
Image Processing - Lab 2: Color spaces

1

2. Color spaces

2.1. Introduction

The purpose of the second laboratory work is to teach the basic color manipulation techniques,

applied to the bitmap digital images.

2.2. The RGB color space

The color of each pixel, either in image acquisition devices such as cameras, and in image

displaying devices such as the computer monitor and the TV screen, is obtained by combining

three primary colors: Red, Green and Blue (additive color space – fig. 2.1 and 2.2).

Fig. 2.1. Additive mixing of colors. When the primary colors are superposed, the secondary colors appear. When

all three primary colors are superposed, the white color is obtained [1].

Fig. 2.2. The color image is obtained by pixel level combination of the primary colors. The three color channels

are displayed.

Each image pixel will be defined by a triplet, containing a numerical value for each primary

color. The color can be regarded as a point in a 3D RGB color space (fig. 2.3). The origin of

the coordinate axes corresponds to the color Black (0,0,0), and the opposite corner of the color

space cube corresponds to the color White (255, 255, 255). The cube’s diagonal, between black

and white, corresponds to levels of gray (grayscale), defined by (R=G=B). Three of the corners

correspond to the primary colors Red, Green and Blue. The other corners correspond to the

complementary colors of Cyan, Magenta and Yellow. If the origin of the color space is moved

to the White point, and the axes of the system are renamed as C, M and Y, one gets the

complementary CMY color space, which is used in color printing devices.

Universitatea Tehnică din Cluj-Napoca, Catedra de Calculatoare

2

Fig. 2.3. The RGB color space mapped on a cube. Here, each color axis is represented on 8 bits (256 levels)

(RGB24 bitmap images). The total number of colors is 28x28x28 = 224 = 16.777.216.

For RGB24 images, all possible color combinations can be displayed simultaneously. If the

image contains a palette, and the color of a pixel is an index in the palette, only a subset of the

colors can be displayed. In this context, the number of bits/pixel (the number of bits used to

encode a color) is called “color depth” (Table 2.1):

Table 2.1. Color depth and image type

Color depth Number of

colors

Color mode Palette (LUT)

1 bit 2 Indexed Color Yes

4 bits 16 Indexed Color Yes

8 bits 256 Indexed Color Yes

16 bits 65536 True Color No

24 bits 16.777.216 True Color No

32 bits 16.777.216 True Color No

There are other color models [2], which will not be discussed here.

2.3. Conversion of a color image to grayscale
In order to convert a color pixel to a grayscale pixel, its color components must be made equal.

A widely used conversion method is to compute the intensity as the average of the three

channels:

3

SrcSrcSrc
DstDstDst

BGR
BGR


 (2.1)

Image Processing - Lab 2: Color spaces

3

2.4. Conversion of a grayscale image to binary (black and white)

A binary image, having only two pixel values (black and white) is obtained from a grayscale

image through an operation called thresholding. This operation involves the comparison of the

graylevel pixels with a value called “threshold”. Thresholding is the simplest segmentation

technique, which allows the separation of foreground objects from the background (fig. 2.4).

Fig. 2.4. Thresholding.

In this laboratory work you will implement the thresholding operation using a fixed, user

defined threshold, for grayscale 8 bit images. The pixels from the source image will be

compared to the threshold value, and the destination will be set to:

0 () , (,)

(,)
255 () , (,)

black if Src i j threshold
Dst i j

white if Src i j threshold


 


 (2.2)

2.5. The HSV (Hue Saturation Value) color space

This color space tries to mimic the way the humans perceive color. The H component (hue) is

the color itself, independent (invariant) of illumination, the S component (saturation) is the

color’s “purity” (how well defined the color is), and V (value, or intensity) is the brightness.

This space is represented as a pyramid with a hexagonal base, or as a cone.

Fig. 2.5. The HSV color space.

Universitatea Tehnică din Cluj-Napoca, Catedra de Calculatoare

4

Using the pyramid representation, the significance of the components is:

H – the angle between the current color and the ray corresponding to the color Red.

S – the distance from the current color to the central axis of the pyramid/code.

V – the height of the current color in the pyramid/cone.

2.6. The RGB  HSV transform

The equations for obtaining the HSV components from RGB are [3]:

r = R/255; // r : the normalized R component

g = G/255; // g : the normalized G component

b = B/255; // b : the normalized B component

// Attention: please declare all variables as float

// If you have declared R as uchar, you have to use a cast: r = (float)R/255 !!!

M = max (r, g, b);

m = min (r, g, b);

C = M - m;

Value:

V = M;

Saturation:

 If (V!=0)

 S = C / V;

 Else // grayscale

S = 0;

Hue:

If (C!=0) {

 if (M == r) H = 60 * (g - b) / C;

 if (M == g) H = 120 + 60 * (b - r) / C;

 if (M == b) H = 240 + 60 * (r - g) / C;

 }

Else // grayscale

 H = 0;

If (H < 0)

H = H + 360;

The values for H, S and V computed with the previous equations will have the following range:

H = 0 .. 360

S = 0 .. 1

V = 0 .. 1

In order to display them as 8-bit grayscale images, you will need to scale them to the 0…255

interval:

H_norm = H*255/360

S_norm = S*255

V_norm=V*255

2.7. Practical work

Image Processing - Lab 2: Color spaces

5

1. Create a function that will copy the R, G and B channels of a color, RGB24 image

(CV_8UC3 type) into three matrices of type CV_8UC1 (grayscale images). Display these

matrices in three distinct windows.

2. Create a function that will convert a color RGB24 image (CV_8UC3 type) to a grayscale

image (CV_8UC1), and display the result image in a destination window.

3. Create a function for converting from grayscale to black and white (binary), using (2.2).

Read the threshold from the console. Test the operation on multiple images, and using

multiple thresholds.

4. Create a function that will compute the H, S and V values from the R, G, B channels of

an image, using the equations from 2.6. Store each value (H, S, V) in a CV_8UC1 matrix.

Check the correctness of your implementation using the example below or by comparing

with the rusults obtained using the cvtcolor function (see the existing example from

OpenCVApplication: 4 - BGR->HSV).

5. Implement a function isInside(img,i,j) that checks if the position (i,j) is inside the image

img.

a. Results on flowers_24bits.bmp (24 bits/pixel)

b. Results on Lena_24bits.bmp (24 bits/pixel)

Fig. 2.6. Examples of RGB to HSV conversion.

References
[1] http://en.wikipedia.org/wiki/RGB_color_model

[2] http://en.wikipedia.org/wiki/Color_models

[3] Open Computer vision Library, Reference guide, cvtColor() function,

http://docs.opencv.org/2.4.13/modules/imgproc/doc/miscellaneous_transformations.html#

cvtcolor

http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/Color_models
http://docs.opencv.org/2.4.13/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor
http://docs.opencv.org/2.4.13/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor

