

Developing applications under CODE COMPOSER

STUDIO
®

1. General Overview

Code Composer Studio (CCS
®
) is a very efficient instrument for the fast

development of applications that are written for the DSP families TMS320C54x, C55x,

C6x. CCS allows: construction, configuration, testing, running and analyzing

applications in real time. It facilitates running applications on different development

systems or on a simulator. Selection of the syetem for which the applications are

developed is done through Setup CCStudio component.

 Development phases of a CCS application are shown in fig 1;

 Design Code implementation Testing Analysis

Establishing Project Creation Syntax check Debugging

 the theoretical Writing source code Data extraction Statistic

 concepts through probe

 point, etc

 Fig.1 Development phases of a CCS application

Code Composer Studio includes the following components:

• TMS 320C54X Code Generation Tools- contains the main software

elements needed in application development under CCS.

• CCS Integrated Development Environment (IDE) – environment that

integrates and manages all the CCS components that allow the design, edit

and debug of applications.

• DSP/BIOS – are libraries of functions that allow communication with the

application during running on hardware systems. DSP/BIOS component is

structured in two sections:

- DSP/ BIOS Plug-Ins offer the possibility of application analysis for

performance estimation with minimum impact over the real time performance.

- DSP/BIOS API (Application Interface) provides the software

components called through source application.

API components offer the possibility of interfacing the applications that run on

DSP system with remote application that run on PC.

All this components work together as shown in figure2.

 Fig2. Components used when developing an application under CCS.

2. Describing software utilities

The majority of software utilities that are used in the development process of

an application under CCS are managed by the IDE environment. Other components

are called during application development.

The development flow of an application is shown in figure3.

o C Complier – accepts C in ANSI standard and generates source files

.ASM

o Assembler – turns source files .ASM into object files .COFF

o Link Editor – combines object files into a single executable object

module.

o Archiver – collects groups of files in a single library file (archive).

 The archiver can modify the library in the way of: erasing, re-

registrating, extracting or adding a new member.

o Assembly translation assistant– turns the .ASM form mnemonic into

algebraic form.

o Library Manager – manages the run-time libraries.

o Run-Time libraries – contain:

� Functions for the real-time operation

� Functions for arithmetic calculus in floating point.

� I/O functions supported by C- ANSI standard.

o Hex conversion utility – converts a COFF object file into Ti-Tagged,

ASCII-hex, Intel, Motorola –S or Tektronix object file.

o Cross reference lister module – uses object files to produce a LST

file that will show the symbols, definitions and references in link edited source files.

o Absolute lister module – gets as input linkedited object files and

create .ABS files as output. The .ABS files is assembled in order to produce an .LST

file that will contain absolute addresses instead of relative addresses.

The development flow of an application is shown in figure3

3. Elements needed in developing an application under CCS

 Probe-Point usage

 The Probe-Points are useful instruments for algorithm development. It can be

used for:

- transferring input data from a local file into a DSP buffer to be used by the

algorithm.

- transferring output data from a DSP buffer into local file for the analysis.

- updating window (e.g. data graphic). Probe-Points are similar with

breakpoints because both interrupt the program executed on DSP for running its own

actions. Differences between them are: Probe-Point interrupt DSP program for a moment,

perform a single action and continue program execution. The breakpoints interrupt the

DSP until the execution is manually run and update all the windows. The Probe-Points

permit automatically input and output in/from files. Breakpoints don’t allow this. A

breakpoint is also used for updating all the opened windows until it traces into that Probe

Point. These windows also include the input and output data graphs.

3.2. Gel elements usage

 To modify a variable Code Composer Studio offers the possibility to use the GEL

(General Extension Language). «GEL » is a language extension that allows creation of

small windows used for: modifying variable values declared in the program, writing of

functions that allow IDE environment configuration and access to processor. GEL

elements are described in files with the .gel extension. These are added in the Project

View Window in GEL file section. (Right-click ->Load GEL) or with File->Load GEL.

 Gel Cursor control (slider) allows control of variable through a cursor.

slider param_definition(minVal, maxVal, increment, pageIncrement,

paramName)

{

 //control body

}

 param_definion – the cursor’s name

 minVal – an integer value that specifies the minimum variable values

controlled by the cursor.

 maxVal – an integer value that specifies the maximum variable values

controlled by the slider.

 incremet – an integer values that specifies the increment value controlled by

the slider.

 pageIncrement – an integer value that specifies the increment value controlled

by the slider when the keys Page Up and Page Down are pressed.

 paramName - the parameter’s name used inside the function.

 Dialogue Gel Control

 This type of control allows the modifications of variable through dialogue

boxes.

 dialog funcName(paramName1 "param1 definition", paramName2 "param2

definition",)

{

 //control body

}

 paramName[1-6] parameter’s name used in body function

 "param1 definition" the name of parameter typed in the

control window. We can define maximum 6 parameters.

In the example given below two GEL controls are defined: a slider and a dialogue.

GEL file example.

 menuitem "Application Control"

Application control is the name of the submenu’s name from GEL menu which is

activated after the GEL file loading.

dialog Load(loadParm1 "Freq",loadParm2 "gain")

 {

 Freq = loadParm1;

 gain = loadParm2;

 }

GEL Control of type “dialogue” is defined with the name Load with two variables

loadParam1 and LoadParam2 which are attached to Freq and Gain. After pressing the

Execute button variables are updated.

slider Gain(0, 10 ,1, 1, gainParm)

{

 gain = gainParm;

}

Slider GEL control is defined with the name Gain that can modify the gain variable

between 0 and 10 with 1 increment and 1 post increment.

3.2 Graphical visualization of memory area – “Graph Window”

 By using the Graph Windows we can see areas of memory graphically in

amplitude-time or double-time. FFT- amplitude, FFT complex, FFT phase, FFT phase

and amplitude.

Amplitude-time window Graph configuration settings are shown below.

Display Type-

Graph title

StartAddress

Page –memory page that displays Program Data or I/O

AcquisitionBufferSize– buffer size read by Graph

IndexIncrement –display resolution

DisplayData Size – number of displayed samples

DSP DataType – data display format

Q-value – data displayed in fractional format

Left-shiftedData Display

SamplingRate(Hz)-Fes in Hz for displaying the data on the graph.

Plot data From – plot data from left to right or reversed

Autoscale – amplitude autoscale.

DC Value-offset

AxesDisplay

Time displayUnit: s, ms, µs, samples

StatusBar Display- status bar display on which the cursor coordinates are typed

Magnitude Display Scale – scale type for linear amplitude or logarithmic

Data Plot Style- data plot style line or bar.

Grid Style – displays Full Grid, just ZeroLine or No Grid

Cursor Mode - No Cursor, Data Cursor, Zoom Cursor

When we have a frequency domain graph we have the following new parameters

 SignalType- real or complex

 FFT-Frame size

FFT Order

FFT Windowing Function

DisplayPeak and Hold

Frequency Display Unit : Hz, KHz, MHz

3.4. CSS work example

The following application realizes an input signal amplification control. In order to run the

application it is necessary that CCS work with a C5416 Simulator. This configuration is made

through the Setup CCS component.

 Below are described the steps that need to be followed in order to develop an application

in CCS and to be runned on the simulator.

1) Choose the menu Project -> Open and open the project sinewave.pjt from

Turorial/sim54x/Sinewave. The project contains the files sine.h, sinewave.cmd, rts500.lib

also the main source of the application sine.c.

 Source of the application:

/**

/*sine.c ; This program uses Probe Points, a sinusoidal input signal and then

the a gain factor is applied to this signal.

/***

**

#include <stdio.h>

#include "sine.h"

// gain control variable

int gain = INITIALGAIN;

// Buffer I/O declaration and initialization

BufferContents currentBuffer;

// function definitions

static void processing(); // processes the input and generate the

output

static void dataIO(); // the function used for ProbePoint

void main()

{

 puts("SineWave example started.\n");

 while(TRUE) // loop

 {

 /* read the input data using a probe-point connected to a host file

 Write the output into a graph connected also through a probe-point */

 dataIO();

 /* in order to obtain the output data a gain is applied to the input data */

 processing ();

 }

}

/* The next function applies a signal transform over the input signal in order to

generate the output signal. The parameters are: BufferContents structure that contains the

I/O streams of BUFFSIZE length; doesn’t return any value */

static void processing()

{

 int size = BUFFSIZE;

 while(size--){ // applies the gain over the input

 currentBuffer.output[size] = currentBuffer.input[size] * gain;

 }

}

/* The next function reads the input signal and writes the processed output signal

using ProbePoints; the function doesn’t have any parameters and doesn’t return any

value. */

static void dataIO()

{

 return;

}

2) Compile the source files with Project->Rebuild All or press the Rebuild All from

the toolbar.

3) Load the object file in the DSP memory from File->Load Program. Select the program

you just rebuilt, sine.out and press Open.

4) Double click on the file sine.c from Project View.

5) In order to attach the file containing the signal that needs to be processed it is necessary

to insert a ProbePoint that reads data from a .dat file.

 Place the cursor on the line DataIO() , from the main function. DataIO function reserves

a place where adding’s could be made later. For now we will connect a « ProbePoint » that

introduces data from a PC file.

6) The Toggle ProbePoint from the toolbar. The line is highlighted on display.

7) Choose File -> File I/O. File I/O dialogue appears in order to select the input and

output files.

 8) In File Input menu press Add File.

9) Choose sine.dat file. Notice that you can select the data format in the Files of type. The

sine.dat file contains hex values for a sine. Select Open in order to add this file in File I/O

dialogue list. Control window for the sine.dat file will appear. Later on when you run he program

you can use this window for commands as: start, stop, rewind or fast forward in the data file.

10) In the File I/O window the next step is to add a ProbePoint using the button with the

same name. In the dialogue window BreakProbe Points validate probe point clicking on it, will

show us the location and we select Connect to choosing sine.dat file. At the end press Apply.

11) In the File I/O dialogue set the address currentBuffer.input and the length at 100. Also

mark Wrap Around. Address field specifies where in the file is to be placed the data.

currentBuffer.input is declared in volume.c as array of integer of BUFSIZE length. Length field

indicates the number of samples from the data file that read each time it gets to Probe Point. 100

is the fixed value for the constant BUFSIZE in volume.h (0x64). Wrap Around option make CCS

begin to read the file from the beginning after it arrived to its end. This allows data file to be taken

as a continue data flow although it has just 1000 values and at each Probe Point 100 values are

read.

12) Select View->Graph->Time/Frequency.

13) In Graph Property Dialog modify: Graph Title, Start Address,

Acquisition Buffer Size, Display Data Size, DSP Data Type, Autoscale, si Maximum

Y-value with values from figure.

14) Press OK. A graphical window for the input buffer appears.

15) Right click on the Input window and choose Clear Display from the menu.

 16) Choose View->Graph->Time/Frequency.

 17) This time modify Graph Title in Output Buffer and Start Address in

currentBuffer.output, Autoscale OFF .Maximum-Value at 1000.

 18) Press OK in order to display Output graphical window- it contains the

generated signal.

19) Right click on the graphical window and choose Clear Display from the

menu.

20) Choose File->Load Gel ->volume.gel. This file contains a slider and

dialogue control gel. Open it to see its content.

21) Select Gel-> Application Control -> Gain.

22) In the Gain window adjust the gain. In the output buffer window

amplitude is modified. In addition the gain variable value from Watch it is

modified every time we make an adjustment.

23) Click (Halt) or press Shift F5 for stop the program.

4. Homework

 a) Add a slider GEL control in order to modify the gain.

 b) Write a program that generates a sine. Visualize the output buffer by using a

Graph Window.

 c) Replace the cursor control GEL with Dialogue control.

 d) Modify the program so that the signal taken from the input file sine.dat to be

amplitude modulated with a sine generated by the program.

 e) Modify Graph in order to display the output signal in frequency domain.

