventional vocoder? At least one investigation has aimed to examine the question (Smith [1957,
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Figure 10.41: Phonetic pattern-matching vocoder. (After (Dudley [1958]))

1963]). The outputs of the analyzer of a channel vocoder are sampled at 50Hz, normalized in am-
plitude, and quantized. The digital description of the short-time spectrum is then compared to a
large library of digital patterns stored in a rapid-access memory. No requirement is imposed that
these spectral patterns correspond to specific phonetic units of speech. Using digital processing tech-
niques, the best fitting pattern is selected and its code transmitted. The objective is to determine
the smallest population of patterns necessary to meet given performance criteria. The processing
cannot, of course, result in better speech quality than provided by the conventional vocoder. It may,
however, afford a useful bandsaving beyond that the of channel vocoder. Digital data rates for the
transmission of the spectral patterns and excitation are estimated to be on the order of 400 to 800
bits/sec (Smith [1957, 1963]).

10.6.6 Formant Vocoders

The results of the acoustic analyses in Chapter 3 suggest that one efficient way to code speech is
in terms of the vocal mode pattern. The results show, for example, that adjacent values of the
short-time amplitude spectrum are not independent, but are closely correlated. In fact, specification
of the complex poles and zeros is equivalent to specifying the spectrum at all frequencies. The
formant vocoder aims to exploit this fact and to code the speech signal in terms of the mode pattern
of the vocal tract. Because it does not use multiple control signals to describe strongly correlated
points in the speech spectrum, the formant-vocoder hopes to achieve a band-saving in excess of that
accomplished by the channel vocoder. The practicability of formant vocoders depends upon how
well formant-mode data, or the equivalent, can be automatically derived. In addition, excitation
information must be provided as in the channel vocoder.

A number of formant-vocoder systems have been designed and instrumented. Although it is not
possible to treat each in detail, this section proposes to indicate typical circuit realizations and the
results obtained from them.

Formant-vocoders generally divide into two groups–essentially defined by the synthesis philoso-
phies set forth in Chapter 9. That is, the classification relates to the cascade and parallel connections
of the synthesis circuits. The cascade approach strives to reconstruct the signal by simulating, usu-
ally termwise, the perceptually significant pole and zero factors of the vocal transmission. The
complex frequencies of the poles and zeros, and the excitation data (pitch and voiced-unvoiced) are
the coding parameters.

The parallel connection attempts to reconstruct the same signal in a different, but equivalent,
way–namely, from information on the frequencies of the formants (poles) and their spectral ampli-
tudes (residues). Ideally, the mode frequencies and their residues are specified in complex form. The
complex residues are equivalent to specification of the spectral zeros. The discussion of Section 9.4,



10.6. PARAMETRIC MODELS OF THE SPECTRAL ENVELOPE 395

Figure 10.42: Parallel-connected formant vocoder. (After (Munson and Montgomery [1950]))

Chapter 9, has set down in some detail the relations between the cascade and parallel representations
of the speech signal. If the requisite data for either synthesis arrangement can be obtained automat-
ically and with sufficient accuracy, the formant vocoder has the potential for producing intelligible
speech of perhaps better quality than that of the channel vocoder. Because it attempts to duplicate
the vocal mode structure, it innately has the potential for a better and more natural description of
the speech spectrum.

One of the earliest, complete formant-vocoder systems was a parallel arrangement (Munson and
Montgomery [1950]). It is illustrated in Fig. 10.42. At the analyzer, the input speech band is
split into four subbands. In each band, the average frequency of axis-crossings, F , and the average
rectified-smoothed amplitude, A, are measured12. Signal voltages proportional to these quantities
are developed. These eight parameters, which approximate the amplitudes and frequencies of the
formants and of voicing, are transmitted to the synthesizer.

The synthesizer contains excitation circuitry, three variable resonators connected in parallel, and
a fourth parallel branch with a fixed low-pass filter. Voiced (pulse) excitation of the parallel branches
is signalled by the voicing amplitude, A0. The A0 control also determines the amplitude of the signal
passing the fixed low-pass branch of the circuit. As in the channel vocoder, the frequency of the
pulse source is prescribed by F0. Unvoiced (noise) excitation of the parallel branches is determined
by amplitude A3. The amplitudes and frequencies of the three formant branches are continuously
controlled and their outputs combined.

Intelligibility scores reported for the system were approximately 100% for vowel articulation and
about 70% for consonant articulation. The total bandwidth occupancy of the eight control signals
was about 300 Hz, or about the same as for the channel vocoder. A number of different versions
of parallel-connected formant vocoders have subsequently been constructed (for example, (Chang
[1956], Campanella et al. [1962], Ayers [1959], Stead and Jones [1961], Howard [1956])). Two of
these will receive further comment in the following section on digitalizing and multiplexing.

An early effort at realizing a cascade system also investigated the effects of severe band-limitation
of the control signals (Flanagan [1971]). One synthesizer configuration considered in the study is
shown in Fig. 10.43. The control data employed were pitch F0; amplitude of voicing AV; three for-
mant frequencies F1, F2, F3 (covering the range approximately 100 to 3000 Hz); a single, relatively-
broad, fricative noise resonance FN (the major resonance in the range 3000 to 7000 Hz); and the

12Note in this design the highest two bands normally contain more than a single formant. Their amplitude and
frequency measures primarily reflect the most prominent formants in these ranges.
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Figure 10.43: Cascade-connected formant vocoder. (After (House [1956]))

amplitude of noise excitation AN.
The formant frequency data were obtained from a peak-picking analyzer as described in Sec-

tion 4.5, Chapter 4. The amplitude of voicing was determined from the rectified-smoothed signal in
a lowpass band of the original speech, and the amplitude of noise excitation was determined from
the rectified-smoothed signal in the 3000 to 7000 Hz band. Pitch was measured with a fundamental-
extracting circuit, as in the channel vocoder. Each of the seven control signals was band-limited to
slightly less than 10 Hz by a low-pass filter, so that the total bandwidth occupancy was on the order
of 60 Hz.

All voiced sounds were produced by the upper resonator string of the circuit, following strictly
the cascade approach. The unvoiced sounds were produced by a cascade-parallel connection which
introduced zeros, as well as poles, into the transmission. Data on frequencies of zeros, as such, were
not transmitted.

Although the band saving was high, detailed articulation testing of the system showed its perfor-
mance to be relatively poor. In nonsense monosyllables, the vowel articulation was on the order of
82%. For the consonants, the mean score was 27%. Confusion-matrix analysis of listener responses
showed that voiced-unvoiced errors were few. Errors in discriminating voiced-stops and nasals,
however, were relatively numerous, the synthesizer being congenitally incapable of simulating these
sounds. In addition, errors in discriminating affricates and stops were due in large part to temporal
imprecision resulting from the severe band-limitation of the control signals.

A more recent, digital computer simulation of an improved version of the synthesizer corrects
some of the shortcomings (Coker [1965]). It provides for an additional pole-zero pair in the voiced
branch and a controllable zero in the unvoiced branch (see Fig. 9.14 and Section 9.4, Chapter 9).
When combined with a sophisticated digitally-simulated formant analyzer, the performance as a
complete real-time formant vocoder is unusually good (Coker [1965]). Theformant analysis in the
computer is accomplished by a detailed matching of the real speech spectrum by a pole-zero model
spectrum, similar to the analysis-by-synthesis procedure. (See Section 4.5.1.) The digital processing
provides much greater accuracy than can be obtained with analog equipment. The precision in
the formant tracking, and the more detailed accounting for system and excitation characteristics by
means of the additional pole-zero pair, contribute significantly to the quality of the synthetic speech.

A further word may be appropriate concerning the relative merits of parallel versus cascade
connections, and about the approach which may result in the most efficient and practical set of
parameters. The vocal transmission for vowel sounds contains only poles. The residues in these poles
are therefore functions only of the pole frequencies. Given the formant frequencies, any formant
amplitude specification is redundant because the amplitudes are implied by the frequencies. In
this case, the cascade synthesizer provides correct formant amplitudes automatically from formant
frequency data alone. For nonvowel sounds the vocal transmission can have zeros, one or two of
which may prove to be perceptually significant. To simulate these factors, the cascade synthesizer
requires controllable antiresonances. Again, given the proper pole and zero frequencies, spectral
amplitudes are automatically accounted for.

The parallel synthesizer, on the other hand, requires the significant pole frequencies and, ideally,
the complex residues in these poles. The residues, in effect, specify the spectral zeros. The con-
tribution to perception of the residue phases is modest but not negligible (Flanagan [1965]). (See
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Section 9.4.7.) A relevant question about formant synthesis is then “Which is easier to analyze
automatically, the frequencies of spectral zeros or the amplitudes and phases of spectral maxima?”
The question is complicated by one other matter–the excitation source. What are its perceptually
important characteristics? Are they easier to include in one model than in the other? At the present
stage of study, the ultimate practical choice is not clear.

10.7 Quantized Linear Prediction Coefficients

Recall that the linear prediction synthesis filter is given by:

H(z) =
1

1 −∑p
i=1 αiz

−i
=

p∏

i=1

1

1 − riz−1
(10.269)

Discussion in Sec. 4.2.4 demonstrated that H(z) is stable if and only if |ri| < 1, that is, if and
only if the reflection coefficients are |ki| < 1. Filter coefficients generated using the Levinson-Durbin
recursion 4.2 are guaranteed to be stable. In order to avoid instability in the speech decoder, however,
it is necessary to quantize the LPCs using a method that guarantees stability, in other words, using
a method that guarantees |ki| < 1.

A small quantization error in one of the direct-form coefficients âi can easily make Ĥ(z) unstable.
For example, this filter is stable:

H(z) =
1

1 − 0.4z−1 + 0.1z−2 + 0.28z−3 + 0.49z−4
(10.270)

If a4 is changed from 0.49 to 0.52, the filter is unstable:

Ĥ(z) =
1

1 − 0.4z−1 + 0.1z−2 + 0.28z−3 + 0.52z−4
(10.271)

If a1 is different, however, the same change in a4 leaves a stable filter:

Ĥ(z) =
1

1 + 0.4z−1 + 0.1z−2 + 0.28z−3 + 0.52z−4
(10.272)

As demonstrated in Eqs. 10.270 through 10.272, there is no simple test that can be applied to
the direct-form LPCs in order to determine whether or not the LPC synthesis filter is stable. In
order to guarantee stability of the synthesis filter, therefore, it is prudent to quantize either ki or ri,
and design the quantizer levels so that |k̂i| or |r̂i| is always less than 1.0.

10.7.1 Log Area Ratios

Stability of the synthesis filter is not the only consideration. Changes in ki have a much larger effect
on the synthesized speech spectrum if |ki| ≈ 1 than if |ki| << 1, as shown in figure 10.7.1.

The sensitivity problem shown in Fig. 10.7.1 can be solved using companded quantization. If a
reflection coefficient is near unit magnitude (and therefore quantization errors have large effect), it
should be quantized in a way that guarantees small quantization errors. If a reflection coefficient
is near zero magnitude (and therefore quantization errors have little effect), it may be quantized
coarsely. Sec. 10.2.3 demonstrated that level-dependent quantization errors can be achieved by
companding the coefficient prior to quantization:

ki → Expand → gi → Linear PCM → ĝi → Compress → k̂i (10.273)

For example, the log-area ratio transform in Eq. 10.274 stretches the ki axis near values of ±1:

gi = log

(
1 − ki
1 + ki

)
(10.274)
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Figure 10.44: Spectral sensitivity to changes in the reflection coefficients.
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Figure 10.46: Acoustic resonator and lattice model with a matched impedance termination at the
glottis.

Remember that the reflection coefficients ki can be used to define a stylized vocal tract model,
with reflection coefficients of rL = 1 at the lips, rg = 0 at the glottis, and ri = −kp−i (i = 0, . . . , p−1),
as shown in figure 10.7.1.

If the cross-sectional areas are Ai, Ai+1, then

ri = −kp−i =
Ai+1 −Ai
Ai+1 +Ai

, (10.275)

and
Ai+1

Ai
=

1 − kp−i
1 + kp−i

. (10.276)

So the “expanded” reflection coefficient is really a “log area ratio:”

gi = log

(
1 − ki
1 + ki

)
= log

(
Ap−i+1

Ap−i

)
(10.277)

10.7.2 Line Spectral Frequencies

Log-area-ratio quantization has the advantage of simplicity, but a slightly more complicated method
of LPC quantization has been adopted into most recent low-bit-rate coding standards. Linear
Prediction can be viewed as an inverse filtering procedure in which the speech signal is passed
through an all-zero filter A(z). The filter coefficients of A(z) are chosen such that the energy in the
output, i.e. the residual or error signal, is minimized. Alternatively, the inverse filter A(z) can be
transformed into two other filters P (z) and Q(z). These new filters turn out to have some interesting
properties, and the representation based on them, called the line-spectrum pairs (Sugamura and
Itakura [1981], Soong and Juang [1984]), has been used in speech coding and synthesis applications.

Let A(z) be the frequency response of an LPC inverse filter of order p.

A(z) = −
p∑

i=0

aiz
−i (10.278)

with a0 = −1.

The ai’s are real and all the zeros of A(z) are inside the unit circle.
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If we use the lattice formulation of LPC we arrive at a recursive relation between the mth stage
(Am(z)) and the one before it (Am−1(z)). For the p-th order inverse filter, we have:

Ap(z) = Ap−1(z) − kpz
−pAp−1(z

−1)

By allowing the recursion to go one more iteration, we obtain:

Ap+1(z) = Ap(z) − kp+1z
−(p+1)Ap(z

−1) (10.279)

Suppose that we choose the new reflection coefficient to be a perfect, lossless reflection at the
lips, i.e., kp+1 = ±1; then we can define two new polynomials as follows:

P (z) = A(z) − z−(p+1)A(z−1) (10.280)

Q(z) = A(z) + z−(p+1)A(z−1) (10.281)

Since kp+1 is a lossless termination, and every tube section is lossless, the impedance ZT (z) must
also be lossless. This means that the poles and zeros ejpn and ejqn are on the unit circle.

Physically, P (z) and Q(z) can be interpreted as the inverse transfer function of the vocal tract for
the open glottis and closed glottis boundary conditions, respectively (Furui [1989]), and P (z)/Q(z) is
the driving-point impedance of the vocal tract as seen from the glottis (Hasegawa-Johnson [2000]).

If p is odd, the formulae for pn and qn are as follows:

P (z) = A(z) + z−(p+1)A(z−1) =

(p+1)/2∏

n=1

(1 − ejpnz−1)(1 − e−jpnz−1) (10.282)

Q(z) = A(z) − z−(p+1)A(z−1) = (1 − z−2)

(p−1)/2∏

n=1

(1 − ejqnz−1)(1 − e−jqnz−1) (10.283)

The LSFs have some interesting characteristics: the frequencies {pn} and {qn} are related to the
formant frequencies; the dynamic range of {pn} and {qn} is limited and the two alternate around
the unit circle (0 ≤ p1 ≤ q1 ≤ p2...); {pn} and {qn} are correlated so that intra-frame prediction
is possible; and they change slowly from one frame to another, hence, inter-frame prediction is also
possible. The interleaving nature of the {pn} and {qn} allow for efficient iterative solutions (Kabal
and Ramachandran [1986]).

Almost all LPC-based coders today use the LSFs to represent the LP parameters. Considerable
recent research has been devoted to methods for efficiently quantizing the LSFs, especially using
Vector Quantization (VQ) techniques. Typical algorithms include predictive VQ, split VQ (Paliwal
and Atal [1993]), and multi-stage VQ (Paksoy et al. [1992], LeBlanc et al. [1993]). All of these
methods are used in the ITU standard ACELP coder G.729: the moving-average vector prediction
residual is quantized using a 7-bit first-stage codebook, followed by second-stage quantization of
two subvectors using independent 5-bit codebooks, for a total of 17 bits per frame (ITU-T [1996b],
Salami et al. [1998]).

The Augmented-Tube Interpretation of Line Spectral Frequencies

Setting Ap+1 = 0 in the concatenated tube model yields:

S(z)

U(z)
=

S(z)

E(p)(z) + z−(p+1)B(p)(z)
=

1

P (z)
, P (z) ≡ A(z) + z−(p+1)A(z−1) (10.284)

Setting Ap+1 = ∞ yields:

S(z)

U(z)
=

S(z)

E(p)(z) − z−(p+1)B(p)(z)
=

1

Q(z)
, Q(z) ≡ A(z) − z−(p+1)A(z−1) (10.285)
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Because of symmetry, the roots of both P (z) and Q(z) are on the unit circle. If p is even:

P (z) = (1 + z−1)

p/2∏

n=1

(1 − ejpnz−1)(1 − e−jpnz−1), pn real (10.286)

Q(z) = (1 − z−1)

p/2∏

n=1

(1 − ejqnz−1)(1 − e−jqnz−1), qn real (10.287)

The frequencies pn and qn, for 1 ≤ n ≤ p/2, are called the line spectral frequencies (LSFs). The
LSFs have the following useful characteristics:

• LSFs are real, so they are easier to quantize than the LPC roots ri, which are complex.

• If and only if 1/A(z) is stable, the LSFs satisfy: 0 < p1 < q1 < p2 < q2 < . . . < π

• The LSFs tend to track the LPC root frequencies arg(ri), but. . .

• The LSFs vary more slowly and smoothly than the LPC roots ri.

• Efficient algorithms exist for calculating the LSFs.

10.8 Parametric Models of the Spectral Fine Structure

The characteristics of the vocoder excitation signal u(n) change quite rapidly. The energy of the
signal may change from zero to nearly full amplitude within one millisecond at the release of a plosive
sound, and a mistake of more than about 5ms in the placement of such a sound is clearly audible.
The LPC coefficients, on the other hand, change relatively slowly. In order to take advantage of the
slow rate of change of LPC coefficients without sacrificing the quality of the coded residual, most
LPC-AS coders encode speech using a frame-subframe structure, as depicted in Figure 10.47. A
frame of speech is approximately 20ms in length, and is composed of typically 3-4 subframes. The
LPC excitation is transmitted once per subframe, while the LPC coefficients are only transmitted
once per frame. The LPC coefficients are computed by analyzing a window of speech which is usually
longer than the speech frame (typically 30-60ms). In order to minimize the number of future samples
required to compute LPC coefficients, many recent LPC-AS coders use an asymmetric window which
may include several hundred milliseconds of past context, but which emphasizes the samples of the
current frame (Florencio [1993], Salami et al. [1998]).

The perceptually weighted original signal sw(n) and weighted reconstructed signal ŝw(n) in a
given subframe are often written as L-dimensional row vectors S and Ŝ, where the dimension L is
the length of a sub-frame:

Sw = [sw(0), . . . , sw(L− 1)], Ŝw = [ŝw(0), . . . , ŝw(L− 1)] (10.288)

The core of an LPC-AS coder is the closed-loop search for an optimum coded excitation vector U ,
where U is typically composed of an “adaptive codebook” component representing the periodicity,
and a “stochastic codebook” component representing the noise-like part of the excitation. In general,
U may be represented as the weighted sum of several “shape vectors” Xm, m = 1, . . . ,M , which
may be drawn from several codebooks, including possibly multiple adaptive codebooks and multiple
stochastic codebooks.

U = GX, G = [g1, g2, . . .], X =



X1

X2

...


 (10.289)
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LPC Coefficients Excitation Indices and Gains

Figure 10.47: The frame/sub-frame structure of most LPC analysis by synthesis coders

The choice of shape vectors and the values of the gains gm are jointly optimized in a closed-loop
search, in order to minimize the perceptually weighted error metric |Sw − Ŝw|2.

The value of Sw may be computed prior to any codebook search by perceptually weighting the
input speech vector. The value of Ŝw must be computed separately for each candidate excitation,
by synthesizing the speech signal ŝ(n), and then perceptually weighting to obtain ŝw(n). These
operations may be efficiently computed, as described below.

Zero State Response and Zero Input Response

Let the filter H(z) be defined as the composition of the LPC synthesis filter and the perceptual
weighting filter, thusH(z) = W (z)/A(z). The computational complexity of the excitation parameter
search may be greatly simplified if Ŝw is decomposed into the zero-input response (ZIR) and zero-
state-response (ZSR) of H(z) (Trancoso and Atal [1986]). Note that the weighted reconstructed
speech signal is

Ŝw = [ŝw(0), . . . , ŝw(L− 1)], ŝw(n) =

∞∑

i=0

h(i)u(n− i) (10.290)

where h(n) is the infinite-length impulse response of H(z). Suppose that ŝw(n) has already been
computed for n < 0, and the coder is now in the process of choosing the optimal u(n) for the
subframe 0 ≤ n ≤ L − 1. The sum above can be divided into two parts: a part which depends on
the current subframe input, and a part which does not:

Ŝw = ŜZIR + UH (10.291)

where ŜZIR contains samples of the zero input response of H(z), and the vector UH contains the
zero state response. The zero input response is usually computed by implementing the recursive
filter H(z) = W (z)/A(z) as the sequence of two IIR filters, and allowing the two filters to run for L
samples with zero input. The zero state response is usually computed as the matrix product UH ,
where
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H =




h(0) h(1) . . . h(L− 1)
0 h(0) . . . h(L− 2)
...

...
...

...
0 0 . . . h(0)


 , U = [u(0), . . . , u(L− 1)] (10.292)

Given a candidate excitation vector U , the perceptually weighted error vector E may be defined as

Ew = Sw − Ŝw = S̃ − UH (10.293)

where the target vector S̃ is
S̃ = Sw − ŜZIR (10.294)

The target vector only needs to be computed once per subframe, prior to the codebook search.
The objective of the codebook search, therefore, is to find an excitation vector U which minimizes
|S̃ − UH |2.

Optimum Gain and Optimum Excitation

Recall that the excitation vector U is modeled as the weighted sum of a number of codevectors Xm,
m = 1, . . . ,M . The perceptually weighted error is therefore:

|E|2 = |S̃ −GXH |2 = S̃S̃′ − 2GXHS̃′ +GXH(GXH)′ (10.295)

where prime denotes transpose. Minimizing |E|2 requires optimum choice of the shape vectors X
and of the gains G. It turns out that the optimum gain for each excitation vector can be computed
in closed form. Since the optimum gain can be computed in closed form, it need not be computed
during the closed loop search: instead, one can simply assume that each candidate excitation, if
selected, would be scaled by its optimum gain. Assuming an optimum gain results in an extremely
efficient criterion for choosing the optimum excitation vector (Atal [1986]).

Suppose we define the following additional bits of notation:

RX = XHS̃′, Σ = XH(XH)′ (10.296)

Then the mean squared error is

|E|2 = S̃S̃′ − 2GRX +GΣG′ (10.297)

For any given set of shape vectors X , G is chosen so that |E|2 is minimized, which yields

G = R′
XΣ−1 (10.298)

If we substitute the minimum-MSE value of G into Equation 10.297, we get

|E|2 = S̃S̃′ −R′
XΣ−1RX (10.299)

Hence, in order to minimize the perceptually weighted MSE, we choose the shape vectors X in order
to maximize the covariance-weighted sum of correlations,

Xopt = argmax
(
R′
XΣ−1RX

)
(10.300)

When the shape matrix X contains more than one row, the matrix inversion in Equation 10.300 is
often computed using approximate algorithms (Atal and Remde [1982]). In the VSELP coder (Ger-
son and Jasiuk [1991]), X is transformed using a modified Gram-Schmidt orthogonalization so that
Σ has a diagonal structure, thus simplifying the computation of Equation 10.300.
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Figure 10.48: Block diagram of voice-excited vocoder. (After (E. E. David [1956], Schroeder et al.
[1962]))

10.8.1 Voice-Excited Vocoders

Despite their high potential for transmitting intelligible speech with bandwidth savings on the order
of ten-to-one, or more, vocoders have been applied only in special communication situations. Little
or no commercial use has been made, largely because speech quality and naturalness suffer in the
processing13. The resulting synthetic speech tends to have a “machine accent,” and its naturalness
is less than that of a conventional voice circuit.

The seat of the difficulty is largely the extraction of excitation information–that is, the pitch
measurement and the voiced-unvoiced discrimination. The difficult problem of automatic pitch
extraction is well known. The device must faithfully indicate the fundamental of the voice over a
frequency range of almost a decade (if male and female voices are to be handled) and over a large
range of signal intensity. Practically, the pitch extractor must cope with unfavorable conditions
where the speech signal may be produced in noisy and reverberant environments. In addition,
the signal may suffer band limitation that eliminates the first several lowest harmonics, requiring
that the fundamental frequency be generated from some nonlinear operation. These difficulties are
compounded by the human ear’s ability to detect small imprecisions in pitch data. (See Section 7.2.4,
Chapter 7.)

Some of the many approaches that have been made to the pitch extraction problem have been
briefly outlined in Section 4.6, Chapter 4. It suffices here to say that solutions are yet to be
implemented to bring the quality of the spectrum channel vocoder up to the quality of conventionally-
coded voice circuits. The same general remark applies to the voiced-unvoiced discrimination which
is also signalled in the pitch channel.

One method for avoiding the difficulties inherent in automatic analysis of excitation data is
the voice-excited vocoder (E. E. David [1956], Schroeder et al. [1962]). In this device excitation
information is transmitted in an unprocessed, subband of the original speech. At the receiving end,
this baseband is put through a nonlinear distortion process to spectrally flatten and broaden it. It
is then used as the source of excitation for regular vocoder channels covering the frequency range
above the baseband. A block diagram of the arrangement is shown in Fig. 10.48.

The flattened excitation band reflects the spectral line structure of the quasi-periodic voiced
sounds and the continuous spectral character of the unvoiced sounds. Because it is derived from a
real speech band, it inherently preserves the voiced-unvoiced and pitch information. At some sacrifice
in bandwidth, the overall quality of the processed signal can be made comparable to conventional
voice circuits. A higher quality signal is therefore realized together with a part of the bandsaving
advantage of the channel vocoder.

In one implementation of the device the baseband is taken as 250 to 940 Hz. The frequency range
940 to 3650 Hz, above the baseband, is covered by 17 vocoder channels. The first 14 of these channels
have analyzing bandwidths of 150 Hz, and the upper three are slightly wider. The total transmission

13Other considerations include the cost of terminal equipment compared to the cost of bandwidth.
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Figure 10.49: Block diagram of the spectral flattener. (After (E. E. David [1956], Schroeder et al.
[1962]))

band occupancy is 1000 to 1200 Hz, yielding a bandwidth compression of about three-to-one. The
method of spectral rlattening is shown in Fig. 10.49. The transmitted baseband is rectified and
applied to the bandpass filters of the vocoder synthesizer. The filter outputs are peak-clipped to
remove amplitude fluctuations. They are then applied as inputs to amplitude modulators which are
controlled by the vocoder channel signals.

Intelligibility and speech quality tests, using speech from a carbon button microphone, were
carried out to compare the voice-excited vocoder to telephone handset speech band limited to the
same frequency range citeDavid56, Schroeder62c. To provide a more sensitive test, and to keep
intelligibility substantially below 1001%, masking noise was added to provide an 18 db speech-
to-noise ratio. Phonetically balanced (PB) words were used in articulation tests (see Section 7.6,
Chapter 7). For male speakers, the intelligibility of the voice-excited vocoder was found to be
6.1% less than the carbon-microphone speech of the same bandwidth. For female speakers the
intelligibility was 10.1% less than the carbon-microphone speech.

Over-all speech quality of the voice-excited vocoder was assessed, along with that for three other
transmission methods, by presenting listeners with sentences in isolation. The subjects were asked
to rate each sentence “as good as normal telephone” or “worse than normal telephone.” In 72% of
the cases, the voice-excited vocoder was rated as good as normal telephone. In the same test, for
comparison, a long distance carrier telephone circuit rated 82%, an 1800 Hz lowpass circuit rated
36%, and a regular 18-channel vocoder rated 17%. The results show the voiced-excited system to be
better than the spectrum channel vocoder and to approach the quality of conventional voice circuits.
Its application, as with similar methods, depends upon desired trade-offs between cost of terminal
equipment, amount of bandsaving and signal quality.

Multi-Pulse LPC (MPLPC)

In the multipulse LPC algorithm (Atal and Remde [1982], ITU-T [1996a]), the shape vectors are
impulses. U is typically formed as the weighted sum of 4-8 impulses per subframe.

The number of possible combinations of impulses grows exponentially in the number of impulses,
so joint optimization of the positions of all impulses is usually impossible. Instead, most MPLPC
coders optimize the pulse positions one at a time, using something like the following strategy. First,
the weighted zero state response of H(z) corresponding to each impulse location is computed. If Ck
is an impulse located at n = k, the corresponding weighted zero state response is

CkH = [0, . . . , 0, h(0), h(1), . . . , h(L− k − 1)] (10.301)

The location of the first impulse is chosen in order to optimally approximate the target vector S̃1 = S̃,
using the methods described in the previous Section. After selecting the first impulse location k1,
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the target vector is updated according to

S̃m = S̃m−1 − Ckm−1H (10.302)

Additional impulses are chosen until the desired number of impulses is reached. The gains of all
pulses may be re-optimized after the selection of each new pulse (Singhal and Atal [1984]).

Variations are possible. The multipulse coder described in ITU standard G.723.1 transmits a
single gain for all of the impulses, plus sign bits for each individual impulse. The G.723.1 coder
restricts all impulse locations to be either odd or even; the choice of odd or even locations is coded
using one bit per subframe (ITU-T [1996a]). The regular pulse excited LPC algorithm, which was
the first GSM full-rate speech coder, synthesized speech using a train of impulses spaced one per 4
samples, all scaled by a single gain term (Kroon et al. [1986]). The alignment of the pulse train was
restricted to one of four possible locations, chosen in a closed-loop fashion together with a gain, an
adaptive codebook delay, and an adaptive codebook gain.

Singhal and Atal demonstrated that the quality of MPLPC may be improved at low bit rates by
modeling the periodic component of an LPC excitation vector using a pitch prediction filter (Singhal
and Atal [1984]). Using a pitch prediction filter, the LPC excitation signal becomes

u(n) = bu(n−D) +

M∑

m=1

ckm
(n) (10.303)

where the signal ck(n) is an impulse located at n = k, and b is the pitch prediction filter gain. Singhal
and Atal proposed choosing D before the locations of any impulses are known, by minimizing the
following perceptually weighted error:

|ED|2 = |S̃ − bXDH |2, XD = [u(−D), . . . , u((L− 1) −D)] (10.304)

The G.723.1 multi-pulse LPC coder and the GSM full-rate RPE-LTP coder both use a closed-loop
pitch predictor, as do all standardized variations of the CELP coder (see below). Typically, the
pitch delay and gain are optimized first, and then the gains of any additional excitation vectors (e.g.
impulses in an MPLPC algorithm) are selected to minimize the remaining error.

Code-excited LPC (CELP)

LPC analysis finds a filter 1/A(z) whose excitation is uncorrelated for correlation distances smaller
than the order of the filter. Pitch prediction, especially closed-loop pitch prediction, removes much
of the remaining inter-sample correlation. The spectrum of the pitch prediction residual looks like
the spectrum of uncorrelated Gaussian noise, but replacing the residual with real noise (noise which
is independent of the original signal) yields poor speech quality. Apparently, some of the temporal
details of the pitch prediction residual are perceptually important. Schroeder and Atal proposed
modeling the pitch prediction residual using a stochastic excitation vector ck(n) chosen from a list of
stochastic excitation vectors, k = 1, . . . ,K, known to both the transmitter and receiver (Schroeder
and Atal [1985]):

u(n) = bu(n−D) + gck(n) (10.305)

The list of stochastic excitation vectors is called a stochastic codebook, and the index of the stochastic
codevector is chosen in order to minimize the perceptually weighted error metric |Ek|2. Rose and
Barnwell discussed the similarity between the search for an optimum stochastic codevector index k
and the search for an optimum predictor delay D (Rose and Barnwell III [1986]), and Kleijn et al.
coined the term “adaptive codebook” to refer to the list of delayed excitation signals u(n−D) which
the coder considers during closed-loop pitch delay optimization (Figure 10.50).

The CELP algorithm was originally not considered efficient enough to be used in real-time speech
coding, but a number of computational simplifications were proposed which resulted in real-time
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Figure 10.50: The code-excited LPC algorithm (CELP) constructs an LPC excitation signal by
optimally choosing input vectors from two codebooks: an “adaptive” codebook, which represents
the pitch periodicity, and a “stochastic” codebook, which represents the unpredictable innovations
in each speech frame.

CELP-like algorithms. Trancoso and Atal proposed efficient search methods based on the truncated
impulse response of the filter W (z)/A(z) (Trancoso and Atal [1986], Atal [1986]). Davidson and Lin
separately proposed center-clipping the stochastic codevectors, so that most of the samples in each
codevector are zero (Davidson and Gersho [1986], Lin [1986]). Lin also proposed structuring the
stochastic codebook so that each codevector is a slightly-shifted version of the previous codevector;
such a codebook is called an overlapped codebook (Lin [1986]). Overlapped stochastic codebooks are
rarely used in practice today, but overlapped-codebook search methods are often used to reduce the
computational complexity of an adaptive codebook search. In the search of an overlapped codebook,
the correlation RX and autocorrelation Σ may be recursively computed, thus greatly reducing the
complexity of the codebook search (Kleijn et al. [1988]).

Most CELP coders optimize the adaptive codebook index and gain first, and then choose a
stochastic codevector and gain in order to minimize the remaining perceptually weighted error.
If all of the possible pitch periods are longer than one sub-frame, then the entire content of the
adaptive codebook is known before the beginning of the codebook search, and the efficient overlapped
codebook search methods proposed by Lin may be applied (Lin [1986]). In practice, the pitch period
of a female speaker is often shorter than one sub-frame. In order to guarantee that the entire adaptive
codebook is known before beginning a codebook search, two methods are commonly used. First,
the adaptive codebook search may simply be constrained to only consider pitch periods longer than
L samples. In this case, the adaptive codebook will lock on to values of D which are an integer
multiple of the actual pitch period; if the same integer multiple is not chosen for each subframe, the
reconstructed speech quality is usually good. Second, adaptive codevectors with delays of D < L
may be constructed by simply repeating the most recent D samples as necessary to fill the subframe.

SELP, VSELP, ACELP, and LD-CELP

Rose and Barnwell demonstrated that reasonable speech quality is achieved if the LPC excitation
vector is computed completely recursively, using two closed-loop pitch predictors in series, with
no additional information (Rose and Barnwell III [1986]). In their “self-excited LPC” algorithm
(SELP), the LPC excitation is initialized during the first sub-frame using a vector of samples known
at both the transmitter and receiver. For all frames after the first, the excitation is the sum of an
arbitrary number of adaptive codevectors:

u(n) =

M∑

m=1

bmu(n−Dm) (10.306)
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Kleijn et al. developed efficient recursive algorithms for searching the adaptive codebook in SELP
coder and other LPC-AS coders (Kleijn et al. [1988]).

Just as there may be more than one adaptive codebook, it is also possible to use more than one
stochastic codebook. The vector-sum excited LPC algorithm (VSELP) models the LPC excitation
vector as the sum of one adaptive and two stochastic codevectors (Gerson and Jasiuk [1991]).

u(n) = bu(n−D) +
2∑

m=1

gmckm
(n) (10.307)

The two stochastic codebooks are each relatively small (typically 32 vectors), so that each of the
codebooks may be searched efficiently. The adaptive codevector and the two stochastic codevectors
are chosen sequentially. After selection of the adaptive codevector, the stochastic codebooks are
transformed using a modified Gram-Schmidt orthogonalization, so that the perceptually weighted
speech vectors generated during the first stochastic codebook search are all orthogonal to the per-
ceptually weighted adaptive codevector. Because of this orthogonalization, the stochastic codebook
search results in the choice of a stochastic codevector which is jointly optimal with the adaptive
codevector, rather than merely sequentially optimal. VSELP is the basis of the Telecommunications
Industry Associations digital cellular standard IS-54.

The algebraic CELP (ACELP) algorithm creates an LPC excitation by choosing just one vector
from an adaptive codebook and one vector from a fixed codebook. In the ACELP algorithm, however,
the fixed codebook is composed of binary-valued or trinary-valued algebraic codes, rather than the
usual samples of a Gaussian noise process (Adoul et al. [1987]). Because of the simplicity of the
codevectors, it is possible to search a very large fixed codebook very quickly using methods which
are a hybrid of standard CELP and MPLPC search algorithms. ACELP is the basis of the ITU
standard G.729 coder at 8 kbps. ACELP codebooks may be somewhat larger than the codebooks
in a standard CELP coder; the codebook in G.729, for example, contains 8096 codevectors per
subframe.

Most LPC-AS coders operate at very low bit rates, but require relatively large buffering delays.
The low delay CELP coder (LD-CELP) operates at 16 kbps (ITU-T [1992], Chen et al. [1992]) and
is designed to obtain the best possible speech quality, with the constraint that the total algorithmic
delay of a tandem coder and decoder must be no more than two milliseconds. LPC analysis and
codevector search are computed once per two milliseconds (16 samples). Transmission of LPC
coefficients once per two milliseconds would require too many bits, so LPC coefficients are computed
in a recursive backward-adaptive fashion. Before coding or decoding each frame, samples of ŝ(n) from
the previous frame are windowed, and used to update a recursive estimate of the autocorrelation
function. The resulting autocorrelation coefficients are similar to those that would be obtained
using a relatively long asymmetric analysis window. LPC coefficients are then computed from the
autocorrelation function using the Levinson-Durbin algorithm.

10.8.2 The LPC-10e Vocoder

The 2.4 kbps LPC-10e vocoder (Figure 10.51) is one of the earliest and one of the longest-lasting
standards for low-bit-rate digital speech coding (DDVPC [1984], Campbell and Tremain [1986]). This
standard was originally proposed in the 1970s, and was not officially replaced until the selection of
the MELP 2.4 kbps coding standard in 1996 (Kohler [1997]). Speech coded using LPC-10e sounds
metallic and synthetic, but it is intelligible.

In the LPC-10e algorithm, speech is first windowed using a Hamming window of length 22.5ms.
The gain (G) and coefficients (ai) of a linear prediction filter are calculated for the entire frame
using the Levinson-Durbin recursion. Once G and ai have been computed, the LPC residual signal
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Figure 10.51: A simplified model of speech production, whose parameters can be transmitted effi-
ciently across a digital channel.

d(n) is computed:

d(n) =
1

G
(s(n) −

p∑

i=1

ais(n− i)) (10.308)

The residual signal d(n) is modeled using either a periodic train of impulses (if the speech
frame is voiced) or an uncorrelated Gaussian random noise signal (if the frame is unvoiced). The
voiced/unvoiced decision is based on the average magnitude difference function (AMDF),

Φd(m) =
1

N − |m|

N−1∑

n=|m|

|d(n) − d(n− |m|)| (10.309)

The frame is labeled as voiced if there is a trough in Φd(m) which is large enough to be caused
by voiced excitation. Only values of m between 20 and 160 are examined, corresponding to pitch
frequencies between 50Hz and 400Hz. If the minimum value of Φd(m) in this range is less than a
threshold, the frame is declared voiced, and otherwise it is declared unvoiced (Campbell and Tremain
[1986]).

If the frame is voiced, then the LPC residual is represented using an impulse train of period T0,
where

T0 = arg
160
min
m=20

Φd(m) (10.310)

If the frame is unvoiced, a pitch period of T0 = 0 is transmitted, indicating that an uncorrelated
Gaussian random noise signal should be used as the excitation of the LPC synthesis filter.

10.8.3 Mixed Excitation Linear Prediction (MELP)

The Mixed Excitation Linear Prediction (MELP) coder (McCree et al. [1996]) was selected in 1996
by the United States Department of Defense Voice Processing Consortium (DDVPC) to be the U.S.
Federal Standard at 2.4 kbps replacing LPC-10e. The MELP coder is based on the LPC model with
additional features that include mixed excitation, aperiodic pulses, adaptive spectral enhancement,
pulse dispersion filtering, and Fourier magnitude modeling (McCree and Barnwell III [1995]). The
synthesis model for the MELP coder is illustrated in Figure 10.52. LP coefficients are converted to
LSFs and a Multi-Stage Vector Quantizer (MSVQ) is used to quantize the LSF vectors. For voiced
segments a total of 54 bits that represent: LSF parameters (25), Fourier magnitudes of the prediction
residual signal (8), gain (8), pitch (7), bandpass voicing (4), aperiodic flag (1), and a sync bit are
sent. The Fourier magnitudes are coded with an 8-bit VQ and the associated codebook is searched
with a perceptually-weighted Euclidean distance. For unvoiced segments, the Fourier magnitudes,
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Figure 10.52: The MELP speech synthesis model

bandpass voicing, and the aperiodic flag bit are not sent. Instead, 13 bits that implement Forward
Error Correction (FEC) are sent. The performance of MELP at 2.4 kbps is similar to or better
than that of the Federal Standard at 4.8 kbps (FS 1016) (Supplee et al. [1997]). Versions of MELP
coders operating at 1.7 kbps (McCree and Martin [1998]) and 4.0 kbps (Stachurski et al. [1999])
have recently been reported.

10.8.4 Multi-Band Excitation (MBE)

In Multi-Band Excitation (MBE) coding the voiced/unvoiced decision is not a binary one; instead,
a series of voicing decisions are made for independent harmonic intervals (Griffin and Lim [1988]).
Since voicing decisions can be made in different frequency bands individually, synthesized speech
may be partially voiced and partially unvoiced. An improved version of the MBE was introduced
in (Hardwick and Lim [1988], Brandstein et al. [1990]) and referred to as the IMBE coder. The
IMBE at 2.4 kbps produces better sound quality than the LPC-10e. The IMBE was adopted as the
Inmarsat-M coding standard for satellite voice communication at a total rate of 6.4 kbps, including
4.15 kbps of source coding and 2.25 kbps of channel coding (Wong [1991]). The Advanced MBE
(AMBE) coder was adopted as the Inmarsat Mini-M standard at a 4.8 kbps total data rate, including
3.6 kbps of speech and 1.2 kbps of channel coding (Dimolitsas [1995], Goldberg and Riek [2000]).
In (Das and Gersho [1999]) an enhanced multiband excitation (EMBE) coder was presented. The
distinguishing features of the EMBE coder include signal-adaptive multimode spectral modeling
and parameter quantization, a two-band signal-adaptive frequency-domain voicing decision, a novel
VQ scheme for the efficient encoding of the variable-dimension spectral magnitude vectors at low-
rates, and multi-class selective protection of spectral parameters from channel errors. The 4 kbps
EMBE coder accounts for both source (2.9 kbps) and channel (1.1 kbps) coding and was designed
for satellite-based communication systems.

10.8.5 Prototype Waveform Interpolative (PWI) Coding

A different kind of coding technique which has properties of both waveform and LPC-based coders
was proposed in (Kleijn [1991], Kleijn and Granzow [1991]) and is called Prototype Waveform
Interpolation (PWI). PWI uses both interpolation in the frequency domain and forward-backward
prediction in the time domain. The technique is based on the assumption that, for voiced speech,
a perceptually accurate speech signal can be reconstructed from a description of the waveform of
a single, representative pitch cycle per interval of 20-30 ms. The assumption exploits the fact
that voiced speech can be interpreted as a concentration of slowly evolving pitch-cycle waveforms.
The prototype waveform is described by a set of linear-prediction (LP) filter coefficients describing
the formant structure and a prototype excitation waveform, quantized with analysis-by-synthesis
procedures. The speech signal is reconstructed by filtering an excitation signal consisting of the
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Figure 10.53: Voice-excited formant vocoder. (After (Flanagan [1960b]))

concatenation of (infinitesimal) sections of the instantaneous excitation waveforms. By coding the
voiced and unvoiced components separately, a 2.4 kb/s version of the coder performed similarly to
the 4.8 kb/s FS1016 standard (Kleijn and Haagen [1995]).

Recent work has aimed at reducing the computational complexity of the coder for rates between
1.2 and 2.4 kbps by including a time-varying waveform sampling rate and a cubic B-spline waveform
representation (Kleijn et al. [1996], Shoham [1997]).

10.8.6 Voice-Excited Formant Vocoders

The voice-excitation technique described in Section 10.8.1 has also been applied to a parallel-
connected formant vocoder (Flanagan [1960b]). The circuit arrangement is shown in Fig. 10.53.
In this implementation, a baseband of about 400 Hz (300 to 700 Hz) is transmitted in unprocessed
form. Three formant vocoder channels cover the frequency range 800 to 3200, and the amplitude
and frequency of three spectral maxima in this range are transmitted. Formant extraction is ac-
complished according to the maximum-picking technique described in Section 4.5, Chapter 4. All
control signals are low-passed to 17 Hz. The total bandwidth occupancy is therefore slightly more
than 500 Hz.

At the synthesizer the baseband is spectrally broadened. It is peakclipped, differentiated, half-
wave rectified and used to trigger a one-shot multivibrator. The pulse output of the multivibrator
provides the excitation source for the formant channels. Unvoiced sounds create shot noise from the
multivibrator. Voiced sounds produce periodic pulse trains which sometimes may have more than
one pulse per fundamental period. The technique generally provides an improvement in the quality
and naturalness of the formant vocoder transmission. However, because the baseband is such a large
percentage of the total bandwidth, it is almost as economical to use conventional vocoder channels
above the baseband.

A related voice-excited technique uses the spectral shape of the first formant region to shape
the second and third formants (Greefkes and de Jager [1968]). A baseband about 300 to 800 Hz
is separated and transmitted in unprocessed form. In two other (formant) bands, 800 to 2000
Hz and 2000 to 3200 Hz, zero-crossing counters and rectifier-integrator circuits determine signals
representing the amplitudes and frequencies of the formants. These four signals are lowpassed to 40
Hz each, and are sent with the baseband to the receiver.

The synthesizer reconstructs a spectrum in which the baseband (essentially the first formant)
is produced in its original position. A second formant is synthesized in a separate parallel branch
by heterodyning the baseband to the measured second formant frequency position. A third is
generated in a similar fashion. The output speech is obtained by adding the three parallel branches
in accordance with the measured amplitudes. The spectral components of the heterodyned bands
generally become inharmonic, and the pitch frequency is preserved in them only to the extent of line
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Figure 10.54: Block diagram of the Vobanc frequency division-multiplication system. (After (Bogert
[1956]))

spacing. Perceptually, the degradation of pitch information is less than might be expected, since the
baseband is retained in original form with its correct line structure, and it is an effective masker.

10.8.7 Frequency-Dividing Vocoders

A class of vocoder devices aims to avoid the difficult problems of pitch tracking and voiced-unvoiced
switching that conventional vocoders use. The intent is to settle for modest savings in bandwidth in
order to realize a simpler implementation and a synthetic signal of higher quality. The voice-excited
vocoder described in Section 10.8.1 represents one such effort. The band saving which accrues is
due primarily to the ear’s criteria for representing the short-time spectrum of the signal.

Frequency division is a well-known process for reducing the bandwidth of signals whose spectral
widths are determined primarily by large-index frequency modulation. While speech is not such a
signal, sub-bands of it (for example, formant bands or individual voice harmonics) have similarities
to large-index frequency modulation. Frequency division by factors of two or three are possible
before intelligibility deteriorates substantially.

Frequency division generally implies possibilities for frequency multiplication. Similarly, spectral
division-multiplication processes suggest possibilities for compression and expansion of the signal’s
time scale. Reproduction of a divided signal at a rate proportionately faster restores the frequency
components to their original values, and compresses the time scale by a factor equal to the frequency
divisor.

Vobanc

Various methods–including electrical, mechanical, optical and digital–have been used to accomplish
division and multiplication. All cannot be described in detail. Several, however, serve to illustrate
the variety of designs and applications.

One frequency-division method for bandwidth conservation is the Vobanc (Bogert [1956]). Al-
though constructed practically using heterodyne techniques, the principle involved is shown in
Fig. 10.54. The speech band 200 to 3200 Hz is separated into three contiguous band-pass chan-
nels, Al, A2, A3. Each channel is about 1000 Hz wide and normally covers the range of a speech
formant. Using a regenerative modulator, the signal in each band is divided by two and limited to
one-half the original frequency range by BP filters B1, B2, B3. The added outputs of the filters
yield a transmission signal which is confined to about one-half the original bandwidth.

At the receiver, the signal is again filtered into the three bands, B1, B2, and B3. The bands are
restored by frequency doubling and are combined to provide the output signal. In consonant artic-
ulation tests with 48 listeners and 10 talkers, the Vobanc consonant articulation was approximately
80 per cent. In the same test, an otherwise unprocessed channel, band-limited to 200 to 1700 Hz,
scored a consonant intelligibility of about 66 per cent.

Other systems similar in band-division to Vobanc have been investigated (Seki [1958], Marcou
and Daguet [1956a,b]). One proposal, called Codimex, considers potential division by factors as
high as eight (Daguet [1962]), although practical division appears limited to factors of two or three.
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Figure 10.55: Block diagram of “harmonic compressor.” (After (Schroeder et al. [1962]))

Figure 10.56: A “speech stretcher” using frequency multiplication to permit expansion of the time
scale. (After (Gould [1951]))

Harmonic Compressor

Another complete division-multiplication transmission system, designed with a sufficient number
of filters to operate on individual voice harmonics, has been investigated by digital simulation
(Schroeder et al. [1962]). This method, called the “harmonic compressor,” uses 50 contiguous band-
pass filters, each 60 Hz wide, covering the range 240 to 3240 Hz. The circuit is shown in Fig. 10.55.
It is designed to achieve a bandwidth reduction of two-to-one. On the transmitter side, the signals
from the bandpass filters are divided by two and combined for transmission over one-half the orig-
inal bandwidth. At the receiver the components are again separated by filtering and restored by
multiplication by two. All filters and operations arc simulated in a large digital computer. From
informal listening tests, the quality and intelligibility of the transmitted speech are judged to fall
between that of a voice-excited vocoder with a 700 bps baseband and an unprocessed signal of the
same bandwidth. A time speed up by a factor of two can also be applied to the transmitted signal
to restore it to the original frequency range.

A related investigation in which attention is focused upon the individual harmonic components of
the signal has considered optical methods, mechanical string-filter methods, and ultrasonic storage
devices for frequency division-multiplication (Vilbig [1950, 1952], Vilbig and Haase [1956a,b]). A
part of this same effort produced an electrical “speech stretcher” (Gould [1951]). The idea is to
expand the time scale of speech by the arrangement shown in Fig. 10.56. The speech signal is
filtered by 32 contiguous BP-filters covering the range 75 to about 7000 Hz. The filter bandwidths
are approximately 100 Hz wide up to 1000 Hz, and increase logarithmically to 7000 Hz. Full-wave
rectification doubles the frequency components of each band. Band-pass filtering at twice the original
bandwidth eliminates much of the harmonic distortion. Recording the combined signal and playing
back at one-half speed restores the components to their original frequency positions. The time scale
of the signal, however, is expanded by two.

10.9 Rate-Distortion Tradeoffs for Speech Coding

10.9.1 Multiplexing and Digitalization

The problems in multiplexing the voice-excited vocoder are essentially similar to those discussed
in Section 10.4.1 for the channel vocoder. The main difference is the unprocessed baseband. For
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economical transmission in a frequency multiplex system, it should be left unaltered or produced
as a single sideband modulation. Transmission of the spectrum-defining channel signals can be the
same in both cases.

One design of a voice-excited vocoder uses 500 Hz of unprocessed baseband and 13 spectrum
channels above the baseband (Howell et al. [1961]). The baseband is transmitted by single sideband
modulation, and the channel signals are transmitted by vestigial sideband. Another analog imple-
mentation uses an unprocessed baseband of 250 to 925 Hz and 10 vocoder channels covering the
range to approximately 3000 Hz (Golden [1963]). The channel signals are double-sideband amplitude
modulated onto 10 carriers spaced by 60 Hz in the range 925 to 1630 Hz. A bandwidth compression
of approximately two-to-one is thereby realized.

Digital simulation and current computer techniques have also been used to design and study
a complete voice-excited vocoder (Golden [1963]). To realize the digital simulation, the sampled-
data equivalents of all filters and all circuits of an analog 10-channel voice-excited vocoder were
derived (see, for example, Section 9.5, Chapter 9). Transformation of the continuous system into
the sampled-function domain permits its simulation in terms of discrete operations which can be
programmed in a digital computer. In the present instance, the entire vocoder was represented
inside the computer, and sampled-quantized input speech signals were processed by the program.

The immense advantage that this technique offers for research and design of signal-processing
systems cannot be overemphasized. The entire transmission system can be simulated and evaluated
before COnstructing a single piece of hardware. The usual price paid is non-real time operation of
the system. The time factor for the present simulation was 172 to 1, or 172 sec of computation to
process one second of speech. However, as digital techniques develop and as computers become even
faster, this time factor will shrink proportionately.

Another vocoder development has resulted in a time-multiplexed, fully digitalized voice-excited
vocoder (L. A. Yaggi [1962]). The device is designed to operate at a data rate of 9600 bits/sec and to
use PCM encoding. The system operates with a baseband whose upper cutoff is, optionally, either
800 Hz or 950 Hz. For the former, 12 vocoder channels cover the range to 4000 Hz; for the latter, 11
channels are used. The baseband signal is sampled at the Nyquist rate and quantized to 5 bits. The
spectrum channels are sampled at 50 sec-1 (64 sec-1 for the 950 Hz baseband); the lower three are
quantized to 3 bits, and the higher ones to 2 bits. Amplitude normalization of the spectrum signals
is also used. Comparable choices have been made in alternative digital implementations (Tierney
[1965]).

Other coding techniques which, like the voice-excited vocoder, avoid the pitch tracking problem
include the phase vocoder, the vobanc and the analytic rooter. These methods are discussed in later
sections.

10.9.2 Multiplexing of Formant Vocoders

One real-time formant vocoder that has been given extensive tests is the parallel configuration shown
in Fig. 10.57 (Stead and Jones [1961]). Besides being tested in the unmultiplexed “back-to-back”
connection, this system has also been examined in a fully digitalized version using time-division
PCM techniques (Weston [1962]). The components of the system have several similarities with
devices discussed previously. In one version, the synthesizer is based upon an earlier development
(Lawrence [1953]). The formant-frequency extractor is based upon the peak-picking technique de-
scribed in Section 4.5, Chapter 4. The overall implementation and circuit design are unusually
refined, and considerable effort is made to insure adequate dynamic range for the extraction of fre-
quency and amplitude data. In the analog form, low-pass filters confine the eight control parameters
to approximately 20 Hz each, resulting in a total bandwidth occupancy of about 160 Hz. Typical
intelligibility scores for phonetically-balanced words and for relatively naive listeners are reported
to average approximately 70%.

As mentioned earlier, the advantages of digital transmission are several. Not least is the ability to
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Figure 10.57: A complete formant-vocoder system utilizing analog and digital transmission tech-
niques. (After (Stead and Jones [1961], Weston [1962]))

Table 10.5: Quantization of formant-vocoder signals. (After STEAD and WESTON)
Parameter Number Bits

of levels
Fl: 16 4
F2: 16 4
F3: 8 3
AI: 8 3
A2: 8 3
A3: 8 3
V/UN: 2 1
F0: 6414 6
TOTAL 27

regenerate the signal repeatedly–essentially free of accumulating distortion. Problems in switching,
time sharing and security are also amenable to straightforward solutions with the signal in digital
form. One difficulty, however, is that transmission of the digital signal requires more bandwidth
than does the analog form. For example, a 3000 Hz speech band sampled at the Nyquist rate (6000
sec−1) and quantized to 6 or 7 bits may require–without further coding–a bandwidth on the order
of 50000 Hz. If, through appropriate coding, the data rate could be brought down to the order of
1000 bits/sec, the digital signal could easily be transmitted over ordinary 3000 Hz voice channels.
The formant vocoder holds promise for providing such a coding.

In the formant vocoder of Fig. 10.57, the control parameters were band-limited to 20 Hz. For
digitalizing the control signals, however, a sampling rate of 32 sec−1 was found to be a safe working
minimum. This rate suggests that the control parameters have little significant energy above about
16 Hz. The amplitude quantization found acceptable for digitalizing the control data of this system
is shown in Table 10.5.

In evaluating the digital transmission, 16 levels were thought too generous for the first formant
frequency, but 8 levels were too coarse. For the three amplitude parameters, the 8 levels each were
also thought too generous and that additional saving could be effected by coding the functions on a
log-amplitude scale15

15These observations have been confirmed, extended and quantified in greater depth by computer-perceptual ex-
periments on the bandlimitation and quantization of formant data in synthesis (Rosenberg [1971b]).
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Table 10.6: Estimated precision necessary in quantizing formant-vocoder parameters. The esti-
mates are based upon just-discriminable changes in the parameters of synthetic vowels; amplitude
parameters are considered to be logarithmic measures. (After (Flanagan [1957b]))

Parameter Number Bits
of levels

F1: 14 3.8
F2: 14 3.8
F3: 9 3.2
A1: 3 1.6
A2: 3 1.6
A3: 2 1.0
F0: 40 5.3
TOTAL: 20.3

It is relevant to compare the practical figures of Table 10.5 with earlier estimates of the precision
necessary in quantizing similar parameters (Flanagan [1957b]). The earlier estimates were based
upon the just-perceptible changes which listeners could detect in the formant parameters of synthetic
vowels (see Section 7.2, Chapter 7). The quantizing accuracy estimated to be necessary is given in
Table 10.6.

In view of the limitations of the perceptual data on which the estimates are based, the correspon-
dence with the numbers in Table 10.5 is surprisingly close. It suggests that psychoacoustic measures
of the type discussed in Chapter 7 might be judiciously applied with some confidence to estimate
system performance.

After sampling and quantizing, the data of Fig. 10.57 are PCM encoded for transmission. At a
sampling rate of 32 sec−1, the control data, exclusive of pitch, are specified with 672 bits/sec. A
6-bit pitch parameter produces a total rate of 864 bits/sec, a rate which could be transmitted by
conventional 3000 Hz channels. Although detailed testing has not been carried out, the digitally
transmitted signal is reported to differ only slightly in intelligibility and quality from the analog
connection. One interesting observation about the system is that the spectrum of the quantizing
noise associated with digitalizing the control signals does not lie in the audio band. Rather, the noise
corresponds to a sort of quasi-random uncertainty in the synthesis process. Its subjective effects
have not been fully explored.

A preliminary study has considered the effects of digital errors in the PCM-encoded parameters
of a formant vocoder (Campanella et al. [1962]). The system on which the tests were performed is
similar to that shown in Fig. 10.57, except the voiced-unvoiced decision is transmitted by the pitch
signal. The total bandwidth occupancy of the control signals is 140 Hz. The formant parameters
are quantized to 3 bits. Pitch is quantized to 5 bits. A 43.5 sec−1 scan rate in the time multiplexing
produces a data rate of 1000 bits/sec. Under error free conditions, articulation scores of about 80%
on PB words are claimed for this bit rate. A digital error rate of 3% degrades the articulation score
by 15%. This impairment is found to be equivalent to reducing the signal-to-noise ratio of the analog
parameters to 9.5 db.

10.9.3 Time-Assignment Transmission of Speech

In two-way conversation, one party is normally silent and listening on the average of one-half the time.
In addition, natural speech has many pauses and silent intervals. A given talker, therefore, transmits
a signal only on the order of 35 to 40 per cent of the total time. In longdistance communication,
where amplification of the signal is necessary, the two-way communication channels are normally
four-wire circuits-or two unilateral transmission paths. Each party has a transmit circuit and a
receive circuit. Because of the relative inactivity of each talker, a single one-way channel is not
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Figure 10.58: Schematic sound spectrogram illustrating the principle of the “one-man TASI.” (After
(Schroeder and Bird [1962]))

used on the order of 60 to 65 per cent of the time. When a large group of such connections are
accessible from single transmit and receive locations, the statistical properties of the conversation
ensemble make a significant amount of time and bandwidth available for signal transmission. A
method for practicably utilizing this capacity is called Time Assignment Speech Interpolation, or
“TASI” (O’Neil [1959], Bullington and Fraser [1959]).

The TASI system has available a group of unilateral transmit and receive circuits–typically the
line-pairs in an undersea cable. The system is to serve a greater number of talkers than the number
of unilateral circuits. The incoming transmit circuit of each talker is equipped with a fast-acting
speech detector, or voice switch. When the detector indicates the presence of speech on its line,
an automatic electronic switch connects the line to an available transmit path of the TASI group.
Incoming signals for transmission are assigned transmit circuits until all have been filled. When the
number of signals to be transmitted exceeds the number of transmit paths, the TASI switch searches
the connections to find one that has fallen silent, disconnects it, and assigns that path to a channel
which has a signal to transmit.

During pauses and silent intervals, a given talker loses his priority on the transmit link. He is
reassigned a channel–often a different one–when he again becomes active. The TASI switch must
consequently keep track of who is talking to whom, and it must identify the recipient of each signal
presented for transmission. This message “addressing” information can be transmitted in the form
of a very short identification signal, either before each talk spurt or over an auxiliary channel that
serves the entire system.

A limit obviously exists to the number of incoming signals that can be transmitted by a given
group of transmit paths before some “freezeout” or loss of speech signals occurs. Among other
things, this limit is a function of the size of the cable group, the circuit signal-to-noise ratio, and
the sensitivity of the speech detectors. Several TASI systems have been put into practical operation
on undersea cables. On a 36-channel cable, for example, the effective transmission bandwidth is on
the order of two to three times that of the physical circuit.

As mentioned at the beginning of the section, natural pauses of phonemic, syllabic or longer
durations occur in a single “one-way” speech signal. These pauses or gaps suggest that the TASI
principle might be applied to a single speech channel to realize a band-saving. An experimental
circuit, called a “one-man TASI,” has considered this point (Schroeder and Bird [1962]). The
system has been tested by simulation in a digital computer. Its principle of operation is illustrated
by the schematic sound spectrogram in Fig. 10.58.
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As shown in Fig. 10.58, suppose that a speech band of BW Hz is to be transmitted, but that a
channel width of only BW/2 is available. The natural pauses and gaps in one BW/2 of the signal
might be used to transmit information about the other BW/2 band of the signal. If the BW/2
bands are called high band (HB) and low band (LB), four signal possibilities exist. The processing
strategies employed in the four situations are illustrated by corresponding letters on Fig. 10.58, and
are:

a) When only HB signal (and no LB signal) is present, the HB is detected, heterodyned down to
the LB range, and transmitted immediately over the BW/2 channel.

b) When HB and LB are detected simulataneously, the LB is transmitted immediately, while
the HB is heterodyned down and read into a storage for transmission later. (See τb intervals in
Fig. 10.58).

c) When neither HB nor LB signal is detected, a gap exists. (See τg intervals in Fig. 10.58.)
During this interval, as much of the previouslystored HB is transmitted as there is time for. Gener-
ally some trailing edge of the HB will be lost. One set of speech-burst statistics gives average burst
durations of about 130 msec followed by average silent intervals of 100 msec (BOLT and MACDON-
ALD). On the basis of these statistics, about 3/13 of the HB signal would be expected to be lost.
None of the LB signal is lost.

d) When LB only is present, it is transmitted immediately in the conventional manner.
Two speech detectors, one for each band, are required. In the present study, they were full-wave

rectifiers with 15-msec smoothing time constants. Their outputs operated threshold devices with
prescribed hysteresis characteristics. The binary output signals from the detectors, shown as SDL
and SDH in Fig. 10.58, must also be transmitted over a narrow-band channel so that the speech
may be properly reassembled at the receiver. Because of the storage on the transmitter side, a fixed
transmission delay is incurred before the reassembled signal is available.

The reassembly operations are evident in the block diagram of the complete system in Fig. 10.59.
Two delay elements are used at the receiver. One is a fixed, maximum transmission delay τm in
the LB channel. Its value is equal to or greater than the duration of the longest speech burst to
be stored. The other is a variable delay whose value is the difference between τm and the last
speech-burst duration τb. The various switch conditions–corresponding to the SDL and SDH signal
outputs–are shown in the table.

In testing the system by simulation in a digital computer, the effective size of the HB store
was taken as 500 msec. In the unlikely instance of a speech-burst duration longer than 500 msec,
the high-band information was discarded, rather than reassembled in the wrong place. Typical
operation of the system, as simulated in the computer, is shown by the spectrograms of Fig. 10.60.
The utterance is “High altitude jets whiz past screaming.” In comparing what the complete system
provides over and above a single BW/2 channel, one sees that a substantial amount of the high band
is transmitted. All high frequencies from unvoiced bursts are present, and a large percentage of the
voiced HB is preserved.

The price of the improvement is the complexity of the storage and switching and the 500-msec
transmission delay.

Alternatively, the silent gaps in the speech signal may be used to interleave another signal, such
as digital data read on demand from a buffer store. In one computer simulation of this technique
(Hanauer and Schroeder [1966]), the speech envelope was used as a control to switch between speech
and data. It was found possible to make available as much as 55% of the speech-signal time for
interleaving the alternate information.

10.9.4 Multiplexing Channel Vocoders

Frequency-Space Multiplexing

The customary techniques for transmitting a multiplicity of simultaneous signals are frequency-
space multiplexing and time-division multiplexing. In the former, the requisite amount of spectrum
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Figure 10.59: Block diagram of ”one-man TASI” system for 2:1 band-width reduction. (After
(Schroeder and Bird [1962]))

Figure 10.60: Sound spectrograms illustrating operation of the single channel speech interpolator
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bandwidth is allocated to each signal. The individual signals are modulated onto separate carriers,
which are transmitted simultaneously within the allocated channels and are demodulated at the
receiver. In the latter, the several signals time-share a single transmission path of appropriate
bandwidth.

Frequency multiplexing of vocoder signals is attractive from the standpoint of circuit simplicity
and existing analog communication links. Certain relations can be observed to conserve spectrum
space and, at the same time, provide accurate transmission. Since the vocoder signals normally
contain a dc component, the modulation method must be chosen to preserve this response. Con-
ventional double-sideband (I)S13) amplitude modulation would satisfy the response requirement,
hut would not be economical of bandwidth. Conventional single-sidehand (SSB) modulation with
suppressed carrier, although taking only half the bandwidth, would not reliably preserve the low-
frequency components of the modulation. Vestigial sideband transmission might suffice. However, a
two-phase (or quadrature) modulation method has been advanced as the best solution (Halsey and
Swaffield [1948]).

A pair of channel signals DSB modulate separate carriers of the same frequency but differing
in phase by π/2 radians. The two double-sideband signals then occupy the same frequency band.
Provided the transmission path has attenuation and phase characteristics symmetrical about the
carrier frequency, either signal-complex can be rejected at the receiver by demodulating (multiplying
and integrating) with a synchronous quadrature carrier. Frequency and phase synchrony of the
carriers at the transmitter and receiver are of course critical.

The quadrature method is generally not satisfactory for transmission of conventional voice signals.
Practical stabilities are such that the crosstalk between circuits cannot be kept low enough. For
vocoder signals, however, a crosstalk attenuation between spectrum channels of about 25 db seems
adequate16. This figure is within the practical limits of the quadrature method. The signal-to-
crosstalk ratio is the cotangent of the phase error between the modulating and demodulating carriers.
Therefore, a crosstalk attenuation of 25 db, or more, requires a phase error of about 3.3 degrees, or
less.

Time-Division Multiplexing

Time-division multiplexing involves the transmission of sample values of the channel signals taken in
time sequence. According to the sampling theorem, the rate of sampling must be at least twice the
highest frequency contained in the channel signals. The vocoder signals are typically bandlimited
to about 20 Hz, hence sampling rates on the order of 40Hz, or higher, are indicated. Practically, to
provide adequate channel separation in the desampling (distributing) operation, a total transmission
bandwidth about twice the sum of the input signals, that is, the same as for DSB frequency-multiplex,
is required(Bennett [1941]). Even then, the crosstalk between channels may be only marginally
acceptable. For example, in a 12channel system the signal-to-crosstalk ratio is only on the order of
20 db. Without further coding, therefore, this multiplexing method appears somewhat less attractive
from the fidelity standpoint than the quadrature frequency-space multiplex. On the other hand, its
simplicity, and the possibility for analog smoothing of the spectral shape, make it of interest.

One vocoder developed on the time-multiplex principle is called the Scan Vocoder (Vilbig and
Haase [1956a,b]). It is illustrated in Fig. 10.61. One hundred spectrum channels, using high fre-
quency (130 kc) magnetostriction rods as the filters, produce a short-time spectrum. The filter
outputs are scanned at 30Hz and the time-multiplexed spectral envelope is smoothed by a 200Hz
low-pass filter. The envelope signal is demultiplexed by a synchronously scanning distributor at the
receiver. The pitch information is transmitted in a separate channel.

16The pitch channel is more sensitive to crosstalk. For it, an attenuation on the order of 40 db is desirable.
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Figure 10.61: Channel vocoder utilizing time-multiplex transmission. (After (Vilbig and Haase
[1956a]))

Digital Transmission of Vocoder Signals

Transmission of signals in the form of binary pulses has a number of advantages. One is the possibility
for repeated, exact regeneration of the signal. Noise and distortion do not accumulate as they do
in analog amplification. Quality of the digital signal can, within limits, be made independent of
transmission distance. Another advantage is the freedom to “scramble” the message in complex ways
for secure or private communication. The price paid for these important advantages is additional
transmission bandwidth. Time-divison multiplexing, coupled with pulse code modulation (PCM)
of the channel signals, is consequently an attractive means for vocoder transmission. The signal
value in each sampled channel is represented by a sequence of binary pulses. The ordered and
“framed” pulses are transmitted over a relatively broadband channel, synchronously distributed at
the receiver, and reconverted from digital to analog form.

Although the digital signal requires comparatively greater bandwidth, the vocoded speech sig-
nal makes feasible full digital transmission over about the same bandwidth as normally used for
nondigital conventional telephony. An important question is how many binary pulses are sufficient
to represent each sample of the channel signals. The answer of course depends upon the quality
of received signal that is acceptable. Current technology has used pulse rates from 1200 to 4800
bits/sec in particular applications (L. A. Yaggi and Mason [1963]). A typical design, for example,
uses 18 spectrum channels which are sampled at 40Hz and which are normalized in amplitude. The
number of binary digits used to specify the sampled values of channels 1 through 14 is three bits;
for channels 15 through 18, two bits; for the over-all amplitude level, three bits, and for pitch and
voiced-unvoiced indication, seven bits. Therefore, 60 bits are included in one scan or “frame,” and
2400 bits/sec is the transmitted data rate. Numerous variations in the design for digital transmission
can be found.

10.10 Network Issues

10.10.1 Voice over IP

Speech coding for the Voice over Internet Protocol (VoIP) application is becoming important with
the increasing dependency on the internet. The first VoIP standard was published in 1998 as
recommendation H.323 (ITU-T [1998a]) by the International Telecommunications Union (ITU-T).
It is a protocol for multimedia communications over Local Area Networks using packet-switching,
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and the voice-only subset of it provides a platform for IP-based telephony. At high bit rates, H.323
recommends the coders G.711 (3.4 kHz at 48, 56, and 64 kbps) and G.722 (wideband speech and
music at 7 kHz operating at 48, 56, and 64 kbps) while at the lower bit rates G.728 (3.4 kHz at 16
kbps), G.723 (5.3 and 6.5 kbps), and G.729 (8 kbps) are recommended (ITU-T [1998a]).

In 1999, a competing and simpler protocol named the Session Initiation Protocol (SIP) was
developed by the Internet Engineering Task Force (IETF) Multiparty Multimedia Session Control
working group and published as RFC 2543 (et al. [1999]). SIP is a signaling protocol for Internet
conferencing and telephony, is independent of the packet layer, and runs over UDP or TCP although
it supports more protocols and handles the associations between Internet end systems. For now,
both systems will coexist but it is predicted that the H.323 and SIP architectures will evolve such
that two systems will become more similar.

Speech transmission over the internet relies on sending ‘packets’ of the speech signal. Due to
network congestion, packet loss can occur, resulting in audible artifacts. High-quality VoIP, hence,
would benefit from variable-rate source and channel coding, packet loss concealment, and jitter
buffer/delay management. These are challenging issues and research efforts continue to generate
high-quality speech for VoIP applications (Hersent et al. [2000]).

10.10.2 Error Protection Coding

10.10.3 The Rate-Distortion Curve

10.10.4 Embedded and Multi-Mode Coding

When channel quality varies, it is often desirable to adjust the bit rate of a speech coder in order
to match the channel capacity. Varying bit rates are achieved in one of two ways. In multi-mode
speech coding, the transmitter and receiver must agree on a bit rate prior to transmission of the
coded bits. In embedded source coding, on the other hand, the bitstream of the coder operating at
low bit rates is embedded in the bitstream of the coder operating at higher rates. Each increment
in bit rate provides marginal improvement in speech quality. Lower bit rate coding is obtained by
puncturing bits from the higher rate coder and typically exhibits graceful degradation in quality
with decreasing bit rates.

ITU Standard G.727 describes an embedded ADPCM coder, which may be run at rates of 40,
32, 24, or 16 kbps (5, 4, 3, or 2 bits/sample) (ITU-T [1990b]). Embedded ADPCM algorithms are a
family of variable bit rate coding algorithms operating on a sample per sample basis (as opposed to,
for example, a subband coder that operates on a frame-by-frame basis) that allows for bit dropping
after encoding. The decision levels of the lower rate quantizers are subsets of those of the quantizers
at higher rates. This allows for bit reduction at any point in the network without the need of
coordination between the transmitter and the receiver.

The prediction in the encoder is computed using a more coarse quantization of d̂(n) than the
quantization actually transmitted. For example, 5 bits/sample may be transmitted, but as few as

2 bits may be used to reconstruct d̂(n) in the prediction loop. Any bits not used in the prediction
loop are marked as “optional” by the signaling channel mode flag. If network congestion disrupts
traffic at a router between sender and receiver, the router is allowed to drop optional bits from the
coded speech packets.

Embedded ADPCM algorithms produce code words that contain enhancement and core bits.
The feed-forward (FF) path of the codec utilizes both enhancement bits and core bits, while the
feed-back (FB) path uses core bits only. With this structure, enhancement bits can be discarded or
dropped during network congestion.

An important example of a multi-mode coder is QCELP, the speech coder standard that was
adopted by the TIA North American digital cellular standard based on Code Division Multiple
Access (CDMA) technology (CDMA [1992]). The coder selects one of four data rates every 20
ms depending on the speech activity; for example, background noise is coded at a lower rate than
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speech. The four rates are approximately 1 kbps (eighth rate), 2 kbps (quarter rate), 4 kbps (half
rate), and 8 kbps (full rate). QCELP is based on the CELP structure but integrates implementation
of the different rates thus reducing the average bit rate. For example, at the higher rates, the LSP
parameters are more finely quantized and the pitch and codebook parameters are updated more
frequently (Gardner et al. [1993]). The coder provides good quality speech at average rates of 4
kbps.

Another example of a multi-mode coder is ITU standard G.723.1, which is an LPC-AS coder
that can operate at 2 rates: 5.3 or 6.3 kbps (ITU-T [1996a]). At 6.3 kbps, the coder is a Multi-pulse
LPC (MPLPC) coder while the 5.3 kbps coder is an Algebraic CELP (ACELP) coder. The frame
size is 30 msec with an additional look ahead of 7.5 ms, resulting in a total algorithmic delay of
67.5 ms. The ACELP and MPLPC coders share the same LPC analysis algorithm and frame/sub-
frame structure, so that most of the program code is used by both coders. As mentioned earlier, in
ACELP, an algebraic transformation of the transmitted index produces the excitation signal for the
synthesizer. In MPLPC, on the other hand, minimizing the perceptual-error weighting is achieved
by choosing the amplitude and position of a number of pulses in the excitation signal. Voice Activity
Detection (VAD) is used to reduce the bit rate during silent periods, and switching from one bitrate
to another is done on a frame-by-frame basis.

Multi-mode coders have been proposed over a wide variety of bandwidths. Taniguchi et al.
proposed a multi-mode ADPCM coder at bit rates between 10 kbps and 35 kbps (Taniguchi [1988]).
Johnson and Taniguchi proposed a multi-mode CELP algorithm at data rates of 4.0-5.3 kbps in which
additional stochastic codevectors are added to the LPC excitation vector when channel conditions are
sufficiently good to allow high-quality transmission (Johnson and Taniguchi [1991]). The European
Telecommunications Standards Institute (ETSI) has recently proposed a standard for Adaptive
Multi-Rate coding at rates between 4.75 and 12.2 kbps.

10.10.5 Joint Source-Channel Coding

In speech communication systems, a major challenge is to design a system that provides the best
possible speech quality throughout a wide range of channel conditions. One solution consists of
allowing the transceivers to monitor the state of the communication channel and to dynamically
allocate the bitstream between source and channel coding accordingly. For low SNR channels, the
source coder operates at low bit rates, thus allowing powerful forward error control. For high SNR
channels, the source coder uses its highest rate resulting in high speech quality, but with little error
control. An adaptive algorithm selects a source coder and channel coder based on estimates of chan-
nel quality in order to maintain a constant total data rate (Taniguchi et al. [1990]). This technique is
called adaptive multi-rate (AMR) coding, and requires the simultaneous implementation of an AMR
source coder (Gersho and Paksoy [1999]), an AMR channel coder (Goeckel [1999], Goldsmith and
Chua [1997]), and a channel quality estimation algorithm capable of acquiring information about
channel conditions with a relatively small tracking delay.

The notion of determining the relative importance of bits for further unequal error protection
(UEP) was pioneered by Rydbeck and Sundberg (Rydbeck and Sundberg [1976]). Rate-compatible
channel codes, such as Hagenauer’s rate compatible punctured convolutional codes (RCPC) (Ha-
genauer [1988]), are a collection of codes providing a family of channel coding rates. By puncturing
bits in the bitstream, the channel coding rate of RCPC codes can be varied instantaneously, provid-
ing UEP by imparting on different segments different degrees of protection. Cox et al. (Cox et al.
[1991]) address the issue of channel coding and illustrate how RCPC codes can be used to build a
speech transmission scheme for mobile radio channels. Their approach is based on a subband coder
with dynamic bit allocation proportional to the average energy of the bands. RCPC codes are then
used to provide UEP.

Relatively few AMR systems describing source and channel coding have been presented. The
AMR systems (Vainio et al. [1998], Uvliden et al. [1998], Paksoy et al. [1999], Ito et al. [1998])
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combine different types of variable rate CELP coders for source coding with RCPC and cyclic re-
dundancy check (CRC) codes for channel coding and were presented as candidates for the European
Telecommunications Standards Institute (ETSI) GSM AMR codec standard. In (Sinha and Sund-
berg [1999]), UEP is applied to perceptually based audio coders (PAC). The bitstream of the PAC
is divided into two classes and punctured convolutional codes are used to provide different levels of
protection, assuming a BPSK constellation.

In (Bernard et al. [1998, 1999]), a novel UEP channel encoding scheme is introduced by analyzing
how symbol-wise puncturing of symbols in a trellis code and the rate-compatibility constraint (pro-
gressive puncturing pattern) can be used to derive rate-compatible punctured trellis codes (RCPT).
While conceptually similar to RCPC codes, RCPT codes are specifically designed to operate effi-
ciently on large constellations (for which Euclidean and Hamming distances are no longer equivalent)
by maximizing the residual Euclidean distance after symbol puncturing. Large constellation sizes,
in turn, lead to higher throughput and spectral efficiency on high SNR channels. An AMR system
is then designed based on a perceptually-based embedded subband encoder. Since perceptually
based dynamic bit allocations lead to a wide range of bit error sensitivities (the perceptually least
important bits being almost insensitive to channel transmission errors), the channel protection re-
quirements are determined accordingly. The AMR systems utilize the new rate-compatible channel
coding technique (RCPT) for UEP and operate on an 8-PSK constellation. The AMR-UEP system
is bandwidth efficient, operates over a wide range of channel conditions and degrades gracefully with
decreasing channel quality.

Systems using AMR source and channel coding are likely to be integrated in future communi-
cation systems since they have the capability for providing graceful speech degradation over a wide
range of channel conditions.

10.11 Standards

Standards for land-line public switched telephone service (PSTN) networks are established by the
International Telecommunication Union (ITU) (http://www.itu.int). The ITU has promulgated a
number of important speech and waveform coding standards at high bit rates and with very low
delay, including G.711 (PCM), G.727 and G.726 (ADPCM), and G.728 (LD-CELP). The ITU is
also involved in the development of internetworking standards, including the voice over IP standard
H.323. The ITU has developed one widely used low-bit-rate coding standard (G.729), and a number
of embedded and multi-mode speech coding standards operating at rates between 5.3 kbps (G.723.1)
and 40 kbps (G.727). Standard G.729 is a speech coder operating at 8 kbps, based on algebraic code
excited LPC (ACELP) (ITU-T [1996b], Salami et al. [1998]). G.723.1 is a multi-mode coder, capable
of operating at either 5.3 or 6.3 kbps (ITU-T [1996a]). G.722 is a standard for wideband speech
coding, and the ITU will announce an additional wideband standard within a few months. The ITU
has also published standards for the objective estimation of perceptual speech quality (P.861 and
P.862).

The ITU is a branch of the International Standards Organization (ISO) (http://www.iso.ch).
In addition to ITU activities, the ISO develops standards for the Moving Picture Experts Group
(MPEG). The MPEG-2 standard included digital audio coding at three levels of complexity, in-
cluding the layer-three codec commonly known as MP3 (Noll [1997]). The MPEG-4 motion picture
standard includes a structured audio standard (ISO/IEC [1998a]), in which speech and audio “ob-
jects” are encoded with header information specifying the coding algorithm. Low bit-rate speech
coding is performed using Harmonic Vector Excited Coding (HVXC) (ISO/IEC [1998b]) or Code
Excited LPC (CELP) (ISO/IEC [1998c]), and audio coding is performed using time/frequency cod-
ing (ISO/IEC [1998d]). The MPEG home page is at drogo.cselt.stet.it/mpeg.

Standards for cellular telephony in Europe are established by the European Telecommunications
Standards Institute (ETSI) (http://www.etsi.org). ETSI speech coding standards are published
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Rate BW Standards Standard Algorithm Year
(kbps) (kHz) Organization Number

Land-line 64 3.4 ITU G.711 µ-law or A-law PCM 1988
Telephone 32 3.4 ITU G.726 ADPCM 1990

16-40 3.4 ITU G.727 ADPCM 1990
Tele- 48-64 7 ITU G.722 Split-band-ADPCM 1988

conferencing 16 3.4 ITU G.728 Low Delay CELP 1992
Digital 13 3.4 ETSI Full-rate RPE-LTP 1992
Cellular 12.2 3.4 ETSI EFR ACELP 1997

7.9 3.4 TIA IS-54 VSELP 1990
6.5 3.4 ETSI Half-rate VSELP 1995
8.0 3.4 ITU G.729 ACELP 1996

4.75-12.2 3.4 ETSI AMR ACELP 1998
1-8 3.4 CDMA-TIA IS-96 QCELP 1993

Multimedia 5.3-6.3 3.4 ITU G.723.1 MPLPC, CELP 1996
2.0-18.2 3.4-7.5 ISO MPEG-4 HVXC, CELP 1998

Satellite 4.15 3.4 INMARSAT M IMBE 1991
Telephony 3.6 3.4 INMARSAT Mini-M AMBE 1995

Secure 2.4 3.4 DDVPC FS1015 LPC-10e 1984
Communications 2.4 3.4 DDVPC MELP MELP 1996

4.8 3.4 DDVPC FS1016 CELP 1989
16-32 3.4 DDVPC CVSD CVSD

Table 10.7: A Representative Sample of Speech Coding Standards

by the Global System for Mobile Telecommunications (GSM) subcommittee. All speech coding
standards for digital cellular telephone use are based on LPC-AS algorithms. The first GSM standard
coder was based on a precursor of CELP called regular-pulse excitation with long-term prediction
(RPE-LTP) (Hellwig et al. [1989], Kroon et al. [1986]). Current GSM standards include the enhanced
full-rate codec GSM 06.60 ( [GSM], Jarvinen et al. [1997]) and the adaptive multi-rate codec (
[GSM]); both standards use algebraic code excited LPC (ACELP). In the next few months, both
the ITU and ETSI will announce new standards for wideband speech coding.

The Telecommunications Industry Association (http://www.tiaonline.org) published some of the
first North American digital cellular standards, including the Vector Sum Excited LPC (VSELP)
standard IS-54 (Gerson and Jasiuk [1991]). In fact, both the initial North American and Japanese
digital cellular standards were based on the VSELP algorithm. Recently, the TIA has been active
in the development of standard TR-41 for voice over IP.

The United States Department of Defense Voice Processing Consortium (DDVPC) publishes
speech coding standards for United States government applications. As mentioned earlier, the origi-
nal FS-1015 LPC-10e standard at 2.4 kbps (Campbell and Tremain [1986], DDVPC [1984]), originally
developed in the 1970s, was replaced in 1996 by the newer MELP standard at 2.4 kbps (Supplee
et al. [1997]). Transmission at slightly higher bit rates uses the FS-1016 CELP (CELP) standard
at 4.8 kbps (DDVPC [1989], Jr. et al. [1989, 1991]). Waveform applications use the continuously
variable slope delta-modulator (CVSD) at 16 kbps. Descriptions of all DDVPC standards and code
for most are available at http://www.plh.af.mil/ddvpc/index.html.
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10.12 Homework

Problem 10.1

a. Write a program, XHAT = linpcm(X, XMAX, B), which quantizes X using a B-bit linear
PCM quantizer, with maximum output values of +/- XMAX.

b. Record your own voice. Quantize the recorded waveform using linear PCM with 3, 4, 5, 6, and
7 bit quantization. In each case, set XMAX=max(abs(male sent)). Plot SNR in decibels
as a function of the number of bits.

Listen to the error signals e(n) produced at each bit rate. At low bit rates, e(n) may be
so highly correlated with x(n) that it is actually intelligible. Are any of your error signals
intelligible? Which ones?

Problem 10.2

Write a function, T = mulaw(X, MU, XMAX), which compresses X using µ-law compression
(R&S 5.3.2). Write another function, X = invmulaw(T, MU, XMAX), which expands t to get
x again.

Check your work by finding
XHAT=invmulaw(mulaw(X, 255, XMAX), 255, XMAX)

where X is a recording of your voice. Confirm that XHAT is identical to X.17

Quantize T using the function linpcm, and expand the quantized version to obtain a µ-law
quantized version of the input sentence. In this way, create µ-law quantized sentences using 3, 4, 5,
6, and 7 bit quantizers, with a value of µ = 255. Plot SNR as a function of the number of bits, and
compare to the values obtained with linear PCM.

Problem 10.3

Write a program that accepts two input waveforms (an original and a coded waveform), and
computes the SNR of the coded waveform.

Write another program that computes the segmental SNR of the coded waveform. This program
should divide the signal X and error E=XHAT-X into frames of N samples each, compute the
SNR (in decibels) within each frame, and return the average segmental SNR.

Compute the SNR and SEGSNR of uniform PCM and companded PCM at bit rates of 3, 4, 5,
and 6 bits/sample, and plot the results. How do SEGSNR and SNR differ?

Sort the quantized utterances (including both linear and companded PCM) on a scale from lowest
to highest SNR. Now sort them from lowest to highest SEGSNR. Finally, sort them on a scale from
“worst sounding” to “best sounding.” Which of the two objective measures (SNR or SEGSNR) is a
better representation of the subjective speech quality?

Problem 10.4

Consider a signal x(n) with a unit-variance Gaussian distribution:

px(n)(x) =
1√
2π
e−

x2

2 (10.311)

17. . . with allowance for floating-point roundoff error.
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a. Design a 1-bit-per-sample scalar quantizer for x(n). Find the decision boundary and recon-
struction levels which minimize the expected mean squared error.

b. Generate a matlab data vector x(n) consisting of 1000 Gaussian random numbers. Cluster
your data into two regions using either the K-means algorithm or the binary-split algorithm.

What are the centroids of your two regions? What is the decision boundary?

c. Comment on any differences between your answers in parts (a) and (b), and explain them if
you can. You may or may not find it useful to calculate the mean and the histogram of your
data vector x(n).

Problem 10.5

A particularly good model of the distribution of speech audio samples is the “Laplacian” distri-
bution, given by

px(x0) =
1

2
e−|x0| (10.312)

Assume that you are to quantize a signal with the PDF given in equation 10.312. Design a uniform,
zero-centered, mid-tread quantizer to satisfy the following criteria:

• Pclip = e−10.

• When there is no clipping, σ2
e ≤ 1

48 .

• The bit rate is as low as possible in order to satisfy the criteria given above.

Specify the clipping threshold (TQ), the bit rate per sample (B), the number of reconstruction levels
(Q), and the spacing of reconstruction levels (∆).

Problem 10.6

Consider a PQMF filterbank, with filters given by

hk[n] = 2h[n] cos

(
π(k + 1/2)n

K
+ φk

)

where

H(ω) =

{
1 − K|ω|

π |ω| < π
K

0 otherwise

Suppose that K = 2, and that

φk =

(
k +

1

2

)
π

2

Sketch H0R(ω), H0I(ω), H1R(ω), and H1I(ω), the real and imaginary parts of H0(ω) and H1(ω).

Problem 10.7

Consider a set of pseudo quadrature mirror filters designed with the following properties. There
are K = 2 bands. The prototype lowpass filter h[n] should have a passband of [−π

4 ,
π
4 ], and a
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transition band of [π4 ,
π
2 ], but in order to keep things from getting too absurdly complicated, please

assume the following prototype lowpass filter:

H(ω) =

{
1 −π

2 ≤ ω ≤ π
2

0 otherwise
(10.313)

The two bandpass filters are designed as follows:

hk[n] = 2h[n] cos

(
π(2k + 1)

2K
n+ φk

)
, k ∈ {0, 1} (10.314)

where the phase offset is given by

φk =
π(2k + 1)

4
(10.315)

Suppose that the input to the sub-band coder is an impulse,

x[n] = δ[n] (10.316)

The remainder of this problem will ask you to sketch various spectra. In each case, be sure to sketch
the requested spectrum either over the range [−π, π] or over the range [0, 2π] (one range will be
easier to use for some spectra, the other will be easier for other spectra). Two types of labels are
required for every plot: (1) label frequencies of every DTFT discontinuity between 0 and π, and (2)
label the height of the graph at the three frequencies ω = 0, π2 , and π.

a. Consider the two sub-band filtered signals xk[n] = hk[n]∗x[n]. LetXk(ω) = XkR(ω)+jXkI(ω),
i.e., the real part is XkR(ω) and the imaginary part is XkI(ω). Write equations expressing
X0R(ω), X0I(ω), X1R(ω), and X1I(ω) as functions of the prototype filter spectrum H(ω).
Sketch these four spectra as functions of frequency.

b. Suppose that the sub-band signals are downsampled by a factor of K to create signals dk[n].
The spectrum of dk[n] includes an “unaliased” term (the i = 0 term in the following equation),
and an “aliasing” term (the i = 1 term in the following equation):

Dk(ω) =
1

K

K−1∑

i=0

Xk

(
ω − 2πi

K

)
(10.317)

Call the real and imaginary parts of the aliased and unaliased componentsDi
kR(ω) andDi

kI(ω),
respectively, i.e.

Di
kR(ω) = XkR

(
ω − 2πi

K

)
(10.318)

and likewise for Di
kI(ω).

Draw the following twelve spectra:

• Six real parts: unaliased components D0
kR(ω), aliasing components D1

kR(ω), and their
sum DkR(ω) = D0

kR(ω) +D1
kR(ω).

• Six imaginary parts: unaliased components D0
kI(ω), aliasing components D1

kI(ω), and
their sum DkI(ω) = D0

kI(ω) +D1
kI(ω).

c. The first operation implemented by the decoder is to upsample the received signals dk[n], as
follows:

vk[n] =

{
dk[n/K] n = integer multiple of K
0 otherwise

(10.319)

Draw the following twelve spectra:
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• Six real parts: unaliased components V 0
kR(ω), aliasing components V 1

kR(ω), and their sum
VkR(ω) = V 0

kR(ω) + V 1
kR(ω).

• Six imaginary parts: unaliased components V 0
kI (ω), aliasing components V 1

kI(ω), and their
sum VkI(ω) = V 0

kI(ω) + V 1
kI(ω).

d. The second operation implemented by the decoder is to filter the upsampled spectra as follows:

X̂k(ω) = KH∗
k (ω)Vk(ω) (10.320)

Draw the following twelve spectra:

• Six real parts: unaliased components X̂0
kR(ω), aliasing components X̂1

kR(ω), and their

sum X̂kR(ω) = X̂0
kR(ω) + X̂1

kR(ω).

• Six imaginary parts: unaliased components X̂0
kI(ω), aliasing components X̂1

kI(ω), and

their sum X̂kI(ω) = X̂0
kI(ω) + X̂1

kI(ω).

e. The final operation implemented by the decoder is to add together the sub-band signals,

x̂[n] =

K−1∑

k=0

x̂k[n] (10.321)

Draw the following six spectra:

• Three real parts: unaliased components X̂0
R(ω), aliasing components X̂1

R(ω), and their

sum X̂R(ω) = X̂0
R(ω) + X̂1

R(ω).

• Three imaginary parts: unaliased components X̂0
I (ω), aliasing components X̂1

I (ω), and

their sum X̂I(ω) = X̂0
I (ω) + X̂1

I (ω).

Problem 10.8

Write a program which reads in a frame of speech, calculates LPC coefficients, filters the input
by A(z) to find an LPC residual, and then filters the residual by H(z) = 1/A(z) to synthesize a
speech waveform. Verify that the output is identical to the non-overlapping part of the input.

a. It is important to carry the state of all digital filters forward from frame to frame. What
happens if the state of the LPC synthesis filter is carried forward from frame to frame, but
not the state of the analysis filter? What happens if the state of the analysis filter is carried
forward, but not the state of the synthesis filter? What happens if neither filter state is carried
forward? (Hint: compare the LPC residual with and without filter state carry-over.)

b. Quantize the LPC coefficients using log area ratio quantization. Aim for an average of 4-5 bits
per LPC coefficient. Verify that when you use the same quantized filter Â(z) for both analysis
and synthesis, LPC quantization does not introduce any errors into the reconstructed signal.
How many bits per second are you using to quantize the LPC coefficients?

Problem 10.9

Write a program [PF, QF] = tf2lsf(A) which computes ordered line spectral frequencies corre-
sponding to the LPC coefficients in A. The LSF matrices PF and QF should each contain as many
rows as A, and p/2 columns.
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a. Plot the analog P-frequencies, pnFs/2π, and compare to a spectrogram of the utterance.
Do the P-frequencies track the formants during voiced segments? What happens if there
are 5 P-frequencies, but only 4 trackable formants? What do the P-frequencies do during
unvoiced segments? Do you think this behavior is likely to make the P-frequencies more or
less quantizable than the LPC-based formant frequencies? Why?

Plot the Q-frequencies qnFs/2π. How do the Q-frequencies relate to the P-frequencies? Is
there ever a time when a formant frequency is tracked more closely by qn than by pn?

How rapidly do the line spectral frequencies change as a function of time? What is the
range of each individual line spectral frequency? What is the range of the difference between
neighboring line spectral frequencies? Can you think of an efficient way of quantizing the line
spectral frequencies?

b. Quantize the LPC coefficients using LSF quantization, then convert the quantized LSFs back
into direct-form LPC coefficients, and synthesize speech. How does the speech sound? How
can you guarantee that the quantized LPC synthesis filter will be stable?

Problem 10.10

Write a program DHAT = vocode(N0, B, THETA) which creates a simulated LPC excitation
signal DHAT.

In frames for which B(i)<THETA, the excitation signal should be unit-variance uncorrelated
Gaussian noise (use the randn function). In frames for which B(i)>THETA, the excitation signal
should be an impulse train with a period of N0 samples, starting at some sample number called
START.

When two neighboring frames are voiced, make sure to set the variable START so that the
spacing between the last impulse in one frame and the first impulse in the next frame is a valid
pitch period — otherwise, you will hear a click at every frame boundary! Also, be careful to set the
amplitude of the impulse train so that the average energy of the excitation signal in each frame is
always

1

STEP

STEP∑

n=1

d̂2(n) = 1 (10.322)

Create a signal DHAT using a value of THETA which you think will best divide voiced and
unvoiced segments, and using values of N0 and B calculated from a natural utterance. Pass the
output of the vocode function through your lpcsyn function. Listen to the sentence. How does
the coding quality compare to 3 and 4 bit linear PCM? How about companded PCM? Do certain
parts of the sentence sound better than others?

Calculate the SNR and SEGSNR of your vocoded utterance. Is the SEGSNR of an LPC vocoder
better or worse than the SEGSNR of a PCM coder with similar perceptual quality? Why?

Problem 10.11

Write a program DHAT = ppv(N0, B) that creates a synthesized LPC excitation signal by
filtering white noise through a “pitch-prediction filter.” Be careful to carry filter state forward from
one frame to the next.

Use ppv to create an excitation signal DHAT, and pass it to lpcsyn to synthesize a copy of
your input sentence. How does this version of the sentence sound? How does it compare to the
regular vocoder? Do some parts of the sentence sound better? Do some parts sound worse?
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Problem 10.12

Synthesize a sentence, using either the regular vocoder or the pitch-prediction vocoder, but use
one of the following modified parameters in place of the correct parameter. What does the sentence
sound like? Why?

N0 modified = median(N0) * ones(size(N0));
N0 modified = round(0.5*N0);
B modified = zeros(size(B));

Problem 10.13

In Self-Excited LPC (SELP), the LPC excitation vector u(n) is created by scaling and adding
past samples of itself:

u(n) =

I∑

i=−I

biu(n−D − i) ⇔ U(z) =
1

P (z)
=

1

1 −∑I
i=−I biz

−(D+i)
(10.323)

In order to obtain useful LPC excitation values, the samples of u(n) for n < 0 (before the beginning
of the sentence) are initialized using samples of Gaussian white noise.

a. Pitch Prediction Coefficients for a Perfectly Periodic Signal

Self-excited LPC implicitly assumes that the ideal continuous-time excitation signal uc(t) is
perfectly periodic, but that the period may not be an exact multiple of the sampling period
T :

Uc(s) =
1

Pc(s)
=

1

1 − e−sT0
, T0 = DT + ǫ (10.324)

Quest. 1: Choose coefficients bi such that p(n) = pa(nT ), where pa(t) is obtained by
lowpass-filtering pc(t) at the Nyquist rate. You may assume that I = ∞.

b. Pitch Prediction Coefficients for a Real-Life Signal

Equation 10.323 can be written in vector form as follows:

U = BX (10.325)

X =




u(n− (D − 1)) . . . u(n− (D − 1) + L− 1)
u(n−D) . . . u(n−D + L− 1)

u(n− (D + 1)) . . . u(n− (D + 1) + L− 1)



 , B = [b−1, b0, b1] (10.326)

Quest. 2: Find the value of B which minimizes the squared quantization error |E|2 =
|UH − S̃|2. Hint: The derivation follows Kondoz equations 6.21-6.28.

c. Sub-Frames

The pitch prediction delay D is chosen by searching over some range of possible pitch periods,
Dmin ≤ D ≤ Dmax, and choosing the value of D which minimizes the squared quantization
error |E|2. If there is no overlap between the samples of X and U , that is, if D > L for all
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possibleD, then it is possible to compute the squared error |E|2 using pure matrix computation.
Matrix computation reduces the computational complexity, and (in matlab) it reduces the
programming time by a lot; therefore all practical systems set the minimum value of D to
Dmin = L+ 1.

LPC is almost never computed using frames of size L < D, so analysis by synthesis systems
often break up each LPC frame into M sub-frames, where M is some integer:

L =
LLPC
M

(10.327)

LPC coefficients are thus calculated using frames of LLPC

Fs
≈ 20 − 30ms in length, but the

excitation parameters D and B are calculated using smaller frames of length L.

Even if L = LLPC/M , very short pitch periods may be shorter than one sub-frame in length.
Fortunately, pitch prediction, as shown in equation 10.323, works pretty well if D is any small
integer multiple of the pitch period, for example D = 2T0/T . The accuracy of pitch prediction
drops slightly, however, so it is best for D to be no more than 2-3 times the pitch period.

Quest. 3: What is the largest sub-frame size L which will allow you to represent pitches
up to F0 = 250Hz with a delay D of no more than twice the pitch period?

d. Implementation

Implement self-excited LPC.

• For each sub-frame, calculate all of the possible values of UD for Dmin ≤ D ≤ Dmax,
where Dmin = L + 1 and Dmax is the pitch period of a low-pitched male speaker (F0 ≈
80Hz).

• For each value of UD, calculate the squared quantization error |E|2.
• Choose the value of D which minimizes |E|2.

Be sure to carry forward, from frame to frame, both the LPC filter states, and enough delayed
samples of U to allow you to perform pitch prediction. The LPC filter states should be
initialized to zero at the beginning of the sentence, but the pitch prediction samples should be
initially set to unit-variance Gaussian white noise.

Quantize D and B. Examine the segmental SNR and sound quality of your coder using both
quantized and unquantized D and B.

Quest. 4: What segmental SNR do you obtain using unquantized D and B? With
quantized D and B? How many bits per second do you need to transmit A(z), D, and B?

Problem 10.14

In this problem, you will design a multi-vector LPC analysis-by-synthesis coder. This coder is
designed to correct some of the problems of self-excited LPC.

a. Stochastic Codevectors
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We can represent aperiodic and partially periodic signals by extending the excitation matrix
X as follows:

XM =




u(n− (D − 1)) . . . u(n− (D − 1) + L− 1)
u(n−D) . . . u(n−D + L− 1)

u(n− (D + 1)) . . . u(n− (D + 1) + L− 1)
ck1(0) . . . ck1(L− 1)
ck2(0) . . . ck2(L− 1)

...
...

...
ckM (0) . . . ckM (L− 1)




(10.328)

Where ck1(m) are the samples of a “code vector” Ck1 which is chosen from a set of K possible
code vectors in order to minimize the squared error,

|E|2 = |Ŝ − S|2 = |BXH − S̃|2 (10.329)

In the original CELP algorithm, the codebook consists of K Gaussian random vectors. In
MPLPC, the codevectors are impulses:

CELP: ck(m) ∼ N (0, 1), 0 ≤ k ≤ K − 1 (10.330)

MPLPC: ck(m) = δ(k), 0 ≤ k ≤ L− 1 (10.331)

(10.332)

Quest. 1: Suppose you are creating an MPLPC coder in which the X matrix you used
in your SELP coder will be augmented by 5 impulse vectors, numbered Ck1 through Ck5.
If you want to find the globally optimum combination of D, k1, k2, k3, k4, and k5, how
many times do you need to evaluate equation 10.329?

b. Iterative Optimization

In order to avoid the impossible computational complexity of a global search, many CELP
coders and all MPLPC coders perform an iterative search. In an iterative search, the best
pitch delay D is calculated as in the SELP coder, resulting in a 3 × L matrix X0, and a
3-element gain vector B0:

S̃ ≈ B0Ŝ0 = B0X0H (10.333)

Given X0 and B0, the fourth excitation vector can be chosen by first creating a reference vector
S̃1,

S̃1 = S̃ −B0X0H (10.334)

S̃1 represents the part of S̃ which is not well represented by B0Ŝ0; in fact, S̃1 is the part of
S̃ which is orthogonal to B0Ŝ0. Therefore, the optimum fourth excitation vector is the one
which minimizes

|Ek1 |2 = |S̃1 − g1Ck1H |2 (10.335)

Once the optimum value of k1 has been found, the gain vector B1 must be recomputed, in
order to minimize the total squared error

|E1|2 = |S̃ −B1X1H |2 (10.336)

Quest. 2: Find the optimum value of g1 as a function of the reference vector S̃1 and the
codebook vector Ck1. Find the optimum value of B1 as a function of S̃ and X1. Show
that, in general, B1 6= [B0g1].
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Once B1 and X1 have been computed, the procedure outlined above can be repeated, as often
as necessary. Typically, the number of pulse vectors required to achieve good quality using
MPLPC is a fraction of L. Classical CELP coders only use one stochastic codevector, but the
VSELP algorithm used in most cellular telephone standards uses two.

c. Implementation

Add a stochastic codebook to your SELP coder, in order to create a generalized LPC-AS coder
(be sure to save your SELP coder under a different name, so that you can go back to it if you
need to!) Your generalized LPC-AS coder should accept as input a K × L codebook matrix
C, each of whose rows contains one stochastic code vector Ck. You should also accept an
input argument M which tells the function how many stochastic codevectors to find. The final
command line might look something like this:

[YMAT(i,:), filter_states, ...] = myfunc(XMAT(i,:), filter_states, ..., C, M);

Create an MPLPC codebook (consisting of impulses) and a CELP codebook (consisting of
about 1000 Gaussian random vectors). Test your coder using both CELP and MPLPC code-
books.

Quest. 3: Plot the segmental SNR of your coded speech as a function of the number of
stochastic code vectors, M , for both MPLPC and CELP, with the codebook gain vector
B still unquantized. Comment on any differences between MPLPC and CELP.

Quantize the codebook gain vector B.

Quest. 4: Quantize all of your gain terms, then choose coder configurations for both
CELP and MPLPC which produce reasonable-sounding speech. For both of these two
configurations, what is the total bit rate, in bits per second?

Problem 10.15

When humans listen to a coded speech signal, some components of the quantization noise are
masked by peaks in the signal spectrum. Low bit rate LPC-AS systems therefore often weight
the error, in order to reduce the importance of error components near a spectral peak. The most
common error weighting filter is based on the LPC analysis filter A(z):

Ew(z) = E(z)
A(z)

A(z/α)
(10.337)

Write a program that perceptually weights the error signal of a speech coder. Compare the perceptual
qualities predicted by SNR, SEGSNR, and perceptually weighted SEGSNR.
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