Laboratory work 2 Digital Signal Processors

SIMULATION OF APPLICATIONS FOR THE TMS320C2X
FAMILY

1. Software development in assembly language for TMSBEZ2X
processors

The present work will cover all the necessary stepshe development and simulation of
applications on DSPs of the family TMS320C2X. DS&nofacturers offer at users’ disposal
all the software instruments necessary for appiinatievelopment. In order to standardize
application development Texas Instruments suggéstause of the “Common Object File
Format” (COFF) for the object files. The code cansplit between several modules that can
be separately assembled. The object modules mgditbm assembly are linkedited together
thereby resulting the executable. The linkedittwcates in an efficient manner the resources
for every module.

The software instruments necessary for the devedopraf an application are: Editor,
Assembler, Linkeditor, Simulator and Debugger. Tevelop an application in assembly
language for the TMS320C2X family of processors,dteps in figure 1 are to be followed.

The .asm source file is edited with a classic &ghitor and assembled with the assembler
dspa.exe. The assembler generates an object file (.obj)aalngting file (*Ist). The object file
is linkedited withdsplink.exe having the linkediting options in the command fit&k25.cdm,
a file that specifies the memory map of the systieenapplication will run on. The linkeditor
provides an executable .¢ut) and a file showing the memory map occupied by the
application (*map). The code contained in the.gtit) can be loaded in a hardware system or
in the sim2x.exe simulator.

The sim2x.exe simulator is configured to run thelaation through a command file
siminit.cmd. The simulator also permits us to ditéites in the ASCII (4 characters) at the
input and output ports such that the logical sigmejuisition can be simulated. Software
debugging through step-by-step running and thealization of memory zones and processor
registers is also possible.

2. Software utilities overview
2.1 The dspa.exe Assembler

The dspa.exe assembleris a universal assembler for signal processors hea t
TMS320Cxx family in fixed point. It receives ASObrmat (*.asm) source files as input and
it generates an object type file (*.0bj).

The use of the assembler dspa.exe is realizedlag/$o
dspa <input file> [<object file>[<listing file>]] [-options]

- <input file> is the source file (*.asm)

Laboratory work 2 Digital Signal Processors

- <object file> is the file that will contain the @t code obtained from assembling; its
specification is optional, if not specified theefivill be created with the same name as
the source, but with the .obj extension.

- <listing file> is the file containing the generatagplication listing; its specification is
optional

- options that must be granted to the assembler:

0 Vv10- version 320C10

v25- version 320C25

v50- version 320C5X

I- creates a listing file (.Ist)

s- all relates symbols will be found in the .olbg fi

w- warns about pipeline errors

o 0O O0O0Oo

Example: DSPA sin.asm-v25 -1

Text Editor v Source Fle

[*.asm]

1

Aszzembler Listing File

Dspa] [[*1st]
i

Object File
[*.obi]

Iy

Cormunand file Linkeditor Memory mapping

[*.cmd] L—— . [Dephk] A File [®map]
{Ex ink25 emd) _l_,L

Executable Fls

[*.out]
File attached to an Sirmulator File attached to an
IN port —MN [Simlxexe] [OUTpont
{Ex Shis dat) (Ex Trapez.dat)

Sorrimit.cmd -l ,I—
| m Graphic visualizer
{SignProc)

Fig. 1 Developing steps of an application for simation

Thedefinition of a sectionis realized based on the following syntax:

.sect<section name>

Laboratory work 2 Digital Signal Processors

Predefined sections

.text- is the section where software instructions afendd

Instructions need to respect the following syntax:

<label>: <mnemonic> <operands>; <comment>

<label> - is optional and must begin on the figumn

<mnemonic> - instruction’s name

<operands> - can be missing or may be more than one

<comment> - everything in the line and preceded by

If on the first column the character “*” is preseéhnén the entire line is considered a comment.
.data - This section contairthe definition of the software variables.

A variable definition is done as follows:

<label>:.word <value_list>; <comment>

Memory space allocationfor a non initialized variable is done as:

.bss<symbol>, <length>, <flag>

<symbol> - is the variable name

<length> - the size of the memory zone allocateithéovariable (word)

<flag> - a parameter that specifies if the resee@d must or must not be continuous.
Reserving of a memory area

<symbol>=space<dimension>

<symbol> - is the symbol that defines the beginraddress for the reserved memory
<dimension> - the dimension of the reserved area

Defining a constant

<symbol>set<value>

<symbol> - constant’s name

<value> - value attributed to the constant

Defining global constantsrecognized in other in multiple files

.global <symbol_1>, ... <symbol n>

.mmregs— permits the in-software use of symbolic namegmiyy memory mapped registers

Laboratory work 2 Digital Signal Processors

Software title
title <titlu>
Software termination

.endis compulsory for the last line in the source file

2.2 The dsplnk.exe Linkeditor

The dsplnk.exe Linkeditor is configurable and can linkedit multiple objede$ based
on a memory map described in the configuring fig*.cmd. The configuring file is specific
to every type of processor (for TMS320C25 we hawe2b.cmd).

The linkeditor call is done as follows:
dsplnk <options> <file name_1... file name_MN

- m <file name>.map — creates a file containing mgnmaapping based the linkediting
- o<file name>.out — specifies the creation of arcesable (.out)

Example: dsplnk sin.obj link25.cmd —m sin.map -oait
sin.obj — this is the object software resulted fragssembly

link25.cmd — is the command file of the linkedittiat contains the memory map and the
addresses at which the linkeditor will put the eliént sections of the executable. A file
example for LINK25.CMD is presented in Annex 1.

2.3 The sim2x simulator

The sim2x simulator has a user-friendly interface with wimdoand menus. It can be
operated with a mouse and keyboard. The simuldtersathe following facilities:

Configuration of the software memory and the datanory
Visualization and modification of the disassemtdeftware memory
Saving/loading of memory zones in/from files

File visualization in the simulator window

Visualization and modification of data memory

File connection to 1/0O ports (I/O simulation of galmsignals)
Visualization and modification of processor registe

Software execution

. Step-by-step software running

©CoNoO~WNE

The execution of the simulator is done using themand:
sim2x <file.out><options>
where:

-<file.out> is the file generated after linkeditititge object file (.obj) by dsplink.exe

Laboratory work 2 Digital Signal Processors

-<options> is a list of optional parameters that d@nsmit additional information to the
simulator

These options are:
-i <path name>specifies the search path of the simulator
-mv <version>specifies the processor version
(e.g. —-mv25 for sim2x processor C25)
-s- loads the symbol table
-v- loads without the symbols table
-t- <file name> identifies a new configuration fileat loads instead of the siminit.cmd file

The sim2x simulator runs under DOS OS in text mobee software’s main window
shows the command bar with accepted commands anavfwrk purposed sub-windows.

i Load " Hreakl Watchi Memoryl
DISASSEMBLY
An20 ce@? edata: SPM 1 Alacc orpAR0Re
P821 ced?2 ROUM PREC 9PBRARGE
AA22 ce@? GoRM TIMN f££fh PRD £fEf
#0823 c8@a LDPK #@ PC 9821 T0S G0E@
#a24 des1 LALK #7e6dh ST 9688 511 @71
AR26 60862 SACL B@62h IMR ffc@® IFR G080
anz7? deei LALK #1358h TREG 9988 RPIC @A0a
6829 6968 SACL B@6RhH ARE ©GO6G ARL BAAA
#82a caBl LACK #Aah AR? PGB AR3 BRAB
#82h 6861 SACL @@61h AR4 0968 ARS GAEA
#@2c 3ch2 LT BB62h fk6 ©PAA AR? BAGA
AR2d 3860 MPY B@68h BIO @aRi
#iZe celd PAC
#a2f 1£61 SUB @@61h,15 ¥
P28 5660 DMOU B@6GH
COMMAND: o
[Loading sinl.out A|0OBRG PARA BBEB £FEh FFEFf ffcP £F6A i
| 7 Synbols loaded paR?
Done BERe

I||B@15

¥188ic ¥
2> | __|| #a23

Fig. 2 sim2x Simulator’'s window

The Disassembly window (DI SASSEMBLY)

It contains the disassembled code from the objectecloaded in the simulator. The
disassembled code is shown in the following format:

[hexa 4 digit addresslhexa 4 digit
e.g. 0020 | Oof

object codel|labellassemblyguége code|

|edata:] SPM O |
The memory date window (MEMORY)

It shows the content of the data memory as follows:

Laboratory work 2 Digital Signal Processors

|hexa 4 digit address|hexa 4 digit memory content|
e.g. 0023 P000 FFFF FFFF 0000 0000 0000 0000

Values that are modified due to running the sofeware shown intensely. Using theem
command we can go quickly in the memory window apécify the start address of the
displayed area. The words in the memory zone thatnat contained in the simulator
configuration are displayed in red.

The processor registries window (CPU)

It displays the content of CPU registers in hexhgit format. Values that are modified due to
software running are shown in intense white.

The command window (COMAND)

Allows command entry using the prompter “>>>" aheé display of the output messages of
the simulator. The window retains the last 50 comasa Scrolling the retained commands
can be done using "TAB + back arrow” and “SHIFT AR + forward arrow”.

Commands that can be launched using the prompter ithe command bar:

take <command file name>it allows launching of a command file.
system <DOS commandt allows launching of DOS commands without leaviihg
simulator. Return to the simulator window is doyepbessing Enter.
Quit allows simulator exit.
- MA Address, Type, Length, Allocation Type
MA = memory add
Address =the start address of the memory zone
Type =memory zone type
0 = program memory
1 = data memory
2 =1/0 space
Length =length of memory block
Allocation Type =RAM, OPORT/INPORT

The command allows the adding of a memory zoriedrsimulator’s configuration.

- MC Address, Type, File, Opening Parameter
MC = memory connect
Address= the start address of the memory zone
Type = memory type zone
0 = program memory
1 = data memory
2 =1/0 space
File = file name
Length =length of memory block
Allocation Type = RAM, OPORT/INPORT
Opening parameter =Read/Write

This command allows the connection of INPORT, OFORPORT type of memories to
a file.

Laboratory work 2 Digital Signal Processors

- MR (memory reset) allows erasing all the settingsrriefg to the memory in the simulator
configuration.
- MD Address, Type, Length, Allocation Type
MD = memory delete
Address =start address of the memory zone
Type =memory zone type
0 = software memory
1 = data memory
2 =1/0 space
Length =length of memory block
Allocation Type =RAM, OPORT/INPORT

The command enables memory erase of the INPORTROAOPORT type from the
simulator’s configuration.

- MI Address, Type, File, Opening Parameter

MI =memory disconnect
Address= start address of the memory zone
Type =memory zone type

0 = software memory

1 = data memory

2 =1/0 space
Length =length of memory block
Allocation Type =RAM, OPORT/INPORT
Opening Parameter= READ/WRITE

The command enables memory disconnection of theORIFOPORT/IOPORT from a
file.

Command bar
Is arranged in the upper part of the window argldes usual commands, it allows entering

bulk commands in the command window. The usualmands are:

a. Software load. Using theLoad command we can type inside the window the file name
and the OK command is entered.

b. Software running. To run the software, F5 will be pressed.

Cancel the software run.To do this, ESC will be pressed.

Step-by-step run.F8 is pressed for the step-by-step run. This methadtions for the

instructions inside the called functions as well.

e. Instruction-by-instruction run. When pressing F10 the software is ran instructipn-b
instruction without entering the called functions.

f. Breakpoint addition. (stopping the software run at a desired momenghRilick on the
instruction where the breakpoint is desired to laegx.

g. Breakpoint erasure.Right click on the instruction that contains thedipoint.

oo

Simulator’s configuration

Configuration of the simulator is done by the imjlloading of the siminit.cfg file at start.
Loading a different configuration file instead aetimplicit file can be made with the option
—t(take) when launching the simulator.

Laboratory work 2

Digital Signal Processors

The siminit.cfg file contains commands that areeasible at simulator’s prompter too. If
simulator’s reconfiguration is desired, anotherfrpmation file from the prompter is loaded

by using theéake command.

Example of configuration:
;Program memory

MA 0x0000, 0, 0x0020 , RAM
MA 0x0020, 0, OXOF00 , RAM
MA OxOFBO, 0, 0x0050 , RAM
MA 0x1000, 0, 0x0400 , RAM

;Data memory

MA 0x0000, 1, 0x0006 , RAM
MA 0x0060 , 1, 0x0020 , RAM
MA 0x0200, 1, 0x0400 , RAM
MA 0x0800, 1, 0x0800 , RAM

:Ports
MA 0x0000, 2, 0x0001, OPORT
MC 0x0000, 2, SINUS.DAT , WRITE

: INTERRUPTION VEORS
: ROM

: RAM

: OFF CHIP

: MMR

1 B2

: BO, B1

: OFF CHIP

It is very important that the configuration of thienulator to correspond with the one of the
linkeditor. If this is not done, the applicationncat be run on the simulator. Usually a

configuration file is constructed for each applicat

2.4 The graphical viewer for “SignProc” files

The viewer (“the oscilloscope”) is a program thiédvas visualization of data files (.dat) on
16 bit integer format on a graphical form, filesighhare “connected” to the simulator as

input or output signal.

b SHONPFOC
Fizsiera OpHunl - Infarmatil

I TRAFEZDAT

e
ey
L
I—
i
'
|
f
o [
'
i
e s e o
i
1
e
s

T I. "E‘"',‘-' \E.... ..I s o R l ...E.._.'...'.....E.
Ok T U Zi N 7R
S S / S\

N ¥ I PP b g By

A \ v A % " i

“ f s REE EL: ch e i e

Zonmm | Dptiani

Fteuaet! 8 i | :::” | SelareFaranHﬁE lezpe |

Fig. 3 Graphical viewer for files (.dat) “SignProc”

Laboratory work 2 Digital Signal Processors

The program has 2 graphical windows that can dyspldifferent files. Choosing a file for
display is done from thEiles menu by choosin@pen. Saving the file under a different name
is done by selecting the opti@avefrom Files menu. Modifying the parameters is done with
the help of the Zoom button group placed on théobobf the main window.

3. Application

The proposed application generates a trapezoigabkput of a triunghiular signal which
is amplified in order to be limited after like iigfire 4.

r 3
A

7 N2 N N7 N >

Fig. 4 The trapezoidal signal as a triunghiular linited signal
The following listing represents the trapez.asmliappon:

: Declaration of variables

maximn .set 8000h ; the most negative number (=-1, in Q15)
pas .set 400h ;step between 2 consecutive samples
const .set 4000h ;constant = 0.5 in Q15
: Memory space is reserved for variables

bss x,1

bss y,1

bss z,1

bss p,1

bss m,1

bss ct,1
; OVM (overflow) bit is set from STO

begin sovm

; DP register is initialized with the first 9 bifsost significant ones) of the x number. The x
variable is the address of the first reserved wohérefore DP will be positioned in such way
that will indicate the page where the reserved mgrozations are to be found through .bss
ldp #x
; X and m variables are initialized with the mosgative value
lalk #maximn

sacl X
sacl m
; p variable is initialized with the step valueween 2 samples
lalk #pas
sacl p

; ct variable is initialized with 0.5 in Q15

Laboratory work 2 Digital Signal Processors

lalk #const

sacl ct
; The auxiliary register AR7 is loaded with thew&l0. This register will be used to count the
; number of generated output samples. This wilyd@lp in the simulation process (we have
; the information about the number of generatedpsasnat any moment of time); it has no
; other role in the program

lark ar7,#0
; The auxiliary register AR7 becomes the currexilauy register for indirect addressing
mar *ar/

; Generating signal loop
; We compute: y = [x] - 0.5:
; The content of memory location with the x addresshifted towards left with 16 positions ;
. in order to place the value in ACCH and the alsoValue is computed
loop lacc x,16
; Absolute value is applied to the content of A@& result will also be in ACC
abs
; The content of the memory location with the addret shifted towards left with 16 positions
; IS subtracted from ACC
sub ct,16
; ACC is saved at the memory location with the addry
sach vy
; We compute: z = 2y = 2(|x| - 0.5) = 2|x| -1
; The content of the memory location with the addng shifted towards left with 16 positions
; Is added twice to ACC
add vy,16
add v,16
; ACCH is saved at the memory location with theradd z
sach z
; The previous address content memory is sentiioOpo
out z0
; OV bit from STO is reset (if an overflow occulsst bit will be 1 — it comes back to 0 only
; when an interruption is received or a conditigoaip instruction is executed by that bit)
Eti bv et
; ACC is loaded withac ~ x,16
; We compute: x = x + p where p is the x’s incretngtiep as long as an overflow doesn’t
; occur: the content of the memory location witle #ddress p shifted towards left with 16
; positions is added to ACC
add p,16
; If an overflow occurs a jump to the specifieddbon is executed or else it continues with
; the execution of the next instruction
bv et
; ACC is saved in the memory location with the a&ddrx
sach x

10

Laboratory work 2 Digital Signal Processors

; Unconditional jump at the specified address
b etl
; ACC is loaded with the content of the memory tamawith the address m shifted towards
; left with 16 positions
et lac ,16
; ACC is saved in the memory location with the redd x
sach x
; The current auxiliary register is incrementea, tlutput sample counter is updated
etl mar *+
; The generating signal loop is closed through add®mnal jump at the start address. The
; signal will be sent towards the port Oas long8€ key is not pressed
b loop
.end

4. The course of the paper

a) Study the usage of the assembldsp@), the linkeditor dspink) and the simulator
(sim2x).
b) Carefully study the application.
c) Lunch in execution the trapez.bat commands filsgmeed below:
@echo off
dspa -v25 -1 -x trapex.asm
dsplnk -ar trapez.obj link25.cmd -m trapez.maptrapez.out
sim2x trapez.out
signproc.exe
d) Run the program step-by-step by pressing the F8 key
e) After running ~60 times the loop that generatedrtygezoidal signal, presgiit in the
command line of the simulator in order to abandon i
f) Lunch the graphic viewer and read trapez.dat file.

5. Homework

a) Modify trapez.asm so that it generates a triunghigignal. In order to do that we
don’t amplify the signal anymore, so it fits betwehe limits.

b) What do we have to modify in the program that getesr a triunghiular signal in order
to generate a ramp signal?

11

Laboratory work 2 Digital Signal Processors

LINK25.CMD file structure

Linker Command File

Microcomputer Mode MC/MP =1

sets the Microcomputer/Microprocessor mode

1K RAM block mapped into program space
RAM, OVLY bits =1,0

Block BO configured as program memory
ST1 - CNF BIT = 0 MEMORY

the system’s memory map setting

PAGE 0 : /* Program Memory

Program Memory (Page())

VECS : origin = Oh, length = 20h interrupts

sets the memory location where interruption vectoes
PROG_ROM : origin = 20h, length = OF90h ROM

sets the program location from the ROM memory
PROG_RAM : origin = OFBOh, length = 0050h RAM/*
sets the program location from the ROM memory

/* sets the progra location from external memory
EXT_PROG : origin = 1000h, length = 0C400h off-chip
PAGE 1 : /* Data Memory (Page 1)

/* sets the memory location where the registerspadpn mem are
REGS : origin = Oh, length = 6h

/* memory block 2 localization

BLK_ B2 : origin = 60h, length = 20h Block B2

/* size and localization of internal RAM setting
INTL_RAM : origin = 200h, length = 400h Block BO & B1
/* size and localization of external RAM setting
EXT_DATA : origin = 800h, length = OF800h off-chip

SECTIONS — setting section specific to COFF format

{
.vectors: {} > VECS PAGE 0 /[* section.vectors in Page 0
text: {} > PROG_ROM PAGE 0 /* section.text in Page O in internal ROM
/* memory
.data: {} > PROG_ROM PAGE 0 /* section.data in Page 0 in internal ROM
/* memory
.bss: {} > EXT_DATA PAGE 1 /* section.bss in Page 1 in internal ROM
[* memory
}

12

