

Praise for the Sun Certified Programmer & Developer for Java 2 Study Guide

"Kathy Sierra is one of the few people in the world who can make complicated
things seem damn simple. And as if that isn't enough, she can make boring things
seem interesting. I always look forward to reading whatever Kathy writes—she's one
of my favorite authors."

—Paul Wheaton, Trail Boss JavaRanch.com

"Who better to write a Java study guide than Kathy Sierra, the reigning queen of
Java instruction? Kathy Sierra has done it again—here is a study guide that almost
guarantees you a certification!"

—James Cubeta, Systems Engineer, SGI

"The thing I appreciate most about Kathy is her quest to make us all remember that
we are teaching people and not just lecturing about Java. Her passion and desire
for the highest quality education that meets the needs of the individual student is
positively unparalleled at SunEd. Undoubtedly there are hundreds of students who
have benefited from taking Kathy's classes."

—Victor Peters, founder Next Step Education & Software Sun Certified Java Instructor

"I want to thank Kathy for the EXCELLENT Study Guide. The book is well written,
every concept is clearly explained using a real life example, and the book states what
you specifically need to know for the exam. The way it's written, you feel that you're
in a classroom and someone is actually teaching you the difficult concepts, but not
in a dry, formal manner. The questions at the end of the chapters are also REALLY
good, and I am sure they will help candidates pass the test. Watch out for this
Wickedly Smart book."

—Alfred Raouf, Web Solution Developer

"The Sun Certification exam was certainly no walk in the park, but Kathy's material
allowed me to not only pass the exam, but Ace it!"

—Mary Whetsel, Sr. Technology Specialist,
Application Strategy and Integration, The St. Paul Companies

"Bert has an uncanny and proven ability to synthesize complexity into simplicity
offering a guided tour into learning what's needed for the certification exam."

—Thomas Bender, President, Gold Hill Software Design, Inc.

"With his skill for clearly expressing complex concepts to his training audience,
every student can master what Bert has to teach."

—David Ridge, CEO, Ridge Associates

"I found this book to be extremely helpful in passing the exam. It was very well
written with just enough light-hearted comments to make you forget that you were
studying for a very difficult test. HIGHLY RECOMMENDED!!"

— Nicole Y. McCullough

"I have never enjoyed reading a technical book as much as I did this one…This
morning I took the SCJP test and got 98% (60 out of 61) correct. Such success
would not have been possible without this book!"

— Yurie Nagorny

"I gave SCJP 1.4 in July 2004 & scored 95% (58/61). Kathy & Bert have an
awesome writing style & they literally burnt the core concepts into my head."

— Bhushan P. Madan (Kansas, United States)

"I just took my certification test last week and passed with a score of 95%. Had I not
gone through this book, there would have been little chance of doing so well on the
test. Thank you Kathy and Bert for a wonderful book!"

— Jon W. Kinsting (Saratoga, California United States)

"Don't hesitate to make this book your primary guide for SCJP 1.4 preparation. The
authors have made a marvellous job about delivering the vital facts you need to
know for the exam while leaving out tons of otherwise valuable data that fall beyond
the scope. Both authors have participated in creating the real questions for the real
exam thus providing an invaluable insight to discern the true nature of what you are
up to doing. Unlike many other certification guides…this one makes perfect reading.
The most boring Sun objectives in the book are nicely interwoven with the gems of
refreshingly spicy humor."

— Vad Fogel (Ontario, Canada)

SCJP Sun® Certifi ed
Programmer for Java™ 6

Study Guide

(Exam 310-065)

SCJP Sun® Certifi ed
Programmer for Java™ 6

Study Guide
Exam (310-065)

Kathy Sierra
Bert Bates

New York Chicago San Francisco Lisbon London Madrid
 Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

McGraw-Hill is an independent entity from Sun Microsystems, Inc. and is
not affi liated with Sun Microsystems, Inc. in any manner. This publication and
CD may be used in assisting students to prepare for the Sun Certifi ed Java
Programmer Exam. Neither Sun Microsystems nor McGraw-Hill warrants
that use of this publication and CD will ensure passing the relevant exam. Sun,
Sun Microsystems, and the Sun Logo are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries. Java
and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159107-9

The material in this eBook also appears in the print version of this title: 0-07-159106-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may
use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071591060

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

CONTRIBUTORS

About the Authors
Kathy Sierra was a lead developer for the SCJP exam for Java 5 and Java 6. Sierra
worked as a Sun "master trainer," and in 1997, founded JavaRanch.com, the world's
largest Java community website. Her bestselling Java books have won multiple
Software Development Magazine awards, and she is a founding member of Sun's Java
Champions program.

Bert Bates was a lead developer for many of Sun's Java certification exams including
the SCJP for Java 5 and Java 6. He is also a forum moderator on JavaRanch.com, and
has been developing software for more than 20 years. Bert is the co-author of several
bestselling Java books, and he's a founding member of Sun's Java Champions program.

About the Technical Review Team
Johannes de Jong has been the leader of our technical review teams for ever and
ever. (He has more patience than any three people we know.) For this book, he led
our biggest team ever. Our sincere thanks go out to the following volunteers who
were knowledgeable, diligent, patient, and picky, picky, picky!

Rob Ross, Nicholas Cheung, Jane Griscti, Ilja Preuss, Vincent Brabant, Kudret
Serin, Bill Seipel, Jing Yi, Ginu Jacob George, Radiya, LuAnn Mazza, Anshu Mishra,
Anandhi Navaneethakrishnan, Didier Varon, Mary McCartney, Harsha Pherwani,
Abhishek Misra, and Suman Das.

About LearnKey
LearnKey provides self-paced learning content and multimedia delivery solutions to
enhance personal skills and business productivity. LearnKey claims the largest library
of rich streaming-media training content that engages learners in dynamic media-rich
instruction complete with video clips, audio, full motion graphics, and animated
illustrations. LearnKey can be found on the Web at www.LearnKey.com.

Technical Review Superstars

Andrew

Bill M.
Burk Devender

Gian
Jim

JeroenJef

MarilynMarceloKristin
Johannes

ValentinSeemaMikalaiMark

We don't know who
burned the most midnight
oil, but we can (and did)
count everybody's edits—
so in order of most edits
made, we proudly present
our Superstars.
 Our top honors go to
Kristin Stromberg—every
time you see a semicolon
used correctly, tip your
hat to Kristin. Next up is
Burk Hufnagel who fixed
more code than we care
to admit. Bill Mietelski
and Gian Franco
Casula caught every
kind of error we threw
at them—awesome job,
guys! Devender Thareja
made sure we didn't use
too much slang, and Mark
Spritzler kept the humor
coming. Mikalai Zaikin
and Seema Manivannan
made great catches every
step of the way, and
Marilyn de Queiroz and
Valentin Crettaz both
put in another stellar
performance (saving our
butts yet again).

Marcelo Ortega, Jef Cumps (another veteran), Andrew Monkhouse, and Jeroen Sterken rounded
out our crew of superstars—thanks to you all. Jim Yingst was a member of the Sun exam creation
team, and he helped us write and review some of the twistier questions in the book (bwa-ha-ha-ha).
 As always, every time you read a clean page, thank our reviewers, and if you do catch an error, it's
most certainly because your authors messed up. And oh, one last thanks to Johannes. You rule dude!

The Java 6 Elite Review Team
Since the upgrade to
the Java 6 exam was
a like a small, surgical
strike we decided that
the technical review
team for this update
to the book needed to
be similarly fashioned.
To that end we hand-
picked an elite crew of
JavaRanch's top gurus
to perform the review
for the Java 6 exam.

Marc Peabody gets special kudos for helping us out on a double header! In addition to helping us
with Sun's new SCWCD exam, Marc pitched in with a great set of edits for this book—you saved our
bacon this winter Marc! (BTW, we didn't learn until late in the game that Marc, Bryan Basham, and
Bert all share a passion for ultimate Frisbee!)

Like several of our reviewers, not only does Fred Rosenberger volunteer copious amounts of his
time moderating at JavaRanch, he also found time to help us out with this book. Stacey and Olivia,
you have our thanks for loaning us Fred for a while.

Marc Weber moderates at some of JavaRanch's busiest forums. Marc knows his stuff, and
uncovered some really sneaky problems that were buried in the book. While we really appreciate
Marc's help, we need to warn you all to watch out—he's got a Phaser!

Finally, we send our thanks to Christophe Verre—if we can find him. It appears that Christophe
performs his JavaRanch moderation duties from various locations around the globe, including France,
Wales, and most recently Tokyo. On more than one occasion Christophe protected us from our own
lack of organization. Thanks for your patience, Christophe!

It's important to know that these guys all donated their reviewer honorariums to JavaRanch! The
JavaRanch community is in your debt.

Marc W.
Marc P.

Fred

Christophe
Mikalai

Our endless gratitude goes to Mikalai
Zaikin. Mikalai played a huge role in
the Java 5 book, and he returned to
help us out again for this Java 6 edition.
We need to thank Volha, Anastasia,
and Daria for letting us borrow Mikalai.
His comments and edits helped us
make huge improvements to the book.
Thanks, Mikalai!

To the Java Community

xi

CONTENTS AT A GLANCE

 1 Declarations and Access Control . 1

 2 Object Orientation . 85

 3 Assignments . 183

 4 Operators . 287

 5 Flow Control, Exceptions, and Assertions . 327

 6 Strings, I/O, Formatting, and Parsing . 425

 7 Generics and Collections . 541

 8 Inner Classes . 661

 9 Threads . 701

10 Development . 789

A About the CD . 831

 Index . 835

xiii

CONTENTS

Contributors . vii
Acknowledgments xx
Preface . xxi
Introduction . xxiii

1 Declarations and Access Control 1
Java Refresher . 2
Identifiers & JavaBeans (Objectives 1.3 and 1.4) 4

Legal Identifiers 5
Sun's Java Code Conventions 6
JavaBeans Standards 8

Declare Classes (Exam Objective 1.1) 10
Source File Declaration Rules 11
Class Declarations and Modifiers 12
Exercise 1-1: Creating an Abstract Superclass and

Concrete Subclass 18
Declare Interfaces (Exam Objectives 1.1 and 1.2) 19

Declaring an Interface 19
Declaring Interface Constants 22

Declare Class Members (Objectives 1.3 and 1.4) 24
Access Modifiers 24
Nonaccess Member Modifiers 39
Constructor Declarations 47
Variable Declarations 49
Declaring Enums 60

 ✓ Two-Minute Drill 68
Q&A Self Test . 74

Self Test Answers 79

xiv SCJP Sun Certifi ed Programmer for Java 6 Study Guide

2 Object Orientation . 85
Encapsulation (Exam Objective 5.1) 86
Inheritance, Is-A, Has-A (Exam Objective 5.5) 90

IS-A . 94
HAS-A . 96

Polymorphism (Exam Objective 5.2) 98
Overriding / Overloading (Exam Objectives 1.5 and 5.4) 103

Overridden Methods 103
Overloaded Methods 109

Reference Variable Casting (Objective 5.2) 116
Implementing an Interface (Exam Objective 1.2) 120
Legal Return Types (Exam Objective 1.5) 126

Return Type Declarations 126
Returning a Value 128

Constructors and Instantiation
 (Exam Objectives 1.6, 5.3, and 5.4) 130

Determine Whether a Default Constructor
Will Be Created 135

Overloaded Constructors 139
Statics (Exam Objective 1.3) 145

Static Variables and Methods 145
Coupling and Cohesion (Exam Objective 5.1) 151
 ✓ Two-Minute Drill 157
Q&A Self Test . 162

Self Test Answers 171

3 Assignments . 183
Stack and Heap—Quick Review 184
Literals, Assignments, and Variables
 (Exam Objectives 1.3 and 7.6) 186

Literal Values for All Primitive Types 186
Assignment Operators 190
Exercise 3-1: Casting Primitives 195
Using a Variable or Array Element That Is Uninitialized

and Unassigned 203
Local (Stack, Automatic) Primitives and Objects 207

Contents xv

Passing Variables into Methods (Objective 7.3) 213
Passing Object Reference Variables 213
Does Java Use Pass-By-Value Semantics? 214
Passing Primitive Variables 215

Array Declaration, Construction, and Initialization
 (Exam Objective 1.3) 219

Declaring an Array 219
Constructing an Array 220
Initializing an Array 224
Initialization Blocks 234

Using Wrapper Classes and Boxing (Exam Objective 3.1) 237
An Overview of the Wrapper Classes 238
Creating Wrapper Objects 239
Using Wrapper Conversion Utilities 240
Autoboxing 244

Overloading (Exam Objectives 1.5 and 5.4) 247
Garbage Collection (Exam Objective 7.4) 254

Overview of Memory Management and
Garbage Collection . 254

Overview of Java's Garbage Collector 255
Writing Code That Explicitly Makes Objects Eligible

for Collection 257
Exercise 3-2: Garbage Collection Experiment 262

 ✓ Two-Minute Drill 265
Q&A Self Test . 269

Self Test Answers 277

4 Operators . 287
Java Operators (Exam Objective 7.6) 288

Assignment Operators 288
Relational Operators 290
instanceof Comparison 295
Arithmetic Operators 298
Conditional Operator 304
Logical Operators 305

 ✓ Two-Minute Drill 311
Q&A Self Test . 313

Self Test Answers 319

xvi SCJP Sun Certifi ed Programmer for Java 6 Study Guide

5 Flow Control, Exceptions, and Assertions 327
if and switch Statements (Exam Objective 2.1) 328

if-else Branching 329
switch Statements 334
Exercise 5-1: Creating a switch-case Statement 342

Loops and Iterators (Exam Objective 2.2) 343
Using while Loops 343
Using do Loops 344
Using for Loops 345
Using break and continue 352
Unlabeled Statements 353
Labeled Statements 354
Exercise 5-2: Creating a Labeled while Loop 356

Handling Exceptions (Exam Objectives 2.4 and 2.5) 356
Catching an Exception Using try and catch 357
Using finally 359
Propagating Uncaught Exceptions 362
Exercise 5-3: Propagating and Catching

an Exception 364
Defining Exceptions 365
Exception Hierarchy 366
Handling an Entire Class Hierarchy of Exceptions 368
Exception Matching 369
Exception Declaration and the Public Interface 371
Rethrowing the Same Exception 376
Exercise 5-4: Creating an Exception 377

Common Exceptions and Errors(Exam Objective 2.6) 378
Working with the Assertion Mechanism (Exam Objective 2.3) . . . 383

Assertions Overview 384
Enabling Assertions 387
Using Assertions Appropriately 391

 ✓ Two-Minute Drill 397
Q&A Self Test . 401

Self Test Answers 411

Contents xvii

6 Strings, I/O, Formatting, and Parsing 425
String, StringBuilder, and StringBuffer (Exam Objective 3.1) . . . 426

The String Class 426
Important Facts About Strings and Memory 433
Important Methods in the String Class 434
The StringBuffer and StringBuilder Classes 438
Important Methods in the StringBuffer

and StringBuilder Classes 440
File Navigation and I/O (Exam Objective 3.2) 443

The java.io.Console Class 457
Serialization (Exam Objective 3.3) 459
Dates, Numbers, and Currency (Exam Objective 3.4) 473

Working with Dates, Numbers, and Currencies 474
Parsing, Tokenizing, and Formatting (Exam Objective 3.5) 487

A Search Tutorial 488
Locating Data via Pattern Matching 498
Tokenizing 501
Formatting with printf() and format() 506

 ✓ Two-Minute Drill 511
Q&A Self Test . 515

Self Test Answers 526

7 Generics and Collections . 541
Overriding hashCode() and equals() (Objective 6.2) 542

Overriding equals() 544
Overriding hashCode() 549

Collections (Exam Objective 6.1) 556
So What Do You Do with a Collection? 556
List Interface 561
Set Interface 562
Map Interface 563
Queue Interface 564

Using the Collections Framework (Objectives 6.3 and 6.5) 566
ArrayList Basics 567
Autoboxing with Collections 568
Sorting Collections and Arrays 568
Navigating (Searching) TreeSets and TreeMaps 586
Other Navigation Methods 587
Backed Collections 589

xviii SCJP Sun Certifi ed Programmer for Java 6 Study Guide

Generic Types (Objectives 6.3 and 6.4) 595
Generics and Legacy Code 600
Mixing Generic and Non-generic Collections 601
Polymorphism and Generics 607
Generic Methods 609
Generic Declarations 622

 ✓ Two-Minute Drill 631
Q&A Self Test . 636

Self Test Answers 647

8 Inner Classes . 661
Inner Classes . 663

Coding a "Regular" Inner Class 664
Referencing the Inner or Outer Instance from Within

the Inner Class 668
Method-Local Inner Classes 670

What a Method-Local Inner Object Can and Can't Do . . 671
Anonymous Inner Classes 673

Plain-Old Anonymous Inner Classes, Flavor One 673
Plain-Old Anonymous Inner Classes, Flavor Two 677
Argument-Defined Anonymous Inner Classes 678

Static Nested Classes 680
Instantiating and Using Static Nested Classes 681

 ✓ Two-Minute Drill 683
Q&A Self Test . 685

Self Test Answers 692

9 Threads . 701
Defining, Instantiating, and Starting Threads (Objective 4.1) . . . 702

Defining a Thread 705
Instantiating a Thread 706
Starting a Thread 709

Thread States and Transitions (Objective 4.2) 718
Thread States 718
Preventing Thread Execution 720
Sleeping . 721
Exercise 9-1: Creating a Thread and

Putting It to Sleep . 723
Thread Priorities and yield() 724

Contents xix

Synchronizing Code (Objective 4.3) 728
Synchronization and Locks 735
Exercise 9-2: Synchronizing a Block of Code 738
Thread Deadlock 745

Thread Interaction (Objective 4.4) 746
Using notifyAll() When Many Threads

May Be Waiting . 752
 ✓ Two-Minute Drill . 758
Q&A Self Test . 761

Self Test Answers . 772
Exercise Answers . 787

10 Development . 789
Using the javac and java Commands
 (Exam Objectives 7.1, 7.2, and 7.5) 790

Compiling with javac 790
Launching Applications with java 793
Searching for Other Classes 796

JAR Files (Objective 7.5) 802
JAR Files and Searching 803

Using Static Imports (Exam Objective 7.1) 806
Static Imports 806

 ✓ Two-Minute Drill 809
Q&A Self Test . 811

Self Test Answers 820

A About the CD . 831
System Requirements 832
Installing and Running Master Exam 832

Master Exam 832
Electronic Book . 833
Help . 833
Removing Installation(s) 833
Technical Support . 833

LearnKey Technical Support 833

 Index . 835

ACKNOWLEDGMENTS

Kathy and Bert would like to thank the following people:

■ All the incredibly hard-working folks at McGraw-Hill: Tim Green, Jim Kussow,
Jody McKenzie, Madhu Bhardwaj, and Jennifer Housh for all their help, and
for being so responsive and patient—well, okay, not all that patient—but so
professional and the nicest group of people you could hope to work with.

■ To our saviors Solveig Haugland and Midori Batten, for coming to our rescue
when we were really in a bind!

■ Some of the software professionals and friends who helped us in the early
days: Tom Bender, Peter Loerincs, Craig Matthews, Dave Gustafson, Leonard
Coyne, Morgan Porter, and Mike Kavenaugh.

■ The wonderful and talented Certification team at Sun Educational Services,
primarily the most persistent get-it-done person we know, Evelyn Cartagena.

■ Our great friends and gurus, Bryan Basham, Kathy Collina, and Simon Roberts.

■ To Eden and Skyler, for being horrified that adults—out of school— would
study this hard for an exam.

■ To the JavaRanch Trail Boss Paul Wheaton, for running the best Java community
site on the Web, and to all the generous and patient JavaRanch moderators.

■ To all the past and present Sun Ed Java instructors for helping to make
learning Java a fun experience including (to name only a few): Alan
Petersen, Jean Tordella, Georgianna Meagher, Anthony Orapallo, Jacqueline
Jones, James Cubeta, Teri Cubeta, Rob Weingruber, John Nyquist, Asok
Perumainar, Steve Stelting, Kimberly Bobrow, Keith Ratliff, and the most
caring and inspiring Java guy on the planet, Jari Paukku.

■ To Darren and Mary, thanks for keeping us sane and for helping us with our
new furry friends Andi, Kara, Birta, Sola, Draumur, and Tjara.

■ Finally, to Eric and Beth Freeman for your continued inspiration.

xx

xxi

PREFACE

This book's primary objective is to help you prepare for and pass Sun Microsystem's SCJP
certification for Java 6 or Java 5. The Java 6 and Java 5 exams are almost identical in
scope, and they are both much broader than their predecessor, the Java 1.4 exam. For

the remainder of this book we'll typically reference the Java 6 exam, but remember that other than
the addition of the System.Console class and Navigable collections, the Java 5 and Java 6 exams are
identical in scope. We recommend that you take the Java 6 exam and not the Java 5 exam, but if you
do decide to take the Java 5 exam, this book is still appropriate. The new exam's objectives touch on
many of the more commonly used of Java's APIs. The key word here is "touch." The exam's creators
intended that passing the exam will demonstrate that the candidate understands the basics of APIs
such as those for file I/O and regular expressions. This book follows closely both the breadth and the
depth of the real exam. For instance, after reading this book, you probably won't emerge as a regex
guru, but if you study the material, and do well on the self tests, you'll have a basic understanding of
regex, and you'll do well on the exam. After completing this book, you should feel confident that you
have thoroughly reviewed all of the objectives that Sun has established for the exam.

In This Book
This book is organized to optimize your learning of the topics covered by the SCJP
Java 6 exam. Whenever possible, we've organized the chapters to parallel the Sun
objectives, but sometimes we'll mix up objectives or partially repeat them in order to
present topics in an order better suited to learning the material.

In addition to fully covering the SCJP Java 6 exam, we have also included on the
CD eight chapters that cover important aspects of Sun's SCJD exam.

In Every Chapter
We've created a set of chapter components that call your attention to important
items, reinforce important points, and provide helpful exam-taking hints. Take a
look at what you'll find in every chapter:

■ Every chapter begins with the Certification Objectives—what you need to
know in order to pass the section on the exam dealing with the chapter topic.

xxii SCJP Sun Certifi ed Programmer for Java 6 Study Guide

The Certification Objective headings identify the objectives within the
chapter, so you'll always know an objective when you see it!

■ Exam Watch notes call attention to information about, and potential pitfalls
in, the exam. Since we were on the team that created the exam, we know
what you're about to go through!

■ On the Job callouts discuss practical aspects of certification topics that might
not occur on the exam, but that will be useful in the real world.

■ Exercises are interspersed throughout the chapters. They help you master
skills that are likely to be an area of focus on the exam. Don't just read
through the exercises; they are hands-on practice that you should be
comfortable completing. Learning by doing is an effective way to increase
your competency with a product.

■ From the Classroom sidebars describe the issues that come up most often in
the training classroom setting. These sidebars give you a valuable perspective
into certification- and product-related topics. They point out common
mistakes and address questions that have arisen from classroom discussions.

■ The Certification Summary is a succinct review of the chapter and
a restatement of salient points regarding the exam.

■ The Two-Minute Drill at the end of every chapter is a checklist of the main
points of the chapter. It can be used for last-minute review.

■ The Self Test offers questions similar to those found on the certification
exam, including multiple choice, and pseudo drag-and-drop questions. The
answers to these questions, as well as explanations of the answers, can be
found at the end of every chapter. By taking the Self Test after completing
each chapter, you'll reinforce what you've learned from that chapter, while
becoming familiar with the structure of the exam questions.

✓

Q&A

INTRODUCTION

Organization
This book is organized in such a way as to serve as an in-depth review for the Sun
Certified Programmer for both the Java 6 and Java 5 exams, for experienced Java
professionals and those in the early stages of experience with Java technologies. Each
chapter covers at least one major aspect of the exam, with an emphasis on the "why"
as well as the "how to" of programming in the Java language. The CD included with
the book also includes an in-depth review of the essential ingredients for a successful
assessment of a project submitted for the Sun Certified Java Developer exam.

What This Book Is Not
You will not find a beginner's guide to learning Java in this book. All 800 pages of
this book are dedicated solely to helping you pass the exams. If you are brand new
to Java, we suggest you spend a little time learning the basics. You shouldn't start
with this book until you know how to write, compile, and run simple Java programs.
We do not, however, assume any level of prior knowledge of the individual topics
covered. In other words, for any given topic (driven exclusively by the actual exam
objectives), we start with the assumption that you are new to that topic. So we
assume you're new to the individual topics, but we assume that you are not new
to Java.

We also do not pretend to be both preparing you for the exam and simultaneously
making you a complete Java being. This is a certification exam study guide, and it's
very clear about its mission. That's not to say that preparing for the exam won't help
you become a better Java programmer! On the contrary, even the most experienced
Java developers often claim that having to prepare for the certification exam made
them far more knowledgeable and well-rounded programmers than they would have
been without the exam-driven studying.

On the CD
For more information on the CD-ROM, please see Appendix A.

xxiii

xxiv SCJP Sun Certifi ed Programmer for Java 6 Study Guide

Some Pointers
Once you've finished reading this book, set aside some time to do a thorough review.
You might want to return to the book several times and make use of all the methods
it offers for reviewing the material:

 1. Re-read all the Two-Minute Drills, or have someone quiz you. You also can
use the drills as a way to do a quick cram before the exam. You might want
to make some flash cards out of 3 × 5 index cards that have the Two-Minute
Drill material on them.

 2. Re-read all the Exam Watch notes. Remember that these notes are written by
authors who helped create the exam. They know what you should expect—
and what you should be on the lookout for.

 3. Re-take the Self Tests. Taking the tests right after you've read the chapter is
a good idea, because the questions help reinforce what you've just learned.
However, it's an even better idea to go back later and do all the questions in
the book in one sitting. Pretend that you're taking the live exam. (Whenever
you take the self tests mark your answers on a separate piece of paper. That
way, you can run through the questions as many times as you need to until
you feel comfortable with the material.)

 4. Complete the Exercises. The exercises are designed to cover exam topics, and
there's no better way to get to know this material than by practicing. Be sure
you understand why you are performing each step in each exercise. If there is
something you are not clear on, re-read that section in the chapter.

 5. Write lots of Java code. We’ll repeat this advice several times. When we
wrote this book, we wrote hundreds of small Java programs to help us do our
research. We have heard from hundreds of candidates who have passed the
exam, and in almost every case the candidates who scored extremely well on
the exam wrote lots of code during their studies. Experiment with the code
samples in the book, create horrendous lists of compiler errors—put away
your IDE, crank up the command line, and write code!

Introduction to the Material in the Book
The Sun Certified Java Programmer (SCJP) exam is considered one of the hardest
in the IT industry, and we can tell you from experience that a large chunk of exam
candidates go in to the test unprepared. As programmers, we tend to learn only what we
need to complete our current project, given the insane deadlines we're usually under.

Introduction xxv

But this exam attempts to prove your complete understanding of the Java language,
not just the parts of it you've become familiar with in your work.

Experience alone will rarely get you through this exam with a passing mark,
because even the things you think you know might work just a little different than
you imagined. It isn't enough to be able to get your code to work correctly; you must
understand the core fundamentals in a deep way, and with enough breadth to cover
virtually anything that could crop up in the course of using the language.

The Sun Certified Developer Exam (covered in chapters that are contained on
the CD) is unique to the IT certification realm, because it actually evaluates your
skill as a developer rather than simply your knowledge of the language or tools.
Becoming a Certified Java Developer is, by definition, a development experience.

Who Cares About Certifi cation?
Employers do. Headhunters do. Programmers do. Sun's programmer exam has been
considered the fastest-growing certification in the IT world, and the number of
candidates taking the exam continues to grow each year. Passing this exam proves
three important things to a current or prospective employer: you're smart; you know
how to study and prepare for a challenging test; and, most of all, you know the Java
language. If an employer has a choice between a candidate who has passed the exam
and one who hasn't, the employer knows that the certified programmer does not
have to take time to learn the Java language.

But does it mean that you can actually develop software in Java? Not necessarily,
but it's a good head start. To really demonstrate your ability to develop (as opposed
to just your knowledge of the language), you should consider pursuing the Developer
Exam, where you're given an assignment to build a program, start to finish, and
submit it for an assessor to evaluate and score.

Sun's Certification Program
Currently there are eight Java certification exams (although several of them might
have more than one live version). The Associate exam, the Programmer exam, and
the Developer exam are all associated with the Java Standard Edition. The Web
Component exam, the Business Component exam, the Web Services exam, and the
Enterprise Architect exam are all associated with the Java Enterprise Edition. The
Mobile Application exam is associated with the Java Micro Edition.

xxvi SCJP Sun Certifi ed Programmer for Java 6 Study Guide

The Associate, Programmer, Web Component, Business Component, Web
Services, and Mobile Application exams are exclusively multiple-choice and drag-
and-drop exams taken at a testing center, while the Developer and Architect exams
also involve submitting a project.

The Associate Exam (CX-310-019)
Sun Certified Java Associate (SCJA)
The Associate exam is for candidates just entering an application development or a
software project management career using Java technologies. This exam tests basic
knowledge of object-oriented concepts, the basics of UML, the basics of the Java
programming language, and general knowledge of Java Platforms and Technologies.
This exam has no prerequisites.

The Programmer Exams (CX-310-065)
Sun Certified Java Programmer (SCJP) for Java 6
The Programmer exam is designed to test your knowledge of the Java programming
language itself. It requires detailed knowledge of language syntax, core concepts,
and a number of common application programming interfaces (APIs). This exam
also tests intermediate knowledge of object-oriented design concepts. It does not
test any issues related to architecture, and it does not ask why one approach is better
than another, but rather it asks whether the given approach works in a particular
situation. This exam has no prerequisites. As of May, 2008, two older versions of this
exam are still available, the 1.4 and the 5.0.

The Developer Exam (CX-310-252A, CX-310-027)
Sun Certified Java Developer (SCJD)
The Developer exam picks up where the Programmer exam leaves off. Passing
the Programmer exam is required before you can start the Developer exam. The
Developer exam requires you to develop an actual program and then defend your
design decisions. It is designed to test your understanding of why certain approaches
are better than others in certain circumstances, and to prove your ability to follow a
specification and implement a correct, functioning, and user-friendly program.

The Developer exam consists of two pieces: a project assignment and a follow-up
essay exam. Candidates have an unlimited amount of time to complete the project,
but once the project is submitted, the candidate then must go to a testing center and
complete a short follow-up essay exam, designed primarily to validate and verify that
it was you who designed and built the project.

Introduction xxvii

The Web Component Developer Exam (CX-310-083)
Sun Certified Web Component Developer for Java EE Platform (SCWCD)
The web developer exam is for those who are using Java servlet and JSP (Java Server
Pages) technologies to build Web applications. It's based on the Servlet and JSP
specifications defined in the Java Enterprise Edition (Java EE). This exam requires
that the candidate is a Sun Certified Java Programmer.

The Business Component Developer Exam (CX-310-091)
Sun Certified Business Component Developer for Java EE Platform (SCBCD)
The business component developer exam is for those candidates who are using Java
EJB technology to build business-tier applications. The exam is based on the EJB
specification defined in the Java Enterprise Edition (Java EE). This exam requires
that the candidate is a Sun Certified Java Programmer.

The Web Services Developer Exam (CX-310-220)
Sun Certified Developer for Web Services for Java EE Platform (SCDJWS)
The web services exam is for those candidates who are building applications using
Java EE and Java Web Services Developer Pack technologies. This exam requires
that the candidate is a Sun Certified Java Programmer.

The Architect Exam (CX-310-052, CX-310-301A, CX-310-062)
Sun Certified Enterprise Architect for J2EE Technology (SCEA)
This certification is for enterprise architects, and thus does not require that the
candidate pass the Programmer exam. The Architect exam is in three pieces: a
knowledge-based multiple-choice exam, an architectural design assignment, and
a follow-up essay exam. You must successfully pass the multiple-choice exam
before registering and receiving the design assignment.

The Mobile Exam (CX-310-110)
Sun Certified Mobile Application Developer for Java ME (SCMAD)
The mobile application developer exam is for candidates creating applications for
cell phones or other Java enabled devices. The exam covers the Java Technology for
Wireless Industry (JTWI) specification, the Wireless Messaging API, and Mobile
Media APIs. This exam requires that the candidate is an SCJP.

xxviii SCJP Sun Certifi ed Programmer for Java 6 Study Guide

Taking the Programmer's Exam
In a perfect world, you would be assessed for your true knowledge of a subject, not
simply how you respond to a series of test questions. But life isn't perfect, and it just
isn't practical to evaluate everyone's knowledge on a one-to-one basis.

For the majority of its certifications, Sun evaluates candidates using a computer-
based testing service operated by Sylvan Prometric. This service is quite popular in
the industry, and it is used for a number of vendor certification programs, including
Novell's CNE and Microsoft's MCSE. Thanks to Sylvan Prometric's large number
of facilities, exams can be administered worldwide, generally in the same town as a
prospective candidate.

For the most part, Sylvan Prometric exams work similarly from vendor to
vendor. However, there is an important fact to know about Sun's exams: they use
the traditional Sylvan Prometric test format, not the newer adaptive format. This
gives the candidate an advantage, since the traditional format allows answers to be
reviewed and revised during the test.

To discourage simple memorization, Sun exams present a potentially different
set of questions to different candidates. In the development of the exam, hundreds
of questions are compiled and refined using beta testers. From this large collection,
questions are pulled together from each objective and assembled into many different
versions of the exam.

Each Sun exam has a specific number of questions (the Programmer's exam
contains 72 questions) and test duration (210 minutes for the Programmer's exam) is
designed to be generous. The time remaining is always displayed in the corner of the
testing screen, along with the number of remaining questions. If time expires during
an exam, the test terminates, and incomplete answers are counted as incorrect.

Many experienced test takers do not go back and change answers
unless they have a good reason to do so. Only change an answer when you feel you may
have misread or misinterpreted the question the fi rst time. Nervousness may make you
second-guess every answer and talk yourself out of a correct one.

Introduction xxix

When you fi nd yourself stumped answering multiple-choice questions,
use your scratch paper to write down the two or three answers you consider the
strongest, then underline the answer you feel is most likely correct. Here is an example of
what your scratch paper might look like when you've gone through the test once:

21. B or C
33. A or C

This is extremely helpful when you mark the question and continue on.
You can then return to the question and immediately pick up your thought process
where you left off. Use this technique to avoid having to re-read and re-think questions.
You will also need to use your scratch paper during complex, text-based scenario
questions to create visual images to better understand the question. This technique is
especially helpful if you are a visual learner.

At the end of the exam, your test is immediately graded, and the results
are displayed on the screen. Scores for each subject area are also provided, but
the system will not indicate which specific questions were missed. A report
is automatically printed at the proctor's desk for your files. The test score is
electronically transmitted back to Sun.

Question Format
Sun's Java exams pose questions in either multiple-choice or drag-and-drop formats.

Multiple Choice Questions
In earlier versions of the exam, when you encountered a multiple-choice question
you were not told how many answers were correct, but with each version of the
exam, the questions have become more difficult, so today each multiple-choice
question tells you how many answers to choose. The Self Test questions at the end
of each chapter are closely matched to the format, wording, and difficulty of the real
exam questions, with two exceptions:

xxx SCJP Sun Certifi ed Programmer for Java 6 Study Guide

■ Whenever we can, our questions will NOT tell you how many correct
answers exist (we will say "Choose all that apply"). We do this to help you
master the material. Some savvy test-takers can eliminate wrong answers
when the number of correct answers is known. It's also possible, if you know
how many answers are correct, to choose the most plausible answers. Our job
is to toughen you up for the real exam!

■ The real exam typically numbers lines of code in a question. Sometimes we do
not number lines of code—mostly so that we have the space to add comments
at key places. On the real exam, when a code listing starts with line 1, it
means that you're looking at an entire source file. If a code listing starts at a
line number greater than 1, that means you're looking at a partial source file.
When looking at a partial source file, assume that the code you can't see is
correct. (For instance, unless explicitly stated, you can assume that a partial
source file will have the correct import and package statements.)

Drag-and-Drop Questions
Although many of the other Sun Java certification exams have been using drag-
and-drop questions for several years, this is the first version of the SCJP exam that
includes drag-and-drop questions. As we discussed earlier, the exam questions you
receive are randomized, but you should expect that about 20–25% of the questions
you encounter will be drag-and-drop style.

Drag-and-drop questions typically consist of three components:

■ A scenario A short description of the task you are meant to complete.

■ A partially completed task A code listing, a table, or a directory tree. The
partially completed task will contain empty slots, which are indicated with
(typically yellow) boxes. These boxes need to be filled to complete the task.

■ A set of possible "fragment" answers You will click on fragments
(typically blue boxes) and drag-and-drop them into the correct empty slots.
The question's scenario will tell you whether you can reuse fragments.

Most drag-and-drop questions will have anywhere from 4 to 10 empty slots to fill,
and typically a few more fragments than are needed (usually some fragments are left
unused). Drag-and-drop questions are often the most complex on the exam, and the
number of possible answer combinations makes them almost impossible to guess.

Introduction xxxi

In regards to drag-and-drop questions, there is a huge problem with the
testing software at many of the Prometric centers world-wide. In general, the testing
software allows you to review questions you've already answered as often as you'd like.

In the case of drag-and-drop questions, however, many candidates have
reported that if they choose to review a question, the software will erase their previous
answer! BE CAREFUL! Until this problem is corrected, we recommend that you keep a
list of which questions are drag and drop, so that you won't review one unintentionally.
Another good idea is to write down your drag-and-drop answers so that if one gets
erased it will be less painful to recreate the answer.

This brings us to another issue that some candidates have reported. The
testing center is supposed to provide you with suffi cient writing implements so that you
can work problems out "on paper." In some cases, the centers have provided inadequate
markers and dry-erase boards which are too small and cumbersome to use effectively. We
recommend that you call ahead and verify that you will be supplied with actual pencils
and at least several sheets of blank paper.

Tips on Taking the Exam
There are 72 questions on the 310-065 (Java 6) exam. You will need to get at least
47 of them correct to pass—around 65%. You are given over three hours to complete
the exam. This information is subject to change. Always check with Sun before
taking the exam, at www.suned.sun.com.

You are allowed to answer questions in any order, and you can go back and check
your answers after you've gone through the test. There are no penalties for wrong
answers, so it's better to at least attempt an answer than to not give one at all.

A good strategy for taking the exam is to go through once and answer all the
questions that come to you quickly. You can then go back and do the others.
Answering one question might jog your memory for how to answer a previous one.

Be very careful on the code examples. Check for syntax errors first: count curly
braces, semicolons, and parenthesis and then make sure there are as many left ones
as right ones. Look for capitalization errors and other such syntax problems before
trying to figure out what the code does.

Many of the questions on the exam will hinge on subtleties of syntax. You will
need to have a thorough knowledge of the Java language in order to succeed.

xxxii SCJP Sun Certifi ed Programmer for Java 6 Study Guide

Tips on Studying for the Exam
First and foremost, give yourself plenty of time to study. Java is a complex
programming language, and you can't expect to cram what you need to know into
a single study session. It is a field best learned over time, by studying a subject and
then applying your knowledge. Build yourself a study schedule and stick to it, but
be reasonable about the pressure you put on yourself, especially if you're studying in
addition to your regular duties at work.

One easy technique to use in studying for certification exams is the 15-minutes-
per-day effort. Simply study for a minimum of 15 minutes every day. It is a small but
significant commitment. If you have a day where you just can't focus, then give up
at 15 minutes. If you have a day where it flows completely for you, study longer. As
long as you have more of the "flow days," your chances of succeeding are excellent.

We strongly recommend you use flash cards when preparing for the Programmer's
exam. A flash card is simply a 3 x 5 or 4 x 6 index card with a question on the
front, and the answer on the back. You construct these cards yourself as you go
through a chapter, capturing any topic you think might need more memorization
or practice time. You can drill yourself with them by reading the question, thinking
through the answer, and then turning the card over to see if you're correct. Or you
can get another person to help you by holding up the card with the question facing
you, and then verifying your answer. Most of our students have found these to be
tremendously helpful, especially because they're so portable that while you're in
study mode, you can take them everywhere. Best not to use them while driving,
though, except at red lights. We've taken ours everywhere—the doctor's office,
restaurants, theaters, you name it.

Certification study groups are another excellent resource, and you won't find a
larger or more willing community than on the JavaRanch.com Big Moose Saloon
certification forums. If you have a question from this book, or any other mock exam
question you may have stumbled upon, posting a question in a certification forum
will get you an answer, in nearly all cases, within a day—usually, within a few hours.
You'll find us (the authors) there several times a week, helping those just starting
out on their exam preparation journey. (You won't actually think of it as anything as
pleasant-sounding as a "journey" by the time you're ready to take the exam.)

Finally, we recommend that you write a lot of little Java programs! During the
course of writing this book we wrote hundreds of small programs, and if you listen to
what the most successful candidates say (you know, those guys who got 98%), they
almost always report that they wrote a lot of code.

Introduction xxxiii

Scheduling Your Exam
The Sun exams are purchased directly from Sun, but are scheduled through Sylvan
Prometric. For locations outside the United States, your local number can be found
on Sylvan's Web site at http://www.2test.com. Sylvan representatives can schedule
your exam, but they don't have information about the certification programs.
Questions about certifications should be directed to Sun's Worldwide Training
department. These representatives are familiar enough with the exams to find
them by name, but it's best if you have the exam number handy when you call. You
wouldn't want to be scheduled and charged for the wrong exam.

Exams can be scheduled up to a year in advance, although it's really not necessary.
Generally, scheduling a week or two ahead is sufficient to reserve the day and time
you prefer. When scheduling, operators will search for testing centers in your area.
For convenience, they can also tell which testing centers you've used before.

When registering for the exam, you will be asked for your ID number. This
number is used to track your exam results back to Sun. It's important that you use
the same ID number each time you register, so that Sun can follow your progress.
Address information provided when you first register is also used by Sun to ship
certificates and other related material. In the United States, your Social Security
Number is commonly used as your ID number. However, Sylvan can assign you a
unique ID number if you prefer not to use your Social Security Number.

Arriving at the Exam
As with any test, you'll be tempted to cram the night before. Resist that temptation.
You should know the material by this point, and if you're groggy in the morning, you
won't remember what you studied anyway. Get a good night's sleep.

Arrive early for your exam; it gives you time to relax and review key facts. Take
the opportunity to review your notes. If you get burned out on studying, you can
usually start your exam a few minutes early. We don't recommend arriving late. Your
test could be cancelled, or you might not have enough time to complete the exam.

When you arrive at the testing center, you'll need to sign in with the exam
administrator. In order to sign in, you need to provide two forms of identification.
Acceptable forms include government-issued IDs (for example, passport or driver's
license), credit cards, and company ID badges. One form of ID must include a
photograph. They just want to be sure that you don't send your brilliant Java guru
next-door-neighbor-who-you've-paid to take the exam for you.

Aside from a brain full of facts, you don't need to bring anything else to the
exam room. In fact, your brain is about all you're allowed to take into the exam!

xxxiv SCJP Sun Certifi ed Programmer for Java 6 Study Guide

All the tests are closed-book, meaning you don't get to bring any reference materials
with you. You're also not allowed to take any notes out of the exam room. The test
administrator will provide you with paper and a pencil. Some testing centers may
provide a small marker board instead (we recommend that you don't settle for a
whiteboard). We do recommend that you bring a water bottle. Three hours is a long
time to keep your brain active, and it functions much better when well hydrated.

Leave your pager and telephone in the car, or turn them off. They only add stress
to the situation, since they are not allowed in the exam room, and can sometimes
still be heard if they ring outside of the room. Purses, books, and other materials
must be left with the administrator before entering the exam.

Once in the testing room, the exam administrator logs onto your exam, and you
have to verify that your ID number and the exam number are correct. If this is the
first time you've taken a Sun test, you can select a brief tutorial of the exam software.
Before the test begins, you will be provided with facts about the exam, including the
duration, the number of questions, and the score required for passing. The odds are
good that you will be asked to fill out a brief survey before the exam actually begins.
This survey will ask you about your level of Java experience. The time you spend on
the survey is NOT deducted from your actual test time—nor do you get more time
if you fill out the survey quickly. Also remember that the questions you get on the
exam will NOT change depending on how you answer the survey questions. Once
you're done with the survey, the real clock starts ticking and the fun begins.

The testing software is Windows-based, but you won't have access to the main
desktop or any of the accessories. The exam is presented in full screen, with a single
question per screen. Navigation buttons allow you to move forward and backward
between questions. In the upper-right corner of the screen, counters show the
number of questions and time remaining. Most important, there is a Mark check
box in the upper-left corner of the screen—this will prove to be a critical tool, as
explained in the next section.

Test-Taking Techniques
Without a plan of attack, candidates can become overwhelmed by the exam or
become side-tracked and run out of time. For the most part, if you are comfortable
with the material, the allotted time is more than enough to complete the exam. The
trick is to keep the time from slipping away during any one particular problem.

Your obvious goal is to answer the questions correctly and quickly, but other
factors can distract you. Here are some tips for taking the exam more efficiently.

Introduction xxxv

Size Up the Challenge
First, take a quick pass through all the questions in the exam. "Cherry-pick" the easy
questions, answering them on the spot. Briefly read each question, noticing the type
of question and the subject. As a guideline, try to spend less than 25 percent of your
testing time in this pass.

This step lets you assess the scope and complexity of the exam, and it helps you
determine how to pace your time. It also gives you an idea of where to find potential
answers to some of the questions. Sometimes the wording of one question might
lend clues or jog your thoughts for another question.

If you're not entirely confident in your answer to a question, answer it anyway,
but check the Mark box to flag it for later review. In the event that you run out of
time, at least you've provided a "first guess" answer, rather than leaving it blank.

Second, go back through the entire test, using the insight you gained from the
first go-through. For example, if the entire test looks difficult, you'll know better
than to spend more than a minute or two on each question. Create a pacing with
small milestones—for example, "I need to answer 10 questions every 25 minutes."

At this stage, it's probably a good idea to skip past the time-consuming questions,
marking them for the next pass. Try to finish this phase before you're 50–60 percent
through the testing time.

Third, go back through all the questions you marked for review, using the Review
Marked button in the question review screen. This step includes taking a second
look at all the questions you were unsure of in previous passes, as well as tackling the
time-consuming ones you deferred until now. Chisel away at this group of questions
until you've answered them all.

If you're more comfortable with a previously marked question, unmark the
Review Marked button now. Otherwise, leave it marked. Work your way through
the time-consuming questions now, especially those requiring manual calculations.
Unmark them when you're satisfied with the answer.

By the end of this step, you've answered every question in the test, despite having
reservations about some of your answers. If you run out of time in the next step, at
least you won't lose points for lack of an answer. You're in great shape if you still
have 10–20 percent of your time remaining.

Review Your Answers
Now you're cruising! You've answered all the questions, and you're ready to do
a quality check. Take yet another pass (yes, one more) through the entire test

xxxvi SCJP Sun Certifi ed Programmer for Java 6 Study Guide

(although you'll probably want to skip a review of the drag-and-drop questions!),
briefly re-reading each question and your answer.

Carefully look over the questions again to check for "trick" questions. Be
particularly wary of those that include a choice of "Does not compile." Be alert for
last-minute clues. You're pretty familiar with nearly every question at this point, and
you may find a few clues that you missed before.

The Grand Finale
When you're confident with all your answers, finish the exam by submitting it for
grading. After what will seem like the longest 10 seconds of your life, the testing
software will respond with your score. This is usually displayed as a bar graph,
showing the minimum passing score, your score, and a PASS/FAIL indicator.

If you're curious, you can review the statistics of your score at this time. Answers
to specific questions are not presented; rather, questions are lumped into categories,
and results are tallied for each category. This detail is also on a report that has been
automatically printed at the exam administrator's desk.

As you leave, you'll need to leave your scratch paper behind or return it to the
administrator. (Some testing centers track the number of sheets you've been given,
so be sure to return them all.) In exchange, you'll receive a copy of the test report.

This report will be embossed with the testing center's seal, and you should keep
it in a safe place. Normally, the results are automatically transmitted to Sun, but
occasionally you might need the paper report to prove that you passed the exam.

In a few weeks, Sun will send you a package in the mail containing a nice paper
certificate, a lapel pin, and a letter. You may also be sent instructions for how to
obtain artwork for a logo that you can use on personal business cards.

Re-Testing
If you don't pass the exam, don't be discouraged. Try to have a good attitude about
the experience, and get ready to try again. Consider yourself a little more educated.
You know the format of the test a little better, and the report shows which areas you
need to strengthen.

If you bounce back quickly, you'll probably remember several of the questions you
might have missed. This will help you focus your study efforts in the right area.

Ultimately, remember that Sun certifications are valuable because they're hard to
get. After all, if anyone could get one, what value would it have? In the end, it takes
a good attitude and a lot of studying, but you can do it!

1
Declarations and
Access Control

CERTIFICATION OBJECTIVES

l Declare Classes & Interfaces

 l Develop Interfaces &
 Abstract Classes

 l Use Primitives, Arrays, Enums, &
 Legal Identifiers

 l Use Static Methods, JavaBeans
 Naming, & Var-Args
✓ Two-Minute Drill

 Q&A Self Test

2 Chapter 1: Declarations and Access Control

W e assume that because you're planning on becoming certified, you already know
the basics of Java. If you're completely new to the language, this chapter—and the
rest of the book—will be confusing; so be sure you know at least the basics of the

language before diving into this book. That said, we're starting with a brief, high-level refresher to
put you back in the Java mood, in case you've been away for awhile.

Java Refresher
A Java program is mostly a collection of objects talking to other objects by invoking
each other's methods. Every object is of a certain type, and that type is defined by a
class or an interface. Most Java programs use a collection of objects of many different
types.

■ Class A template that describes the kinds of state and behavior that objects
of its type support.

■ Object At runtime, when the Java Virtual Machine (JVM) encounters the
new keyword, it will use the appropriate class to make an object which is an
instance of that class. That object will have its own state, and access to all of
the behaviors defined by its class.

■ State (instance variables) Each object (instance of a class) will have its
own unique set of instance variables as defined in the class. Collectively, the
values assigned to an object's instance variables make up the object's state.

■ Behavior (methods) When a programmer creates a class, she creates meth-
ods for that class. Methods are where the class' logic is stored. Methods are
where the real work gets done. They are where algorithms get executed, and
data gets manipulated.

Identifiers and Keywords
All the Java components we just talked about—classes, variables, and methods—
need names. In Java these names are called identifiers, and, as you might expect,
there are rules for what constitutes a legal Java identifier. Beyond what's legal,

Java Refresher 3

though, Java programmers (and Sun) have created conventions for naming methods,
variables, and classes.

Like all programming languages, Java has a set of built-in keywords. These
keywords must not be used as identifiers. Later in this chapter we'll review the details
of these naming rules, conventions, and the Java keywords.

Inheritance
Central to Java and other object-oriented (OO) languages is the concept of
inheritance, which allows code defined in one class to be reused in other classes. In
Java, you can define a general (more abstract) superclass, and then extend it with
more specific subclasses. The superclass knows nothing of the classes that inherit from
it, but all of the subclasses that inherit from the superclass must explicitly declare the
inheritance relationship. A subclass that inherits from a superclass is automatically
given accessible instance variables and methods defined by the superclass, but is also
free to override superclass methods to define more specific behavior.

For example, a Car superclass class could define general methods common to all
automobiles, but a Ferrari subclass could override the accelerate() method.

Interfaces
A powerful companion to inheritance is the use of interfaces. Interfaces are like a
100-percent abstract superclass that defines the methods a subclass must support, but
not how they must be supported. In other words, an Animal interface might declare
that all Animal implementation classes have an eat() method, but the Animal
interface doesn't supply any logic for the eat() method. That means it's up to the
classes that implement the Animal interface to define the actual code for how that
particular Animal type behaves when its eat() method is invoked.

Finding Other Classes
As we'll see later in the book, it's a good idea to make your classes cohesive. That
means that every class should have a focused set of responsibilities. For instance,
if you were creating a zoo simulation program, you'd want to represent aardvarks
with one class, and zoo visitors with a different class. In addition, you might have
a Zookeeper class, and a Popcorn vendor class. The point is that you don't want a
class that has both Aardvark and Popcorn behaviors (more on that in Chapter 2).

Even a simple Java program uses objects from many different classes: some that
you created, and some built by others (such as Sun's Java API classes). Java organizes
classes into packages, and uses import statements to give programmers a consistent

way to manage naming of, and access to, classes they need. The exam covers a lot of
concepts related to packages and class access; we'll explore the details in this—and
later—chapters.

CERTIFICATION OBJECTIVE

Identifiers & JavaBeans (Objectives 1.3 and 1.4)
1.3 Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for variable names.

1.4 Develop code that declares both static and non-static methods, and—if appropriate—
use method names that adhere to the JavaBeans naming standards. Also develop code that
declares and uses a variable-length argument list.

Remember that when we list one or more Certification Objectives in the book,
as we just did, it means that the following section covers at least some part of that
objective. Some objectives will be covered in several different chapters, so you'll see
the same objective in more than one place in the book. For example, this section
covers declarations, identifiers, and JavaBeans naming, but using the things you
declare is covered primarily in later chapters.

So, we'll start with Java identifiers. The three aspects of Java identifiers that we
cover here are

■ Legal Identifiers The rules the compiler uses to determine whether a
name is legal.

■ Sun's Java Code Conventions Sun's recommendations for naming classes,
variables, and methods. We typically adhere to these standards throughout
the book, except when we're trying to show you how a tricky exam question
might be coded. You won't be asked questions about the Java Code Conven-
tions, but we strongly recommend that programmers use them.

■ JavaBeans Naming Standards The naming requirements of the JavaBeans
specification. You don't need to study the JavaBeans spec for the exam,
but you do need to know a few basic JavaBeans naming rules we cover in
this chapter.

4 Chapter 1: Declarations and Access Control

Legal Identifi ers
Technically, legal identifiers must be composed of only Unicode characters,
numbers, currency symbols, and connecting characters (like underscores). The
exam doesn't dive into the details of which ranges of the Unicode character set are
considered to qualify as letters and digits. So, for example, you won't need to know
that Tibetan digits range from \u0420 to \u0f29. Here are the rules you do need
to know:

■ Identifiers must start with a letter, a currency character ($), or a connecting
character such as the underscore (_). Identifiers cannot start with a number!

■ After the first character, identifiers can contain any combination of letters,
currency characters, connecting characters, or numbers.

■ In practice, there is no limit to the number of characters an identifier can
contain.

■ You can't use a Java keyword as an identifier. Table 1-1 lists all of the Java
keywords including one new one for 5.0, enum.

■ Identifiers in Java are case-sensitive; foo and FOO are two different identifiers.

Examples of legal and illegal identifiers follow, first some legal identifiers:

int _a;
int $c;
int ______2_w;
int _$;
int this_is_a_very_detailed_name_for_an_identifier;

The following are illegal (it's your job to recognize why):

int :b;
int -d;
int e#;
int .f;
int 7g;

 Legal Identifi ers (Exam Objectives 1.3 and 1.4) 5

 abstract boolean break byte case catch

 char class const continue default do

 double else extends fi nal fi nally fl oat

 for goto if implements import instanceof

 int interface long native new package

 private protected public return short static

 strictfp super switch synchronized this throw

 throws transient try void volatile while

assert enum

Sun's Java Code Conventions
Sun estimates that over the lifetime of a standard piece of code, 20 percent of the
effort will go into the original creation and testing of the code, and 80 percent
of the effort will go into the subsequent maintenance and enhancement of the
code. Agreeing on, and coding to, a set of code standards helps to reduce the effort
involved in testing, maintaining, and enhancing any piece of code. Sun has created
a set of coding standards for Java, and published those standards in a document
cleverly titled "Java Code Conventions," which you can find at java.sun.com. It's
a great document, short and easy to read and we recommend it highly.

That said, you'll find that many of the questions in the exam don't follow the
code conventions, because of the limitations in the test engine that is used to deliver
the exam internationally. One of the great things about the Sun certifications is that
the exams are administered uniformly throughout the world. In order to achieve
that, the code listings that you'll see in the real exam are often quite cramped,
and do not follow Sun's code standards. In order to toughen you up for the exam,
we'll often present code listings that have a similarly cramped look and feel, often
indenting our code only two spaces as opposed to the Sun standard of four.

We'll also jam our curly braces together unnaturally, and sometimes put several
statements on the same line…ouch! For example:

 1. class Wombat implements Runnable {
 2. private int i;
 3. public synchronized void run() {
 4. if (i%5 != 0) { i++; }
 5. for(int x=0; x<5; x++, i++)

6 Chapter 1: Declarations and Access Control

 TABLE 1-1 Complete List of Java Keywords (assert added in 1.4, enum added in 1.5)

 6. { if (x > 1) Thread.yield(); }
 7. System.out.print(i + " ");
 8. }
 9. public static void main(String[] args) {
10. Wombat n = new Wombat();
11. for(int x=100; x>0; --x) { new Thread(n).start(); }
12. } }

Consider yourself forewarned—you'll see lots of code listings, mock questions, and
real exam questions that are this sick and twisted. Nobody wants you to write your
code like this. Not your employer, not your coworkers, not us, not Sun, and not the
exam creation team! Code like this was created only so that complex concepts could
be tested within a universal testing tool. The one standard that is followed as much
as possible in the real exam are the naming standards. Here are the naming standards
that Sun recommends, and that we use in the exam and in most of the book:

■ Classes and interfaces The first letter should be capitalized, and if several
words are linked together to form the name, the first letter of the inner words
should be uppercase (a format that's sometimes called "camelCase"). For
classes, the names should typically be nouns. For example:

 Dog
 Account
 PrintWriter

 For interfaces, the names should typically be adjectives like

 Runnable
 Serializable

■ Methods The first letter should be lowercase, and then normal camelCase
rules should be used. In addition, the names should typically be verb-noun
pairs. For example:

 getBalance
 doCalculation
 setCustomerName

Sun’s Java Code Conventions (Exam Objectives 1.3 and 1.4) 7

■ Variables Like methods, the camelCase format should be used, starting with
a lowercase letter. Sun recommends short, meaningful names, which sounds
good to us. Some examples:

 buttonWidth
 accountBalance
 myString

■ Constants Java constants are created by marking variables static and
final. They should be named using uppercase letters with underscore
characters as separators:

 MIN_HEIGHT

JavaBeans Standards
The JavaBeans spec is intended to help Java developers create Java components
that can be easily used by other Java developers in a visual Integrated Development
Environment (IDE) tool (like Eclipse or NetBeans). As a Java programmer, you
want to be able to use components from the Java API, but it would be great if you
could also buy the Java component you want from "Beans 'R Us," that software
company down the street. And once you've found the components, you'd like to be
able to access them through a development tool in such a way that you don't have
to write all your code from scratch. By using naming rules, the JavaBeans spec helps
guarantee that tools can recognize and use components built by different developers.
The JavaBeans API is quite involved, but you'll need to study only a few basics for
the exam.

First, JavaBeans are Java classes that have properties. For our purposes, think of
properties as private instance variables. Since they're private, the only way
they can be accessed from outside of their class is through methods in the class. The
methods that change a property's value are called setter methods, and the methods
that retrieve a property's value are called getter methods. The JavaBean naming rules
that you'll need to know for the exam are the following:

JavaBean Property Naming Rules

■ If the property is not a boolean, the getter method's prefix must be get. For
example, getSize()is a valid JavaBeans getter name for a property named
"size." Keep in mind that you do not need to have a variable named size

8 Chapter 1: Declarations and Access Control

(although some IDEs expect it). The name of the property is inferred from the
getters and setters, not through any variables in your class. What you return
from getSize() is up to you.

■ If the property is a boolean, the getter method's prefix is either get or is. For
example, getStopped() or isStopped() are both valid JavaBeans names for
a boolean property.

■ The setter method's prefix must be set. For example, setSize() is the valid
JavaBean name for a property named size.

■ To complete the name of a getter or setter method, change the first letter of
the property name to uppercase, and then append it to the appropriate prefix
(get, is, or set).

■ Setter method signatures must be marked public, with a void return type
and an argument that represents the property type.

■ Getter method signatures must be marked public, take no arguments, and
have a return type that matches the argument type of the setter method for
that property.

Second, the JavaBean spec supports events, which allow components to notify
each other when something happens. The event model is often used in GUI
applications when an event like a mouse click is multicast to many other objects
that may have things to do when the mouse click occurs. The objects that receive
the information that an event occurred are called listeners. For the exam, you need to
know that the methods that are used to add or remove listeners from an event must
also follow JavaBean naming standards:

JavaBean Listener Naming Rules

■ Listener method names used to "register" a listener with an event source
must use the prefix add, followed by the listener type. For example,
addActionListener() is a valid name for a method that an event source
will have to allow others to register for Action events.

■ Listener method names used to remove ("unregister") a listener must use
the prefix remove, followed by the listener type (using the same rules as the
registration add method).

■ The type of listener to be added or removed must be passed as the argument
to the method.

■ Listener method names must end with the word "Listener".

JavaBeans Standards (Exam Objectives 1.3 and 1.4) 9

Examples of valid JavaBean method signatures are

public void setMyValue(int v)
public int getMyValue()
public boolean isMyStatus()
public void addMyListener(MyListener m)
public void removeMyListener(MyListener m)

Examples of invalid JavaBean method signatures are

void setCustomerName(String s) // must be public
public void modifyMyValue(int v) // can't use 'modify'
public void addXListener(MyListener m) // listener type mismatch

CERTIFICATION OBJECTIVE

Declare Classes (Exam Objective 1.1)
1.1 Develop code that declares classes (including abstract and all forms of nested classes),
interfaces, and enums, and includes the appropriate use of package and import statements
(including static imports).

10 Chapter 1: Declarations and Access Control

The objective says you have to know legal identifi ers only for variable
names, but the rules are the same for ALL Java components. So remember that a legal
identifi er for a variable is also a legal identifi er for a method or a class. However, you
need to distinguish between legal identifi ers and naming conventions, such as the
JavaBeans standards, that indicate how a Java component should be named. In other
words, you must be able to recognize that an identifi er is legal even if it doesn’t conform
to naming standards. If the exam question is asking about naming conventions—not just
whether an identifi er will compile—JavaBeans will be mentioned explicitly.

When you write code in Java, you're writing classes or interfaces. Within those
classes, as you know, are variables and methods (plus a few other things). How you
declare your classes, methods, and variables dramatically affects your code's behavior.
For example, a public method can be accessed from code running anywhere in your
application. Mark that method private, though, and it vanishes from everyone's
radar (except the class in which it was declared). For this objective, we'll study
the ways in which you can declare and modify (or not) a class. You'll find that we
cover modifiers in an extreme level of detail, and though we know you're already
familiar with them, we're starting from the very beginning. Most Java programmers
think they know how all the modifiers work, but on closer study often find out that
they don't (at least not to the degree needed for the exam). Subtle distinctions
are everywhere, so you need to be absolutely certain you're completely solid on
everything in this section's objectives before taking the exam.

Source File Declaration Rules
Before we dig into class declarations, let's do a quick review of the rules associated
with declaring classes, import statements, and package statements in a source file:

■ There can be only one public class per source code file.

■ Comments can appear at the beginning or end of any line in the source code
file; they are independent of any of the positioning rules discussed here.

■ If there is a public class in a file, the name of the file must match the name
of the public class. For example, a class declared as public class Dog { }
must be in a source code file named Dog.java.

■ If the class is part of a package, the package statement must be the first line
in the source code file, before any import statements that may be present.

■ If there are import statements, they must go between the package statement
(if there is one) and the class declaration. If there isn't a package statement,
then the import statement(s) must be the first line(s) in the source code file.
If there are no package or import statements, the class declaration must be
the first line in the source code file.

■ import and package statements apply to all classes within a source code file.
In other words, there's no way to declare multiple classes in a file and have
them in different packages, or use different imports.

■ A file can have more than one nonpublic class.

Source File Declaration Rules (Exam Objective 1.1) 11

■ Files with no public classes can have a name that does not match any of the
classes in the file.

In Chapter 10 we'll go into a lot more detail about the rules involved with
declaring and using imports, packages, and a feature new to Java 5, static imports.

Class Declarations and Modifi ers
Although nested (often called inner) classes are on the exam, we'll save nested class
declarations for Chapter 8. You're going to love that chapter. No, really. Seriously.
The following code is a bare-bones class declaration:

class MyClass { }

This code compiles just fine, but you can also add modifiers before the class
declaration. Modifiers fall into two categories:

■ Access modifiers: public, protected, private.

■ Non-access modifiers (including strictfp, final, and abstract).

We'll look at access modifiers first, so you'll learn how to restrict or allow access
to a class you create. Access control in Java is a little tricky because there are four
access controls (levels of access) but only three access modifiers. The fourth access
control level (called default or package access) is what you get when you don't use
any of the three access modifiers. In other words, every class, method, and instance
variable you declare has an access control, whether you explicitly type one or not.
Although all four access controls (which means all three modifiers) work for most
method and variable declarations, a class can be declared with only public or
default access; the other two access control levels don't make sense for a class, as
you'll see.

Java is a package-centric language; the developers assumed that for good
organization and name scoping, you would put all your classes into packages.
They were right, and you should. Imagine this nightmare: Three different
programmers, in the same company but working on different parts of a
project, write a class named Utilities. If those three Utilities classes have

12 Chapter 1: Declarations and Access Control

not been declared in any explicit package, and are in the classpath, you won't
have any way to tell the compiler or JVM which of the three you're trying
to reference. Sun recommends that developers use reverse domain names,
appended with division and/or project names. For example, if your domain
name is geeksanonymous.com, and you're working on the client code for
the TwelvePointOSteps program, you would name your package something
like com.geeksanonymous.steps.client. That would essentially change the
name of your class to com.geeksanonymous.steps.client.Utilities. You
might still have name collisions within your company, if you don't come up
with your own naming schemes, but you're guaranteed not to collide with
classes developed outside your company (assuming they follow Sun's naming
convention, and if they don't, well, Really Bad Things could happen).

Class Access
What does it mean to access a class? When we say code from one class (class A) has
access to another class (class B), it means class A can do one of three things:

■ Create an instance of class B.

■ Extend class B (in other words, become a subclass of class B).

■ Access certain methods and variables within class B, depending on the access
control of those methods and variables.

In effect, access means visibility. If class A can't see class B, the access level of the
methods and variables within class B won't matter; class A won't have any way to
access those methods and variables.

Default Access A class with default access has no modifier preceding it in the
declaration! It's the access control you get when you don't type a modifier in the
class declaration. Think of default access as package-level access, because a class with
default access can be seen only by classes within the same package. For example, if
class A and class B are in different packages, and class A has default access, class B
won't be able to create an instance of class A, or even declare a variable or return
type of class A. In fact, class B has to pretend that class A doesn't even exist, or the
compiler will complain. Look at the following source file:

Class Declarations and Modifi ers (Exam Objective 1.1) 13

package cert;
class Beverage { }

Now look at the second source file:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage { }

As you can see, the superclass (Beverage) is in a different package from the
subclass (Tea). The import statement at the top of the Tea file is trying (fingers
crossed) to import the Beverage class. The Beverage file compiles fine, but when we
try to compile the Tea file we get something like:

Can't access class cert.Beverage. Class or interface must be
public, in same package, or an accessible member class.

import cert.Beverage;

Tea won't compile because its superclass, Beverage, has default access and is in
a different package. You can do one of two things to make this work. You could put
both classes in the same package, or you could declare Beverage as public, as the next
section describes.

When you see a question with complex logic, be sure to look at the access
modifiers first. That way, if you spot an access violation (for example, a class in
package A trying to access a default class in package B), you'll know the code won't
compile so you don't have to bother working through the logic. It's not as if you
don't have anything better to do with your time while taking the exam. Just choose
the "Compilation fails" answer and zoom on to the next question.

Public Access A class declaration with the public keyword gives all classes
from all packages access to the public class. In other words, all classes in the Java
Universe (JU) have access to a public class. Don't forget, though, that if a public
class you're trying to use is in a different package from the class you're writing, you'll
still need to import the public class.

In the example from the preceding section, we may not want to place the subclass
in the same package as the superclass. To make the code work, we need to add the
keyword public in front of the superclass (Beverage) declaration, as follows:

14 Chapter 1: Declarations and Access Control

Class Declarations and Modifi ers (Exam Objective 1.1) 15

package cert;
public class Beverage { }

This changes the Beverage class so it will be visible to all classes in all packages.
The class can now be instantiated from all other classes, and any class is now free to
subclass (extend from) it—unless, that is, the class is also marked with the nonaccess
modifier final. Read on.

Other (Nonaccess) Class Modifiers
You can modify a class declaration using the keyword final, abstract, or
strictfp. These modifiers are in addition to whatever access control is on the class,
so you could, for example, declare a class as both public and final. But you can't
always mix nonaccess modifiers. You're free to use strictfp in combination with
final, for example, but you must never, ever, ever mark a class as both final and
abstract. You'll see why in the next two sections.

You won't need to know how strictfp works, so we're focusing only on
modifying a class as final or abstract. For the exam, you need to know only that
strictfp is a keyword and can be used to modify a class or a method, but never a
variable. Marking a class as strictfp means that any method code in the class will
conform to the IEEE 754 standard rules for floating points. Without that modifier,
floating points used in the methods might behave in a platform-dependent way. If
you don't declare a class as strictfp, you can still get strictfp behavior on a
method-by-method basis, by declaring a method as strictfp. If you don't know the
IEEE 754 standard, now's not the time to learn it. You have, as we say, bigger fish to
fry.

Final Classes When used in a class declaration, the final keyword means
the class can't be subclassed. In other words, no other class can ever extend (inherit
from) a final class, and any attempts to do so will give you a compiler error.

So why would you ever mark a class final? After all, doesn't that violate the
whole object-oriented (OO) notion of inheritance? You should make a final class
only if you need an absolute guarantee that none of the methods in that class will
ever be overridden. If you're deeply dependent on the implementations of certain
methods, then using final gives you the security that nobody can change the
implementation out from under you.

You'll notice many classes in the Java core libraries are final. For example, the
String class cannot be subclassed. Imagine the havoc if you couldn't guarantee how
a String object would work on any given system your application is running on! If

programmers were free to extend the String class (and thus substitute their new
String subclass instances where java.lang.String instances are expected),
civilization—as we know it—could collapse. So use final for safety, but only when
you're certain that your final class has indeed said all that ever needs to be said
in its methods. Marking a class final means, in essence, your class can't ever be
improved upon, or even specialized, by another programmer.

A benefit of having nonfinal classes is this scenario: Imagine you find a problem
with a method in a class you're using, but you don't have the source code. So you
can't modify the source to improve the method, but you can extend the class and
override the method in your new subclass, and substitute the subclass everywhere
the original superclass is expected. If the class is final, though, then you're stuck.

Let's modify our Beverage example by placing the keyword final in the
declaration:

package cert;
public final class Beverage {
 public void importantMethod() { }
}

Now, if we try to compile the Tea subclass:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage { }

We get an error something like

Can't subclass final classes: class
cert.Beverage class Tea extends Beverage{
1 error

In practice, you'll almost never make a final class. A final class obliterates a key
benefit of OO—extensibility. So unless you have a serious safety or security issue,
assume that some day another programmer will need to extend your class. If you
don't, the next programmer forced to maintain your code will hunt you down and
<insert really scary thing>.

Abstract Classes An abstract class can never be instantiated. Its sole
purpose, mission in life, raison d'être, is to be extended (subclassed). (Note, how-
ever, that you can compile and execute an abstract class, as long as you don't try

16 Chapter 1: Declarations and Access Control

Class Declarations and Modifi ers (Exam Objective 1.1) 17

to make an instance of it.) Why make a class if you can't make objects out of it?
Because the class might be just too, well, abstract. For example, imagine you have
a class Car that has generic methods common to all vehicles. But you don't want
anyone actually creating a generic, abstract Car object. How would they initialize its
state? What color would it be? How many seats? Horsepower? All-wheel drive? Or
more importantly, how would it behave? In other words, how would the methods be
implemented?

No, you need programmers to instantiate actual car types such as BMWBoxster
and SubaruOutback. We'll bet the Boxster owner will tell you his car does things
the Subaru can do "only in its dreams." Take a look at the following abstract class:

abstract class Car {
 private double price;
 private String model;
 private String year;
 public abstract void goFast();
 public abstract void goUpHill();
 public abstract void impressNeighbors();
 // Additional, important, and serious code goes here
}

The preceding code will compile fine. However, if you try to instantiate a Car in
another body of code, you'll get a compiler error something like this:

AnotherClass.java:7: class Car is an abstract
class. It can't be instantiated.
 Car x = new Car();
1 error

Notice that the methods marked abstract end in a semicolon rather than
curly braces.

Look for questions with a method declaration that ends with a semicolon, rather
than curly braces. If the method is in a class—as opposed to an interface—then both
the method and the class must be marked abstract. You might get a question that
asks how you could fix a code sample that includes a method ending in a semicolon,
but without an abstract modifier on the class or method. In that case, you could
either mark the method and class abstract, or change the semicolon to code (like a
curly brace pair). Remember, if you change a method from abstract to nonabstract,
don't forget to change the semicolon at the end of the method declaration into a
curly brace pair!

We'll look at abstract methods in more detail later in this objective, but always
remember that if even a single method is abstract, the whole class must be
declared abstract. One abstract method spoils the whole bunch. You can, however,
put nonabstract methods in an abstract class. For example, you might have
methods with implementations that shouldn't change from Car type to Car type,
such as getColor() or setPrice(). By putting nonabstract methods in an abstract
class, you give all concrete subclasses (concrete just means not abstract) inherited
method implementations. The good news there is that concrete subclasses get to
inherit functionality, and need to implement only the methods that define subclass-
specific behavior.

(By the way, if you think we misused raison d'être earlier, don't send an e-mail.
We'd like to see you work it into a programmer certification book.)

Coding with abstract class types (including interfaces, discussed later in this
chapter) lets you take advantage of polymorphism, and gives you the greatest degree
of flexibility and extensibility. You'll learn more about polymorphism in Chapter 2.

You can't mark a class as both abstract and final. They have nearly opposite
meanings. An abstract class must be subclassed, whereas a final class must not be
subclassed. If you see this combination of abstract and final modifiers, used for a
class or method declaration, the code will not compile.

EXERCISE 1-1

Creating an Abstract Superclass and Concrete Subclass
The following exercise will test your knowledge of public, default, final, and
abstract classes. Create an abstract superclass named Fruit and a concrete
subclass named Apple. The superclass should belong to a package called food and
the subclass can belong to the default package (meaning it isn't put into a package
explicitly). Make the superclass public and give the subclass default access.

1. Create the superclass as follows:

 package food;
 public abstract class Fruit{ /* any code you want */}

2. Create the subclass in a separate file as follows:

 import food.Fruit;
 class Apple extends Fruit{ /* any code you want */}

18 Chapter 1: Declarations and Access Control

3. Create a directory called food off the directory in your class path setting.

4. Attempt to compile the two files. If you want to use the Apple class, make
 sure you place the Fruit.class file in the food subdirectory.

CERTIFICATION OBJECTIVE

Declare Interfaces (Exam Objectives 1.1 and 1.2)
1.1 Develop code that declares classes (including abstract and all forms of nested classes),
interfaces, and enums, and includes the appropriate use of package and import statements
(including static imports).

1.2 Develop code that declares an interface. Develop code that implements or extends one
or more interfaces. Develop code that declares an abstract class. Develop code that extends
an abstract class.

Declaring an Interface
When you create an interface, you're defining a contract for what a class can do,
without saying anything about how the class will do it. An interface is a contract.
You could write an interface Bounceable, for example, that says in effect, "This is
the Bounceable interface. Any class type that implements this interface must agree
to write the code for the bounce() and setBounceFactor() methods."

By defining an interface for Bounceable, any class that wants to be treated as a
Bounceable thing can simply implement the Bounceable interface and provide
code for the interface's two methods.

Interfaces can be implemented by any class, from any inheritance tree. This
lets you take radically different classes and give them a common characteristic.
For example, you might want both a Ball and a Tire to have bounce behavior, but
Ball and Tire don't share any inheritance relationship; Ball extends Toy while Tire
extends only java.lang.Object. But by making both Ball and Tire implement
Bounceable, you're saying that Ball and Tire can be treated as, "Things that
can bounce," which in Java translates to "Things on which you can invoke the

Declaring an Interface (Exam Objectives 1.1 and 1.2) 19

bounce() and setBounceFactor() methods." Figure 1-1 illustrates the relationship
between interfaces and classes.

 FIGURE 1-1

The Relationship
between interfaces
and classes

Think of an interface as a 100-percent abstract class. Like an abstract class,
an interface defines abstract methods that take the following form:

abstract void bounce(); // Ends with a semicolon rather than
 // curly braces

But while an abstract class can define both abstract and non-abstract
methods, an interface can have only abstract methods. Another way interfaces
differ from abstract classes is that interfaces have very little flexibility in how the
methods and variables defined in the interface are declared. These rules are strict:

■ All interface methods are implicitly public and abstract. In other words,
you do not need to actually type the public or abstract modifiers in the
method declaration, but the method is still always public and abstract.

■ All variables defined in an interface must be public, static, and final—
in other words, interfaces can declare only constants, not instance variables.

20 Chapter 1: Declarations and Access Control

interface Bounceable

What you
declare.

What the
compiler
sees.

What the
implementing
class must do.

(All interface
methods must
be implemented,
and must be
marked public.)

void bounce();
void setBounceFactor(int bf);

interface Bounceable

Class Tire implements Bounceable
public void bounce(){...}
public void setBounceFactor(int bf){ }

public abstract void bounce();
public abstract void setBounceFactor(int bf);

■ Interface methods must not be static.

■ Because interface methods are abstract, they cannot be marked final,
strictfp, or native. (More on these modifiers later.)

■ An interface can extend one or more other interfaces.

■ An interface cannot extend anything but another interface.

■ An interface cannot implement another interface or class.

■ An interface must be declared with the keyword interface.

■ Interface types can be used polymorphically (see Chapter 2 for more details).

The following is a legal interface declaration:

public abstract interface Rollable { }

Typing in the abstract modifier is considered redundant; interfaces are
implicitly abstract whether you type abstract or not. You just need to know that
both of these declarations are legal, and functionally identical:

public abstract interface Rollable { }
public interface Rollable { }

The public modifier is required if you want the interface to have public rather
than default access.

We've looked at the interface declaration but now we'll look closely at the
methods within an interface:

public interface Bounceable {
 public abstract void bounce();
 public abstract void setBounceFactor(int bf);
}

Typing in the public and abstract modifiers on the methods is redundant,
though, since all interface methods are implicitly public and abstract. Given
that rule, you can see that the following code is exactly equivalent to the
preceding interface:

public interface Bounceable {
 void bounce(); // No modifiers
 void setBounceFactor(int bf); // No modifiers
}

Declaring an Interface (Exam Objectives 1.1 and 1.2) 21

You must remember that all interface methods are public and abstract regardless
of what you see in the interface definition.

Look for interface methods declared with any combination of public, abstract,
or no modifiers. For example, the following five method declarations, if declared
within their own interfaces, are legal and identical!

void bounce();
public void bounce();
abstract void bounce();
public abstract void bounce();
abstract public void bounce();

The following interface method declarations won't compile:

final void bounce(); // final and abstract can never be used
 // together, and abstract is implied
static void bounce(); // interfaces define instance methods
private void bounce(); // interface methods are always public
protected void bounce(); // (same as above)

Declaring Interface Constants
You're allowed to put constants in an interface. By doing so, you guarantee that any
class implementing the interface will have access to the same constant.

By placing the constants right in the interface, any class that implements the
interface has direct access to the constants, just as if the class had inherited them.

You need to remember one key rule for interface constants. They must always be

public static final

So that sounds simple, right? After all, interface constants are no different from
any other publicly accessible constants, so they obviously must be declared public,
static, and final. But before you breeze past the rest of this discussion, think
about the implications: Because interface constants are defined in an interface,
they don't have to be declared as public, static, or final. They must be
public, static, and final, but you don't have to actually declare them that way. Just
as interface methods are always public and abstract whether you say so in the code
or not, any variable defined in an interface must be—and implicitly is—a public

22 Chapter 1: Declarations and Access Control

constant. See if you can spot the problem with the following code (assume two
separate files):

interface Foo {
 int BAR = 42;
 void go();
}

class Zap implements Foo {
 public void go() {
 BAR = 27;
 }
}

You can't change the value of a constant! Once the value has been assigned, the
value can never be modified. The assignment happens in the interface itself (where
the constant is declared), so the implementing class can access it and use it, but as a
read-only value. So the BAR = 27 assignment will not compile.

Declaring Interface Constants (Exam Objectives 1.1 and 1.2) 23

Look for interface defi nitions that defi ne constants, but without
explicitly using the required modifi ers. For example, the following are all identical:

public int x = 1; // Looks non-static and non-final,
 // but isn't!
int x = 1; // Looks default, non-final,
 // non-static, but isn't!
static int x = 1; // Doesn't show final or public
final int x = 1; // Doesn't show static or public
public static int x = 1; // Doesn't show final
public final int x = 1; // Doesn't show static
static final int x = 1 // Doesn't show public
public static final int x = 1; // what you get implicitly

Any combination of the required (but implicit) modifi ers is legal, as is
using no modifi ers at all! On the exam, you can expect to see questions you won’t be
able to answer correctly unless you know, for example, that an interface variable is fi nal
and can never be given a value by the implementing (or any other) class.

CERTIFICATION OBJECTIVE

Declare Class Members (Objectives 1.3 and 1.4)
1.3 Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for variable
names.

1.4 Develop code that declares both static and non-static methods, and—if
appropriate—use method names that adhere to the JavaBeans naming standards. Also
develop code that declares and uses a variable-length argument list.

We've looked at what it means to use a modifier in a class declaration, and now
we'll look at what it means to modify a method or variable declaration.

Methods and instance (nonlocal) variables are collectively known as members.
You can modify a member with both access and nonaccess modifiers, and you have
more modifiers to choose from (and combine) than when you're declaring a class.

Access Modifi ers
Because method and variable members are usually given access control in exactly
the same way, we'll cover both in this section.

Whereas a class can use just two of the four access control levels (default or
public), members can use all four:

■ public

■ protected

■ default

■ private

Default protection is what you get when you don't type an access modifier in the
member declaration. The default and protected access control types have almost
identical behavior, except for one difference that will be mentioned later.

It's crucial that you know access control inside and out for the exam. There will
be quite a few questions with access control playing a role. Some questions test

24 Chapter 1: Declarations and Access Control

several concepts of access control at the same time, so not knowing one small part of
access control could blow an entire question.

What does it mean for code in one class to have access to a member of another
class? For now, ignore any differences between methods and variables. If class A has
access to a member of class B, it means that class B's member is visible to class A.
When a class does not have access to another member, the compiler will slap you for
trying to access something that you're not even supposed to know exists!

You need to understand two different access issues:

■ Whether method code in one class can access a member of another class

■ Whether a subclass can inherit a member of its superclass

The first type of access is when a method in one class tries to access a method or a
variable of another class, using the dot operator (.) to invoke a method or retrieve a
variable. For example:

class Zoo {
 public String coolMethod() {
 return "Wow baby";
 }
}
class Moo {
 public void useAZoo() {
 Zoo z = new Zoo();
 // If the preceding line compiles Moo has access
 // to the Zoo class
 // But... does it have access to the coolMethod()?
 System.out.println("A Zoo says, " + z.coolMethod());
 // The preceding line works because Moo can access the
 // public method
 }
}

The second type of access revolves around which, if any, members of a superclass
a subclass can access through inheritance. We're not looking at whether the subclass
can, say, invoke a method on an instance of the superclass (which would just be an
example of the first type of access). Instead, we're looking at whether the subclass
inherits a member of its superclass. Remember, if a subclass inherits a member, it's
exactly as if the subclass actually declared the member itself. In other words, if a
subclass inherits a member, the subclass has the member.

 Access Modifi ers (Exam Objectives 1.3 and 1.4) 25

class Zoo {
 public String coolMethod() {
 return "Wow baby";
 }
}
class Moo extends Zoo {
 public void useMyCoolMethod() {
 // Does an instance of Moo inherit the coolMethod()?
 System.out.println("Moo says, " + this.coolMethod());
 // The preceding line works because Moo can inherit the
 // public method
 // Can an instance of Moo invoke coolMethod() on an
 // instance of Zoo?
 Zoo z = new Zoo();
 System.out.println("Zoo says, " + z.coolMethod());
 // coolMethod() is public, so Moo can invoke it on a Zoo
 //reference
 }
}

Figure 1-2 compares a class inheriting a member of another class, and accessing a
member of another class using a reference of an instance of that class.

Much of access control (both types) centers on whether the two classes involved
are in the same or different packages. Don't forget, though, if class A itself can't be
accessed by class B, then no members within class A can be accessed by class B.

You need to know the effect of different combinations of class and member access
(such as a default class with a public variable). To figure this out, first look at the
access level of the class. If the class itself will not be visible to another class, then
none of the members will be either, even if the member is declared public. Once
you've confirmed that the class is visible, then it makes sense to look at access levels
on individual members.

Public Members
When a method or variable member is declared public, it means all other classes,
regardless of the package they belong to, can access the member (assuming the class
itself is visible).

26 Chapter 1: Declarations and Access Control

 FIGURE 1-2 Comparison of inheritance vs. dot operator for member access.

 Access Modifi ers (Exam Objectives 1.3 and 1.4) 27

SportsCar

Convertible

Driver

doThings(){

doDriverStuff(){
SportsCar car = new SportsCar();

Convertible con = new Convertible();

SportsCar sc = new SportsCar();
sc.goFast();

car.goFast();

con.goFast();
}

doMore(){
goFast();
}

}

superclass

subclass

Three ways to access a method:

Invoking a method declared in the same class

Invoking a method using a reference of the class

Invoking an inherited method

D

R

R

R

D

R

I

I

 goFast()
doStuff(){
goFast();

}

{ }

28 Chapter 1: Declarations and Access Control

Look at the following source file:

package book;
import cert.*; // Import all classes in the cert package
class Goo {
 public static void main(String[] args) {
 Sludge o = new Sludge();
 o.testIt();
 }
}

Now look at the second file:

package cert;
public class Sludge {
 public void testIt() { System.out.println("sludge"); }
}

As you can see, Goo and Sludge are in different packages. However, Goo can
invoke the method in Sludge without problems because both the Sludge class and its
testIt() method are marked public.

For a subclass, if a member of its superclass is declared public, the subclass
inherits that member regardless of whether both classes are in the same package:

package cert;
public class Roo {
 public String doRooThings() {
 // imagine the fun code that goes here
 return "fun";
 }
}

The Roo class declares the doRooThings() member as public. So if we make
a subclass of Roo, any code in that Roo subclass can call its own inherited
doRooThings() method.

package notcert; //Not the package Roo is in
import cert.Roo;
class Cloo extends Roo {
 public void testCloo() {
 System.out.println(doRooThings());
 }
}

Notice in the preceding code that the doRooThings() method is invoked
without having to preface it with a reference. Remember, if you see a method
invoked (or a variable accessed) without the dot operator (.), it means the method
or variable belongs to the class where you see that code. It also means that the
method or variable is implicitly being accessed using the this reference. So in the
preceding code, the call to doRooThings() in the Cloo class could also have been
written as this.doRooThings(). The reference this always refers to the currently
executing object—in other words, the object running the code where you see the
this reference. Because the this reference is implicit, you don't need to preface your
member access code with it, but it won't hurt. Some programmers include it to make
the code easier to read for new (or non) Java programmers.

Besides being able to invoke the doRooThings() method on itself, code from
some other class can call doRooThings() on a Cloo instance, as in the following:

class Toon {
 public static void main(String[] args) {
 Cloo c = new Cloo();
 System.out.println(c.doRooThings()); //No problem; method
 // is public
 }
}

Private Members
Members marked private can't be accessed by code in any class other than the
class in which the private member was declared. Let's make a small change to the
Roo class from an earlier example.

package cert;
public class Roo {
 private String doRooThings() {
 // imagine the fun code that goes here, but only the Roo
 // class knows
 return "fun";
 }
}

The doRooThings() method is now private, so no other class can use it. If we
try to invoke the method from any other class, we'll run into trouble:

 Access Modifi ers (Exam Objectives 1.3 and 1.4) 29

30 Chapter 1: Declarations and Access Control

package notcert;
import cert.Roo;
class UseARoo {
 public void testIt() {
 Roo r = new Roo(); //So far so good; class Roo is public
 System.out.println(r.doRooThings()); //Compiler error!
 }
}

If we try to compile UseARoo, we get a compiler error something like this:

cannot find symbol
symbol : method doRooThings()

It's as if the method doRooThings() doesn't exist, and as far as any code outside
of the Roo class is concerned, it's true. A private member is invisible to any code
outside the member's own class.

What about a subclass that tries to inherit a private member of its superclass?
When a member is declared private, a subclass can't inherit it. For the exam, you
need to recognize that a subclass can't see, use, or even think about the private
members of its superclass. You can, however, declare a matching method in the
subclass. But regardless of how it looks, it is not an overriding method! It is simply a
method that happens to have the same name as a private method (which you're not
supposed to know about) in the superclass. The rules of overriding do not apply, so
you can make this newly-declared-but-just-happens-to-match method declare new
exceptions, or change the return type, or anything else you want to do with it.

package cert;
public class Roo {
 private String doRooThings() {
 // imagine the fun code that goes here, but no other class
 // will know
 return "fun";
 }
}

The doRooThings() method is now off limits to all subclasses, even those in the
same package as the superclass:

package cert; //Cloo and Roo are in the same package
class Cloo extends Roo { //Still OK, superclass Roo is public
 public void testCloo() {
 System.out.println(doRooThings()); //Compiler error!
 }
}

If we try to compile the subclass Cloo, the compiler is delighted to spit out an
error something like this:

%javac Cloo.java
Cloo.java:4: Undefined method: doRooThings()
 System.out.println(doRooThings());
1 error

Although you're allowed to mark instance variables as public, in practice it's
nearly always best to keep all variables private or protected. If variables
need to be changed, set, or read, programmers should use public accessor
methods, so that code in any other class has to ask to get or set a variable (by
going through a method), rather than access it directly. JavaBean-compliant
accessor methods take the form get<propertyName> or, for booleans,
is<propertyName> and set<propertyName>, and provide a place to check
and/or validate before returning or modifying a value.
 Without this protection, the weight variable of a Cat object, for example,
could be set to a negative number if the offending code goes straight to
the public variable as in someCat.weight = -20. But an accessor method,
setWeight(int wt), could check for an inappropriate number. (OK, wild
speculation, but we're guessing a negative weight might be inappropriate for
a cat. Or not.) Chapter 2 will discuss this data protection (encapsulation) in
more detail.

Can a private method be overridden by a subclass? That's an interesting
question, but the answer is technically no. Since the subclass, as we've seen, cannot
inherit a private method, it therefore cannot override the method—overriding
depends on inheritance. We'll cover the implications of this in more detail a little
later in this section as well as in Chapter 2, but for now just remember that a
method marked private cannot be overridden. Figure 1-3 illustrates the effects of
the public and private modifiers on classes from the same or different packages.

Access Modifi ers (Exam Objectives 1.3 and 1.4) 31

32 Chapter 1: Declarations and Access Control

 FIGURE 1-3

Effects of public and
private access

Protected and Default Members
The protected and default access control levels are almost identical, but with one
critical difference. A default member may be accessed only if the class accessing the
member belongs to the same package, whereas a protected member can be accessed
(through inheritance) by a subclass even if the subclass is in a different package.

SportsCar

Convertible

Driver

doThings(){

doDriverStuff(){
SportsCar car = new SportsCar();

Convertible con = new Convertible();

SportsCar sc = new SportsCar();
sc.goFast();

car.goFast();

con.goFast();
}

doMore(){
goFast();
}

}

superclass

The effect of private access control

subclass

Three ways to access a method:

Invoking a method declared in the same class

Invoking a method using a reference of the class

Invoking an inherited method

D

R

R

R

D

R

I

I

goFast()
private

doStuff(){
goFast();

}

{ }...

Take a look at the following two classes:

package certification;
public class OtherClass {
 void testIt() { // No modifier means method has default
 // access
 System.out.println("OtherClass");
 }
}

In another source code file you have the following:

package somethingElse;
import certification.OtherClass;
class AccessClass {
 static public void main(String[] args) {
 OtherClass o = new OtherClass();
 o.testIt();
 }
}

As you can see, the testIt() method in the first file has default (think: package-
level) access. Notice also that class OtherClass is in a different package from the
AccessClass. Will AccessClass be able to use the method testIt()? Will it cause a
compiler error? Will Daniel ever marry Francesca? Stay tuned.

No method matching testIt() found in class
certification.OtherClass. o.testIt();

From the preceding results, you can see that AccessClass can't use the OtherClass
method testIt() because testIt() has default access, and AccessClass is not
in the same package as OtherClass. So AccessClass can't see it, the compiler
complains, and we have no idea who Daniel and Francesca are.

Default and protected behavior differ only when we talk about subclasses. If the
protected keyword is used to define a member, any subclass of the class declaring
the member can access it through inheritance. It doesn't matter if the superclass and
subclass are in different packages, the protected superclass member is still visible to
the subclass (although visible only in a very specific way as we'll see a little later).
This is in contrast to the default behavior, which doesn't allow a subclass to access a
superclass member unless the subclass is in the same package as the superclass.

Access Modifi ers (Exam Objectives 1.3 and 1.4) 33

34 Chapter 1: Declarations and Access Control

Whereas default access doesn't extend any special consideration to subclasses
(you're either in the package or you're not), the protected modifier respects the
parent-child relationship, even when the child class moves away (and joins a
new package). So, when you think of default access, think package restriction. No
exceptions. But when you think protected, think package + kids. A class with a
protected member is marking that member as having package-level access for all
classes, but with a special exception for subclasses outside the package.

But what does it mean for a subclass-outside-the-package to have access to a
superclass (parent) member? It means the subclass inherits the member. It does not,
however, mean the subclass-outside-the-package can access the member using a
reference to an instance of the superclass. In other words, protected = inheritance.
Protected does not mean that the subclass can treat the protected superclass member
as though it were public. So if the subclass-outside-the-package gets a reference to
the superclass (by, for example, creating an instance of the superclass somewhere
in the subclass' code), the subclass cannot use the dot operator on the superclass
reference to access the protected member. To a subclass-outside-the-package, a
protected member might as well be default (or even private), when the subclass is
using a reference to the superclass. The subclass can see the protected member
only through inheritance.

Are you confused? So are we. Hang in there and it will all become clear with the
next batch of code examples. (And don't worry; we're not actually confused. We're
just trying to make you feel better if you are. You know, like it's OK for you to feel as
though nothing makes sense, and that it isn't your fault. Or is it? <insert evil laugh>)

Protected Details
Let's take a look at a protected instance variable (remember, an instance variable
is a member) of a superclass.

package certification;
public class Parent {
 protected int x = 9; // protected access
}

The preceding code declares the variable x as protected. This makes the
variable accessible to all other classes inside the certification package, as well as
inheritable by any subclasses outside the package. Now let's create a subclass in a
different package, and attempt to use the variable x (that the subclass inherits):

package other; // Different package
import certification.Parent;
class Child extends Parent {
 public void testIt() {
 System.out.println("x is " + x); // No problem; Child
 // inherits x
 }
}

The preceding code compiles fine. Notice, though, that the Child class is
accessing the protected variable through inheritance. Remember, any time we talk
about a subclass having access to a superclass member, we could be talking about
the subclass inheriting the member, not simply accessing the member through a
reference to an instance of the superclass (the way any other nonsubclass would
access it). Watch what happens if the subclass Child (outside the superclass'
package) tries to access a protected variable using a Parent class reference.

package other;
import certification.Parent;
class Child extends Parent {
 public void testIt() {
 System.out.println("x is " + x); // No problem; Child
 // inherits x
 Parent p = new Parent(); // Can we access x using the
 // p reference?
 System.out.println("X in parent is " + p.x); // Compiler
 // error!
 }
}

The compiler is more than happy to show us the problem:

%javac -d . other/Child.java
other/Child.java:9: x has protected access in certification.Par-
ent
System.out.println("X in parent is " + p.x);
 ^
1 error

So far we've established that a protected member has essentially package-level or
default access to all classes except for subclasses. We've seen that subclasses outside
the package can inherit a protected member. Finally, we've seen that subclasses

Access Modifi ers (Objectives 1.3 and 1.4) 35

36 Chapter 1: Declarations and Access Control

outside the package can't use a superclass reference to access a protected member.
For a subclass outside the package, the protected member can be accessed only
through inheritance.

But there's still one more issue we haven't looked at...what does a protected
member look like to other classes trying to use the subclass-outside-the-package to
get to the subclass' inherited protected superclass member? For example, using our
previous Parent/Child classes, what happens if some other class—Neighbor, say—in
the same package as the Child (subclass), has a reference to a Child instance and
wants to access the member variable x ? In other words, how does that protected
member behave once the subclass has inherited it? Does it maintain its protected
status, such that classes in the Child's package can see it?

No! Once the subclass-outside-the-package inherits the protected member,
that member (as inherited by the subclass) becomes private to any code outside
the subclass, with the exception of subclasses of the subclass. So if class Neighbor
instantiates a Child object, then even if class Neighbor is in the same package as
class Child, class Neighbor won't have access to the Child's inherited (but protected)
variable x. Figure 1-4 illustrates the effect of protected access on classes and subclasses
in the same or different packages.

Whew! That wraps up protected, the most misunderstood modifier in Java.
Again, it's used only in very special cases, but you can count on it showing up on
the exam. Now that we've covered the protected modifier, we'll switch to default
member access, a piece of cake compared to protected.

Default Details
Let's start with the default behavior of a member in a superclass. We'll modify the
Parent's member x to make it default.

package certification;
public class Parent {
 int x = 9; // No access modifier, means default
 // (package) access
}

Notice we didn't place an access modifier in front of the variable x. Remember
that if you don't type an access modifier before a class or member declaration, the
access control is default, which means package level. We'll now attempt to access
the default member from the Child class that we saw earlier.

 FIGURE 1-4

Effects of
protected
access

When we compile the child file, we get an error something like this:

Child.java:4: Undefined variable: x
 System.out.println("Variable x is " + x);
1 error

Access Modifi ers (Exam Objectives 1.3 and 1.4) 37

If goFast() is default If goFast()is protected

SportsCar

Convertible

Driver

Package A

goFast(){ }

goFast(){ } doThings
SportsCar
sc.goFastgoFast();

Where goFast
is Declared in the
same class.

Invoking goFast()
class in which goFast()

}

doStuff(){
doMore(){

}
goFast();

Invoking the
goFast()
method
Inherited from
a superclass.

D

R I

SportsCar

Convertible

Package A

goFast(){ }

D

Driver Convertible Convertible

Package B

Key:

Package B Package B

R R I R IR

D R I

Driver

R R

Driver

R R

SportsCar

Package A

goFast(){ }

D

SportsCar

Package A

protected goFast(){ }

D

R I

R R

sc = new SportsCar();
(){

();
}

was declared.
using a Reference to the

38 Chapter 1: Declarations and Access Control

The compiler gives the same error as when a member is declared as private. The
subclass Child (in a different package from the superclass Parent) can't see or use the
default superclass member x ! Now, what about default access for two classes in the
same package?

package certification;
public class Parent{
 int x = 9; // default access
}

And in the second class you have the following:

package certification;
class Child extends Parent{
 static public void main(String[] args) {
 Child sc = new Child();
 sc.testIt();
 }
 public void testIt() {
 System.out.println("Variable x is " + x); // No problem;
 }
}

The preceding source file compiles fine, and the class Child runs and displays the
value of x. Just remember that default members are visible to subclasses only if those
subclasses are in the same package as the superclass.

Local Variables and Access Modifiers
Can access modifiers be applied to local variables? NO!

There is never a case where an access modifier can be applied to a local variable,
so watch out for code like the following:

class Foo {
 void doStuff() {
 private int x = 7;
 this.doMore(x);
 }
}

You can be certain that any local variable declared with an access modifier will
not compile. In fact, there is only one modifier that can ever be applied to local
variables—final.

That about does it for our discussion on member access modifiers. Table 1-2
shows all the combinations of access and visibility; you really should spend some
time with it. Next, we're going to dig into the other (nonaccess) modifiers that you
can apply to member declarations.

Nonaccess Member Modifi ers
We've discussed member access, which refers to whether code from one class can
invoke a method (or access an instance variable) from another class. That still
leaves a boatload of other modifiers you can use on member declarations. Two
you're already familiar with—final and abstract—because we applied them to
class declarations earlier in this chapter. But we still have to take a quick look at
transient, synchronized, native, strictfp, and then a long look at the Big
One—static.

We'll look first at modifiers applied to methods, followed by a look at modifiers
applied to instance variables. We'll wrap up this section with a look at how static
works when applied to variables and methods.

Nonaccess Member Modifi ers (Exam Objectives 1.3 and 1.4) 39

Visibility Public Protected Default Private

From the same class Yes Yes Yes Yes

From any class in the same
package

Yes Yes Yes No

From a subclass in the same
package

Yes Yes Yes No

From a subclass outside the
same package

Yes Yes, through
inheritance

No No

From any non-subclass class
outside the package

Yes No No No

 TABLE 1-2 Determining Access to Class Members

40 Chapter 1: Declarations and Access Control

Final Methods
The final keyword prevents a method from being overridden in a subclass, and is
often used to enforce the API functionality of a method. For example, the Thread
class has a method called isAlive() that checks whether a thread is still active. If
you extend the Thread class, though, there is really no way that you can correctly
implement this method yourself (it uses native code, for one thing), so the designers
have made it final. Just as you can't subclass the String class (because we need to
be able to trust in the behavior of a String object), you can't override many of the
methods in the core class libraries. This can't-be-overridden restriction provides for
safety and security, but you should use it with great caution. Preventing a subclass
from overriding a method stifles many of the benefits of OO including extensibility
through polymorphism. A typical final method declaration looks like this:

class SuperClass{
 public final void showSample() {
 System.out.println("One thing.");
 }
}

It's legal to extend SuperClass, since the class isn't marked final, but we can't
override the final method showSample(), as the following code attempts to do:

class SubClass extends SuperClass{
 public void showSample() { // Try to override the final
 // superclass method
 System.out.println("Another thing.");
 }
}

Attempting to compile the preceding code gives us something like this:

%javac FinalTest.java
FinalTest.java:5: The method void showSample() declared in class
SubClass cannot override the final method of the same signature
declared in class SuperClass.
Final methods cannot be overridden.
 public void showSample() { }
1 error

Final Arguments
Method arguments are the variable declarations that appear in between the paren-
theses in a method declaration. A typical method declaration with multiple argu-
ments looks like this:

public Record getRecord(int fileNumber, int recNumber) {}

Method arguments are essentially the same as local variables. In the preceding
example, the variables fileNumber and recNumber will both follow all the rules
applied to local variables. This means they can also have the modifier final:

public Record getRecord(int fileNumber, final int recordNumber) {}

In this example, the variable recNumber is declared as final, which of course
means it can't be modified within the method. In this case, "modified" means
reassigning a new value to the variable. In other words, a final argument must keep
the same value that the parameter had when it was passed into the method.

Abstract Methods
An abstract method is a method that's been declared (as abstract) but not
implemented. In other words, the method contains no functional code. And if you
recall from the earlier section "Abstract Classes," an abstract method declaration
doesn't even have curly braces for where the implementation code goes, but instead
closes with a semicolon. In other words, it has no method body. You mark a method
abstract when you want to force subclasses to provide the implementation. For
example, if you write an abstract class Car with a method goUpHill(), you might
want to force each subtype of Car to define its own goUpHill() behavior, specific to
that particular type of car.

public abstract void showSample();

Notice that the abstract method ends with a semicolon instead of curly braces.
It is illegal to have even a single abstract method in a class that is not explicitly
declared abstract! Look at the following illegal class:

public class IllegalClass{
 public abstract void doIt();
}

Nonaccess Member Modifi ers (Exam Objectives 1.3 and 1.4) 41

42 Chapter 1: Declarations and Access Control

The preceding class will produce the following error if you try to compile it:

IllegalClass.java:1: class IllegalClass must be declared
abstract.
It does not define void doIt() from class IllegalClass.
public class IllegalClass{
1 error

You can, however, have an abstract class with no abstract methods. The following
example will compile fine:

public abstract class LegalClass{
 void goodMethod() {
 // lots of real implementation code here
 }
 }

In the preceding example, goodMethod() is not abstract. Three different clues
tell you it's not an abstract method:

■ The method is not marked abstract.

■ The method declaration includes curly braces, as opposed to ending in a
semicolon. In other words, the method has a method body.

■ The method provides actual implementation code.

Any class that extends an abstract class must implement all abstract methods
of the superclass, unless the subclass is also abstract. The rule is this:

The first concrete subclass of an abstract class must implement all abstract
 methods of the superclass.

Concrete just means nonabstract, so if you have an abstract class extending
another abstract class, the abstract subclass doesn't need to provide implementations
for the inherited abstract methods. Sooner or later, though, somebody's going to
make a nonabstract subclass (in other words, a class that can be instantiated),
and that subclass will have to implement all the abstract methods from up the
inheritance tree. The following example demonstrates an inheritance tree with two
abstract classes and one concrete class:

public abstract class Vehicle {
 private String type;
 public abstract void goUpHill(); // Abstract method
 public String getType() { // Non-abstract method
 return type;
 }
}

public abstract class Car extends Vehicle {
 public abstract void goUpHill(); // Still abstract
 public void doCarThings() {
 // special car code goes here
 }
}

public class Mini extends Car {
 public void goUpHill() {
 // Mini-specific going uphill code
 }
}

So how many methods does class Mini have? Three. It inherits both the
getType() and doCarThings() methods, because they're public and concrete
(nonabstract). But because goUpHill() is abstract in the superclass Vehicle,
and is never implemented in the Car class (so it remains abstract), it means
class Mini—as the first concrete class below Vehicle—must implement the
goUpHill() method. In other words, class Mini can't pass the buck (of abstract
method implementation) to the next class down the inheritance tree, but class Car
can, since Car, like Vehicle, is abstract. Figure 1-5 illustrates the effects of the
abstract modifier on concrete and abstract subclasses.

Nonaccess Member Modifi ers (Exam Objectives 1.3 and 1.4) 43

44 Chapter 1: Declarations and Access Control

 FIGURE 1-5 The effects of the abstract modifier on concrete and abstract subclasses

Look for concrete classes that don't provide method implementations for
abstract methods of the superclass. The following code won't compile:

public abstract class A {
 abstract void foo();
}
class B extends A {
 void foo(int I) { }
}

Class B won't compile because it doesn't implement the inherited abstract
method foo(). Although the foo(int I) method in class B might appear to be

abstract Car

startEngine()

SportsCar

startEngine()//optional
goForward()//Required
reverse()//Required
turn(int whichWay)//Required

Abstract methods must be implemented by a
non-abstract subclass. If the subclass is abstract,
it is not required to implement the abstract
methods, but it is allowed to implement any
or all of the superclass abstract methods. The
AcmeRover class is non-abstract, so it must
implement the abstract method declared in its
superclass, SUV, and it must also implement
turn(), which was not implemented by SUV.

stop()

abstract goForward()
abstract reverse()

abstract turn(int whichWay)

abstract SUV

enable4wd()

AcmeRover

enable4wd()//optional
goOffRoad()//Required
turn(int whichWay)//Required

goForward()
reverse()
abstract goOffRoad()

//turn()not implemented

an implementation of the superclass' abstract method, it is simply an overloaded
method (a method using the same identifier, but different arguments), so it doesn't
fulfill the requirements for implementing the superclass' abstract method. We'll
look at the differences between overloading and overriding in detail in Chapter 2.

A method can never, ever, ever be marked as both abstract and final, or both
abstract and private. Think about it—abstract methods must be implemented
(which essentially means overridden by a subclass) whereas final and private
methods cannot ever be overridden by a subclass. Or to phrase it another way, an
abstract designation means the superclass doesn't know anything about how
the subclasses should behave in that method, whereas a final designation means
the superclass knows everything about how all subclasses (however far down the
inheritance tree they may be) should behave in that method. The abstract and
final modifiers are virtually opposites. Because private methods cannot even be
seen by a subclass (let alone inherited), they too cannot be overridden, so they too
cannot be marked abstract.

Finally, you need to know that the abstract modifier can never be combined
with the static modifier. We'll cover static methods later in this objective, but
for now just remember that the following would be illegal:

abstract static void doStuff();

And it would give you an error that should be familiar by now:

MyClass.java:2: illegal combination of modifiers: abstract and
static
 abstract static void doStuff();

Synchronized Methods
The synchronized keyword indicates that a method can be accessed by only one
thread at a time. We'll discuss this nearly to death in Chapter 9, but for now all
we're concerned with is knowing that the synchronized modifier can be applied
only to methods—not variables, not classes, just methods. A typical synchronized
declaration looks like this:

public synchronized Record retrieveUserInfo(int id) { }

You should also know that the synchronized modifier can be matched with any
of the four access control levels (which means it can be paired with any of the three
access modifier keywords).

Nonaccess Member Modifi ers (Exam Objectives 1.3 and 1.4) 45

46 Chapter 1: Declarations and Access Control

Native Methods
The native modifier indicates that a method is implemented in platform-depen-
dent code, often in C. You don't need to know how to use native methods for the
exam, other than knowing that native is a modifier (thus a reserved keyword) and
that native can be applied only to methods—not classes, not variables, just methods.
Note that a native method's body must be a semicolon (;) (like abstract methods),
indicating that the implementation is omitted.

Strictfp Methods
We looked earlier at using strictfp as a class modifier, but even if you don't de-
clare a class as strictfp, you can still declare an individual method as strictfp.
Remember, strictfp forces floating points (and any floating-point operations) to
adhere to the IEEE 754 standard. With strictfp, you can predict how your floating
points will behave regardless of the underlying platform the JVM is running on. The
downside is that if the underlying platform is capable of supporting greater precision, a
strictfp method won't be able to take advantage of it.

You'll want to study the IEEE 754 if you need something to help you fall asleep.
For the exam, however, you don't need to know anything about strictfp other
than what it's used for, that it can modify a class or method declaration, and that a
variable can never be declared strictfp.

Methods with Variable Argument Lists (var-args)
As of 5.0, Java allows you to create methods that can take a variable number of
arguments. Depending on where you look, you might hear this capability referred to
as "variable-length argument lists," "variable arguments," "var-args," "varargs," or our
personal favorite (from the department of obfuscation), "variable arity parameter."
They're all the same thing, and we'll use the term "var-args" from here on out.

As a bit of background, we'd like to clarify how we're going to use the terms
"argument" and "parameter" throughout this book.

■ arguments The things you specify between the parentheses when you're
invoking a method:

 doStuff("a", 2); // invoking doStuff, so a & 2 are arguments

■ parameters The things in the method's signature that indicate what the
method must receive when it's invoked:

 void doStuff(String s, int a) { } // we're expecting two
 // parameters: String and int

We'll cover using var-arg methods more in the next few chapters, for now let's
review the declaration rules for var-args:

■ Var-arg type When you declare a var-arg parameter, you must specify the
type of the argument(s) this parameter of your method can receive. (This can
be a primitive type or an object type.)

■ Basic syntax To declare a method using a var-arg parameter, you follow the
type with an ellipsis (...), a space, and then the name of the array that will
hold the parameters received.

■ Other parameters It's legal to have other parameters in a method that uses
a var-arg.

■ Var-args limits The var-arg must be the last parameter in the method's
signature, and you can have only one var-arg in a method.

Let's look at some legal and illegal var-arg declarations:

Legal:

void doStuff(int... x) { } // expects from 0 to many ints
 // as parameters
void doStuff2(char c, int... x) { } // expects first a char,
 // then 0 to many ints
void doStuff3(Animal... animal) { } // 0 to many Animals

Illegal:

void doStuff4(int x...) { } // bad syntax
void doStuff5(int... x, char... y) { } // too many var-args
void doStuff6(String... s, byte b) { } // var-arg must be last

Constructor Declarations
In Java, objects are constructed. Every time you make a new object, at least one
constructor is invoked. Every class has a constructor, although if you don't create
one explicitly, the compiler will build one for you. There are tons of rules concerning

Constructor Declarations (Exam Objectives 1.3 and 1.4) 47

48 Chapter 1: Declarations and Access Control

constructors, and we're saving our detailed discussion for Chapter 2. For now, let's
focus on the basic declaration rules. Here's a simple example:

class Foo {
 protected Foo() { } // this is Foo's constructor

 protected void Foo() { } // this is a badly named,
 // but legal, method
}

The first thing to notice is that constructors look an awful lot like methods. A
key difference is that a constructor can't ever, ever, ever, have a return type…ever!
Constructor declarations can however have all of the normal access modifiers, and
they can take arguments (including var-args), just like methods. The other BIG
RULE, to understand about constructors is that they must have the same name as
the class in which they are declared. Constructors can't be marked static (they
are after all associated with object instantiation), they can't be marked final
or abstract (because they can't be overridden). Here are some legal and illegal
constructor declarations:

class Foo2 {

 // legal constructors

 Foo2() { }
 private Foo2(byte b) { }
 Foo2(int x) { }
 Foo2(int x, int... y) { }

 // illegal constructors

 void Foo2() { } // it's a method, not a constructor
 Foo() { } // not a method or a constructor
 Foo2(short s); // looks like an abstract method
 static Foo2(float f) { } // can't be static
 final Foo2(long x) { } // can't be final
 abstract Foo2(char c) { } // can't be abstract
 Foo2(int... x, int t) { } // bad var-arg syntax
 }

Variable Declarations
There are two types of variables in Java:

■ Primitives A primitive can be one of eight types: char, boolean, byte,
short, int, long, double, or float. Once a primitive has been declared, its
primitive type can never change, although in most cases its value can change.

■ Reference variables A reference variable is used to refer to (or access) an
object. A reference variable is declared to be of a specific type and that type
can never be changed. A reference variable can be used to refer to any object
of the declared type, or of a subtype of the declared type (a compatible type).
We'll talk a lot more about using a reference variable to refer to a subtype in
Chapter 2, when we discuss polymorphism.

Declaring Primitives and Primitive Ranges
Primitive variables can be declared as class variables (statics), instance variables,
method parameters, or local variables. You can declare one or more primitives, of the
same primitive type, in a single line. In Chapter 3 we will discuss the various ways
in which they can be initialized, but for now we'll leave you with a few examples of
primitive variable declarations:

byte b;
boolean myBooleanPrimitive;
int x, y, z; // declare three int primitives

On previous versions of the exam you needed to know how to calculate ranges
for all the Java primitives. For the current exam, you can skip some of that detail,
but it's still important to understand that for the integer types the sequence from
small to big is byte, short, int, long, and that doubles are bigger than floats.

You will also need to know that the number types (both integer and floating-
point types) are all signed, and how that affects their ranges. First, let's review the
concepts.

All six number types in Java are made up of a certain number of 8-bit bytes, and
are signed, meaning they can be negative or positive. The leftmost bit (the most
significant digit) is used to represent the sign, where a 1 means negative and 0 means
positive, as shown in Figure 1-6. The rest of the bits represent the value, using two's
complement notation.

Variable Declarations (Exam Objectives 1.3 and 1.4) 49

50 Chapter 1: Declarations and Access Control

 FIGURE 1-6 The Sign bit for a byte

Table 1-3 shows the primitive types with their sizes and ranges. Figure 1-6 shows
that with a byte, for example, there are 256 possible numbers (or 28). Half of these
are negative, and half -1 are positive. The positive range is one less than the
negative range because the number zero is stored as a positive binary number. We
use the formula -2(bits-1) to calculate the negative range, and we use 2(bits-1)–1 for the
positive range. Again, if you know the first two columns of this table, you'll be in
good shape for the exam.

Type Bits Bytes Minimum Range Maximum Range

byte 8 1 -27 27-1

short 16 2 -215 215-1

int 32 4 -231 231-1

long 64 8 -263 263-1

float 32 4 n/a n/a

double 64 8 n/a n/a

 TABLE 1-3 Ranges of Numeric Primitives

byte

sign bit: 0 = positive
 I = negative

byte: 7 bits can represent 27 or
128 different values:
0 thru 127 -or- –128 thru –1

short: 15 bits can represent
215 or 32768 values:
0 thru 32767 -or- –32768 thru –1

value bits:00100110

1111101000000111short

sign bit value bits

The range for floating-point numbers is complicated to determine, but luckily you
don't need to know these for the exam (although you are expected to know that a
double holds 64 bits and a float 32).

For boolean types there is not a range; a boolean can be only true or false. If
someone asks you for the bit depth of a boolean, look them straight in the eye and
say, "That's virtual-machine dependent." They'll be impressed.

The char type (a character) contains a single, 16-bit Unicode character.
Although the extended ASCII set known as ISO Latin-1 needs only 8 bits (256
different characters), a larger range is needed to represent characters found in
languages other than English. Unicode characters are actually represented by
unsigned 16-bit integers, which means 216 possible values, ranging from 0 to 65535
(216)-1. You'll learn in Chapter 3 that because a char is really an integer type, it
can be assigned to any number type large enough to hold 65535 (which means
anything larger than a short. Although both chars and shorts are 16-bit types,
remember that a short uses 1 bit to represent the sign, so fewer positive numbers are
acceptable in a short).

Declaring Reference Variables
Reference variables can be declared as static variables, instance variables, method
parameters, or local variables. You can declare one or more reference variables,
of the same type, in a single line. In Chapter 3 we will discuss the various ways in
which they can be initialized, but for now we'll leave you with a few examples of
reference variable declarations:

Object o;
Dog myNewDogReferenceVariable;
String s1, s2, s3; // declare three String vars.

Instance Variables
Instance variables are defined inside the class, but outside of any method, and
are only initialized when the class is instantiated. Instance variables are the fields
that belong to each unique object. For example, the following code defines fields
(instance variables) for the name, title, and manager for employee objects:

class Employee {
 // define fields (instance variables) for employee instances
 private String name;
 private String title,

Variable Declarations (Exam Objectives 1.3 and 1.4) 51

52 Chapter 1: Declarations and Access Control

 private String manager;
 // other code goes here including access methods for private
 // fields
}

The preceding Employee class says that each employee instance will know its
own name, title, and manager. In other words, each instance can have its own
unique values for those three fields. If you see the term "field," "instance variable,"
"property," or "attribute," they mean virtually the same thing. (There actually
are subtle but occasionally important distinctions between the terms, but those
distinctions aren't used on the exam.)

For the exam, you need to know that instance variables

■ Can use any of the four access levels (which means they can be marked with
any of the three access modifiers)

■ Can be marked final

■ Can be marked transient

■ Cannot be marked abstract

■ Cannot be marked synchronized

■ Cannot be marked strictfp

■ Cannot be marked native

■ Cannot be marked static, because then they'd become class variables.

We've already covered the effects of applying access control to instance variables
(it works the same way as it does for member methods). A little later in this chapter
we'll look at what it means to apply the final or transient modifier to an
instance variable. First, though, we'll take a quick look at the difference between
instance and local variables. Figure 1-7 compares the way in which modifiers can be
applied to methods vs. variables.

 FIGURE 1-7 Comparison of modifiers on variables vs. methods

Local (Automatic/Stack/Method) Variables
Local variables are variables declared within a method. That means the variable is
not just initialized within the method, but also declared within the method. Just
as the local variable starts its life inside the method, it's also destroyed when the
method has completed. Local variables are always on the stack, not the heap. (We'll
talk more about the stack and the heap in Chapter 3). Although the value of the
variable might be passed into, say, another method that then stores the value in an
instance variable, the variable itself lives only within the scope of the method.

Just don't forget that while the local variable is on the stack, if the variable is an
object reference, the object itself will still be created on the heap. There is no such
thing as a stack object, only a stack variable. You'll often hear programmers use
the phrase, "local object," but what they really mean is, "locally declared reference
variable." So if you hear a programmer use that expression, you'll know that he's just
too lazy to phrase it in a technically precise way. You can tell him we said that—
unless he knows where we live.

Local variable declarations can't use most of the modifiers that can be applied
to instance variables, such as public (or the other access modifiers), transient,
volatile, abstract, or static, but as we saw earlier, local variables can be
marked final. And as you'll learn in Chapter 3 (but here's a preview), before a
local variable can be used, it must be initialized with a value. For instance:

Variable Declarations (Exam Objectives 1.3 and 1.4) 53

final final
public

protected
private
static

transient
volatile

final
public

protected
private
static

abstract
synchronized

strictfp
native

Local
Variables

Variables
(non-local) Methods

54 Chapter 1: Declarations and Access Control

class TestServer {
 public void logIn() {
 int count = 10;
 }
}

Typically, you'll initialize a local variable in the same line in which you declare
it, although you might still need to reinitialize it later in the method. The key is
to remember that a local variable must be initialized before you try to use it. The
compiler will reject any code that tries to use a local variable that hasn't been
assigned a value, because—unlike instance variables—local variables don't get
default values.

A local variable can't be referenced in any code outside the method in which
it's declared. In the preceding code example, it would be impossible to refer to the
variable count anywhere else in the class except within the scope of the method
logIn(). Again, that's not to say that the value of count can't be passed out of the
method to take on a new life. But the variable holding that value, count, can't be
accessed once the method is complete, as the following illegal code demonstrates:

class TestServer {
 public void logIn() {
 int count = 10;
 }
 public void doSomething(int i) {
 count = i; // Won't compile! Can't access count outside
 // method logIn()
 }
}

It is possible to declare a local variable with the same name as an instance
variable. It's known as shadowing, as the following code demonstrates:

class TestServer {
 int count = 9; // Declare an instance variable named count
 public void logIn() {
 int count = 10; // Declare a local variable named count
 System.out.println("local variable count is " + count);
 }
 public void count() {
 System.out.println("instance variable count is " + count);
 }
 public static void main(String[] args) {

 new TestServer().logIn();
 new TestServer().count();
 }
}

The preceding code produces the following output:

local variable count is 10
instance variable count is 9

Why on earth (or the planet of your choice) would you want to do that?
Normally, you won't. But one of the more common reasons is to name a parameter
with the same name as the instance variable to which the parameter will be
assigned.

The following (wrong) code is trying to set an instance variable's value using a
parameter:

class Foo {
 int size = 27;
 public void setSize(int size) {
 size = size; // ??? which size equals which size???
 }
}

So you've decided that—for overall readability—you want to give the parameter
the same name as the instance variable its value is destined for, but how do you
resolve the naming collision? Use the keyword this. The keyword this always,
always, always refers to the object currently running. The following code shows this
in action:

class Foo {
 int size = 27;
 public void setSize(int size) {
 this.size = size; // this.size means the current object's
 // instance variable, size. The size

 // on the right is the parameter
 }
}

Array Declarations
In Java, arrays are objects that store multiple variables of the same type, or variables
that are all subclasses of the same type. Arrays can hold either primitives or object

Variable Declarations (Exam Objectives 1.3 and 1.4) 55

56 Chapter 1: Declarations and Access Control

references, but the array itself will always be an object on the heap, even if the array
is declared to hold primitive elements. In other words, there is no such thing as a
primitive array, but you can make an array of primitives.

For the exam, you need to know three things:

■ How to make an array reference variable (declare)

■ How to make an array object (construct)

■ How to populate the array with elements (initialize)

For this objective, you only need to know how to declare an array, we'll cover
constructing and initializing arrays in Chapter 3.

Arrays are efficient, but many times you'll want to use one of the Collection
types from java.util (including HashMap, ArrayList, and TreeSet). Collection
classes offer more flexible ways to access an object (for insertion, deletion,
reading, and so on) and unlike arrays, can expand or contract dynamically
as you add or remove elements. There's a Collection type for a wide range of
needs. Do you need a fast sort? A group of objects with no duplicates? A way
to access a name-value pair? Chapter 7 covers them in more detail.

Arrays are declared by stating the type of elements the array will hold (an
object or a primitive), followed by square brackets to either side of the identifier.

Declaring an Array of Primitives

int[] key; // Square brackets before name (recommended)
int key []; // Square brackets after name (legal but less
 // readable)

Declaring an Array of Object References

Thread[] threads; // Recommended
Thread threads []; // Legal but less readable

When declaring an array reference, you should always put the array brackets
immediately after the declared type, rather than after the identifier (variable
name). That way, anyone reading the code can easily tell that, for example,
key is a reference to an int array object, and not an int primitive.

We can also declare multidimensional arrays, which are in fact arrays of arrays.
This can be done in the following manner:

String[][][] occupantName;
String[] managerName [];

The first example is a three-dimensional array (an array of arrays of arrays) and
the second is a two-dimensional array. Notice in the second example we have one
square bracket before the variable name and one after. This is perfectly legal to the
compiler, proving once again that just because it's legal doesn't mean it's right.

In Chapter 3, we'll spend a lot of time discussing arrays, how to initialize and use
them, and how to deal with multi-dimensional arrays…stay tuned!

Final Variables
Declaring a variable with the final keyword makes it impossible to reinitialize that
variable once it has been initialized with an explicit value (notice we said explicit
rather than default). For primitives, this means that once the variable is assigned a
value, the value can't be altered. For example, if you assign 10 to the int variable
x, then x is going to stay 10, forever. So that's straightforward for primitives, but
what does it mean to have a final object reference variable? A reference variable
marked final can't ever be reassigned to refer to a different object. The data within
the object can be modified, but the reference variable cannot be changed. In other
words, a final reference still allows you to modify the state of the object it refers

Variable Declarations (Exam Objectives 1.3 and 1.4) 57

It is never legal to include the size of the array in your declaration.
Yes, we know you can do that in some other languages, which is why you might see a
question or two that include code similar to the following:

int[5] scores;

The preceding code won’t compile. Remember, the JVM doesn’t allocate space until
you actually instantiate the array object. That’s when size matters.

58 Chapter 1: Declarations and Access Control

to, but you can't modify the reference variable to make it refer to a different object.
Burn this in: there are no final objects, only final references. We'll explain this in
more detail in Chapter 3.

We've now covered how the final modifier can be applied to classes, methods,
and variables. Figure 1-8 highlights the key points and differences of the various
applications of final.

 FIGURE 1- 8 Effect of final on variables, methods, and classes

final
class

final class Foo

class Bar extends Foo

class Baz

final void go()

final void go()

class Roo

final int size = 42;

void changeSize(){
size = 16;

}

class Bat extends Baz

final
method

final
variable

final method
cannot be
overridden by
a subclass

final variable cannot be
assigned a new value, once
the initial method is made
(the initial assignment of a
value must happen before
the constructor completes).

final class
cannot be
subclassed

Transient Variables
 If you mark an instance variable as transient, you're telling the JVM to skip
(ignore) this variable when you attempt to serialize the object containing it.
Serialization is one of the coolest features of Java; it lets you save (sometimes called
"flatten") an object by writing its state (in other words, the value of its instance
variables) to a special type of I/O stream. With serialization you can save an object
to a file, or even ship it over a wire for reinflating (deserializing) at the other end, in
another JVM. Serialization has been added to the exam as of Java 5, and we'll cover
it in great detail in Chapter 6.

Volatile Variables
The volatile modifier tells the JVM that a thread accessing the variable must
always reconcile its own private copy of the variable with the master copy in
memory. Say what? Don't worry about it. For the exam, all you need to know about
volatile is that, as with transient, it can be applied only to instance variables.
Make no mistake, the idea of multiple threads accessing an instance variable is scary
stuff, and very important for any Java programmer to understand. But as you'll see in
Chapter 9, you'll probably use synchronization, rather than the volatile modifier,
to make your data thread-safe.

The volatile modifier may also be applied to project managers :)

Static Variables and Methods
The static modifier is used to create variables and methods that will exist
independently of any instances created for the class. All static members exist
before you ever make a new instance of a class, and there will be only one copy of
a static member regardless of the number of instances of that class. In other words,
all instances of a given class share the same value for any given static variable.
We'll cover static members in great detail in the next chapter.

Things you can mark as static:

■ Methods

■ Variables

■ A class nested within another class, but not within a method (more on this in
Chapter 8).

■ Initialization blocks

Variable Declarations (Exam Objectives 1.3 and 1.4) 59

60 Chapter 1: Declarations and Access Control

Things you can't mark as static:

■ Constructors (makes no sense; a constructor is used only to create instances)

■ Classes (unless they are nested)

■ Interfaces

■ Method local inner classes (we'll explore this in Chapter 8)

■ Inner class methods and instance variables

■ Local variables

Declaring Enums
As of 5.0, Java lets you restrict a variable to having one of only a few pre-defined
values—in other words, one value from an enumerated list. (The items in the
enumerated list are called, surprisingly, enums.)

Using enums can help reduce the bugs in your code. For instance, in your coffee
shop application you might want to restrict your size selections to BIG, HUGE,
and OVERWHELMING. If you let an order for a LARGE or a GRANDE slip in, it
might cause an error. Enums to the rescue. With the following simple declaration,
you can guarantee that the compiler will stop you from assigning anything to a
CoffeeSize except BIG, HUGE, or OVERWHELMING:

enum CoffeeSize { BIG, HUGE, OVERWHELMING };

From then on, the only way to get a CoffeeSize will be with a statement something
like this:

CoffeeSize cs = CoffeeSize.BIG;

It's not required that enum constants be in all caps, but borrowing from the Sun
code convention that constants are named in caps, it's a good idea.

The basic components of an enum are its constants (i.e., BIG, HUGE, and
OVERWHELMING), although in a minute you'll see that there can be a lot more
to an enum. Enums can be declared as their own separate class, or as a class member,
however they must not be declared within a method!

Declaring an enum outside a class:

enum CoffeeSize { BIG, HUGE, OVERWHELMING } // this cannot be
 // private or protected

class Coffee {
 CoffeeSize size;
}

public class CoffeeTest1 {
 public static void main(String[] args) {
 Coffee drink = new Coffee();
 drink.size = CoffeeSize.BIG; // enum outside class
 }
}

The preceding code can be part of a single file. (Remember, the file must be named
CoffeeTest1.java because that's the name of the public class in the file.) The
key point to remember is that an enum that isn't enclosed in a class can be declared
with only the public or default modifier, just like a non-inner class. Here's an
example of declaring an enum inside a class:

class Coffee2 {
 enum CoffeeSize {BIG, HUGE, OVERWHELMING }

 CoffeeSize size;
}

public class CoffeeTest2 {
 public static void main(String[] args) {
 Coffee2 drink = new Coffee2();
 drink.size = Coffee2.CoffeeSize.BIG; // enclosing class
 // name required
 }
}

The key points to take away from these examples are that enums can be declared
as their own class, or enclosed in another class, and that the syntax for accessing
an enum's members depends on where the enum was declared.

Declaring Enums (Exam Objectives 1.3 and 1.4) 61

62 Chapter 1: Declarations and Access Control

The following is NOT legal:

public class CoffeeTest1 {
 public static void main(String[] args) {
 enum CoffeeSize { BIG, HUGE, OVERWHELMING } // WRONG! Cannot
 // declare enums
 // in methods
 Coffee drink = new Coffee();
 drink.size = CoffeeSize.BIG;
 }
}

To make it more confusing for you, the Java language designers made it optional to
put a semicolon at the end of the enum declaration (when no other declarations for
this enum follow):

public class CoffeeTest1 {

 enum CoffeeSize { BIG, HUGE, OVERWHELMING }; // <--semicolon
 // is optional here
 public static void main(String[] args) {
 Coffee drink = new Coffee();
 drink.size = CoffeeSize.BIG;
 }
}

So what gets created when you make an enum? The most important thing to
remember is that enums are not Strings or ints! Each of the enumerated CoffeeSize
types are actually instances of CoffeeSize. In other words, BIG is of type CoffeeSize.
Think of an enum as a kind of class, that looks something (but not exactly) like this:

// conceptual example of how you can think
// about enums

class CoffeeSize {
 public static final CoffeeSize BIG =
 new CoffeeSize("BIG", 0);
 public static final CoffeeSize HUGE =
 new CoffeeSize("HUGE", 1);
 public static final CoffeeSize OVERWHELMING =
 new CoffeeSize("OVERWHELMING", 2);

public CoffeeSize(String enumName, int index) {
 // stuff here
 }
 public static void main(String[] args) {
 System.out.println(CoffeeSize.BIG);
 }
}

Notice how each of the enumerated values, BIG, HUGE, and OVERWHELMING,
are instances of type CoffeeSize. They're represented as static and final, which in
the Java world, is thought of as a constant. Also notice that each enum value knows
its index or position…in other words, the order in which enum values are declared
matters. You can think of the CoffeeSize enums as existing in an array of type
CoffeeSize, and as you'll see in a later chapter, you can iterate through the values of
an enum by invoking the values() method on any enum type. (Don't worry about
that in this chapter.)

Declaring Constructors, Methods, and Variables in an enum
Because an enum really is a special kind of class, you can do more than just list the
enumerated constant values. You can add constructors, instance variables, methods,
and something really strange known as a constant specific class body. To understand
why you might need more in your enum, think about this scenario: imagine you
want to know the actual size, in ounces, that map to each of the three CoffeeSize
constants. For example, you want to know that BIG is 8 ounces, HUGE is 10
ounces, and OVERWHELMING is a whopping 16 ounces.

You could make some kind of a lookup table, using some other data structure,
but that would be a poor design and hard to maintain. The simplest way is to treat
your enum values (BIG, HUGE, and OVERWHELMING), as objects that can each
have their own instance variables. Then you can assign those values at the time the
enums are initialized, by passing a value to the enum constructor. This takes a little
explaining, but first look at the following code:

enum CoffeeSize {
 // 8, 10 & 16 are passed to the constructor
 BIG(8), HUGE(10), OVERWHELMING(16);
 CoffeeSize(int ounces) { // constructor
 this.ounces = ounces;
 }

 private int ounces; // an instance variable
 public int getOunces() {

Declaring Enums (Exam Objectives 1.3 and 1.4) 63

64 Chapter 1: Declarations and Access Control

 return ounces;
 }
}

class Coffee {
 CoffeeSize size; // each instance of Coffee has an enum

 public static void main(String[] args) {
 Coffee drink1 = new Coffee();
 drink1.size = CoffeeSize.BIG;

 Coffee drink2 = new Coffee();
 drink2.size = CoffeeSize.OVERWHELMING;

 System.out.println(drink1.size.getOunces()); // prints 8
 for(CoffeeSize cs: CoffeeSize.values())
 System.out.println(cs + " " + cs.getOunces());
 }
}

Which produces:

 8
 BIG 8
 HUGE 10
 OVERWHELMING 16

Note: Every enum has a static method, values(), that returns an array of the enum's
values in the order they're declared.

The key points to remember about enum constructors are

■ You can NEVER invoke an enum constructor directly. The enum constructor
is invoked automatically, with the arguments you define after the constant
value. For example, BIG(8) invokes the CoffeeSize constructor that takes
an int, passing the int literal 8 to the constructor. (Behind the scenes, of
course, you can imagine that BIG is also passed to the constructor, but we
don't have to know—or care—about the details.)

■ You can define more than one argument to the constructor, and you can
overload the enum constructors, just as you can overload a normal class
constructor. We discuss constructors in much more detail in Chapter 2. To
initialize a CoffeeType with both the number of ounces and, say, a lid type,
you'd pass two arguments to the constructor as BIG(8, "A"), which means
you have a constructor in CoffeeSize that takes both an int and a String.

And finally, you can define something really strange in an enum that looks like an
anonymous inner class (which we talk about in Chapter 8). It's known as a constant
specific class body, and you use it when you need a particular constant to override a
method defined in the enum.

Imagine this scenario: you want enums to have two methods—one for ounces
and one for lid code (a String). Now imagine that most coffee sizes use the same
lid code, "B", but the OVERWHELMING size uses type "A". You can define a
getLidCode() method in the CoffeeSize enum that returns "B", but then you need
a way to override it for OVERWHELMING. You don't want to do some hard-to-
maintain if/then code in the getLidCode() method, so the best approach might
be to somehow have the OVERWHELMING constant override the getLidCode()
method.

This looks strange, but you need to understand the basic declaration rules:

enum CoffeeSize {
 BIG(8),
 HUGE(10),
 OVERWHELMING(16) { // start a code block that defines
 // the "body" for this constant

 public String getLidCode() { // override the method
 // defined in CoffeeSize
 return "A";
 }
 }; // the semicolon is REQUIRED when more code follows

 CoffeeSize(int ounces) {
 this.ounces = ounces;
 }

 private int ounces;

 public int getOunces() {
 return ounces;
 }
 public String getLidCode() { // this method is overridden
 // by the OVERWHELMING constant

 return "B"; // the default value we want to return for
 // CoffeeSize constants
 }

}

Declaring Enums (Exam Objectives 1.3 and 1.4) 65

66 Chapter 1: Declarations and Access Control

CERTIFICATION SUMMARY
After absorbing the material in this chapter, you should be familiar with some of the
nuances of the Java language. You may also be experiencing confusion around why
you ever wanted to take this exam in the first place. That's normal at this point. If
you hear yourself saying, "What was I thinking?" just lie down until it passes. We
would like to tell you that it gets easier…that this was the toughest chapter and it's
all downhill from here…

Let's briefly review what you'll need to know for the exam.

There will be many questions dealing with keywords indirectly, so be sure you can
identify which are keywords and which aren't.

Although naming conventions like the use of camelCase won't be on the exam
directly, you will need to understand the basics of JavaBeans naming, which uses
camelCase.

You need to understand the rules associated with creating legal identifiers, and
the rules associated with source code declarations, including the use of package and
import statements.

You now have a good understanding of access control as it relates to classes,
methods, and variables. You've looked at how access modifiers (public, protected,
and private) define the access control of a class or member.

You learned that abstract classes can contain both abstract and nonabstract
methods, but that if even a single method is marked abstract, the class must
be marked abstract. Don't forget that a concrete (nonabstract) subclass of an
abstract class must provide implementations for all the abstract methods of the
superclass, but that an abstract class does not have to implement the abstract
methods from its superclass. An abstract subclass can "pass the buck" to the first
concrete subclass.

We covered interface implementation. Remember that interfaces can extend
another interface (even multiple interfaces), and that any class that implements an
interface must implement all methods from all the interfaces in the inheritance tree
of the interface the class is implementing.

You've also looked at the other modifiers including static, final, abstract,
synchronized, and so on. You've learned how some modifiers can never be
combined in a declaration, such as mixing abstract with either final or private.

Keep in mind that there are no final objects in Java. A reference variable
marked final can never be changed, but the object it refers to can be modified.

You've seen that final applied to methods means a subclass can't override them,
and when applied to a class, the final class can't be subclassed.

Remember that as of Java 5, methods can be declared with a var-arg parameter
(which can take from zero to many arguments of the declared type), but that you can
have only one var-arg per method, and it must be the method's last parameter.

 Make sure you're familiar with the relative sizes of the numeric primitives.
Remember that while the values of non-final variables can change, a reference
variable's type can never change.

You also learned that arrays are objects that contain many variables of the same
type. Arrays can also contain other arrays.

Remember what you've learned about static variables and methods, especially
that static members are per-class as opposed to per-instance. Don't forget that
a static method can't directly access an instance variable from the class it's in,
because it doesn't have an explicit reference to any particular instance of the class.

Finally, we covered a feature new to Java 5, enums. An enum is a much safer and
more flexible way to implement constants than was possible in earlier versions of
Java. Because they are a special kind of class, enums can be declared very simply,
or they can be quite complex—including such attributes as methods, variables,
constructors, and a special type of inner class called a constant specific class body.

Before you hurl yourself at the practice test, spend some time with the following

optimistically named "Two-Minute Drill." Come back to this particular drill often,
as you work through this book and especially when you're doing that last-minute
cramming. Because—and here's the advice you wished your mother had given you
before you left for college—it's not what you know, it's when you know it.

For the exam, knowing what you can't do with the Java language is just as
important as knowing what you can do. Give the sample questions a try! They're
very similar to the difficulty and structure of the real exam questions, and should
be an eye opener for how difficult the exam can be. Don't worry if you get a lot of
them wrong. If you find a topic that you are weak in, spend more time reviewing and
studying. Many programmers need two or three serious passes through a chapter (or
an individual objective) before they can answer the questions confidently.

Certifi cation Summary 67

68 Chapter 1: Declarations and Access Control

✓ TWO-MINUTE DRILL

Remember that in this chapter, when we talk about classes, we're referring to
non-inner classes, or top-level classes. We'll devote all of Chapter 8 to inner classes.

Identifiers (Objective 1.3)

❑ Identifiers can begin with a letter, an underscore, or a currency character.

❑ After the first character, identifiers can also include digits.

❑ Identifiers can be of any length.

❑ JavaBeans methods must be named using camelCase, and depending on the
method's purpose, must start with set, get, is, add, or remove.

Declaration Rules (Objective 1.1)

❑ A source code file can have only one public class.

❑ If the source file contains a public class, the filename must match the
public class name.

❑ A file can have only one package statement, but multiple imports.

❑ The package statement (if any) must be the first (non-comment) line in a
source file.

❑ The import statements (if any) must come after the package and before

 the class declaration.

❑ If there is no package statement, import statements must be the first (non-
comment) statements in the source file.

❑ package and import statements apply to all classes in the file.

❑ A file can have more than one nonpublic class.

❑ Files with no public classes have no naming restrictions.

Class Access Modifiers (Objective 1.1)

❑ There are three access modifiers: public, protected, and private.

❑ There are four access levels: public, protected, default, and private.

❑ Classes can have only public or default access.

❑ A class with default access can be seen only by classes within the same package.

❑ A class with public access can be seen by all classes from all packages.

❑ Class visibility revolves around whether code in one class can

 ❑ Create an instance of another class

 ❑ Extend (or subclass), another class

 ❑ Access methods and variables of another class

Class Modifiers (Nonaccess) (Objective 1.2)

❑ Classes can also be modified with final, abstract, or strictfp.

❑ A class cannot be both final and abstract.

❑ A final class cannot be subclassed.

❑ An abstract class cannot be instantiated.

❑ A single abstract method in a class means the whole class must be abstract.

❑ An abstract class can have both abstract and nonabstract methods.

❑ The first concrete class to extend an abstract class must implement all of its

 abstract methods.

Interface Implementation (Objective 1.2)

❑ Interfaces are contracts for what a class can do, but they say nothing about
the way in which the class must do it.

❑ Interfaces can be implemented by any class, from any inheritance tree.

❑ An interface is like a 100-percent abstract class, and is implicitly abstract
whether you type the abstract modifier in the declaration or not.

❑ An interface can have only abstract methods, no concrete methods allowed.

❑ Interface methods are by default public and abstract—explicit declaration
of these modifiers is optional.

❑ Interfaces can have constants, which are always implicitly public,
static, and final.

❑ Interface constant declarations of public, static, and final are optional
in any combination.

❑ A legal nonabstract implementing class has the following properties:

 ❑ It provides concrete implementations for the interface's methods.

 ❑ It must follow all legal override rules for the methods it implements.

 ❑ It must not declare any new checked exceptions for an
 implementation method.

Two-Minute Drill 69

70 Chapter 1: Declarations and Access Control

 ❑ It must not declare any checked exceptions that are broader than
 the exceptions declared in the interface method.

 ❑ It may declare runtime exceptions on any interface method
 implementation regardless of the interface declaration.

 ❑ It must maintain the exact signature (allowing for covariant returns)
 and return type of the methods it implements (but does not have to
 declare the exceptions of the interface).

❑ A class implementing an interface can itself be abstract.

❑ An abstract implementing class does not have to implement the interface
methods (but the first concrete subclass must).

❑ A class can extend only one class (no multiple inheritance), but it can
implement many interfaces.

❑ Interfaces can extend one or more other interfaces.

❑ Interfaces cannot extend a class, or implement a class or interface.

❑ When taking the exam, verify that interface and class declarations are legal
before verifying other code logic.

Member Access Modifiers (Objectives 1.3 and 1.4)

❑ Methods and instance (nonlocal) variables are known as "members."

❑ Members can use all four access levels: public, protected, default, private.

❑ Member access comes in two forms:

 ❑ Code in one class can access a member of another class.

 ❑ A subclass can inherit a member of its superclass.

❑ If a class cannot be accessed, its members cannot be accessed.

❑ Determine class visibility before determining member visibility.

❑ public members can be accessed by all other classes, even in other packages.

❑ If a superclass member is public, the subclass inherits it—regardless of package.

❑ Members accessed without the dot operator (.) must belong to the same class.

❑ this. always refers to the currently executing object.

❑ this.aMethod() is the same as just invoking aMethod().

❑ private members can be accessed only by code in the same class.

❑ private members are not visible to subclasses, so private members can-
not be inherited.

❑ Default and protected members differ only when subclasses are involved:

 ❑ Default members can be accessed only by classes in the same package.

 ❑ protected members can be accessed by other classes in the same
 package, plus subclasses regardless of package.

 ❑ protected = package plus kids (kids meaning subclasses).

 ❑ For subclasses outside the package, the protected member can be
 accessed only through inheritance; a subclass outside the package cannot
 access a protected member by using a reference to a superclass instance
 (in other words, inheritance is the only mechanism for a subclass
 outside the package to access a protected member of its superclass).

 ❑ A protected member inherited by a subclass from another package is
 not accessible to any other class in the subclass package, except for the
 subclass' own subclasses.

Local Variables (Objective 1.3)

❑ Local (method, automatic, or stack) variable declarations cannot have
access modifiers.

❑ final is the only modifier available to local variables.

❑ Local variables don't get default values, so they must be initialized before use.

Other Modifiers—Members (Objective 1.3)

❑ final methods cannot be overridden in a subclass.

❑ abstract methods are declared, with a signature, a return type, and
an optional throws clause, but are not implemented.

❑ abstract methods end in a semicolon—no curly braces.

❑ Three ways to spot a non-abstract method:

 ❑ The method is not marked abstract.

 ❑ The method has curly braces.

 ❑ The method has code between the curly braces.

❑ The first nonabstract (concrete) class to extend an abstract class must
implement all of the abstract class' abstract methods.

❑ The synchronized modifier applies only to methods and code blocks.

❑ synchronized methods can have any access control and can also be
marked final.

Two-Minute Drill 71

72 Chapter 1: Declarations and Access Control

❑ abstract methods must be implemented by a subclass, so they must be
inheritable. For that reason:

 ❑ abstract methods cannot be private.

 ❑ abstract methods cannot be final.

❑ The native modifier applies only to methods.

❑ The strictfp modifier applies only to classes and methods.

Methods with var-args (Objective 1.4)

❑ As of Java 5, methods can declare a parameter that accepts from zero to
many arguments, a so-called var-arg method.

❑ A var-arg parameter is declared with the syntax type... name; for instance:
doStuff(int... x) { }

❑ A var-arg method can have only one var-arg parameter.

❑ In methods with normal parameters and a var-arg, the var-arg must come last.

Variable Declarations (Objective 1.3)

❑ Instance variables can

 ❑ Have any access control

 ❑ Be marked final or transient

❑ Instance variables can't be abstract, synchronized, native, or strictfp.

❑ It is legal to declare a local variable with the same name as an instance
variable; this is called "shadowing."

❑ final variables have the following properties:

 ❑ final variables cannot be reinitialized once assigned a value.

 ❑ final reference variables cannot refer to a different object once the
 object has been assigned to the final variable.

 ❑ final reference variables must be initialized before the constructor
 completes.

❑ There is no such thing as a final object. An object reference marked final
does not mean the object itself is immutable.

❑ The transient modifier applies only to instance variables.

❑ The volatile modifier applies only to instance variables.

Array Declarations (Objective 1.3)

❑ Arrays can hold primitives or objects, but the array itself is always an object.

❑ When you declare an array, the brackets can be to the left or right of the
variable name.

❑ It is never legal to include the size of an array in the declaration.

❑ An array of objects can hold any object that passes the IS-A (or instanceof)
test for the declared type of the array. For example, if Horse extends Animal,
then a Horse object can go into an Animal array.

Static Variables and Methods (Objective 1.4)

❑ They are not tied to any particular instance of a class.

❑ No classes instances are needed in order to use static members of the class.

❑ There is only one copy of a static variable / class and all instances share it.

❑ static methods do not have direct access to non-static members.

Enums (Objective 1.3)

❑ An enum specifies a list of constant values assigned to a type.

❑ An enum is NOT a String or an int; an enum constant's type is the enum
type. For example, SUMMER and FALL are of the enum type Season.

❑ An enum can be declared outside or inside a class, but NOT in a method.

❑ An enum declared outside a class must NOT be marked static, final,
abstract, protected, or private.

❑ Enums can contain constructors, methods, variables, and constant class bodies.

❑ enum constants can send arguments to the enum constructor, using the
syntax BIG(8), where the int literal 8 is passed to the enum constructor.

❑ enum constructors can have arguments, and can be overloaded.

❑ enum constructors can NEVER be invoked directly in code. They are always
called automatically when an enum is initialized.

❑ The semicolon at the end of an enum declaration is optional. These are legal:

 enum Foo { ONE, TWO, THREE}

enum Foo { ONE, TWO, THREE};

❑ MyEnum.values() returns an array of MyEnum's values.

Two-Minute Drill 73

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question. Stay focused.

If you have a rough time with these at first, don't beat yourself up. Be positive. Repeat nice
affirmations to yourself like, "I am smart enough to understand enums" and "OK, so that other guy
knows enums better than I do, but I bet he can't <insert something you are good at> like me."

 1. Which is true? (Choose all that apply.)

 A. "X extends Y" is correct if and only if X is a class and Y is an interface

 B. "X extends Y" is correct if and only if X is an interface and Y is a class

 C. "X extends Y" is correct if X and Y are either both classes or both interfaces

 D. "X extends Y" is correct for all combinations of X and Y being classes and/or interfaces

 2. Which method names follow the JavaBeans standard? (Choose all that apply.)
 A. addSize

 B. getCust

 C. deleteRep

 D. isColorado

 E. putDimensions

 3. Given:
1. class Voop {
2. public static void main(String [] args) {
3. doStuff(1);
4. doStuff(1,2);
5. }
6. // insert code here
7. }

 Which, inserted independently at line 6, will compile? (Choose all that apply.)

 A. static void doStuff(int... doArgs) { }

 B. static void doStuff(int[] doArgs) { }

 C. static void doStuff(int doArgs...) { }

 D. static void doStuff(int... doArgs, int y) { }

 E. static void doStuff(int x, int... doArgs) { }

74 Chapter 1: Declarations and Access Control

 4. Given:
 1. enum Animals {
 2. DOG("woof"), CAT("meow"), FISH("burble");
 3. String sound;
 4. Animals(String s) { sound = s; }
 5. }
 6. class TestEnum {
 7. static Animals a;
 8. public static void main(String[] args) {
 9. System.out.println(a.DOG.sound + " " + a.FISH.sound);
10. }
11. }

 What is the result?

 A. woof burble

 B. Multiple compilation errors

 C. Compilation fails due to an error on line 2

 D. Compilation fails due to an error on line 3

 E. Compilation fails due to an error on line 4

 F. Compilation fails due to an error on line 9

 5. Given two files:
 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. public int c = 7;
 6. }

 3. package pkgB;
 4. import pkgA.*;
 5. public class Baz {
 6. public static void main(String[] args) {
 7. Foo f = new Foo();
 8. System.out.print(" " + f.a);
 9. System.out.print(" " + f.b);
10. System.out.println(" " + f.c);
11. }
12. }

Self Test 75

76 Chapter 1: Declarations and Access Control

 What is the result? (Choose all that apply.)

 A. 5 6 7

 B. 5 followed by an exception

 C. Compilation fails with an error on line 7

 D. Compilation fails with an error on line 8

 E. Compilation fails with an error on line 9

 F. Compilation fails with an error on line 10

 6. Given:
 1. public class Electronic implements Device
 { public void doIt() { } }
 2.
 3. abstract class Phone1 extends Electronic { }
 4.
 5. abstract class Phone2 extends Electronic
 { public void doIt(int x) { } }
 6.
 7. class Phone3 extends Electronic implements Device
 { public void doStuff() { } }
 8.
 9. interface Device { public void doIt(); }

 What is the result? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails with an error on line 1

 C. Compilation fails with an error on line 3

 D. Compilation fails with an error on line 5

 E. Compilation fails with an error on line 7

 F. Compilation fails with an error on line 9

 7. Given:
 4. class Announce {
 5. public static void main(String[] args) {
 6. for(int __x = 0; __x < 3; __x++) ;
 7. int #lb = 7;

Self Test 77

 8. long [] x [5];
 9. Boolean []ba[];
10. enum Traffic { RED, YELLOW, GREEN };
11. }
12. }

 What is the result? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails with an error on line 6

 C. Compilation fails with an error on line 7

 D. Compilation fails with an error on line 8

 E. Compilation fails with an error on line 9

 F. Compilation fails with an error on line 10

 8. Given:
 3. public class TestDays {
 4. public enum Days { MON, TUE, WED };
 5. public static void main(String[] args) {
 6. for(Days d : Days.values())
 7. ;
 8. Days [] d2 = Days.values();
 9. System.out.println(d2[2]);
10. }
11. }

 What is the result? (Choose all that apply.)

 A. TUE

 B. WED

 C. The output is unpredictable

 D. Compilation fails due to an error on line 4

 E. Compilation fails due to an error on line 6

 F. Compilation fails due to an error on line 8

 G. Compilation fails due to an error on line 9

78 Chapter 1: Declarations and Access Control

 9. Given:
 4. public class Frodo extends Hobbit {
 5. public static void main(String[] args) {
 6. Short myGold = 7;
 7. System.out.println(countGold(myGold, 6));
 8. }
 9. }
10. class Hobbit {
11. int countGold(int x, int y) { return x + y; }
12. }

 What is the result?

 A. 13

 B. Compilation fails due to multiple errors

 C. Compilation fails due to an error on line 6

 D. Compilation fails due to an error on line 7

 E. Compilation fails due to an error on line 11

SELF TEST ANSWERS
 1. Which is true? (Choose all that apply.)

 A. "X extends Y" is correct if and only if X is a class and Y is an interface

 B. "X extends Y" is correct if and only if X is an interface and Y is a class

 C. "X extends Y" is correct if X and Y are either both classes or both interfaces

 D. "X extends Y" is correct for all combinations of X and Y being classes and/or interfaces

 Answer:

 ® ✓ C is correct.

 ®̊ A is incorrect because classes implement interfaces, they don't extend them. B is incorrect
because interfaces only "inherit from" other interfaces. D is incorrect based on the
preceding rules. (Objective 1.2)

 2. Which method names follow the JavaBeans standard? (Choose all that apply.)
 A. addSize

 B. getCust

 C. deleteRep

 D. isColorado

 E. putDimensions

 Answer:

 ® ✓ B and D use the valid prefixes 'get' and 'is'.

 ®̊ A is incorrect because 'add' can be used only with Listener methods. C and E are
incorrect because 'delete' and 'put' are not standard JavaBeans name prefixes.
(Objective 1.4)

 3. Given:
1. class Voop {
2. public static void main(String[] args) {
3. doStuff(1);
4. doStuff(1,2);
5. }
6. // insert code here
7. }

Self Test Answers 79

80 Chapter 1: Declarations and Access Control

 Which, inserted independently at line 6, will compile? (Choose all that apply.)
 A. static void doStuff(int... doArgs) { }

 B. static void doStuff(int[] doArgs) { }

 C. static void doStuff(int doArgs...) { }

 D. static void doStuff(int... doArgs, int y) { }

 E. static void doStuff(int x, int... doArgs) { }

 Answer:

 ® ✓ A and E use valid var-args syntax.

 ®̊ B and C are invalid var-arg syntax, and D is invalid because the var-arg must be the last
of a method's arguments. (Objective 1.4)

 4. Given:
 1. enum Animals {
 2. DOG("woof"), CAT("meow"), FISH("burble");
 3. String sound;
 4. Animals(String s) { sound = s; }
 5. }
 6. class TestEnum {
 7. static Animals a;
 8. public static void main(String [] args) {
 9. System.out.println(a.DOG.sound + " " + a.FISH.sound);
10. }
11. }

 What is the result?

 A. woof burble

 B. Multiple compilation errors

 C. Compilation fails due to an error on line 2

 D. Compilation fails due to an error on line 3

 E. Compilation fails due to an error on line 4

 F. Compilation fails due to an error on line 9

 Answer:

 ® ✓ A is correct; enums can have constructors and variables.

 ®̊ B, C, D, E, and F are incorrect; these lines all use correct syntax. (Objective 1.3)

 5. Given two files:
 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. public int c = 7;
 6. }

 3. package pkgB;
 4. import pkgA.*;
 5. public class Baz {
 6. public static void main(String[] args) {
 7. Foo f = new Foo();
 8. System.out.print(" " + f.a);
 9. System.out.print(" " + f.b);
10. System.out.print(" " + f.c);
11. }
12. }

 What is the result? (Choose all that apply.)

 A. 5 6 7

 B. 5 followed by an exception

 C. Compilation fails with an error on line 7

 D. Compilation fails with an error on line 8

 E. Compilation fails with an error on line 9

 F. Compilation fails with an error on line 10

 Answer:

 ® ✓ D and E are correct. Variable a has default access, so it cannot be accessed from outside the
package. Variable b has protected access in pkgA.

 ®̊ A, B, C, and F are incorrect based on the above information. (Objective 1.1)

 6. Given:
 1. public class Electronic implements Device
 { public void doIt() { } }
 2.
 3. abstract class Phone1 extends Electronic { }
 4.
 5. abstract class Phone2 extends Electronic
 { public void doIt(int x) { } }
 6.

Self Test Answers 81

82 Chapter 1: Declarations and Access Control

 7. class Phone3 extends Electronic implements Device
 { public void doStuff() { } }
 8.
 9. interface Device { public void doIt(); }

 What is the result? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails with an error on line 1

 C. Compilation fails with an error on line 3

 D. Compilation fails with an error on line 5

 E. Compilation fails with an error on line 7

 F. Compilation fails with an error on line 9

 Answer:

 ® ✓ A is correct; all of these are legal declarations.

 ®̊ B, C, D, E, and F are incorrect based on the above information. (Objective 1.2)

 7. Given:
 4. class Announce {
 5. public static void main(String[] args) {
 6. for(int __x = 0; __x < 3; __x++) ;
 7. int #lb = 7;
 8. long [] x [5];
 9. Boolean []ba[];
10. enum Traffic { RED, YELLOW, GREEN };
11. }
12. }

 What is the result? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails with an error on line 6

 C. Compilation fails with an error on line 7

 D. Compilation fails with an error on line 8

 E. Compilation fails with an error on line 9

 F. Compilation fails with an error on line 10

Self Test Answers 83

 Answer:

 ® ✓ C, D, and F are correct. Variable names cannot begin with a #, an array declaration can’t
include a size without an instantiation, and enums can’t be declared within a method.

 ®̊ A, B, and E are incorrect based on the above information. (Objective 1.3)

 8. Given:
 3. public class TestDays {
 4. public enum Days { MON, TUE, WED };
 5. public static void main(String[] args) {
 6. for(Days d : Days.values())
 7. ;
 8. Days [] d2 = Days.values();
 9. System.out.println(d2[2]);
10. }
11. }

 What is the result? (Choose all that apply.)

 A. TUE

 B. WED

 C. The output is unpredictable

 D. Compilation fails due to an error on line 4

 E. Compilation fails due to an error on line 6

 F. Compilation fails due to an error on line 8

 G. Compilation fails due to an error on line 9

 Answer:

 ® ✓ B is correct. Every enum comes with a static values() method that returns an array
of the enum's values, in the order in which they are declared in the enum.

 ®̊ A, C, D, E, F, and G are incorrect based on the above information. (Objective 1.3)

 9. Given:
 4. public class Frodo extends Hobbit {
 5. public static void main(String[] args) {
 6. Short myGold = 7;
 7. System.out.println(countGold(myGold, 6));
 8. }
 9. }
10. class Hobbit {
11. int countGold(int x, int y) { return x + y; }
12. }

84 Chapter 1: Declarations and Access Control

 What is the result?

 A. 13

 B. Compilation fails due to multiple errors

 C. Compilation fails due to an error on line 6

 D. Compilation fails due to an error on line 7

 E. Compilation fails due to an error on line 11

 Answer:

 ® ✓ D is correct. The Short myGold is autoboxed correctly, but the countGold() method
cannot be invoked from a static context.

 ®̊ A, B, C, and E are incorrect based on the above information. (Objective 1.4)

2
Object
Orientation

CERTIFICATION OBJECTIVES

 l Declare Interfaces

 l Declare, Initialize, and Use
 Class Members

 l Use Overloading and Overriding

l Develop Constructors

 l Describe Encapsulation, Coupling,
 and Cohesion

l Use Polymorphism

 l Relate Modifiers and Inheritance

 l Use Superclass Constructors and
 Overloaded Constructors

 l Use IS-A and HAS-A Relationships
✓ Two-Minute Drill

 Q&A Self Test

86 Chapter 2: Object Orientation

Being an SCJP 6 means you must be at one with the object-oriented aspects of Java. You
must dream of inheritance hierarchies, the power of polymorphism must flow through
you, cohesion and loose coupling must become second nature to you, and composition

must be your bread and butter. This chapter will prepare you for all of the object-oriented
objectives and questions you'll encounter on the exam. We have heard of many experienced Java
programmers who haven't really become fluent with the object-oriented tools that Java provides,
so we'll start at the beginning.

CERTIFICATION OBJECTIVE

Encapsulation (Exam Objective 5.1)
5.1 Develop code that implements tight encapsulation, loose coupling, and high cohesion
in classes, and describe the benefits.

Imagine you wrote the code for a class, and another dozen programmers from
your company all wrote programs that used your class. Now imagine that later on,
you didn't like the way the class behaved, because some of its instance variables
were being set (by the other programmers from within their code) to values you
hadn't anticipated. Their code brought out errors in your code. (Relax, this is just
hypothetical.) Well, it is a Java program, so you should be able just to ship out a
newer version of the class, which they could replace in their programs without
changing any of their own code.

This scenario highlights two of the promises/benefits of Object Orientation (OO):
flexibility and maintainability. But those benefits don't come automatically. You
have to do something. You have to write your classes and code in a way that supports
flexibility and maintainability. So what if Java supports OO? It can't design your
code for you. For example, imagine if you made your class with public instance
variables, and those other programmers were setting the instance variables directly,
as the following code demonstrates:

public class BadOO {
 public int size;

Encapsulation (Exam Objective 5.1) 87

 public int weight;
 ...
}
public class ExploitBadOO {
 public static void main (String [] args) {
 BadOO b = new BadOO();
 b.size = -5; // Legal but bad!!
 }
}

And now you're in trouble. How are you going to change the class in a way that
lets you handle the issues that come up when somebody changes the size variable
to a value that causes problems? Your only choice is to go back in and write method
code for adjusting size (a setSize(int a) method, for example), and then
protect the size variable with, say, a private access modifier. But as soon as you
make that change to your code, you break everyone else's!

The ability to make changes in your implementation code without breaking the
code of others who use your code is a key benefit of encapsulation. You want to
hide implementation details behind a public programming interface. By interface,
we mean the set of accessible methods your code makes available for other code to
call—in other words, your code's API. By hiding implementation details, you can
rework your method code (perhaps also altering the way variables are used by your
class) without forcing a change in the code that calls your changed method.

If you want maintainability, flexibility, and extensibility (and of course, you do),
your design must include encapsulation. How do you do that?

■ Keep instance variables protected (with an access modifier, often private).

■ Make public accessor methods, and force calling code to use those methods
rather than directly accessing the instance variable.

■ For the methods, use the JavaBeans naming convention of
set<someProperty> and get<someProperty>.

Figure 2-1 illustrates the idea that encapsulation forces callers of our code to go
through methods rather than accessing variables directly.

 FIGURE 2-1

The nature of
encapsulation

We call the access methods getters and setters although some prefer the fancier
terms accessors and mutators. (Personally, we don't like the word "mutate".)
Regardless of what you call them, they're methods that other programmers must go
through in order to access your instance variables. They look simple, and you've
probably been using them forever:

public class Box {
 // protect the instance variable; only an instance
 // of Box can access it
 private int size;
 // Provide public getters and setters
 public int getSize() {
 return size;

88 Chapter 2: Object Orientation

Class A

B b = new B();

getSize()

setSize()

getName()

setName()

getColor()

setColor()

int x = b.getSize();

b.setSize(34);

b.setName("Fred");

b.setColor(blue);

String s = b.getName();

Color c = b.getColor();

Class B

size

name

color

Class A cannot access Class B instance variable data
without going through getter and setter methods. Data is

marked private; only the accessor methods are public.

privatepublic

 }
 public void setSize(int newSize) {
 size = newSize;
 }
}

Wait a minute...how useful is the previous code? It doesn't even do any validation
or processing. What benefit can there be from having getters and setters that add
no additional functionality? The point is, you can change your mind later, and add
more code to your methods without breaking your API. Even if today you don't
think you really need validation or processing of the data, good OO design dictates
that you plan for the future. To be safe, force calling code to go through your
methods rather than going directly to instance variables. Always. Then you're free to
rework your method implementations later, without risking the wrath of those dozen
programmers who know where you live.

Encapsulation (Exam Objective 5.1) 89

Look out for code that appears to be asking about the behavior of a
method, when the problem is actually a lack of encapsulation. Look at the following
example, and see if you can fi gure out what’s going on:

class Foo {
 public int left = 9;
 public int right = 3;
 public void setLeft(int leftNum) {
 left = leftNum;
 right = leftNum/3;
 }
 // lots of complex test code here
}

Now consider this question: Is the value of right always going to be one-
third the value of left? It looks like it will, until you realize that users of the Foo class
don’t need to use the setLeft() method! They can simply go straight to the instance
variables and change them to any arbitrary int value.

CERTIFICATION OBJECTIVE

Inheritance, Is-A, Has-A (Exam Objective 5.5)
5.5 Develop code that implements "is-a" and/or "has-a" relationships.

Inheritance is everywhere in Java. It's safe to say that it's almost (almost?)
impossible to write even the tiniest Java program without using inheritance. In order
to explore this topic we're going to use the instanceof operator, which we'll discuss
in more detail in Chapter 4. For now, just remember that instanceof returns true
if the reference variable being tested is of the type being compared to. This code:

class Test {
 public static void main(String [] args) {
 Test t1 = new Test();
 Test t2 = new Test();
 if (!t1.equals(t2))
 System.out.println("they're not equal");
 if (t1 instanceof Object)
 System.out.println("t1's an Object");
 }
}

Produces the output:

they're not equal
t1's an Object

Where did that equals method come from? The reference variable t1 is of type
Test, and there's no equals method in the Test class. Or is there? The second if
test asks whether t1 is an instance of class Object, and because it is (more on that
soon), the if test succeeds.

Hold on…how can t1 be an instance of type Object, we just said it was of type
Test? I'm sure you're way ahead of us here, but it turns out that every class in Java is
a subclass of class Object, (except of course class Object itself). In other words, every
class you'll ever use or ever write will inherit from class Object. You'll always have
an equals method, a clone method, notify, wait, and others, available to use.
Whenever you create a class, you automatically inherit all of class Object's methods.

90 Chapter 2: Object Orientation

Why? Let's look at that equals method for instance. Java's creators correctly
assumed that it would be very common for Java programmers to want to compare
instances of their classes to check for equality. If class Object didn't have an equals
method, you'd have to write one yourself; you and every other Java programmer.
That one equals method has been inherited billions of times. (To be fair, equals
has also been overridden billions of times, but we're getting ahead of ourselves.)

For the exam you'll need to know that you can create inheritance relationships
in Java by extending a class. It's also important to understand that the two most
common reasons to use inheritance are

■ To promote code reuse

■ To use polymorphism

Let's start with reuse. A common design approach is to create a fairly generic
version of a class with the intention of creating more specialized subclasses that
inherit from it. For example:

class GameShape {
 public void displayShape() {
 System.out.println("displaying shape");
 }
 // more code
}

class PlayerPiece extends GameShape {
 public void movePiece() {
 System.out.println("moving game piece");
 }
 // more code
}

public class TestShapes {
 public static void main (String[] args) {
 PlayerPiece shape = new PlayerPiece();
 shape.displayShape();
 shape.movePiece();
 }
}

Inheritance, Is-A, Has-A (Exam Objective 5.5) 91

Outputs:

displaying shape
moving game piece

Notice that the PlayingPiece class inherits the generic display() method
from the less-specialized class GameShape, and also adds its own method,
movePiece(). Code reuse through inheritance means that methods with generic
functionality (like display())—that could apply to a wide range of different kinds
of shapes in a game—don't have to be reimplemented. That means all specialized
subclasses of GameShape are guaranteed to have the capabilities of the more generic
superclass. You don't want to have to rewrite the display() code in each of your
specialized components of an online game.

But you knew that. You've experienced the pain of duplicate code when you make
a change in one place and have to track down all the other places where that same
(or very similar) code exists.

The second (and related) use of inheritance is to allow your classes to be accessed
polymorphically—a capability provided by interfaces as well, but we'll get to that
in a minute. Let's say that you have a GameLauncher class that wants to loop
through a list of different kinds of GameShape objects, and invoke display() on
each of them. At the time you write this class, you don't know every possible kind
of GameShape subclass that anyone else will ever write. And you sure don't want
to have to redo your code just because somebody decided to build a Dice shape six
months later.

The beautiful thing about polymorphism ("many forms") is that you can treat any
subclass of GameShape as a GameShape. In other words, you can write code in your
GameLauncher class that says, "I don't care what kind of object you are as long as
you inherit from (extend) GameShape. And as far as I'm concerned, if you extend
GameShape then you've definitely got a display() method, so I know I can call it."

Imagine we now have two specialized subclasses that extend the more generic
GameShape class, PlayerPiece and TilePiece:

class GameShape {
 public void displayShape() {
 System.out.println("displaying shape");
 }
 // more code
}

92 Chapter 2: Object Orientation

class PlayerPiece extends GameShape {
 public void movePiece() {
 System.out.println("moving game piece");
 }
 // more code
}

class TilePiece extends GameShape {
 public void getAdjacent() {
 System.out.println("getting adjacent tiles");
 }
 // more code
}

Now imagine a test class has a method with a declared argument type of
GameShape, that means it can take any kind of GameShape. In other words,
any subclass of GameShape can be passed to a method with an argument of type
GameShape. This code

public class TestShapes {
 public static void main (String[] args) {
 PlayerPiece player = new PlayerPiece();
 TilePiece tile = new TilePiece();
 doShapes(player);
 doShapes(tile);
 }

 public static void doShapes(GameShape shape) {
 shape.displayShape();
 }
}

Outputs:

displaying shape
displaying shape

The key point is that the doShapes() method is declared with a GameShape
argument but can be passed any subtype (in this example, a subclass) of GameShape.
The method can then invoke any method of GameShape, without any concern
for the actual runtime class type of the object passed to the method. There are

Inheritance, Is-A, Has-A (Exam Objective 5.5) 93

implications, though. The doShapes() method knows only that the objects are
a type of GameShape, since that's how the parameter is declared. And using a
reference variable declared as type GameShape—regardless of whether the variable
is a method parameter, local variable, or instance variable—means that only the
methods of GameShape can be invoked on it. The methods you can call on a
reference are totally dependent on the declared type of the variable, no matter what
the actual object is, that the reference is referring to. That means you can't use a
GameShape variable to call, say, the getAdjacent() method even if the object
passed in is of type TilePiece. (We'll see this again when we look at interfaces.)

IS-A and HAS-A Relationships
For the exam you need to be able to look at code and determine whether the code
demonstrates an IS-A or HAS-A relationship. The rules are simple, so this should be
one of the few areas where answering the questions correctly is almost a no-brainer.

IS-A
In OO, the concept of IS-A is based on class inheritance or interface
implementation. IS-A is a way of saying, "this thing is a type of that thing." For
example, a Mustang is a type of horse, so in OO terms we can say, "Mustang IS-A
Horse." Subaru IS-A Car. Broccoli IS-A Vegetable (not a very fun one, but it still
counts). You express the IS-A relationship in Java through the keywords extends
(for class inheritance) and implements (for interface implementation).

public class Car {
 // Cool Car code goes here
}

public class Subaru extends Car {
 // Important Subaru-specific stuff goes here
 // Don't forget Subaru inherits accessible Car members which
 // can include both methods and variables.
}

A Car is a type of Vehicle, so the inheritance tree might start from the Vehicle
class as follows:

public class Vehicle { ... }
public class Car extends Vehicle { ... }
public class Subaru extends Car { ... }

94 Chapter 2: Object Orientation

In OO terms, you can say the following:

Vehicle is the superclass of Car.
Car is the subclass of Vehicle.
Car is the superclass of Subaru.
Subaru is the subclass of Vehicle.
Car inherits from Vehicle.
Subaru inherits from both Vehicle and Car.
Subaru is derived from Car.
Car is derived from Vehicle.
Subaru is derived from Vehicle.
Subaru is a subtype of both Vehicle and Car.

Returning to our IS-A relationship, the following statements are true:

"Car extends Vehicle" means "Car IS-A Vehicle."
"Subaru extends Car" means "Subaru IS-A Car."

And we can also say:

"Subaru IS-A Vehicle" because a class is said to be "a type of" anything further up
in its inheritance tree. If the expression (Foo instanceof Bar) is true, then class
Foo IS-A Bar, even if Foo doesn't directly extend Bar, but instead extends some
other class that is a subclass of Bar. Figure 2-2 illustrates the inheritance tree for
Vehicle, Car, and Subaru. The arrows move from the subclass to the superclass.
In other words, a class' arrow points toward the class from which it extends.

 FIGURE 2-2

Inheritance tree
for Vehicle, Car,
Subaru

IS-A (Exam Objective 5.5) 95

Vehicle

Car extends Vehicle

Subaru extends Car

HAS-A
HAS-A relationships are based on usage, rather than inheritance. In other words,
class A HAS-A B if code in class A has a reference to an instance of class B. For
example, you can say the following,

A Horse IS-A Animal. A Horse HAS-A Halter.
The code might look like this:

public class Animal { }
public class Horse extends Animal {
 private Halter myHalter;
}

In the preceding code, the Horse class has an instance variable of type Halter, so
you can say that "Horse HAS-A Halter." In other words, Horse has a reference to a
Halter. Horse code can use that Halter reference to invoke methods on the Halter,
and get Halter behavior without having Halter-related code (methods) in the Horse
class itself. Figure 2-3 illustrates the HAS-A relationship between Horse and Halter.

 FIGURE 2-3

HAS-A
relationship
between Horse
and Halter

HAS-A relationships allow you to design classes that follow good OO practices
by not having monolithic classes that do a gazillion different things. Classes (and
their resulting objects) should be specialists. As our friend Andrew says, "specialized
classes can actually help reduce bugs." The more specialized the class, the more
likely it is that you can reuse the class in other applications. If you put all the
Halter-related code directly into the Horse class, you'll end up duplicating code
in the Cow class, UnpaidIntern class, and any other class that might need Halter
behavior. By keeping the Halter code in a separate, specialized Halter class, you
have the chance to reuse the Halter class in multiple applications.

96 Chapter 2: Object Orientation

Horse

Halter halt

tie(Rope r) tie(Rope r)

Halter

Horse class has a Halter, because Horse
declares an instance variable of type Halter.
When code invokes tie() on a Horse instance,
the Horse invokes tie() on the Horse
object’s Halter instance variable.

HAS-A (Exam Objective 5.5) 97

Object-Oriented Design

IS-A and HAS-A relationships and
encapsulation are just the tip of the iceberg
when it comes to object-oriented design.
Many books and graduate theses have been
dedicated to this topic. The reason for the
emphasis on proper design is simple: money.
The cost to deliver a software application has
been estimated to be as much as ten times more
expensive for poorly designed programs. Having
seen the ramifications of poor designs, I can
assure you that this estimate is not far-fetched.
 Even the best object-oriented designers
make mistakes. It is difficult to visualize the
relationships between hundreds, or even
thousands, of classes. When mistakes are
discovered during the implementation (code
writing) phase of a project, the amount of code
that has to be rewritten can sometimes cause
programming teams to start over from scratch.
 The software industry has evolved to aid the
designer. Visual object modeling languages, like
the Unified Modeling Language (UML), allow
designers to design and easily modify classes
without having to write code first,

because object-oriented components
are represented graphically. This allows
the designer to create a map of the class
relationships and helps them recognize errors
before coding begins. Another innovation
in object-oriented design is design patterns.
Designers noticed that many object-oriented
designs apply consistently from project to
project, and that it was useful to apply the same
designs because it reduced the potential to
introduce new design errors. Object-oriented
designers then started to share these designs
with each other. Now, there are many catalogs
of these design patterns both on the Internet
and in book form.
 Although passing the Java certification exam
does not require you to understand object-
oriented design this thoroughly, hopefully
this background information will help you
better appreciate why the test writers chose to
include encapsulation, and IS-A, and HAS-A
relationships on the exam.

—Jonathan Meeks, Sun Certified Java Programmer

FROM THE CLASSROOM

98 Chapter 2: Object Orientation

Users of the Horse class (that is, code that calls methods on a Horse instance),
think that the Horse class has Halter behavior. The Horse class might have a
tie(LeadRope rope) method, for example. Users of the Horse class should never
have to know that when they invoke the tie() method, the Horse object turns
around and delegates the call to its Halter class by invoking myHalter.tie(rope).
The scenario just described might look like this:

public class Horse extends Animal {
 private Halter myHalter = new Halter();
 public void tie(LeadRope rope) {
 myHalter.tie(rope); // Delegate tie behavior to the
 // Halter object
 }
}
public class Halter {
 public void tie(LeadRope aRope) {
 // Do the actual tie work here
 }
}

In OO, we don't want callers to worry about which class or which object
is actually doing the real work. To make that happen, the Horse class hides
implementation details from Horse users. Horse users ask the Horse object to
do things (in this case, tie itself up), and the Horse will either do it or, as in this
example, ask something else to do it. To the caller, though, it always appears that
the Horse object takes care of itself. Users of a Horse should not even need to know
that there is such a thing as a Halter class.

CERTIFICATION OBJECTIVE

Polymorphism (Exam Objective 5.2)
5.2 Given a scenario, develop code that demonstrates the use of polymorphism. Further,
determine when casting will be necessary and recognize compiler vs. runtime errors related
to object reference casting.

Polymorphism (Exam Objective 5.2) 99

Remember, any Java object that can pass more than one IS-A test can be
considered polymorphic. Other than objects of type Object, all Java objects are
polymorphic in that they pass the IS-A test for their own type and for class Object.

 Remember that the only way to access an object is through a reference variable,
and there are a few key things to remember about references:

■ A reference variable can be of only one type, and once declared, that type
can never be changed (although the object it references can change).

■ A reference is a variable, so it can be reassigned to other objects, (unless the
reference is declared final).

■ A reference variable's type determines the methods that can be invoked on
the object the variable is referencing.

■ A reference variable can refer to any object of the same type as the declared
reference, or—this is the big one—it can refer to any subtype of the
declared type!

■ A reference variable can be declared as a class type or an interface type. If
the variable is declared as an interface type, it can reference any object of any
class that implements the interface.

Earlier we created a GameShape class that was extended by two other classes,
PlayerPiece and TilePiece. Now imagine you want to animate some of the
shapes on the game board. But not all shapes can be animatable, so what do you do
with class inheritance?

Could we create a class with an animate() method, and have only some of
the GameShape subclasses inherit from that class? If we can, then we could have
PlayerPiece, for example, extend both the GameShape class and Animatable class,
while the TilePiece would extend only GameShape. But no, this won't work! Java
supports only single inheritance! That means a class can have only one immediate
superclass. In other words, if PlayerPiece is a class, there is no way to say
something like this:

class PlayerPiece extends GameShape, Animatable { // NO!
 // more code
}

A class cannot extend more than one class. That means one parent per class. A
class can have multiple ancestors, however, since class B could extend class A, and
class C could extend class B, and so on. So any given class might have multiple
classes up its inheritance tree, but that's not the same as saying a class directly
extends two classes.

Some languages (like C++) allow a class to extend more than one other class.
This capability is known as "multiple inheritance." The reason that Java's
creators chose not to allow multiple inheritance is that it can become quite
messy. In a nutshell, the problem is that if a class extended two other classes,
and both superclasses had, say, a doStuff() method, which version of doStuff()
would the subclass inherit? This issue can lead to a scenario known as the
"Deadly Diamond of Death," because of the shape of the class diagram that
can be created in a multiple inheritance design. The diamond is formed when
classes B and C both extend A, and both B and C inherit a method from A. If
class D extends both B and C, and both B and C have overridden the method
in A, class D has, in theory, inherited two different implementations of the
same method. Drawn as a class diagram, the shape of the four classes looks
like a diamond.

So if that doesn't work, what else could you do? You could simply put the
animate() code in GameShape, and then disable the method in classes that can't be
animated. But that's a bad design choice for many reasons, including it's more error-
prone, it makes the GameShape class less cohesive (more on cohesion in a minute),
and it means the GameShape API "advertises" that all shapes can be animated, when
in fact that's not true since only some of the GameShape subclasses will be able to
successfully run the animate() method.

So what else could you do? You already know the answer—create an Animatable
interface, and have only the GameShape subclasses that can be animated implement
that interface. Here's the interface:

public interface Animatable {
 public void animate();
}

And here's the modified PlayerPiece class that implements the interface:

100 Chapter 2: Object Orientation

Polymorphism (Exam Objective 5.2) 101

class PlayerPiece extends GameShape implements Animatable {
 public void movePiece() {
 System.out.println("moving game piece");
 }
 public void animate() {
 System.out.println("animating...");
 }
 // more code

}

So now we have a PlayerPiece that passes the IS-A test for both the
GameShape class and the Animatable interface. That means a PlayerPiece can be
treated polymorphically as one of four things at any given time, depending on the
declared type of the reference variable:

■ An Object (since any object inherits from Object)

■ A GameShape (since PlayerPiece extends GameShape)

■ A PlayerPiece (since that's what it really is)

■ An Animatable (since PlayerPiece implements Animatable)

The following are all legal declarations. Look closely:

 PlayerPiece player = new PlayerPiece();
 Object o = player;
 GameShape shape = player;

 Animatable mover = player;

There's only one object here—an instance of type PlayerPiece—but there
are four different types of reference variables, all referring to that one object on
the heap. Pop quiz: which of the preceding reference variables can invoke the
displayShape() method? Hint: only two of the four declarations can be used to
invoke the displayShape() method.

Remember that method invocations allowed by the compiler are based solely on
the declared type of the reference, regardless of the object type. So looking at the
four reference types again—Object, GameShape, PlayerPiece, and Animatable—
which of these four types know about the displayShape() method?

You guessed it—both the GameShape class and the PlayerPiece class are known
(by the compiler) to have a displayShape() method, so either of those reference types

can be used to invoke displayShape(). Remember that to the compiler, a
PlayerPiece IS-A GameShape, so the compiler says, "I see that the declared
type is PlayerPiece, and since PlayerPiece extends GameShape, that means
PlayerPiece inherited the displayShape() method. Therefore, PlayerPiece
can be used to invoke the displayShape() method."

Which methods can be invoked when the PlayerPiece object is being referred
to using a reference declared as type Animatable? Only the animate() method.
Of course the cool thing here is that any class from any inheritance tree can also
implement Animatable, so that means if you have a method with an argument
declared as type Animatable, you can pass in PlayerPiece objects, SpinningLogo
objects, and anything else that's an instance of a class that implements Animatable.
And you can use that parameter (of type Animatable) to invoke the animate()
method, but not the displayShape() method (which it might not even have), or
anything other than what is known to the compiler based on the reference type. The
compiler always knows, though, that you can invoke the methods of class Object on
any object, so those are safe to call regardless of the reference—class or interface—
used to refer to the object.

We've left out one big part of all this, which is that even though the compiler
only knows about the declared reference type, the Java Virtual Machine (JVM)
at runtime knows what the object really is. And that means that even if the
PlayerPiece object's displayShape() method is called using a GameShape
reference variable, if the PlayerPiece overrides the displayShape() method, the
JVM will invoke the PlayerPiece version! The JVM looks at the real object at the
other end of the reference, "sees" that it has overridden the method of the declared
reference variable type, and invokes the method of the object's actual class. But one
other thing to keep in mind:

Polymorphic method invocations apply only to instance methods. You can
always refer to an object with a more general reference variable type (a su-
perclass or interface), but at runtime, the ONLY things that are dynamically
selected based on the actual object (rather than the reference type) are instance
methods. Not static methods. Not variables. Only overridden instance meth-
ods are dynamically invoked based on the real object's type.

Since this definition depends on a clear understanding of overriding, and the
distinction between static methods and instance methods, we'll cover those next.

102 Chapter 2: Object Orientation

CERTIFICATION OBJECTIVE

Overriding / Overloading
(Exam Objectives 1.5 and 5.4)

1.5 Given a code example, determine if a method is correctly overriding or overloading
another method, and identify legal return values (including covariant returns), for the
method.

5.4 Given a scenario, develop code that declares and/or invokes overridden or overloaded
methods and code that declares and/or invokes superclass, overridden, or overloaded
constructors.

Overridden Methods
Any time you have a class that inherits a method from a superclass, you have the
opportunity to override the method (unless, as you learned earlier, the method is
marked final). The key benefit of overriding is the ability to define behavior that's
specific to a particular subclass type. The following example demonstrates a Horse
subclass of Animal overriding the Animal version of the eat() method:

public class Animal {
 public void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
class Horse extends Animal {
 public void eat() {
 System.out.println("Horse eating hay, oats, "
 + "and horse treats");
 }
}

For abstract methods you inherit from a superclass, you have no choice. You must
implement the method in the subclass unless the subclass is also abstract. Abstract
methods must be implemented by the concrete subclass, but this is a lot like saying
that the concrete subclass overrides the abstract methods of the superclass. So you
could think of abstract methods as methods you're forced to override.

Overridden Methods (Exam Objectives 1.5 and 5.4) 103

The Animal class creator might have decided that for the purposes of
polymorphism, all Animal subtypes should have an eat() method defined in a
unique, specific way. Polymorphically, when someone has an Animal reference that
refers not to an Animal instance, but to an Animal subclass instance, the caller
should be able to invoke eat() on the Animal reference, but the actual runtime
object (say, a Horse instance) will run its own specific eat() method. Marking the
eat() method abstract is the Animal programmer's way of saying to all subclass
developers, "It doesn't make any sense for your new subtype to use a generic eat()
method, so you have to come up with your own eat() method implementation!"
A (non-abstract), example of using polymorphism looks like this:

public class TestAnimals {
 public static void main (String [] args) {
 Animal a = new Animal();
 Animal b = new Horse(); //Animal ref, but a Horse object
 a.eat(); // Runs the Animal version of eat()
 b.eat(); // Runs the Horse version of eat()
 }
}
class Animal {
 public void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
class Horse extends Animal {
 public void eat() {
 System.out.println("Horse eating hay, oats, "
 + "and horse treats");
 }
 public void buck() { }
}

In the preceding code, the test class uses an Animal reference to invoke a method
on a Horse object. Remember, the compiler will allow only methods in class Animal
to be invoked when using a reference to an Animal. The following would not be
legal given the preceding code:

Animal c = new Horse();
c.buck(); // Can't invoke buck();
 // Animal class doesn't have that method

104 Chapter 2: Object Orientation

To reiterate, the compiler looks only at the reference type, not the instance
type. Polymorphism lets you use a more abstract supertype (including an interface)
reference to refer to one of its subtypes (including interface implementers).

The overriding method cannot have a more restrictive access modifier than the
method being overridden (for example, you can't override a method marked public
and make it protected). Think about it: if the Animal class advertises a public
eat() method and someone has an Animal reference (in other words, a reference
declared as type Animal), that someone will assume it's safe to call eat() on the
Animal reference regardless of the actual instance that the Animal reference is
referring to. If a subclass were allowed to sneak in and change the access modifier on
the overriding method, then suddenly at runtime—when the JVM invokes the true
object's (Horse) version of the method rather than the reference type's (Animal)
version—the program would die a horrible death. (Not to mention the emotional
distress for the one who was betrayed by the rogue subclass.) Let's modify the
polymorphic example we saw earlier in this section:

public class TestAnimals {
 public static void main (String [] args) {
 Animal a = new Animal();
 Animal b = new Horse(); //Animal ref, but a Horse object
 a.eat(); // Runs the Animal version of eat()
 b.eat(); // Runs the Horse version of eat()
 }
}
class Animal {
 public void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
class Horse extends Animal {
 private void eat() { // whoa! - it's private!
 System.out.println("Horse eating hay, oats, "
 + "and horse treats");
 }
}

If this code compiled (which it doesn't), the following would fail at runtime:

Animal b = new Horse(); // Animal ref, but a Horse
 // object , so far so good
b.eat(); // Meltdown at runtime!

Overridden Methods (Exam Objectives 1.5 and 5.4) 105

The variable b is of type Animal, which has a public eat() method. But
remember that at runtime, Java uses virtual method invocation to dynamically
select the actual version of the method that will run, based on the actual instance.
An Animal reference can always refer to a Horse instance, because Horse IS-A(n)
Animal. What makes that superclass reference to a subclass instance possible is
that the subclass is guaranteed to be able to do everything the superclass can do.
Whether the Horse instance overrides the inherited methods of Animal or simply
inherits them, anyone with an Animal reference to a Horse instance is free to call all
accessible Animal methods. For that reason, an overriding method must fulfill the
contract of the superclass.

The rules for overriding a method are as follows:

■ The argument list must exactly match that of the overridden method. If they
don't match, you can end up with an overloaded method you didn't intend.

■ The return type must be the same as, or a subtype of, the return type declared
in the original overridden method in the superclass. (More on this in a few
pages when we discuss covariant returns.)

■ The access level can't be more restrictive than the overridden method's.

■ The access level CAN be less restrictive than that of the overridden method.

■ Instance methods can be overridden only if they are inherited by the subclass.
A subclass within the same package as the instance's superclass can override
any superclass method that is not marked private or final. A subclass in a
different package can override only those non-final methods marked pub-
lic or protected (since protected methods are inherited by the subclass).

■ The overriding method CAN throw any unchecked (runtime) exception,
regardless of whether the overridden method declares the exception. (More
in Chapter 5.)

■ The overriding method must NOT throw checked exceptions that are new
or broader than those declared by the overridden method. For example, a
method that declares a FileNotFoundException cannot be overridden by a
method that declares a SQLException, Exception, or any other non-runtime
exception unless it's a subclass of FileNotFoundException.

■ The overriding method can throw narrower or fewer exceptions. Just because
an overridden method "takes risks" doesn't mean that the overriding subclass'
exception takes the same risks. Bottom line: an overriding method doesn't

106 Chapter 2: Object Orientation

have to declare any exceptions that it will never throw, regardless of what the
overridden method declares.

■ You cannot override a method marked final.

■ You cannot override a method marked static. We'll look at an example in a
few pages when we discuss static methods in more detail.

■ If a method can't be inherited, you cannot override it. Remember that
overriding implies that you're reimplementing a method you inherited! For
example, the following code is not legal, and even if you added an eat()
method to Horse, it wouldn't be an override of Animal's eat() method.

public class TestAnimals {
 public static void main (String [] args) {
 Horse h = new Horse();
 h.eat(); // Not legal because Horse didn't inherit eat()
 }
}
class Animal {
 private void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
class Horse extends Animal { }

Invoking a Superclass Version of an Overridden Method
Often, you'll want to take advantage of some of the code in the superclass version of
a method, yet still override it to provide some additional specific behavior. It's like
saying, "Run the superclass version of the method, then come back down here and
finish with my subclass additional method code." (Note that there's no requirement
that the superclass version run before the subclass code.) It's easy to do in code using
the keyword super as follows:

public class Animal {
 public void eat() { }
 public void printYourself() {
 // Useful printing code goes here
 }
}
class Horse extends Animal {
 public void printYourself() {
 // Take advantage of Animal code, then add some more

Overridden Methods (Exam Objectives 1.5 and 5.4) 107

 super.printYourself(); // Invoke the superclass
 // (Animal) code
 // Then do Horse-specific
 // print work here
 }
}

Note: Using super to invoke an overridden method only applies to instance
methods. (Remember, static methods can't be overridden.)

108 Chapter 2: Object Orientation

If a method is overridden but you use a polymorphic (supertype)
reference to refer to the subtype object with the overriding method, the compiler
assumes you’re calling the supertype version of the method. If the supertype version
declares a checked exception, but the overriding subtype method does not, the compiler
still thinks you are calling a method that declares an exception (more in Chapter 5).
Let’s take a look at an example:

class Animal {
 public void eat() throws Exception {
 // throws an Exception
 }
}
class Dog2 extends Animal {
 public void eat() { /* no Exceptions */}
 public static void main(String [] args) {
 Animal a = new Dog2();
 Dog2 d = new Dog2();
 d.eat(); // ok
 a.eat(); // compiler error -
 // unreported exception
 }
}

This code will not compile because of the Exception declared on the
Animal eat() method. This happens even though, at runtime, the eat() method used
would be the Dog version, which does not declare the exception.

Examples of Legal and Illegal Method Overrides
Let's take a look at overriding the eat() method of Animal:

public class Animal {
 public void eat() { }
}

Table 2-1 lists examples of illegal overrides of the Animal eat() method, given
the preceding version of the Animal class.

Overloaded Methods
You're wondering what overloaded methods are doing in an OO chapter, but we've
included them here since one of the things newer Java developers are most confused
about are all of the subtle differences between overloaded and overridden methods.

Overloaded methods let you reuse the same method name in a class, but with
different arguments (and optionally, a different return type). Overloading a method
often means you're being a little nicer to those who call your methods, because your
code takes on the burden of coping with different argument types rather than forcing
the caller to do conversions prior to invoking your method. The rules are simple:

■ Overloaded methods MUST change the argument list.

■ Overloaded methods CAN change the return type.

■ Overloaded methods CAN change the access modifier.

■ Overloaded methods CAN declare new or broader checked exceptions.

Overloaded Methods (Exam Objectives 1.5 and 5.4) 109

Illegal Override Code Problem with the Code

private void eat() { } Access modifier is more restrictive

public void eat() throws
IOException { }

Declares a checked exception not defined by superclass
version

public void eat(String food) { } A legal overload, not an override, because the argument list
changed

public String eat() { } Not an override because of the return type, not an overload
either because there’s no change in the argument list

 TABLE 2-1 Examples of Illegal Overrides

■ A method can be overloaded in the same class or in a subclass. In other words,
if class A defines a doStuff(int i) method, the subclass B could define a
doStuff(String s) method without overriding the superclass version that
takes an int. So two methods with the same name but in different classes
can still be considered overloaded, if the subclass inherits one version of the
method and then declares another overloaded version in its class definition.

Legal Overloads
Let's look at a method we want to overload:

public void changeSize(int size, String name, float pattern) { }

The following methods are legal overloads of the changeSize() method:

public void changeSize(int size, String name) { }
public int changeSize(int size, float pattern) { }
public void changeSize(float pattern, String name)
 throws IOException { }

110 Chapter 2: Object Orientation

Be careful to recognize when a method is overloaded rather than
overridden. You might see a method that appears to be violating a rule for overriding, but
that is actually a legal overload, as follows:

public class Foo {
 public void doStuff(int y, String s) { }
 public void moreThings(int x) { }
}
class Bar extends Foo {
 public void doStuff(int y, long s) throws IOException { }
}

It's tempting to see the IOException as the problem, because the
overridden doStuff() method doesn’t declare an exception, and IOException is checked
by the compiler. But the doStuff() method is not overridden! Subclass Bar overloads the
doStuff() method, by varying the argument list, so the IOException is fi ne.

Invoking Overloaded Methods
Note that there's a lot more to this discussion on how the compiler knows which
method to invoke, but the rest is covered in Chapter 3 when we look at boxing and
var-args—both of which have a huge impact on overloading. (You still have to pay
attention to the part covered here, though.)

When a method is invoked, more than one method of the same name might exist
for the object type you're invoking a method on. For example, the Horse class might
have three methods with the same name but with different argument lists, which
means the method is overloaded.

Deciding which of the matching methods to invoke is based on the arguments. If
you invoke the method with a String argument, the overloaded version that takes
a String is called. If you invoke a method of the same name but pass it a float, the
overloaded version that takes a float will run. If you invoke the method of the
same name but pass it a Foo object, and there isn't an overloaded version that takes
a Foo, then the compiler will complain that it can't find a match. The following are
examples of invoking overloaded methods:

class Adder {
 public int addThem(int x, int y) {
 return x + y;
 }

 // Overload the addThem method to add doubles instead of ints
 public double addThem(double x, double y) {
 return x + y;
 }
}
// From another class, invoke the addThem() method
public class TestAdder {
 public static void main (String [] args) {
 Adder a = new Adder();
 int b = 27;
 int c = 3;
 int result = a.addThem(b,c); // Which addThem is invoked?
 double doubleResult = a.addThem(22.5,9.3); // Which addThem?
 }
}

In the preceding TestAdder code, the first call to a.addThem(b,c) passes two
ints to the method, so the first version of addThem()—the overloaded version

Overloaded Methods (Exam Objectives 1.5 and 5.4) 111

that takes two int arguments—is called. The second call to a.addThem(22.5,
9.3) passes two doubles to the method, so the second version of addThem()—the
overloaded version that takes two double arguments—is called.

Invoking overloaded methods that take object references rather than primitives is
a little more interesting. Say you have an overloaded method such that one version
takes an Animal and one takes a Horse (subclass of Animal). If you pass a Horse
object in the method invocation, you'll invoke the overloaded version that takes a
Horse. Or so it looks at first glance:

class Animal { }
class Horse extends Animal { }
class UseAnimals {
 public void doStuff(Animal a) {
 System.out.println("In the Animal version");
 }
 public void doStuff(Horse h) {
 System.out.println("In the Horse version");
 }
 public static void main (String [] args) {
 UseAnimals ua = new UseAnimals();
 Animal animalObj = new Animal();
 Horse horseObj = new Horse();
 ua.doStuff(animalObj);
 ua.doStuff(horseObj);
 }
}

The output is what you expect:

in the Animal version
in the Horse version

But what if you use an Animal reference to a Horse object?

Animal animalRefToHorse = new Horse();
 ua.doStuff(animalRefToHorse);

Which of the overloaded versions is invoked? You might want to say, "The one
that takes a Horse, since it's a Horse object at runtime that's being passed to the
method." But that's not how it works. The preceding code would actually print:

in the Animal version

112 Chapter 2: Object Orientation

Even though the actual object at runtime is a Horse and not an Animal, the
choice of which overloaded method to call (in other words, the signature of the
method) is NOT dynamically decided at runtime. Just remember, the reference
type (not the object type) determines which overloaded method is invoked! To
summarize, which overridden version of the method to call (in other words, from
which class in the inheritance tree) is decided at runtime based on object type, but
which overloaded version of the method to call is based on the reference type of
the argument passed at compile time. If you invoke a method passing it an Animal
reference to a Horse object, the compiler knows only about the Animal, so it
chooses the overloaded version of the method that takes an Animal. It does not
matter that at runtime there's actually a Horse being passed.

Polymorphism in Overloaded and Overridden Methods
How does polymorphism work with overloaded methods? From what we just looked
at, it doesn't appear that polymorphism matters when a method is overloaded. If
you pass an Animal reference, the overloaded method that takes an Animal will be
invoked, even if the actual object passed is a Horse. Once the Horse masquerading
as Animal gets in to the method, however, the Horse object is still a Horse despite
being passed into a method expecting an Animal. So it's true that polymorphism
doesn't determine which overloaded version is called; polymorphism does come into
play when the decision is about which overridden version of a method is called. But
sometimes, a method is both overloaded and overridden. Imagine the Animal and
Horse classes look like this:

public class Animal {
 public void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
public class Horse extends Animal {
 public void eat() {
 System.out.println("Horse eating hay ");
 }
 public void eat(String s) {
 System.out.println("Horse eating " + s);
 }
}

Notice that the Horse class has both overloaded and overridden the eat()
method. Table 2-2 shows which version of the three eat() methods will run
depending on how they are invoked.

Overloaded Methods (Exam Objectives 1.5 and 5.4) 113

114 Chapter 2: Object Orientation

 Method Invocation Code Result

 Animal a = new Animal();
 a.eat();

Generic Animal Eating Generically

 Horse h = new Horse();
 h.eat();

Horse eating hay

 Animal ah = new Horse();
 ah.eat();

Horse eating hay

Polymorphism works—the actual object type (Horse), not the
reference type (Animal), is used to determine which eat() is called.

 Horse he = new Horse();
 he.eat("Apples");

Horse eating Apples
The overloaded eat(String s) method is invoked.

 Animal a2 = new Animal();
 a2.eat("treats");

Compiler error! Compiler sees that Animal class doesn't have an
eat() method that takes a String.

Animal ah2 = new Horse();
ah2.eat("Carrots");

Compiler error! Compiler still looks only at the reference, and sees
that Animal doesn’t have an eat() method that takes a String.
Compiler doesn’t care that the actual object might be a Horse at
runtime.

 TABLE 2-2 Examples of Illegal Overrides

Don’t be fooled by a method that’s overloaded but not overridden by a
subclass. It’s perfectly legal to do the following:

public class Foo {
 void doStuff() { }
}
class Bar extends Foo {
 void doStuff(String s) { }
}

The Bar class has two doStuff() methods: the no-arg version it inherits
from Foo (and does not override), and the overloaded doStuff(String s) defi ned in the
Bar class. Code with a reference to a Foo can invoke only the no-arg version, but code
with a reference to a Bar can invoke either of the overloaded versions.

Table 2-3 summarizes the difference between overloaded and overridden methods.

The current objective (5.4) covers both method and constructor overloading, but
we'll cover constructor overloading in the next section, where we'll also cover the
other constructor-related topics that are on the exam. Figure 2-4 illustrates the way
overloaded and overridden methods appear in class relationships.

 FIGURE 2-4

Overloaded
and overridden
methods
in class
relationships

Overloaded Methods (Exam Objectives 1.5 and 5.4) 115

Overloaded Method Overridden Method

Argument(s) Must change. Must not change.

Return type Can change. Can’t change except for
covariant returns.

Exceptions Can change. Can reduce or eliminate.
Must not throw new
or broader checked
exceptions.

Access Can change. Must not make more
restrictive (can be less
restrictive).

Invocation Reference type determines which overloaded version (based
on declared argument types) is selected. Happens at compile
time. The actual method that’s invoked is still a virtual method
invocation that happens at runtime, but the compiler will
already know the signature of the method to be invoked. So at
runtime, the argument match will already have been nailed
down, just not the class in which the method lives.

Object type (in other
words, the type of the
actual instance on the
heap) determines which
method is selected.
Happens at runtime.

 TABLE 2-3 Differences Between Overloaded and Overridden Methods

Overriding

Tree

showLeaves()

Oak

showLeaves()

Oak

setFeatures(String name, int leafSize)
setFeatures(int leafSize)

Tree

setFeatures(String name)

Overloading

CERTIFICATION OBJECTIVE

Reference Variable Casting (Objective 5.2)
5.2 Given a scenario, develop code that demonstrates the use of polymorphism. Further,
determine when casting will be necessary and recognize compiler vs. runtime errors related
to object reference casting.

We've seen how it's both possible and common to use generic reference variable
types to refer to more specific object types. It's at the heart of polymorphism. For
example, this line of code should be second nature by now:

Animal animal = new Dog();

But what happens when you want to use that animal reference variable to invoke
a method that only class Dog has? You know it's referring to a Dog, and you want to
do a Dog-specific thing? In the following code, we've got an array of Animals, and
whenever we find a Dog in the array, we want to do a special Dog thing. Let's agree
for now that all of this code is OK, except that we're not sure about the line of code
that invokes the playDead method.

class Animal {
 void makeNoise() {System.out.println("generic noise"); }
}
class Dog extends Animal {
 void makeNoise() {System.out.println("bark"); }
 void playDead() { System.out.println("roll over"); }
}

class CastTest2 {
 public static void main(String [] args) {
 Animal [] a = {new Animal(), new Dog(), new Animal() };
 for(Animal animal : a) {
 animal.makeNoise();
 if(animal instanceof Dog) {
 animal.playDead(); // try to do a Dog behavior ?
 }
 }
 }
}

116 Chapter 2: Object Orientation

When we try to compile this code, the compiler says something like this:

cannot find symbol

The compiler is saying, "Hey, class Animal doesn't have a playDead() method".
Let's modify the if code block:

 if(animal instanceof Dog) {
 Dog d = (Dog) animal; // casting the ref. var.
 d.playDead();
 }

The new and improved code block contains a cast, which in this case is
sometimes called a downcast, because we're casting down the inheritance tree to a
more specific class. Now, the compiler is happy. Before we try to invoke playDead,
we cast the animal variable to type Dog. What we're saying to the compiler is, "We
know it's really referring to a Dog object, so it's okay to make a new Dog reference
variable to refer to that object." In this case we're safe because before we ever try the
cast, we do an instanceof test to make sure.

It's important to know that the compiler is forced to trust us when we do a
downcast, even when we screw up:

class Animal { }
class Dog extends Animal { }
class DogTest {
 public static void main(String [] args) {
 Animal animal = new Animal();
 Dog d = (Dog) animal; // compiles but fails later
 }
}

It can be maddening! This code compiles! When we try to run it, we'll get an
exception something like this:

java.lang.ClassCastException

Why can't we trust the compiler to help us out here? Can't it see that animal
is of type Animal? All the compiler can do is verify that the two types are in the
same inheritance tree, so that depending on whatever code might have come before
the downcast, it's possible that animal is of type Dog. The compiler must allow

Reference Variable Casting (Objective 5.2) 117

things that might possibly work at runtime. However, if the compiler knows with
certainty that the cast could not possibly work, compilation will fail. The following
replacement code block will NOT compile:

Animal animal = new Animal();
Dog d = (Dog) animal;
String s = (String) animal; // animal can't EVER be a String

In this case, you'll get an error something like this:

inconvertible types

Unlike downcasting, upcasting (casting up the inheritance tree to a more general
type) works implicitly (i.e., you don't have to type in the cast) because when you
upcast you're implicitly restricting the number of methods you can invoke, as
opposed to downcasting, which implies that later on, you might want to invoke a
more specific method. For instance:

class Animal { }
class Dog extends Animal { }

class DogTest {
 public static void main(String [] args) {
 Dog d = new Dog();
 Animal a1 = d; // upcast ok with no explicit cast
 Animal a2 = (Animal) d; // upcast ok with an explicit cast
 }
}

Both of the previous upcasts will compile and run without exception, because a
Dog IS-A Animal, which means that anything an Animal can do, a Dog can do. A
Dog can do more, of course, but the point is—anyone with an Animal reference can
safely call Animal methods on a Dog instance. The Animal methods may have been
overridden in the Dog class, but all we care about now is that a Dog can always do
at least everything an Animal can do. The compiler and JVM know it too, so the
implicit upcast is always legal for assigning an object of a subtype to a reference of
one of its supertype classes (or interfaces). If Dog implements Pet, and Pet defines
beFriendly(), then a Dog can be implicitly cast to a Pet, but the only Dog method
you can invoke then is beFriendly(), which Dog was forced to implement because
Dog implements the Pet interface.

118 Chapter 2: Object Orientation

One more thing…if Dog implements Pet, then if Beagle extends Dog, but
Beagle does not declare that it implements Pet, Beagle is still a Pet! Beagle is a Pet
simply because it extends Dog, and Dog's already taken care of the Pet parts of itself,
and all its children. The Beagle class can always override any methods it inherits
from Dog, including methods that Dog implemented to fulfill its interface contract.

And just one more thing…if Beagle does declare it implements Pet, just so that
others looking at the Beagle class API can easily see that Beagle IS-A Pet, without
having to look at Beagle's superclasses, Beagle still doesn't need to implement the
beFriendly() method if the Dog class (Beagle's superclass) has already taken care of
that. In other words, if Beagle IS-A Dog, and Dog IS-A Pet, then Beagle IS-A Pet,
and has already met its Pet obligations for implementing the beFriendly() method
since it inherits the beFriendly() method. The compiler is smart enough to say, "I
know Beagle already IS a Dog, but it's OK to make it more obvious."

So don't be fooled by code that shows a concrete class that declares that it
implements an interface, but doesn't implement the methods of the interface. Before
you can tell whether the code is legal, you must know what the superclasses of this
implementing class have declared. If any superclass in its inheritance tree has already
provided concrete (i.e., non-abstract) method implementations, then, regardless
of whether the superclass declares that it implements the interface, the subclass is
under no obligation to re-implement (override) those methods.

Reference Variable Casting (Objective 5.2) 119

The exam creators will tell you that they’re forced to jam tons of code
into little spaces "because of the exam engine." While that’s partially true, they ALSO
like to obfuscate. The following code:

Animal a = new Dog();
Dog d = (Dog) a;
d.doDogStuff();

Can be replaced with this easy-to-read bit of fun:

Animal a = new Dog();
((Dog)a).doDogStuff();

In this case the compiler needs all of those parentheses, otherwise it
thinks it’s been handed an incomplete statement.

CERTIFICATION OBJECTIVE

Implementing an Interface (Exam Objective 1.2)
1.2 Develop code that declares an interface...

When you implement an interface, you're agreeing to adhere to the contract defined
in the interface. That means you're agreeing to provide legal implementations
for every method defined in the interface, and that anyone who knows what the
interface methods look like (not how they're implemented, but how they can be
called and what they return) can rest assured that they can invoke those methods on
an instance of your implementing class.

For example, if you create a class that implements the Runnable interface (so
that your code can be executed by a specific thread), you must provide the public
void run() method. Otherwise, the poor thread could be told to go execute your
Runnable object's code and—surprise surprise—the thread then discovers the object
has no run() method! (At which point, the thread would blow up and the JVM
would crash in a spectacular yet horrible explosion.) Thankfully, Java prevents this
meltdown from occurring by running a compiler check on any class that claims
to implement an interface. If the class says it's implementing an interface, it darn
well better have an implementation for each method in the interface (with a few
exceptions we'll look at in a moment).

Assuming an interface, Bounceable, with two methods: bounce(), and
setBounceFactor(), the following class will compile:

public class Ball implements Bounceable { // Keyword
 // 'implements'
 public void bounce() { }
 public void setBounceFactor(int bf) { }
}

OK, we know what you're thinking: "This has got to be the worst implementation
class in the history of implementation classes." It compiles, though. And runs. The
interface contract guarantees that a class will have the method (in other words,
others can call the method subject to access control), but it never guaranteed a
good implementation—or even any actual implementation code in the body of the
method. The compiler will never say to you, "Um, excuse me, but did you really

120 Chapter 2: Object Orientation

mean to put nothing between those curly braces? HELLO. This is a method after all,
so shouldn't it do something?"

Implementation classes must adhere to the same rules for method implementation
as a class extending an abstract class. In order to be a legal implementation class, a
nonabstract implementation class must do the following:

■ Provide concrete (nonabstract) implementations for all methods from the
declared interface.

■ Follow all the rules for legal overrides.

■ Declare no checked exceptions on implementation methods other than
those declared by the interface method, or subclasses of those declared by
the interface method.

■ Maintain the signature of the interface method, and maintain the same
return type (or a subtype). (But it does not have to declare the exceptions
declared in the interface method declaration.)

But wait, there's more! An implementation class can itself be abstract! For
example, the following is legal for a class Ball implementing Bounceable:

abstract class Ball implements Bounceable { }

Notice anything missing? We never provided the implementation methods.
And that's OK. If the implementation class is abstract, it can simply pass the
buck to its first concrete subclass. For example, if class BeachBall extends Ball, and
BeachBall is not abstract, then BeachBall will have to provide all the methods
from Bounceable:

class BeachBall extends Ball {
 // Even though we don't say it in the class declaration above,
 // BeachBall implements Bounceable, since BeachBall's abstract
 // superclass (Ball) implements Bounceable

 public void bounce() {
 // interesting BeachBall-specific bounce code
 }
 public void setBounceFactor(int bf) {
 // clever BeachBall-specific code for setting
 // a bounce factor
 }

Implementing an Interface (Exam Objective 1.2) 121

 // if class Ball defined any abstract methods,
 // they'll have to be
 // implemented here as well.
}

Look for classes that claim to implement an interface but don't provide the
correct method implementations. Unless the implementing class is abstract, the
implementing class must provide implementations for all methods defined in the
interface.

Two more rules you need to know and then we can put this topic to sleep (or put
you to sleep; we always get those two confused):

1. A class can implement more than one interface. It's perfectly legal to say, for
example, the following:

public class Ball implements Bounceable, Serializable, Runnable
{ ... }

You can extend only one class, but implement many interfaces. But remember
that subclassing defines who and what you are, whereas implementing defines a role
you can play or a hat you can wear, despite how different you might be from some
other class implementing the same interface (but from a different inheritance tree).
For example, a Person extends HumanBeing (although for some, that's debatable).
But a Person may also implement Programmer, Snowboarder, Employee, Parent, or
PersonCrazyEnoughToTakeThisExam.

2. An interface can itself extend another interface, but never implement
anything. The following code is perfectly legal:

public interface Bounceable extends Moveable { } // ok!

What does that mean? The first concrete (nonabstract) implementation class of
Bounceable must implement all the methods of Bounceable, plus all the methods
of Moveable! The subinterface, as we call it, simply adds more requirements to the
contract of the superinterface. You'll see this concept applied in many areas of Java,
especially J2EE where you'll often have to build your own interface that extends one
of the J2EE interfaces.

122 Chapter 2: Object Orientation

Hold on though, because here's where it gets strange. An interface can extend
more than one interface! Think about that for a moment. You know that when we're
talking about classes, the following is illegal:

public class Programmer extends Employee, Geek { } // Illegal!

As we mentioned earlier, a class is not allowed to extend multiple classes in Java.
An interface, however, is free to extend multiple interfaces.

interface Bounceable extends Moveable, Spherical { // ok!
 void bounce();
 void setBounceFactor(int bf);
}
interface Moveable {
 void moveIt();
}
interface Spherical {
 void doSphericalThing();
}

In the next example, Ball is required to implement Bounceable, plus all methods
from the interfaces that Bounceable extends (including any interfaces those
interfaces extend, and so on until you reach the top of the stack—or is it the bottom
of the stack?). So Ball would need to look like the following:

class Ball implements Bounceable {

 public void bounce() { } // Implement Bounceable's methods
 public void setBounceFactor(int bf) { }

 public void moveIt() { } // Implement Moveable's method

 public void doSphericalThing() { } // Implement Spherical
}

If class Ball fails to implement any of the methods from Bounceable, Moveable, or
Spherical, the compiler will jump up and down wildly, red in the face, until it does.
Unless, that is, class Ball is marked abstract. In that case, Ball could choose to
implement any, all, or none of the methods from any of the interfaces, thus leaving
the rest of the implementations to a concrete subclass of Ball, as follows:

Implementing an Interface (Exam Objective 1.2) 123

abstract class Ball implements Bounceable {
 public void bounce() { ... } // Define bounce behavior
 public void setBounceFactor(int bf) { ... }
 // Don't implement the rest; leave it for a subclass
}
class SoccerBall extends Ball { // class SoccerBall must
 // implement the interface methods that Ball didn't
 public void moveIt() { ... }
 public void doSphericalThing() { ... }
 // SoccerBall can choose to override the Bounceable methods
 // implemented by Ball
 public void bounce() { ... }
}

Figure 2-5 compares concrete and abstract examples of extends and implements,
for both classes and interfaces.

124 Chapter 2: Object Orientation

 FIGURE 2-5 Comparing concrete and abstract examples of extends and implements

Because BeachBall is the first concrete class to implement Bounceable,
it must provide implementations for all methods of Bounceable, except
those defined in the abstract class Ball. Because Ball did not provide
implementations of Bounceable methods, BeachBall was required to
implement all of them.

interface Bounceable

void bounce();
void setBounceFactor(int bf);

class Tire implements Bounceable

abstract Ball implements Bounceable

class BeachBall extends Ball

public void bounce(){ }
public void setBounceFactor (int bf){ }

/*beSpherical is not abstract
so BeachBall is not
required to implement it.*/

/*no methods of
Bounceable are
implemented
in Ball */

void beSpherical(){}

public void bounce(){ }
public void setBounceFactor (int bf){ }

Implementing an Interface (Exam Objective 1.2) 125

Look for illegal uses of extends and implements. The following shows
examples of legal and illegal class and interface declarations:

class Foo { } // OK
class Bar implements Foo { } // No! Can't implement a class
interface Baz { } // OK
interface Fi { } // OK
interface Fee implements Baz { } // No! Interface can't
 // implement an interface
interface Zee implements Foo { } // No! Interface can't
 // implement a class
interface Zoo extends Foo { } // No! Interface can't
 // extend a class
interface Boo extends Fi { } // OK. Interface can extend
 // an interface
class Toon extends Foo, Button { } // No! Class can't extend
 // multiple classes
class Zoom implements Fi, Baz { } // OK. class can implement
 // multiple interfaces
interface Vroom extends Fi, Baz { } // OK. interface can extend
 // multiple interfaces
class Yow extends Foo implements Fi { } // OK. Class can do both
 // (extends must be 1st)

Burn these in, and watch for abuses in the questions you get on the
exam. Regardless of what the question appears to be testing, the real problem might be
the class or interface declaration. Before you get caught up in, say, tracing a complex
threading fl ow, check to see if the code will even compile. (Just that tip alone may
be worth your putting us in your will!) (You’ll be impressed by the effort the exam
developers put into distracting you from the real problem.) (How did people manage to
write anything before parentheses were invented?)

CERTIFICATION OBJECTIVE

Legal Return Types (Exam Objective 1.5)
1.5 Given a code example, determine if a method is correctly overriding or overloading
another method, and identify legal return values (including covariant returns), for the
method.

This objective covers two aspects of return types: what you can declare as a
return type, and what you can actually return as a value. What you can and cannot
declare is pretty straightforward, but it all depends on whether you're overriding an
inherited method or simply declaring a new method (which includes overloaded
methods). We'll take just a quick look at the difference between return type
rules for overloaded and overriding methods, because we've already covered that
in this chapter. We'll cover a small bit of new ground, though, when we look at
polymorphic return types and the rules for what is and is not legal to actually return.

Return Type Declarations
This section looks at what you're allowed to declare as a return type, which
depends primarily on whether you are overriding, overloading, or declaring a
new method.

Return Types on Overloaded Methods
Remember that method overloading is not much more than name reuse. The
overloaded method is a completely different method from any other method of
the same name. So if you inherit a method but overload it in a subclass, you're not
subject to the restrictions of overriding, which means you can declare any return
type you like. What you can't do is change only the return type. To overload a
method, remember, you must change the argument list. The following code shows an
overloaded method:

public class Foo{
 void go() { }
}
public class Bar extends Foo {
 String go(int x) {

126 Chapter 2: Object Orientation

 return null;
 }
}

Notice that the Bar version of the method uses a different return type. That's
perfectly fine. As long as you've changed the argument list, you're overloading the
method, so the return type doesn't have to match that of the superclass version.
What you're NOT allowed to do is this:

public class Foo{
 void go() { }
}
public class Bar extends Foo {
 String go() { // Not legal! Can't change only the return type
 return null;
 }
}

Overriding and Return Types, and Covariant Returns
When a subclass wants to change the method implementation of an inherited
method (an override), the subclass must define a method that matches the inherited
version exactly. Or, as of Java 5, you're allowed to change the return type in the
overriding method as long as the new return type is a subtype of the declared return
type of the overridden (superclass) method.

Let's look at a covariant return in action:

class Alpha {
 Alpha doStuff(char c) {
 return new Alpha();
 }
}

class Beta extends Alpha {
 Beta doStuff(char c) { // legal override in Java 1.5
 return new Beta();
 }
}

As of Java 5, this code will compile. If you were to attempt to compile this code
with a 1.4 compiler or with the source flag as follows:

Return Type Declarations (Exam Objective 1.5) 127

javac -source 1.4 Beta.java

you would get a compiler error something like this:

attempting to use incompatible return type

(We'll talk more about compiler flags in Chapter 10.)

Other rules apply to overriding, including those for access modifiers and declared
exceptions, but those rules aren't relevant to the return type discussion.

For the exam, be sure you know that overloaded methods can change the return
type, but overriding methods can do so only within the bounds of covariant returns.
Just that knowledge alone will help you through a wide range of exam questions.

Returning a Value
You have to remember only six rules for returning a value:

 1. You can return null in a method with an object reference return type.

 public Button doStuff() {
 return null;
 }

2. An array is a perfectly legal return type.

 public String[] go() {

 return new String[] {"Fred", "Barney", "Wilma"};

 }

3. In a method with a primitive return type, you can return any value or
variable that can be implicitly converted to the declared return type.

 public int foo() {
 char c = 'c';
 return c; // char is compatible with int
 }

128 Chapter 2: Object Orientation

4. In a method with a primitive return type, you can return any value or
 variable that can be explicitly cast to the declared return type.

 public int foo () {

 float f = 32.5f;

 return (int) f;

 }

5. You must not return anything from a method with a void return type.

 public void bar() {

 return "this is it"; // Not legal!!

 }

6. In a method with an object reference return type, you can return any
 object type that can be implicitly cast to the declared return type.

 public Animal getAnimal() {

 return new Horse(); // Assume Horse extends Animal

 }

 public Object getObject() {

 int[] nums = {1,2,3};

 return nums; // Return an int array,
 // which is still an object

 }

 public interface Chewable { }

 public class Gum implements Chewable { }

 public class TestChewable {

 // Method with an interface return type

 public Chewable getChewable() {

 return new Gum(); // Return interface implementer

 }

 }

Returning a Value (Exam Objective 1.5) 129

CERTIFICATION OBJECTIVE

Constructors and Instantiation
(Exam Objectives 1.6, 5.3, and 5.4)

1.6 Given a set of classes and superclasses, develop constructors for one or more of the
classes. Given a class declaration, determine if a default constructor will be created, and
if so, determine the behavior of that constructor. Given a nested or nonnested class listing,
write code to instantiate the class.

5.3 Explain the effect of modifiers on inheritance with respect to constructors, instance or
static variables, and instance or static methods.

5.4 Given a scenario, develop code that declares and/or invokes overridden or overloaded
methods and code that declares and/or invokes superclass, overridden, or overloaded
constructors.

130 Chapter 2: Object Orientation

 Watch for methods that declare an abstract class or interface return
type, and know that any object that passes the IS-A test (in other words, would test true
using the instanceof operator) can be returned from that method— for example:

public abstract class Animal { }
public class Bear extends Animal { }
public class Test {
 public Animal go() {
 return new Bear(); // OK, Bear "is-a" Animal
 }
}

This code will compile, the return value is a subtype.

Objects are constructed. You can't make a new object without invoking a
constructor. In fact, you can't make a new object without invoking not just the
constructor of the object's actual class type, but also the constructor of each of its
superclasses! Constructors are the code that runs whenever you use the keyword
new. OK, to be a bit more accurate, there can also be initialization blocks that run
when you say new, but we're going to cover them (init blocks), and their static
initialization counterparts, in the next chapter. We've got plenty to talk about
here—we'll look at how constructors are coded, who codes them, and how they work
at runtime. So grab your hardhat and a hammer, and let's do some object building.

Constructor Basics
Every class, including abstract classes, MUST have a constructor. Burn that into your
brain. But just because a class must have one, doesn't mean the programmer has to
type it. A constructor looks like this:

class Foo {
 Foo() { } // The constructor for the Foo class
}

Notice what's missing? There's no return type! Two key points to remember about
constructors are that they have no return type and their names must exactly match
the class name. Typically, constructors are used to initialize instance variable state, as
follows:

class Foo {
 int size;
 String name;
 Foo(String name, int size) {
 this.name = name;
 this.size = size;
 }
}

In the preceding code example, the Foo class does not have a no-arg constructor.
That means the following will fail to compile:

Foo f = new Foo(); // Won't compile, no matching constructor

but the following will compile:

Constructors and Instantiation (Exam Objectives 1.6, 5.3, and 5.4) 131

Foo f = new Foo("Fred", 43); // No problem. Arguments match
 // the Foo constructor.

So it's very common (and desirable) for a class to have a no-arg constructor,
regardless of how many other overloaded constructors are in the class (yes,
constructors can be overloaded). You can't always make that work for your classes;
occasionally you have a class where it makes no sense to create an instance without
supplying information to the constructor. A java.awt.Color object, for example,
can't be created by calling a no-arg constructor, because that would be like saying to
the JVM, "Make me a new Color object, and I really don't care what color it is...you
pick." Do you seriously want the JVM making your style decisions?

Constructor Chaining
We know that constructors are invoked at runtime when you say new on some class
type as follows:

Horse h = new Horse();

But what really happens when you say new Horse() ?
(Assume Horse extends Animal and Animal extends Object.)

1. Horse constructor is invoked. Every constructor invokes the constructor
of its superclass with an (implicit) call to super(), unless the constructor
invokes an overloaded constructor of the same class (more on that in a
minute).

2. Animal constructor is invoked (Animal is the superclass of Horse).

3. Object constructor is invoked (Object is the ultimate superclass of all
classes, so class Animal extends Object even though you don't actually
type "extends Object" into the Animal class declaration. It's implicit.) At
this point we're on the top of the stack.

4. Object instance variables are given their explicit values. By explicit values,
we mean values that are assigned at the time the variables are declared,
like "int x = 27", where "27" is the explicit value (as opposed to the
default value) of the instance variable.

5. Object constructor completes.

6. Animal instance variables are given their explicit values (if any).

7. Animal constructor completes.

132 Chapter 2: Object Orientation

8. Horse instance variables are given their explicit values (if any).

9. Horse constructor completes.

Figure 2-6 shows how constructors work on the call stack.

 FIGURE 2-6

Constructors on
the call stack

Rules for Constructors
The following list summarizes the rules you'll need to know for the exam (and to
understand the rest of this section). You MUST remember these, so be sure to study
them more than once.

■ Constructors can use any access modifier, including private. (A private
constructor means only code within the class itself can instantiate an object
of that type, so if the private constructor class wants to allow an instance
of the class to be used, the class must provide a static method or variable that
allows access to an instance created from within the class.)

■ The constructor name must match the name of the class.

■ Constructors must not have a return type.

■ It's legal (but stupid) to have a method with the same name as the class,
but that doesn't make it a constructor. If you see a return type, it's a method
rather than a constructor. In fact, you could have both a method and a
constructor with the same name—the name of the class—in the same class,
and that's not a problem for Java. Be careful not to mistake a method for a
constructor—be sure to look for a return type.

■ If you don't type a constructor into your class code, a default constructor will
be automatically generated by the compiler.

■ The default constructor is ALWAYS a no-arg constructor.

■ If you want a no-arg constructor and you've typed any other constructor(s)
into your class code, the compiler won't provide the no-arg constructor (or

4.

3.

2.

1.

Object()

Animal() calls super()

Horse() calls super()

main() calls new Horse()

Constructors and Instantiation (Exam Objectives 1.6, 5.3, and 5.4) 133

any other constructor) for you. In other words, if you've typed in a construc-
tor with arguments, you won't have a no-arg constructor unless you type it in
yourself!

■ Every constructor has, as its first statement, either a call to an overloaded
constructor (this()) or a call to the superclass constructor (super()), although
remember that this call can be inserted by the compiler.

■ If you do type in a constructor (as opposed to relying on the compiler-gener-
ated default constructor), and you do not type in the call to super() or a call
to this(), the compiler will insert a no-arg call to super() for you, as the very
first statement in the constructor.

■ A call to super() can be either a no-arg call or can include arguments passed
to the super constructor.

■ A no-arg constructor is not necessarily the default (i.e., compiler-supplied)
constructor, although the default constructor is always a no-arg constructor.
The default constructor is the one the compiler provides! While the default
constructor is always a no-arg constructor, you're free to put in your own no-
arg constructor.

■ You cannot make a call to an instance method, or access an instance variable,
until after the super constructor runs.

■ Only static variables and methods can be accessed as part of the call to su-
per() or this(). (Example: super(Animal.NAME) is OK, because NAME is
declared as a static variable.)

■ Abstract classes have constructors, and those constructors are always called
when a concrete subclass is instantiated.

■ Interfaces do not have constructors. Interfaces are not part of an object's
inheritance tree.

■ The only way a constructor can be invoked is from within another construc-
tor. In other words, you can't write code that actually calls a constructor as
follows:

 class Horse {
 Horse() { } // constructor
 void doStuff() {
 Horse(); // calling the constructor - illegal!
 }

 }

134 Chapter 2: Object Orientation

Determine Whether a Default Constructor Will Be Created
The following example shows a Horse class with two constructors:

class Horse {
 Horse() { }
 Horse(String name) { }
 }

Will the compiler put in a default constructor for the class above? No!
How about for the following variation of the class?

class Horse {
 Horse(String name) { }
}

Now will the compiler insert a default constructor? No!
What about this class?

class Horse { }

Now we're talking. The compiler will generate a default constructor for the
preceding class, because the class doesn't have any constructors defined.
OK, what about this class?

class Horse {
 void Horse() { }
}

It might look like the compiler won't create one, since there already is a constructor
in the Horse class. Or is there? Take another look at the preceding Horse class.

What's wrong with the Horse() constructor? It isn't a constructor at all! It's
simply a method that happens to have the same name as the class. Remember, the
return type is a dead giveaway that we're looking at a method, and not a constructor.

How do you know for sure whether a default constructor will be created?
Because you didn't write any constructors in your class.

Determine Whether a Default Constructor Will Be Created (Exam Objectives 1.6, 5.3, and 5.4) 135

How do you know what the default constructor will look like?
Because...

■ The default constructor has the same access modifier as the class.

■ The default constructor has no arguments.

■ The default constructor includes a no-arg call to the super constructor
(super()).

Table 2-4 shows what the compiler will (or won't) generate for your class.

What happens if the super constructor has arguments?
Constructors can have arguments just as methods can, and if you try to invoke
a method that takes, say, an int, but you don't pass anything to the method, the
compiler will complain as follows:

class Bar {
 void takeInt(int x) { }
}

class UseBar {
 public static void main (String [] args) {
 Bar b = new Bar();
 b.takeInt(); // Try to invoke a no-arg takeInt() method
 }
}

The compiler will complain that you can't invoke takeInt() without passing an
int. Of course, the compiler enjoys the occasional riddle, so the message it spits out
on some versions of the JVM (your mileage may vary) is less than obvious:

UseBar.java:7: takeInt(int) in Bar cannot be applied to ()
 b.takeInt();
 ^

But you get the idea. The bottom line is that there must be a match for the
method. And by match, we mean that the argument types must be able to accept
the values or variables you're passing, and in the order you're passing them. Which
brings us back to constructors (and here you were thinking we'd never get there),
which work exactly the same way.

136 Chapter 2: Object Orientation

So if your super constructor (that is, the constructor of your immediate
superclass/parent) has arguments, you must type in the call to super(), supplying
the appropriate arguments. Crucial point: if your superclass does not have a no-arg

Determine Whether a Default Constructor Will Be Created (Exam Objectives 1.6, 5.3, and 5.4) 137

Class Code (What You Type) Compiler Generated Constructor Code (in Bold)

class Foo { } class Foo {
 Foo() {
 super();
 }
}

class Foo {
 Foo() { }
}

class Foo {
 Foo() {
 super();
 }
}

public class Foo { } public class Foo {
 public Foo() {
 super();
 }
}

class Foo {
 Foo(String s) { }
}

class Foo {
 Foo(String s) {
 super();
 }
}

class Foo {
 Foo(String s) {
 super();
 }
}

Nothing, compiler doesn’t need to insert
anything.

class Foo {
 void Foo() { }
}

class Foo {
 void Foo() { }
 Foo() {
 super();
 }
}
(void Foo() is a method, not a constructor.)

 TABLE 2-4 Compiler-Generated Constructor Code

constructor, you must type a constructor in your class (the subclass) because you
need a place to put in the call to super with the appropriate arguments.

The following is an example of the problem:

class Animal {
 Animal(String name) { }
}

class Horse extends Animal {
 Horse() {
 super(); // Problem!
 }
}

And once again the compiler treats us with the stunningly lucid:

Horse.java:7: cannot resolve symbol
symbol : constructor Animal ()
location: class Animal
 super(); // Problem!
 ^

If you're lucky (and it's a full moon), your compiler might be a little more explicit.
But again, the problem is that there just isn't a match for what we're trying to invoke
with super()—an Animal constructor with no arguments.

Another way to put this is that if your superclass does not have a no-arg
constructor, then in your subclass you will not be able to use the default constructor
supplied by the compiler. It's that simple. Because the compiler can only put in a call
to a no-arg super(), you won't even be able to compile something like this:

class Clothing {
 Clothing(String s) { }
}
class TShirt extends Clothing { }

Trying to compile this code gives us exactly the same error we got when we put
a constructor in the subclass with a call to the no-arg version of super():

Clothing.java:4: cannot resolve symbol
symbol : constructor Clothing ()
location: class Clothing

138 Chapter 2: Object Orientation

class TShirt extends Clothing { }
^

In fact, the preceding Clothing and TShirt code is implicitly the same as the
following code, where we've supplied a constructor for TShirt that's identical to the
default constructor supplied by the compiler:

class Clothing {
 Clothing(String s) { }
}
class TShirt extends Clothing {
 // Constructor identical to compiler-supplied
 // default constructor
 TShirt() {
 super(); // Won't work!
 } // Invokes a no-arg Clothing() constructor,
} // but there isn't one!

One last point on the whole default constructor thing (and it's probably
very obvious, but we have to say it or we'll feel guilty for years), constructors
are never inherited. They aren't methods. They can't be overridden (because
they aren't methods and only instance methods can be overridden). So the type
of constructor(s) your superclass has in no way determines the type of default
constructor you'll get. Some folks mistakenly believe that the default constructor
somehow matches the super constructor, either by the arguments the default
constructor will have (remember, the default constructor is always a no-arg), or by
the arguments used in the compiler-supplied call to super().

So, although constructors can't be overridden, you've already seen that they can
be overloaded, and typically are.

Overloaded Constructors
Overloading a constructor means typing in multiple versions of the constructor, each
having a different argument list, like the following examples:

class Foo {
 Foo() { }
 Foo(String s) { }
}

Overloaded Constructors (Exam Objectives 1.6, 5.3, and 5.4) 139

The preceding Foo class has two overloaded constructors, one that takes a string,
and one with no arguments. Because there's no code in the no-arg version, it's
actually identical to the default constructor the compiler supplies, but remember—
since there's already a constructor in this class (the one that takes a string), the
compiler won't supply a default constructor. If you want a no-arg constructor to
overload the with-args version you already have, you're going to have to type it
yourself, just as in the Foo example.

Overloading a constructor is typically used to provide alternate ways for clients
to instantiate objects of your class. For example, if a client knows the animal name,
they can pass that to an Animal constructor that takes a string. But if they don't
know the name, the client can call the no-arg constructor and that constructor can
supply a default name. Here's what it looks like:

 1. public class Animal {
 2. String name;
 3. Animal(String name) {
 4. this.name = name;
 5. }
 6.
 7. Animal() {
 8. this(makeRandomName());
 9. }
 10.
 11. static String makeRandomName() {
 12. int x = (int) (Math.random() * 5);
 13. String name = new String[] {"Fluffy", "Fido",
 "Rover", "Spike",
 "Gigi"}[x];
 14. return name;
 15. }
 16.
 17. public static void main (String [] args) {
 18. Animal a = new Animal();
 19. System.out.println(a.name);
 20. Animal b = new Animal("Zeus");
 21. System.out.println(b.name);
 22. }
 23. }

Running the code four times produces this output:

140 Chapter 2: Object Orientation

% java Animal
Gigi
Zeus

% java Animal
Fluffy
Zeus

% java Animal
Rover
Zeus

% java Animal
Fluffy
Zeus

There's a lot going on in the preceding code. Figure 2-7 shows the call stack for
constructor invocations when a constructor is overloaded. Take a look at the call
stack, and then let's walk through the code straight from the top.

 FIGURE 2-7

Overloaded
constructors on
the call stack

■ Line 2 Declare a String instance variable name.

■ Lines 3–5 Constructor that takes a String, and assigns it to instance vari-
able name.

■ Line 7 Here's where it gets fun. Assume every animal needs a name, but
the client (calling code) might not always know what the name should be,
so you'll assign a random name. The no-arg constructor generates a name by
invoking the makeRandomName() method.

■ Line 8 The no-arg constructor invokes its own overloaded constructor
that takes a String, in effect calling it the same way it would be called if

Overloaded Constructors (Exam Objectives 1.6, 5.3, and 5.4) 141

4.

3.

2.

1.

Object()

Animal(String s) calls super()

Animal() calls this(randomlyChosenNameString)

main() calls new Animal()

client code were doing a new to instantiate an object, passing it a String for
the name. The overloaded invocation uses the keyword this, but uses it as
though it were a method name, this(). So line 8 is simply calling the con-
structor on line 3, passing it a randomly selected String rather than a client-
code chosen name.

■ Line 11 Notice that the makeRandomName() method is marked static!
That's because you cannot invoke an instance (in other words, nonstatic)
method (or access an instance variable) until after the super constructor has
run. And since the super constructor will be invoked from the constructor on
line 3, rather than from the one on line 7, line 8 can use only a static method
to generate the name. If we wanted all animals not specifically named by the
caller to have the same default name, say, "Fred," then line 8 could have read
this("Fred"); rather than calling a method that returns a string with the
randomly chosen name.

■ Line 12 This doesn't have anything to do with constructors, but since we're
all here to learn...it generates a random integer between 0 and 4.

■ Line 13 Weird syntax, we know. We're creating a new String object (just a
single String instance), but we want the string to be selected randomly from
a list. Except we don't have the list, so we need to make it. So in that one
line of code we

1. Declare a String variable, name.

2. Create a String array (anonymously—we don't assign the array itself to
anything).

3. Retrieve the string at index [x] (x being the random number generated
on line 12) of the newly created String array.

4. Assign the string retrieved from the array to the declared instance vari-
able name. We could have made it much easier to read if we'd just written

 String[] nameList = {"Fluffy", "Fido", "Rover", "Spike",

 "Gigi"};

 String name = nameList[x];

 But where's the fun in that? Throwing in unusual syntax (especially for code
wholly unrelated to the real question) is in the spirit of the exam. Don't be

142 Chapter 2: Object Orientation

startled! (OK, be startled, but then just say to yourself, "Whoa" and get on
with it.)

■ Line 18 We're invoking the no-arg version of the constructor (causing a
random name from the list to be passed to the other constructor).

■ Line 20 We're invoking the overloaded constructor that takes a string
representing the name.

The key point to get from this code example is in line 8. Rather than calling
super(), we're calling this(), and this() always means a call to another
constructor in the same class. OK, fine, but what happens after the call to this()?
Sooner or later the super() constructor gets called, right? Yes indeed. A call to
this() just means you're delaying the inevitable. Some constructor, somewhere,
must make the call to super().

Key Rule: The first line in a constructor must be a call to super() or a call to
this().

No exceptions. If you have neither of those calls in your constructor, the compiler
will insert the no-arg call to super(). In other words, if constructor A() has a call
to this(), the compiler knows that constructor A() will not be the one to invoke
super().

The preceding rule means a constructor can never have both a call to super()
and a call to this(). Because each of those calls must be the first statement in a
constructor, you can't legally use both in the same constructor. That also means the
compiler will not put a call to super() in any constructor that has a call to this().

Thought question: What do you think will happen if you try to compile the
following code?

class A {
 A() {
 this("foo");
 }
 A(String s) {
 this();
 }
}

Your compiler may not actually catch the problem (it varies depending on your
compiler, but most won't catch the problem). It assumes you know what you're

Overloaded Constructors (Exam Objectives 1.6, 5.3, and 5.4) 143

doing. Can you spot the flaw? Given that a super constructor must always be called,
where would the call to super() go? Remember, the compiler won't put in a default
constructor if you've already got one or more constructors in your class. And when
the compiler doesn't put in a default constructor, it still inserts a call to super() in
any constructor that doesn't explicitly have a call to the super constructor—unless,
that is, the constructor already has a call to this(). So in the preceding code, where
can super() go? The only two constructors in the class both have calls to this(), and
in fact you'll get exactly what you'd get if you typed the following method code:

public void go() {
 doStuff();
}

public void doStuff() {
 go();
}

Now can you see the problem? Of course you can. The stack explodes! It gets
higher and higher and higher until it just bursts open and method code goes spilling
out, oozing out of the JVM right onto the floor. Two overloaded constructors both
calling this() are two constructors calling each other. Over and over and over,
resulting in

% java A
Exception in thread "main" java.lang.StackOverflowError

The benefit of having overloaded constructors is that you offer flexible ways to
instantiate objects from your class. The benefit of having one constructor invoke
another overloaded constructor is to avoid code duplication. In the Animal
example, there wasn't any code other than setting the name, but imagine if after line
4 there was still more work to be done in the constructor. By putting all the other
constructor work in just one constructor, and then having the other constructors
invoke it, you don't have to write and maintain multiple versions of that other
important constructor code. Basically, each of the other not-the-real-one overloaded
constructors will call another overloaded constructor, passing it whatever data it
needs (data the client code didn't supply).

Constructors and instantiation become even more exciting (just when you
thought it was safe), when you get to inner classes, but we know you can stand to

144 Chapter 2: Object Orientation

have only so much fun in one chapter, so we're holding the rest of the discussion on
instantiating inner classes until Chapter 8.

CERTIFICATION OBJECTIVE

Statics (Exam Objective 1.3)
1.3 Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for variable names.

Static Variables and Methods
The static modifier has such a profound impact on the behavior of a method or
variable that we're treating it as a concept entirely separate from the other modifiers.
To understand the way a static member works, we'll look first at a reason for using
one. Imagine you've got a utility class with a method that always runs the same
way; its sole function is to return, say, a random number. It wouldn't matter which
instance of the class performed the method—it would always behave exactly the
same way. In other words, the method's behavior has no dependency on the state
(instance variable values) of an object. So why, then, do you need an object when
the method will never be instance-specific? Why not just ask the class itself to run
the method?

Let's imagine another scenario: Suppose you want to keep a running count of
all instances instantiated from a particular class. Where do you actually keep that
variable? It won't work to keep it as an instance variable within the class whose
instances you're tracking, because the count will just be initialized back to a default
value with each new instance. The answer to both the utility-method-always-runs-
the-same scenario and the keep-a-running-total-of-instances scenario is to use the
static modifier. Variables and methods marked static belong to the class, rather
than to any particular instance. In fact, you can use a static method or variable
without having any instances of that class at all. You need only have the class
available to be able to invoke a static method or access a static variable. static
variables, too, can be accessed without having an instance of a class. But if there are
instances, a static variable of a class will be shared by all instances of that class;
there is only one copy.

The following code declares and uses a static counter variable:

Static Variables and Methods (Exam Objective 1.3) 145

class Frog {
 static int frogCount = 0; // Declare and initialize
 // static variable
 public Frog() {
 frogCount += 1; // Modify the value in the constructor
 }
 public static void main (String [] args) {
 new Frog();
 new Frog();
 new Frog();
 System.out.println("Frog count is now " + frogCount);
 }
}

In the preceding code, the static frogCount variable is set to zero when the Frog
class is first loaded by the JVM, before any Frog instances are created! (By the way,
you don't actually need to initialize a static variable to zero; static variables get the
same default values instance variables get.) Whenever a Frog instance is created,
the Frog constructor runs and increments the static frogCount variable. When this
code executes, three Frog instances are created in main(), and the result is

Frog count is now 3

Now imagine what would happen if frogCount were an instance variable (in
other words, nonstatic):

class Frog {
 int frogCount = 0; // Declare and initialize
 // instance variable
 public Frog() {
 frogCount += 1; // Modify the value in the constructor
 }
 public static void main (String [] args) {
 new Frog();
 new Frog();
 new Frog();
 System.out.println("Frog count is now " + frogCount);
 }
}

When this code executes, it should still create three Frog instances in main(),
but the result is...a compiler error! We can't get this code to compile, let alone run.

146 Chapter 2: Object Orientation

Frog.java:11: nonstatic variable frogCount cannot be referenced
from a static context
 System.out.println("Frog count is " + frogCount);
 ^
 1 error

The JVM doesn't know which Frog object's frogCount you're trying to access.
The problem is that main() is itself a static method, and thus isn't running
against any particular instance of the class, rather just on the class itself. A static
method can't access a nonstatic (instance) variable, because there is no instance!
That's not to say there aren't instances of the class alive on the heap, but rather that
even if there are, the static method doesn't know anything about them. The same
applies to instance methods; a static method can't directly invoke a nonstatic
method. Think static = class, nonstatic = instance. Making the method called by the
JVM (main()) a static method means the JVM doesn't have to create an instance
of your class just to start running code.

Static Variables and Methods (Exam Objective 1.3) 147

One of the mistakes most often made by new Java programmers is
attempting to access an instance variable (which means nonstatic variable) from the
static main() method (which doesn’t know anything about any instances, so it can’t
access the variable). The following code is an example of illegal access of a nonstatic
variable from a static method:

class Foo {
 int x = 3;
 public static void main (String [] args) {
 System.out.println("x is " + x);
 }
}

Understand that this code will never compile, because you can’t access
a nonstatic (instance) variable from a static method. Just think of the compiler saying,
“Hey, I have no idea which Foo object’s x variable you’re trying to print!” Remember, it’s
the class running the main() method, not an instance of the class.

Accessing Static Methods and Variables
Since you don't need to have an instance in order to invoke a static method or
access a static variable, then how do you invoke or use a static member? What's the
syntax? We know that with a regular old instance method, you use the dot operator
on a reference to an instance:

class Frog {
 int frogSize = 0;
 public int getFrogSize() {
 return frogSize;
 }
 public Frog(int s) {
 frogSize = s;
 }
 public static void main (String [] args) {

148 Chapter 2: Object Orientation

 (continued) Of course, the tricky part for the exam is that the question
won’t look as obvious as the preceding code. The problem you’re being tested for—
accessing a nonstatic variable from a static method—will be buried in code that might
appear to be testing something else. For example, the preceding code would be more
likely to appear as

class Foo {
 int x = 3;
 float y = 4.3f;
 public static void main (String [] args) {
 for (int z = x; z < ++x; z--, y = y + z)
 // complicated looping and branching code
 }
}

So while you’re trying to follow the logic, the real issue is that x and y
can’t be used within main(), because x and y are instance, not static, variables! The same
applies for accessing nonstatic methods from a static method. The rule is, a static method
of a class can’t access a nonstatic (instance) method or variable of its own class.

 Frog f = new Frog(25);
 System.out.println(f.getFrogSize()); // Access instance
 // method using f
 }
}

In the preceding code, we instantiate a Frog, assign it to the reference variable
f, and then use that f reference to invoke a method on the Frog instance we just
created. In other words, the getFrogSize() method is being invoked on a specific
Frog object on the heap.

But this approach (using a reference to an object) isn't appropriate for accessing a
static method, because there might not be any instances of the class at all! So, the
way we access a static method (or static variable) is to use the dot operator on
the class name, as opposed to using it on a reference to an instance, as follows:

class Frog {
 static int frogCount = 0; // Declare and initialize
 // static variable
 public Frog() {
 frogCount += 1; // Modify the value in the constructor
 }
}

class TestFrog {
 public static void main (String [] args) {
 new Frog();
 new Frog();
 new Frog();
 System.out.print("frogCount:"+Frog.frogCount); //Access
 // static variable
 }
}

But just to make it really confusing, the Java language also allows you to use an
object reference variable to access a static member:

Frog f = new Frog();
int frogs = f.frogCount; // Access static variable
 // FrogCount using f

Static Variables and Methods (Exam Objective 1.3) 149

In the preceding code, we instantiate a Frog, assign the new Frog object to the
reference variable f, and then use the f reference to invoke a static method! But
even though we are using a specific Frog instance to access the static method,
the rules haven't changed. This is merely a syntax trick to let you use an object
reference variable (but not the object it refers to) to get to a static method or
variable, but the static member is still unaware of the particular instance used
to invoke the static member. In the Frog example, the compiler knows that the
reference variable f is of type Frog, and so the Frog class static method is run with
no awareness or concern for the Frog instance at the other end of the f reference. In
other words, the compiler cares only that reference variable f is declared as type Frog.
Figure 2-8 illustrates the effects of the static modifier on methods and variables.

 FIGURE 2-8

The effects of
static on methods
and variables

150 Chapter 2: Object Orientation

class Foo

class Bar

class Baz

static int count;
static void woo(){ }
static void doMore(){

woo();
int x = count;

}

void go ();
static void doMore(){

go();
}

int size = 42;
static void doMore(){

int x = size;
}

static method cannot
access an instance
(non-static) variable

static method cannot
access a non-static
method

static method
can access a static
method or variable

Finally, remember that static methods can't be overridden! This doesn't mean they
can't be redefined in a subclass, but redefining and overriding aren't the same thing.
Let's take a look at an example of a redefined (remember, not overridden), static
method:

class Animal {
 static void doStuff() {
 System.out.print("a ");
 }
}
class Dog extends Animal {
 static void doStuff() { // it's a redefinition,
 // not an override
 System.out.print("d ");
 }
 public static void main(String [] args) {
 Animal [] a = {new Animal(), new Dog(), new Animal()};
 for(int x = 0; x < a.length; x++)
 a[x].doStuff(); // invoke the static method
 }
}

Running this code produces the output:

a a a

Remember, the syntax a[x].doStuff() is just a shortcut (the syntax trick)…the
compiler is going to substitute something like Animal.doStuff() instead. Notice
that we didn't use the Java 1.5 enhanced for loop here (covered in Chapter 5), even
though we could have. Expect to see a mix of both Java 1.4 and Java 5 coding styles
and practices on the exam.

CERTIFICATION OBJECTIVE

Coupling and Cohesion (Exam Objective 5.1)
5.1 Develop code that implements tight encapsulation, loose coupling, and high cohesion
in classes, and describe the benefits.

Coupling and Cohesion (Exam Objective 5.1) 151

We're going to admit it up front. The Sun exam's definitions for cohesion and
coupling are somewhat subjective, so what we discuss in this chapter is from the
perspective of the exam, and by no means The One True Word on these two OO
design principles. It may not be exactly the way that you've learned it, but it's what
you need to understand to answer the questions. You'll have very few questions
about coupling and cohesion on the real exam.

These two topics, coupling and cohesion, have to do with the quality of an OO
design. In general, good OO design calls for loose coupling and shuns tight coupling,
and good OO design calls for high cohesion, and shuns low cohesion. As with most
OO design discussions, the goals for an application are

■ Ease of creation

■ Ease of maintenance

■ Ease of enhancement

Coupling
Let's start by making an attempt at a definition of coupling. Coupling is the degree
to which one class knows about another class. If the only knowledge that class A
has about class B, is what class B has exposed through its interface, then class A and
class B are said to be loosely coupled…that's a good thing. If, on the other hand,
class A relies on parts of class B that are not part of class B's interface, then the
coupling between the classes is tighter…not a good thing. In other words, if A knows
more than it should about the way in which B was implemented, then A and B are
tightly coupled.

Using this second scenario, imagine what happens when class B is enhanced. It's
quite possible that the developer enhancing class B has no knowledge of class A,
why would she? Class B's developer ought to feel that any enhancements that don't
break the class's interface should be safe, so she might change some noninterface
part of the class, which then causes class A to break.

At the far end of the coupling spectrum is the horrible situation in which class A
knows non-API stuff about class B, and class B knows non-API stuff about class A…
this is REALLY BAD. If either class is ever changed, there's a chance that the other
class will break. Let's look at an obvious example of tight coupling, which has been
enabled by poor encapsulation:

class DoTaxes {
 float rate;

152 Chapter 2: Object Orientation

 float doColorado() {
 SalesTaxRates str = new SalesTaxRates();
 rate = str.salesRate; // ouch
 // this should be a method call:
 // rate = str.getSalesRate("CO");
 // do stuff with rate
 }
}

class SalesTaxRates {
 public float salesRate; // should be private
 public float adjustedSalesRate; // should be private

 public float getSalesRate(String region) {
 salesRate = new DoTaxes().doColorado(); // ouch again!
 // do region-based calculations
 return adjustedSalesRate;
 }
}

All nontrivial OO applications are a mix of many classes and interfaces working
together. Ideally, all interactions between objects in an OO system should use the
APIs, in other words, the contracts, of the objects' respective classes. Theoretically,
if all of the classes in an application have well-designed APIs, then it should be
possible for all interclass interactions to use those APIs exclusively. As we discussed
earlier in this chapter, an aspect of good class and API design is that classes should
be well encapsulated.

The bottom line is that coupling is a somewhat subjective concept. Because of
this, the exam will test you on really obvious examples of tight coupling; you won't
be asked to make subtle judgment calls.

Cohesion
While coupling has to do with how classes interact with each other, cohesion is all
about how a single class is designed. The term cohesion is used to indicate the degree
to which a class has a single, well-focused purpose. Keep in mind that cohesion is a
subjective concept. The more focused a class is, the higher its cohesiveness—a good
thing. The key benefit of high cohesion is that such classes are typically much easier
to maintain (and less frequently changed) than classes with low cohesion. Another
benefit of high cohesion is that classes with a well-focused purpose tend to be more
reusable than other classes. Let's take a look at a pseudo-code example:

Coupling and Cohesion (Exam Objective 5.1) 153

class BudgetReport {
 void connectToRDBMS(){ }
 void generateBudgetReport() { }
 void saveToFile() { }
 void print() { }
}

Now imagine your manager comes along and says, "Hey you know that
accounting application we're working on? The clients just decided that they're also
going to want to generate a revenue projection report, oh and they want to do some
inventory reporting also. They do like our reporting features however, so make sure
that all of these reports will let them choose a database, choose a printer, and save
generated reports to data files..." Ouch!

Rather than putting all the printing code into one report class, we probably would
have been better off with the following design right from the start:

class BudgetReport {
 Options getReportingOptions() { }
 void generateBudgetReport(Options o) { }
}

class ConnectToRDBMS {
 DBconnection getRDBMS() { }
}

class PrintStuff {
 PrintOptions getPrintOptions() { }
}

class FileSaver {
 SaveOptions getFileSaveOptions() { }
}

This design is much more cohesive. Instead of one class that does everything,
we've broken the system into four main classes, each with a very specific, or cohesive,
role. Because we've built these specialized, reusable classes, it'll be much easier
to write a new report, since we've already got the database connection class, the
printing class, and the file saver class, and that means they can be reused by other
classes that might want to print a report.

154 Chapter 2: Object Orientation

CERTIFICATION SUMMARY
We started the chapter by discussing the importance of encapsulation in good OO
design, and then we talked about how good encapsulation is implemented: with
private instance variables and public getters and setters.

Next, we covered the importance of inheritance; so that you can grasp overriding,
overloading, polymorphism, reference casting, return types, and constructors.

We covered IS-A and HAS-A. IS-A is implemented using inheritance, and
HAS-A is implemented by using instance variables that refer to other objects.

Polymorphism was next. Although a reference variable's type can't be changed, it
can be used to refer to an object whose type is a subtype of its own. We learned how
to determine what methods are invocable for a given reference variable.

We looked at the difference between overridden and overloaded methods,
learning that an overridden method occurs when a subclass inherits a method from
a superclass, and then reimplements the method to add more specialized behavior.
We learned that, at runtime, the JVM will invoke the subclass version on an
instance of a subclass, and the superclass version on an instance of the superclass.
Abstract methods must be "overridden" (technically, abstract methods must be
implemented, as opposed to overridden, since there really isn't anything to override.

We saw that overriding methods must declare the same argument list and
return type (or, as of Java 5, they can return a subtype of the declared return type
of the superclass overridden method), and that the access modifier can't be more
restrictive. The overriding method also can't throw any new or broader checked
exceptions that weren't declared in the overridden method. You also learned that
the overridden method can be invoked using the syntax super.doSomething();.

Overloaded methods let you reuse the same method name in a class, but with
different arguments (and, optionally, a different return type). Whereas overriding
methods must not change the argument list, overloaded methods must. But unlike
overriding methods, overloaded methods are free to vary the return type, access
modifier, and declared exceptions any way they like.

We learned the mechanics of casting (mostly downcasting), reference variables,
when it's necessary, and how to use the instanceof operator.

Implementing interfaces came next. An interface describes a contract that the
implementing class must follow. The rules for implementing an interface are similar
to those for extending an abstract class. Also remember that a class can implement
more than one interface, and that interfaces can extend another interface.

We also looked at method return types, and saw that you can declare any return
type you like (assuming you have access to a class for an object reference return

Certifi cation Summary 155

type), unless you're overriding a method. Barring a covariant return, an overriding
method must have the same return type as the overridden method of the superclass.
We saw that while overriding methods must not change the return type, overloaded
methods can (as long as they also change the argument list).

Finally, you learned that it is legal to return any value or variable that can be
implicitly converted to the declared return type. So, for example, a short can be
returned when the return type is declared as an int. And (assuming Horse extends
Animal), a Horse reference can be returned when the return type is declared
an Animal.

We covered constructors in detail, learning that if you don't provide a constructor
for your class, the compiler will insert one. The compiler-generated constructor is
called the default constructor, and it is always a no-arg constructor with a no-arg call
to super(). The default constructor will never be generated if there is even a single
constructor in your class (regardless of the arguments of that constructor), so if you
need more than one constructor in your class and you want a no-arg constructor,
you'll have to write it yourself. We also saw that constructors are not inherited, and
that you can be confused by a method that has the same name as the class (which
is legal). The return type is the giveaway that a method is not a constructor, since
constructors do not have return types.

We saw how all of the constructors in an object's inheritance tree will always be
invoked when the object is instantiated using new. We also saw that constructors
can be overloaded, which means defining constructors with different argument
lists. A constructor can invoke another constructor of the same class using the
keyword this(), as though the constructor were a method named this(). We saw
that every constructor must have either this() or super() as the first statement
(although the compiler can insert it for you).

We looked at static methods and variables. Static members are tied to the
class, not an instance, so there is only one copy of any static member. A common
mistake is to attempt to reference an instance variable from a static method. Use
the class name with the dot operator to access static members.

We discussed the OO concepts of coupling and cohesion. Loose coupling is the
desirable state of two or more classes that interact with each other only through
their respective API's. Tight coupling is the undesirable state of two or more
classes that know inside details about another class, details not revealed in the
class's API. High cohesion is the desirable state of a single class whose purpose and
responsibilities are limited and well-focused.

And once again, you learned that the exam includes tricky questions designed
largely to test your ability to recognize just how tricky the questions can be.

156 Chapter 2: Object Orientation

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.

Encapsulation, IS-A, HAS-A (Objective 5.1)

❑ Encapsulation helps hide implementation behind an interface (or API).

❑ Encapsulated code has two features:

 ❑ Instance variables are kept protected (usually with the private modifier).

 ❑ Getter and setter methods provide access to instance variables.

❑ IS-A refers to inheritance or implementation.

❑ IS-A is expressed with the keyword extends.

❑ IS-A, "inherits from," and "is a subtype of " are all equivalent expressions.

❑ HAS-A means an instance of one class "has a" reference to an instance of
another class or another instance of the same class.

Inheritance (Objective 5.5)

❑ Inheritance allows a class to be a subclass of a superclass, and thereby
inherit public and protected variables and methods of the superclass.

❑ Inheritance is a key concept that underlies IS-A, polymorphism, overriding,
overloading, and casting.

❑ All classes (except class Object), are subclasses of type Object, and therefore
they inherit Object's methods.

Polymorphism (Objective 5.2)

❑ Polymorphism means "many forms."

❑ A reference variable is always of a single, unchangeable type, but it can refer
to a subtype object.

❑ A single object can be referred to by reference variables of many different
types —as long as they are the same type or a supertype of the object.

❑ The reference variable's type (not the object's type), determines which
methods can be called!

❑ Polymorphic method invocations apply only to overridden instance methods.

Two-Minute Drill 157

✓

Overriding and Overloading (Objectives 1.5 and 5.4)

❑ Methods can be overridden or overloaded; constructors can be overloaded
but not overridden.

❑ Abstract methods must be overridden by the first concrete (non-abstract)
subclass.

❑ With respect to the method it overrides, the overriding method

 ❑ Must have the same argument list.

 ❑ Must have the same return type, except that as of Java 5, the return type
 can be a subclass—this is known as a covariant return.

 ❑ Must not have a more restrictive access modifier.

 ❑ May have a less restrictive access modifier.

 ❑ Must not throw new or broader checked exceptions.

 ❑ May throw fewer or narrower checked exceptions, or any
 unchecked exception.

❑ final methods cannot be overridden.

❑ Only inherited methods may be overridden, and remember that private
methods are not inherited.

❑ A subclass uses super.overriddenMethodName() to call the superclass
version of an overridden method.

❑ Overloading means reusing a method name, but with different arguments.

❑ Overloaded methods

 ❑ Must have different argument lists

 ❑ May have different return types, if argument lists are also different

 ❑ May have different access modifiers

 ❑ May throw different exceptions

❑ Methods from a superclass can be overloaded in a subclass.

❑ Polymorphism applies to overriding, not to overloading.

❑ Object type (not the reference variable's type), determines which overridden
method is used at runtime.

❑ Reference type determines which overloaded method will be used at
compile time.

158 Chapter 2: Object Orientation

Reference Variable Casting (Objective 5.2)

❑ There are two types of reference variable casting: downcasting and upcasting.

❑ Downcasting: If you have a reference variable that refers to a subtype object,
you can assign it to a reference variable of the subtype. You must make an
explicit cast to do this, and the result is that you can access the subtype's
members with this new reference variable.

❑ Upcasting: You can assign a reference variable to a supertype reference vari-
able explicitly or implicitly. This is an inherently safe operation because the
assignment restricts the access capabilities of the new variable.

Implementing an Interface (Objective 1.2)

❑ When you implement an interface, you are fulfilling its contract.

❑ You implement an interface by properly and concretely overriding all of the
methods defined by the interface.

❑ A single class can implement many interfaces.

Return Types (Objective 1.5)

❑ Overloaded methods can change return types; overridden methods cannot,
except in the case of covariant returns.

❑ Object reference return types can accept null as a return value.

❑ An array is a legal return type, both to declare and return as a value.

❑ For methods with primitive return types, any value that can be implicitly
converted to the return type can be returned.

❑ Nothing can be returned from a void, but you can return nothing. You're
allowed to simply say return, in any method with a void return type, to bust
out of a method early. But you can't return nothing from a method with a
non-void return type.

❑ Methods with an object reference return type, can return a subtype.

❑ Methods with an interface return type, can return any implementer.

Constructors and Instantiation (Objectives 1.6 and 5.4)

❑ A constructor is always invoked when a new object is created.

Two-Minute Drill 159

❑ Each superclass in an object's inheritance tree will have a constructor called.

❑ Every class, even an abstract class, has at least one constructor.

❑ Constructors must have the same name as the class.

❑ Constructors don't have a return type. If you see code with a return type, it's a
method with the same name as the class, it's not a constructor.

❑ Typical constructor execution occurs as follows:

 ❑ The constructor calls its superclass constructor, which calls its superclass
 constructor, and so on all the way up to the Object constructor.

 ❑ The Object constructor executes and then returns to the calling
 constructor, which runs to completion and then returns to its calling
 constructor, and so on back down to the completion of the constructor of
 the actual instance being created.

❑ Constructors can use any access modifier (even private!).

❑ The compiler will create a default constructor if you don't create any construc-
tors in your class.

❑ The default constructor is a no-arg constructor with a no-arg call to super().

❑ The first statement of every constructor must be a call to either this() (an
overloaded constructor) or super().

❑ The compiler will add a call to super() unless you have already put in a call
to this() or super().

❑ Instance members are accessible only after the super constructor runs.

❑ Abstract classes have constructors that are called when a concrete
subclass is instantiated.

❑ Interfaces do not have constructors.

❑ If your superclass does not have a no-arg constructor, you must create a con-
structor and insert a call to super() with arguments matching those
of the superclass constructor.

❑ Constructors are never inherited, thus they cannot be overridden.

❑ A constructor can be directly invoked only by another constructor (using
a call to super() or this()).

❑ Issues with calls to this()

 ❑ May appear only as the first statement in a constructor.

 ❑ The argument list determines which overloaded constructor is called.

160 Chapter 2: Object Orientation

 ❑ Constructors can call constructors can call constructors, and so on, but
 sooner or later one of them better call super() or the stack will explode.

 ❑ Calls to this() and super() cannot be in the same constructor. You can
 have one or the other, but never both.

Statics (Objective 1.3)

❑ Use static methods to implement behaviors that are not affected by the
state of any instances.

❑ Use static variables to hold data that is class specific as opposed to instance
specific—there will be only one copy of a static variable.

❑ All static members belong to the class, not to any instance.

❑ A static method can't access an instance variable directly.

❑ Use the dot operator to access static members, but remember that using a
reference variable with the dot operator is really a syntax trick, and the com-
piler will substitute the class name for the reference variable, for instance:
 d.doStuff();

 becomes:
 Dog.doStuff();

❑ static methods can't be overridden, but they can be redefined.

Coupling and Cohesion (Objective 5.1)

❑ Coupling refers to the degree to which one class knows about or uses mem-
bers of another class.

❑ Loose coupling is the desirable state of having classes that are well encapsu-
lated, minimize references to each other, and limit the breadth of API usage.

❑ Tight coupling is the undesirable state of having classes that break the rules of
loose coupling.

❑ Cohesion refers to the degree in which a class has a single, well-defined role
or responsibility.

❑ High cohesion is the desirable state of a class whose members support a
single, well-focused role or responsibility.

❑ Low cohesion is the undesirable state of a class whose members support mul-
tiple, unfocused roles or responsibilities.

Two-Minute Drill 161

SELF TEST
 1. Given:

public abstract interface Frobnicate { public void twiddle(String s); }

 Which is a correct class? (Choose all that apply.)
 A. public abstract class Frob implements Frobnicate {

 public abstract void twiddle(String s) { }
 }

 B. public abstract class Frob implements Frobnicate { }
 C. public class Frob extends Frobnicate {

 public void twiddle(Integer i) { }
 }

 D. public class Frob implements Frobnicate {
 public void twiddle(Integer i) { }
 }

 E. public class Frob implements Frobnicate {
 public void twiddle(String i) { }
 public void twiddle(Integer s) { }
 }

 2. Given:

class Top {
 public Top(String s) { System.out.print("B"); }
}
public class Bottom2 extends Top {
 public Bottom2(String s) { System.out.print("D"); }
 public static void main(String [] args) {
 new Bottom2("C");
 System.out.println(" ");
 }
}

 What is the result?

 A. BD

 B. DB

 C. BDC

 D. DBC

 E. Compilation fails

162 Chapter 2: Object Orientation

 3. Given:

class Clidder {
 private final void flipper() { System.out.println("Clidder"); }
}

public class Clidlet extends Clidder {
 public final void flipper() { System.out.println("Clidlet"); }
 public static void main(String [] args) {
 new Clidlet().flipper();
 }
}

 What is the result?

 A. Clidlet

 B. Clidder

 C. Clidder
Clidlet

 D. Clidlet
Clidder

 E. Compilation fails

 4. Using the fragments below, complete the following code so it compiles.
Note, you may not have to fill all of the slots.

 Code:

class AgedP {

 __________ __________ __________ __________ __________

 public AgedP(int x) {

 __________ __________ __________ __________ __________
 }
}
public class Kinder extends AgedP {

 __________ __________ __________ _________ ________ __________

 public Kinder(int x) {

 __________ __________ __________ __________ __________ ();
 }
}

Self Test 163

164 Chapter 2: Object Orientation

Fragments: Use the following fragments zero or more times:

AgedP super this

() { }

;

 5. Which statement(s) are true? (Choose all that apply.)
 A. Cohesion is the OO principle most closely associated with hiding implementation details
 B. Cohesion is the OO principle most closely associated with making sure that classes know

about other classes only through their APIs
 C. Cohesion is the OO principle most closely associated with making sure that a class is

designed with a single, well-focused purpose
 D. Cohesion is the OO principle most closely associated with allowing a single object to be

seen as having many types

 6. Given the following,

 1. class X { void do1() { } }
 2. class Y extends X { void do2() { } }
 3.
 4. class Chrome {
 5. public static void main(String [] args) {
 6. X x1 = new X();
 7. X x2 = new Y();
 8. Y y1 = new Y();
 9. // insert code here

10. } }

 Which, inserted at line 9, will compile? (Choose all that apply.)

 A. x2.do2();

 B. (Y)x2.do2();

 C. ((Y)x2).do2();

 D. None of the above statements will compile

 7. Given:

 1. ClassA has a ClassD

 2. Methods in ClassA use public methods in ClassB

 3. Methods in ClassC use public methods in ClassA

 4. Methods in ClassA use public variables in ClassB

 Which is most likely true? (Choose the most likely.)

 A. ClassD has low cohesion
 B. ClassA has weak encapsulation
 C. ClassB has weak encapsulation
 D. ClassB has strong encapsulation
 E. ClassC is tightly coupled to ClassA

 8. Given:

 3. class Dog {
 4. public void bark() { System.out.print("woof "); }
 5. }
 6. class Hound extends Dog {
 7. public void sniff() { System.out.print("sniff "); }
 8. public void bark() { System.out.print("howl "); }
 9. }
10. public class DogShow {
11. public static void main(String[] args) { new DogShow().go(); }
12. void go() {
13. new Hound().bark();
14. ((Dog) new Hound()).bark();
15. ((Dog) new Hound()).sniff();
16. }
17. }

 What is the result? (Choose all that apply.)
 A. howl howl sniff

 B. howl woof sniff

 C. howl howl followed by an exception
 D. howl woof followed by an exception
 E. Compilation fails with an error at line 14
 F. Compilation fails with an error at line 15

Self Test 165

166 Chapter 2: Object Orientation

 9. Given:

 3. public class Redwood extends Tree {
 4. public static void main(String[] args) {
 5. new Redwood().go();
 6. }
 7. void go() {
 8. go2(new Tree(), new Redwood());
 9. go2((Redwood) new Tree(), new Redwood());
10. }
11. void go2(Tree t1, Redwood r1) {
12. Redwood r2 = (Redwood)t1;
13. Tree t2 = (Tree)r1;
14. }
15. }
16. class Tree { }

 What is the result? (Choose all that apply.)
 A. An exception is thrown at runtime
 B. The code compiles and runs with no output
 C. Compilation fails with an error at line 8
 D. Compilation fails with an error at line 9
 E. Compilation fails with an error at line 12
 F. Compilation fails with an error at line 13

 10. Given:

 3. public class Tenor extends Singer {
 4. public static String sing() { return "fa"; }
 5. public static void main(String[] args) {
 6. Tenor t = new Tenor();
 7. Singer s = new Tenor();
 8. System.out.println(t.sing() + " " + s.sing());
 9. }
10. }
11. class Singer { public static String sing() { return "la"; } }

 What is the result?
 A. fa fa

 B. fa la

 C. la la

 D. Compilation fails
 E. An exception is thrown at runtime

 11. Given:

 3. class Alpha {
 4. static String s = " ";
 5. protected Alpha() { s += "alpha "; }
 6. }
 7. class SubAlpha extends Alpha {
 8. private SubAlpha() { s += "sub "; }
 9. }
10. public class SubSubAlpha extends Alpha {
11. private SubSubAlpha() { s += "subsub "; }
12. public static void main(String[] args) {
13. new SubSubAlpha();
14. System.out.println(s);
15. }
16. }

 What is the result?
 A. subsub

 B. sub subsub

 C. alpha subsub

 D. alpha sub subsub

 E. Compilation fails
 F. An exception is thrown at runtime

 12. Given:

 3. class Building {
 4. Building() { System.out.print("b "); }
 5. Building(String name) {
 6. this(); System.out.print("bn " + name);
 7. }
 8. }
 9. public class House extends Building {
10. House() { System.out.print("h "); }
11. House(String name) {
12. this(); System.out.print("hn " + name);
13. }
14. public static void main(String[] args) { new House("x "); }
15. }

Self Test 167

168 Chapter 2: Object Orientation

 What is the result?
 A. h hn x

 B. hn x h

 C. b h hn x

 D. b hn x h

 E. bn x h hn x

 F. b bn x h hn x

 G. bn x b h hn x

 H. Compilation fails

 13. Given:

 3. class Mammal {
 4. String name = "furry ";
 5. String makeNoise() { return "generic noise"; }
 6. }
 7. class Zebra extends Mammal {
 8. String name = "stripes ";
 9. String makeNoise() { return "bray"; }
10. }
11. public class ZooKeeper {
12. public static void main(String[] args) { new ZooKeeper().go(); }
13. void go() {
14. Mammal m = new Zebra();
15. System.out.println(m.name + m.makeNoise());
16. }
17. }

 What is the result?
 A. furry bray

 B. stripes bray

 C. furry generic noise

 D. stripes generic noise

 E. Compilation fails
 F. An exception is thrown at runtime

Self Test 169

 14. You’re designing a new online board game in which Floozels are a type of Jammers, Jammers can
have Quizels, Quizels are a type of Klakker, and Floozels can have several Floozets. Which of the
following fragments represent this design? (Choose all that apply.)

 A. import java.util.*;
 interface Klakker { }
 class Jammer { Set<Quizel> q; }
 class Quizel implements Klakker { }
 public class Floozel extends Jammer { List<Floozet> f; }
 interface Floozet { }

 B. import java.util.*;
 class Klakker { Set<Quizel> q; }
 class Quizel extends Klakker { }
 class Jammer { List<Floozel> f; }
 class Floozet extends Floozel { }
 public class Floozel { Set<Klakker> k; }

 C. import java.util.*;
 class Floozet { }
 class Quizel implements Klakker { }
 class Jammer { List<Quizel> q; }
 interface Klakker { }
 class Floozel extends Jammer { List<Floozet> f; }

 D. import java.util.*;
 interface Jammer extends Quizel { }
 interface Klakker { }
 interface Quizel extends Klakker { }
 interface Floozel extends Jammer, Floozet { }
 interface Floozet { }

 15. Given:

 3. class A { }
 4. class B extends A { }
 5. public class ComingThru {
 6. static String s = "-";
 7. public static void main(String[] args) {
 8. A[] aa = new A[2];
 9. B[] ba = new B[2];
10. sifter(aa);
11. sifter(ba);
12. sifter(7);
13. System.out.println(s);
14. }

170 Chapter 2: Object Orientation

15. static void sifter(A[]... a2) { s += "1"; }
16. static void sifter(B[]... b1) { s += "2"; }
17. static void sifter(B[] b1) { s += "3"; }
18. static void sifter(Object o) { s += "4"; }
19. }

 What is the result?
 A. -124

 B. -134

 C. -424

 D. -434

 E. -444

 F. Compilation fails

SELF TEST ANSWERS
 1. Given:

public abstract interface Frobnicate { public void twiddle(String s); }

 Which is a correct class? (Choose all that apply.)
 A. public abstract class Frob implements Frobnicate {

 public abstract void twiddle(String s) { }

 }

 B. public abstract class Frob implements Frobnicate { }
 C. public class Frob extends Frobnicate {

 public void twiddle(Integer i) { }

 }

 D. public class Frob implements Frobnicate {
 public void twiddle(Integer i) { }

 }

 E. public class Frob implements Frobnicate {

 public void twiddle(String i) { }

 public void twiddle(Integer s) { }

 }

Answer:
 ® ✓ B is correct, an abstract class need not implement any or all of an interface’s methods.

E is correct, the class implements the interface method and additionally overloads the
twiddle() method.

 ®̊ A is incorrect because abstract methods have no body. C is incorrect because classes
 implement interfaces they don’t extend them. D is incorrect because overloading a
 method is not implementing it.

 (Objective 5.4)

 2. Given:

class Top {
 public Top(String s) { System.out.print("B"); }
}
public class Bottom2 extends Top {
 public Bottom2(String s) { System.out.print("D"); }
 public static void main(String [] args) {
 new Bottom2("C");
 System.out.println(" ");
} }

Self Test Answers 171

172 Chapter 2: Object Orientation

 What is the result?
 A. BD

 B. DB

 C. BDC

 D. DBC

 E. Compilation fails

Answer:

 ® ✓ E is correct. The implied super() call in Bottom2’s constructor cannot be satisfied because
there isn’t a no-arg constructor in Top. A default, no-arg constructor is generated by the
compiler only if the class has no constructor defined explicitly.

 ®̊ A, B, C, and D are incorrect based on the above.
(Objective 1.6)

 3. Given:

class Clidder {
 private final void flipper() { System.out.println("Clidder"); }
}

public class Clidlet extends Clidder {
 public final void flipper() { System.out.println("Clidlet"); }
 public static void main(String [] args) {
 new Clidlet().flipper();
} }

 What is the result?
 A. Clidlet
 B. Clidder
 C. Clidder

Clidlet

 D. Clidlet
Clidder

 E. Compilation fails

Answer:

 ® ✓ A is correct. Although a final method cannot be overridden, in this case, the method
is private, and therefore hidden. The effect is that a new, accessible, method flipper is
created. Therefore, no polymorphism occurs in this example, the method invoked is simply
that of the child class, and no error occurs.

 ®̊ B, C, D, and E are incorrect based on the preceding.
(Objective 5.3)

 4. Using the fragments below, complete the following code so it compiles.
Note, you may not have to fill all of the slots.

 Code:

class AgedP {

 __________ __________ __________ __________ __________

 public AgedP(int x) {

 __________ __________ __________ __________ __________
 }
}
public class Kinder extends AgedP {

 __________ __________ __________ _________ ________ __________

 public Kinder(int x) {

 __________ __________ __________ __________ __________ ();
 }
}

Fragments: Use the following fragments zero or more times:

AgedP super this

() { }

;

Answer:

class AgedP {
 AgedP() {}
 public AgedP(int x) {
 }
}
public class Kinder extends AgedP {
 public Kinder(int x) {
 super();
 }
}

 As there is no droppable tile for the variable x and the parentheses (in the Kinder constructor),
are already in place and empty, there is no way to construct a call to the superclass constructor

Self Test Answers 173

174 Chapter 2: Object Orientation

that takes an argument. Therefore, the only remaining possibility is to create a call to the no-
argument superclass constructor. This is done as: super();. The line cannot be left blank, as
the parentheses are already in place. Further, since the superclass constructor called is the no-
argument version, this constructor must be created. It will not be created by the compiler
because there is another constructor already present.
(Objective 5.4)

 5 Which statement(s) are true? (Choose all that apply.)

 A. Cohesion is the OO principle most closely associated with hiding implementation details

 B. Cohesion is the OO principle most closely associated with making sure that classes know
about other classes only through their APIs

 C. Cohesion is the OO principle most closely associated with making sure that a class is
designed with a single, well-focused purpose

 D. Cohesion is the OO principle most closely associated with allowing a single object to be
seen as having many types

Answer:

 ® ✓ Answer C is correct.

 ®̊ A refers to encapsulation, B refers to coupling, and D refers to polymorphism.
 (Objective 5.1)

 6. Given the following,

 1. class X { void do1() { } }
 2. class Y extends X { void do2() { } }
 3.
 4. class Chrome {
 5. public static void main(String [] args) {
 6. X x1 = new X();
 7. X x2 = new Y();
 8. Y y1 = new Y();
 9. // insert code here
10. }

11. }

 Which, inserted at line 9, will compile? (Choose all that apply.)

 A. x2.do2();

 B. (Y)x2.do2();

 C. ((Y)x2).do2();

 D. None of the above statements will compile

Answer:

 ® ✓ C is correct. Before you can invoke Y’s do2 method you have to cast x2 to be of type Y.
Statement B looks like a proper cast but without the second set of parentheses, the
compiler thinks it’s an incomplete statement.

 ®̊ A, B and D are incorrect based on the preceding.
(Objective 5.2)

 7. Given:

 1. ClassA has a ClassD

 2. Methods in ClassA use public methods in ClassB

 3. Methods in ClassC use public methods in ClassA

 4. Methods in ClassA use public variables in ClassB

 Which is most likely true? (Choose the most likely.)

 A. ClassD has low cohesion

 B. ClassA has weak encapsulation

 C. ClassB has weak encapsulation

 D. ClassB has strong encapsulation

 E. ClassC is tightly coupled to ClassA

Answer:

 ® ✓ C is correct. Generally speaking, public variables are a sign of weak encapsulation.

 ®̊ A, B, D, and E are incorrect, because based on the information given, none of these
statements can be supported.
(Objective 5.1)

 8. Given:

 3. class Dog {
 4. public void bark() { System.out.print("woof "); }
 5. }
 6. class Hound extends Dog {
 7. public void sniff() { System.out.print("sniff "); }

Self Test Answers 175

176 Chapter 2: Object Orientation

 8. public void bark() { System.out.print("howl "); }
 9. }
10. public class DogShow {
11. public static void main(String[] args) { new DogShow().go(); }
12. void go() {
13. new Hound().bark();
14. ((Dog) new Hound()).bark();
15. ((Dog) new Hound()).sniff();
16. }
17. }

 What is the result? (Choose all that apply.)

 A. howl howl sniff

 B. howl woof sniff

 C. howl howl followed by an exception

 D. howl woof followed by an exception

 E. Compilation fails with an error at line 14

 F. Compilation fails with an error at line 15

Answer:

 ® ✓ F is correct. Class Dog doesn’t have a sniff method.

 ®̊ A, B, C, D, and E are incorrect based on the above information.
(Objective 5.2)

 9. Given:

 3. public class Redwood extends Tree {
 4. public static void main(String[] args) {
 5. new Redwood().go();
 6. }
 7. void go() {
 8. go2(new Tree(), new Redwood());
 9. go2((Redwood) new Tree(), new Redwood());
10. }
11. void go2(Tree t1, Redwood r1) {
12. Redwood r2 = (Redwood)t1;
13. Tree t2 = (Tree)r1;
14. }
15. }
16. class Tree { }

 What is the result? (Choose all that apply.)

 A. An exception is thrown at runtime

 B. The code compiles and runs with no output

 C. Compilation fails with an error at line 8

 D. Compilation fails with an error at line 9

 E. Compilation fails with an error at line 12

 F. Compilation fails with an error at line 13

Answer:

 ® ✓ A is correct, a ClassCastException will be thrown when the code attempts to downcast a
Tree to a Redwood.

 ®̊ B, C, D, E, and F are incorrect based on the above information.
(Objective 5.2)

 10. Given:

 3. public class Tenor extends Singer {
 4. public static String sing() { return "fa"; }
 5. public static void main(String[] args) {
 6. Tenor t = new Tenor();
 7. Singer s = new Tenor();
 8. System.out.println(t.sing() + " " + s.sing());
 9. }
10. }
11. class Singer { public static String sing() { return "la"; } }

 What is the result?

 A. fa fa

 B. fa la

 C. la la

 D. Compilation fails

 E. An exception is thrown at runtime

Answer:

 ® ✓ B is correct. The code is correct, but polymorphism doesn’t apply to static methods.

 ®̊ A, C, D, and E are incorrect based on the above information.
(Objective 5.2)

Self Test Answers 177

178 Chapter 2: Object Orientation

 11. Given:

 3. class Alpha {
 4. static String s = " ";
 5. protected Alpha() { s += "alpha "; }
 6. }
 7. class SubAlpha extends Alpha {
 8. private SubAlpha() { s += "sub "; }
 9. }
10. public class SubSubAlpha extends Alpha {
11. private SubSubAlpha() { s += "subsub "; }
12. public static void main(String[] args) {
13. new SubSubAlpha();
14. System.out.println(s);
15. }
16. }

 What is the result?

 A. subsub

 B. sub subsub

 C. alpha subsub

 D. alpha sub subsub

 E. Compilation fails

 F. An exception is thrown at runtime

Answer:

 ® ✓ C is correct. Watch out, SubSubAlpha extends Alpha! Since the code doesn’t attempt
to make a SubAlpha, the private constructor in SubAlpha is okay.

 ®̊ A, B, D, E, and F are incorrect based on the above information.
(Objective 5.3)

 12. Given:

 3. class Building {
 4. Building() { System.out.print("b "); }
 5. Building(String name) {
 6. this(); System.out.print("bn " + name);
 7. }
 8. }
 9. public class House extends Building {

10. House() { System.out.print("h "); }
11. House(String name) {
12. this(); System.out.print("hn " + name);
13. }
14. public static void main(String[] args) { new House("x "); }
15. }

 What is the result?

 A. h hn x

 B. hn x h

 C. b h hn x

 D. b hn x h

 E. bn x h hn x

 F. b bn x h hn x

 G. bn x b h hn x

 H. Compilation fails

Answer:

 ® ✓ C is correct. Remember that constructors call their superclass constructors, which execute
first, and that constructors can be overloaded.

 ®̊ A, B, D, E, F, G, and H are incorrect based on the above information.
(Objectives 1.6, 5.4)

 13. Given:

 3. class Mammal {
 4. String name = "furry ";
 5. String makeNoise() { return "generic noise"; }
 6. }
 7. class Zebra extends Mammal {
 8. String name = "stripes ";
 9. String makeNoise() { return "bray"; }
10. }
11. public class ZooKeeper {
12. public static void main(String[] args) { new ZooKeeper().go(); }
13. void go() {
14. Mammal m = new Zebra();
15. System.out.println(m.name + m.makeNoise());
16. }
17. }

Self Test Answers 179

180 Chapter 2: Object Orientation

 What is the result?

 A. furry bray

 B. stripes bray

 C. furry generic noise

 D. stripes generic noise

 E. Compilation fails

 F. An exception is thrown at runtime

Answer:

 ® ✓ A is correct. Polymorphism is only for instance methods.

 ®̊ B, C, D, E, and F are incorrect based on the above information.
(Objectives 1.5, 5.4)

 14. You’re designing a new online board game in which Floozels are a type of Jammers, Jammers can
have Quizels, Quizels are a type of Klakker, and Floozels can have several Floozets. Which of the
following fragments represent this design? (Choose all that apply.)

 A. import java.util.*;
 interface Klakker { }
 class Jammer { Set<Quizel> q; }
 class Quizel implements Klakker { }
 public class Floozel extends Jammer { List<Floozet> f; }
 interface Floozet { }

 B. import java.util.*;
 class Klakker { Set<Quizel> q; }
 class Quizel extends Klakker { }
 class Jammer { List<Floozel> f; }
 class Floozet extends Floozel { }
 public class Floozel { Set<Klakker> k; }

 C. import java.util.*;
 class Floozet { }
 class Quizel implements Klakker { }
 class Jammer { List<Quizel> q; }
 interface Klakker { }
 class Floozel extends Jammer { List<Floozet> f; }

 D. import java.util.*;
 interface Jammer extends Quizel { }
 interface Klakker { }
 interface Quizel extends Klakker { }
 interface Floozel extends Jammer, Floozet { }

 interface Floozet { }

Self Test Answers 181

Answer:

 ® ✓ A and C are correct. The phrase "type of" indicates an "is-a" relationship (extends or
implements), and the phrase “have” is of course a "has-a" relationship (usually instance
variables).

 ®̊ B and D are incorrect based on the above information.
(Objective 5.5)

 15. Given:

 3. class A { }
 4. class B extends A { }
 5. public class ComingThru {
 6. static String s = "-";
 7. public static void main(String[] args) {
 8. A[] aa = new A[2];
 9. B[] ba = new B[2];
10. sifter(aa);
11. sifter(ba);
12. sifter(7);
13. System.out.println(s);
14. }
15. static void sifter(A[]... a2) { s += "1"; }
16. static void sifter(B[]... b1) { s += "2"; }
17. static void sifter(B[] b1) { s += "3"; }
18. static void sifter(Object o) { s += "4"; }
19. }

 What is the result?

 A. -124

 B. -134

 C. -424

 D. -434

 E. -444

 F. Compilation fails

Answer:

 ® ✓ D is correct. In general, overloaded var-args methods are chosen last. Remember that arrays
are objects. Finally, an int can be boxed to an Integer and then "widened" to an Object.

 ®̊ A, B, C, E, and F are incorrect based on the above information.
(Objective 1.5)

3
Assignments

CERTIFICATION OBJECTIVES

l Use Class Members

 l Develop Wrapper Code &
 Autoboxing Code

 l Determine the Effects of Passing
 Variables into Methods

 l Recognize when Objects Become
 Eligible for Garbage Collection
✓ Two-Minute Drill

 Q&A Self Test

184 Chapter 3: Assignments

Stack and Heap—Quick Review
For most people, understanding the basics of the stack and the heap makes it
far easier to understand topics like argument passing, polymorphism, threads,
exceptions, and garbage collection. In this section, we'll stick to an overview, but
we'll expand these topics several more times throughout the book.

For the most part, the various pieces (methods, variables, and objects) of Java
programs live in one of two places in memory: the stack or the heap. For now, we're
going to worry about only three types of things: instance variables, local variables,
and objects:

■ Instance variables and objects live on the heap.

■ Local variables live on the stack.

Let's take a look at a Java program, and how its various pieces are created and
map into the stack and the heap:

 1. class Collar { }
 2.
 3. class Dog {
 4. Collar c; // instance variable
 5. String name; // instance variable
 6.
 7. public static void main(String [] args) {
 8.
 9. Dog d; // local variable: d
10. d = new Dog();
11. d.go(d);
12. }
13. void go(Dog dog) { // local variable: dog
14. c = new Collar();
15. dog.setName("Aiko");
16. }
17. void setName(String dogName) { // local var: dogName
18. name = dogName;
19. // do more stuff
20. }
21. }

Figure 3-1 shows the state of the stack and the heap once the program reaches
line 19. Following are some key points:

Instance
variables:
- name
- c

Collar object

Dog object

String object

"Aiko"

The Heap

setName() dogName

go() dog

main() d

method local
 variables
 The Stack

Stack and Heap—Quick Review 185

■ Line 7—main() is placed on the stack.

■ Line 9—reference variable d is created on the stack, but there's no Dog
object yet.

■ Line 10—a new Dog object is created and is assigned to the d reference
variable.

■ Line 11—a copy of the reference variable d is passed to the go() method.

■ Line 13—the go() method is placed on the stack, with the dog parameter as
a local variable.

■ Line 14—a new Collar object is created on the heap, and assigned to Dog's
instance variable.

■ Line 17—setName() is added to the stack, with the dogName parameter as
its local variable.

■ Line 18—the name instance variable now also refers to the String object.

■ Notice that two different local variables refer to the same Dog object.

■ Notice that one local variable and one instance variable both refer to the
same String Aiko.

■ After Line 19 completes, setName() completes and is removed from the
stack. At this point the local variable dogName disappears too, although the
String object it referred to is still on the heap.

 FIGURE 3-1

Overview of the
Stack and the
Heap

186 Chapter 3: Assignments

CERTIFICATION OBJECTIVE

Literals, Assignments, and Variables
(Exam Objectives 1.3 and 7.6)

1.3 Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for variable names.

7.6 Write code that correctly applies the appropriate operators including assignment
operators (limited to: =, +=, -=)...

Literal Values for All Primitive Types
A primitive literal is merely a source code representation of the primitive data
types—in other words, an integer, floating-point number, boolean, or character that
you type in while writing code. The following are examples of primitive literals:

'b' // char literal
42 // int literal
false // boolean literal
2546789.343 // double literal

Integer Literals
There are three ways to represent integer numbers in the Java language: decimal
(base 10), octal (base 8), and hexadecimal (base 16). Most exam questions
with integer literals use decimal representations, but the few that use octal or
hexadecimal are worth studying for. Even though the odds that you'll ever actually
use octal in the real world are astronomically tiny, they were included in the exam
just for fun.

Decimal Literals Decimal integers need no explanation; you've been using
them since grade one or earlier. Chances are you don't keep your checkbook in
hex. (If you do, there's a Geeks Anonymous [GA] group ready to help.) In the Java
language, they are represented as is, with no prefix of any kind, as follows:

int length = 343;

Octal Literals Octal integers use only the digits 0 to 7. In Java, you represent
an integer in octal form by placing a zero in front of the number, as follows:

class Octal {
 public static void main(String [] args) {
 int six = 06; // Equal to decimal 6
 int seven = 07; // Equal to decimal 7
 int eight = 010; // Equal to decimal 8
 int nine = 011; // Equal to decimal 9
 System.out.println("Octal 010 = " + eight);
 }
}

Notice that when we get past seven and are out of digits to use (we are allowed
only the digits 0 through 7 for octal numbers), we revert back to zero, and one is
added to the beginning of the number. You can have up to 21 digits in an octal
number, not including the leading zero. If we run the preceding program, it displays
the following:

Octal 010 = 8

Hexadecimal Literals Hexadecimal (hex for short) numbers are constructed
using 16 distinct symbols. Because we never invented single digit symbols for the
numbers 10 through 15, we use alphabetic characters to represent these digits.
Counting from 0 through 15 in hex looks like this:

0 1 2 3 4 5 6 7 8 9 a b c d e f

Java will accept capital or lowercase letters for the extra digits (one of the few
places Java is not case-sensitive!). You are allowed up to 16 digits in a hexadecimal
number, not including the prefix 0x or the optional suffix extension L, which will be
explained later. All of the following hexadecimal assignments are legal:

class HexTest {
 public static void main (String [] args) {
 int x = 0X0001;
 int y = 0x7fffffff;
 int z = 0xDeadCafe;
 System.out.println("x = " + x + " y = " + y + " z = " + z);
 }
}

Literal Values for All Primitive Types (Exam Objectives 1.3 and 7.6) 187

188 Chapter 3: Assignments

Running HexTest produces the following output:

x = 1 y = 2147483647 z = -559035650

Don't be misled by changes in case for a hexadecimal digit or the 'x' preceding it.
0XCAFE and 0xcafe are both legal and have the same value.

All three integer literals (octal, decimal, and hexadecimal) are defined as int by
default, but they may also be specified as long by placing a suffix of L or l after the
number:

long jo = 110599L;
long so = 0xFFFFl; // Note the lowercase 'l'

Floating-Point Literals
Floating-point numbers are defined as a number, a decimal symbol, and more
numbers representing the fraction.

double d = 11301874.9881024;

In the preceding example, the number 11301874.9881024 is the literal value.
Floating-point literals are defined as double (64 bits) by default, so if you want to
assign a floating-point literal to a variable of type float (32 bits), you must attach the
suffix F or f to the number. If you don't, the compiler will complain about a possible
loss of precision, because you're trying to fit a number into a (potentially) less precise
"container." The F suffix gives you a way to tell the compiler, "Hey, I know what I'm
doing, and I'll take the risk, thank you very much."

float f = 23.467890; // Compiler error, possible loss
 // of precision
float g = 49837849.029847F; // OK; has the suffix "F"

You may also optionally attach a D or d to double literals, but it is not necessary
because this is the default behavior.

double d = 110599.995011D; // Optional, not required
double g = 987.897; // No 'D' suffix, but OK because the
 // literal is a double by default

Look for numeric literals that include a comma, for example,

int x = 25,343; // Won't compile because of the comma

Boolean Literals
Boolean literals are the source code representation for boolean values. A boolean
value can only be defined as true or false. Although in C (and some other
languages) it is common to use numbers to represent true or false, this will not
work in Java. Again, repeat after me, "Java is not C++."

boolean t = true; // Legal
boolean f = 0; // Compiler error!

Be on the lookout for questions that use numbers where booleans are required.
You might see an if test that uses a number, as in the following:

int x = 1; if (x) { } // Compiler error!

Character Literals
A char literal is represented by a single character in single quotes.

char a = 'a';
char b = '@';

You can also type in the Unicode value of the character, using the Unicode
notation of prefixing the value with \u as follows:

char letterN = '\u004E'; // The letter 'N'

Remember, characters are just 16-bit unsigned integers under the hood. That
means you can assign a number literal, assuming it will fit into the unsigned 16-bit
range (65535 or less). For example, the following are all legal:

char a = 0x892; // hexadecimal literal
char b = 982; // int literal
char c = (char)70000; // The cast is required; 70000 is
 // out of char range

Literal Values for All Primitive Types (Exam Objectives 1.3 and 7.6) 189

190 Chapter 3: Assignments

char d = (char) -98; // Ridiculous, but legal

And the following are not legal and produce compiler errors:

char e = -29; // Possible loss of precision; needs a cast
char f = 70000 // Possible loss of precision; needs a cast

You can also use an escape code if you want to represent a character that can't be
typed in as a literal, including the characters for linefeed, newline, horizontal tab,
backspace, and single quotes.

char c = '\"'; // A double quote
char d = '\n'; // A newline

Literal Values for Strings
A string literal is a source code representation of a value of a String object. For
example, the following is an example of two ways to represent a string literal:

String s = "Bill Joy";
System.out.println("Bill" + " Joy");

Although strings are not primitives, they're included in this section because they
can be represented as literals—in other words, typed directly into code. The only
other nonprimitive type that has a literal representation is an array, which we'll look
at later in the chapter.

Thread t = ??? // what literal value could possibly go here?

Assignment Operators
Assigning a value to a variable seems straightforward enough; you simply assign
the stuff on the right side of the = to the variable on the left. Well, sure, but don't
expect to be tested on something like this:

x = 6;

No, you won't be tested on the no-brainer (technical term) assignments.
You will, however, be tested on the trickier assignments involving complex

expressions and casting. We'll look at both primitive and reference variable
assignments. But before we begin, let's back up and peek inside a variable. What is a
variable? How are the variable and its value related?

Variables are just bit holders, with a designated type. You can have an int holder,
a double holder, a Button holder, and even a String[] holder. Within that holder is
a bunch of bits representing the value. For primitives, the bits represent a numeric
value (although we don't know what that bit pattern looks like for boolean, luckily,
we don't care). A byte with a value of 6, for example, means that the bit pattern in
the variable (the byte holder) is 00000110, representing the 8 bits.

So the value of a primitive variable is clear, but what's inside an object holder?
If you say,

Button b = new Button();

what's inside the Button holder b? Is it the Button object? No! A variable referring
to an object is just that—a reference variable. A reference variable bit holder
contains bits representing a way to get to the object. We don't know what the format
is. The way in which object references are stored is virtual-machine specific (it's
a pointer to something, we just don't know what that something really is). All
we can say for sure is that the variable's value is not the object, but rather a value
representing a specific object on the heap. Or null. If the reference variable has not
been assigned a value, or has been explicitly assigned a value of null, the variable
holds bits representing—you guessed it—null. You can read

Button b = null;

as "The Button variable b is not referring to any object."
So now that we know a variable is just a little box o' bits, we can get on with the

work of changing those bits. We'll look first at assigning values to primitives, and
finish with assignments to reference variables.

Primitive Assignments
The equal (=) sign is used for assigning a value to a variable, and it's cleverly named
the assignment operator. There are actually 12 assignment operators, but only the
five most commonly used are on the exam, and they are covered in Chapter 4.

You can assign a primitive variable using a literal or the result of an expression.

Assignment Operators (Exam Objectives 1.3 and 7.6) 191

192 Chapter 3: Assignments

Take a look at the following:

int x = 7; // literal assignment
int y = x + 2; // assignment with an expression
 // (including a literal)
int z = x * y; // assignment with an expression

The most important point to remember is that a literal integer (such as 7) is
always implicitly an int. Thinking back to Chapter 1, you'll recall that an int is
a 32-bit value. No big deal if you're assigning a value to an int or a long variable,
but what if you're assigning to a byte variable? After all, a byte-sized holder can't
hold as many bits as an int-sized holder. Here's where it gets weird. The following is
legal,

byte b = 27;

but only because the compiler automatically narrows the literal value to a byte. In
other words, the compiler puts in the cast. The preceding code is identical to the
following:

byte b = (byte) 27; // Explicitly cast the int literal to a byte

It looks as though the compiler gives you a break, and lets you take a shortcut with
assignments to integer variables smaller than an int. (Everything we're saying about
byte applies equally to char and short, both of which are smaller than an int.)
We're not actually at the weird part yet, by the way.

We know that a literal integer is always an int, but more importantly, the result
of an expression involving anything int-sized or smaller is always an int. In other
words, add two bytes together and you'll get an int—even if those two bytes are
tiny. Multiply an int and a short and you'll get an int. Divide a short by a byte
and you'll get…an int. OK, now we're at the weird part. Check this out:

byte a = 3; // No problem, 3 fits in a byte
byte b = 8; // No problem, 8 fits in a byte
byte c = b + c; // Should be no problem, sum of the two bytes
 // fits in a byte

The last line won't compile! You'll get an error something like this:

TestBytes.java:5: possible loss of precision
found : int
required: byte
 byte c = a + b;
 ^

We tried to assign the sum of two bytes to a byte variable, the result of which
(11) was definitely small enough to fit into a byte, but the compiler didn't care. It
knew the rule about int-or-smaller expressions always resulting in an int. It would
have compiled if we'd done the explicit cast:

byte c = (byte) (a + b);

Primitive Casting
Casting lets you convert primitive values from one type to another. We mentioned
primitive casting in the previous section, but now we're going to take a deeper look.
(Object casting was covered in Chapter 2.)

Casts can be implicit or explicit. An implicit cast means you don't have to write
code for the cast; the conversion happens automatically. Typically, an implicit
cast happens when you're doing a widening conversion. In other words, putting a
smaller thing (say, a byte) into a bigger container (like an int). Remember those
"possible loss of precision" compiler errors we saw in the assignments
section? Those happened when we tried to put a larger thing (say, a long) into a
smaller container (like a short). The large-value-into-small-container conversion
is referred to as narrowing and requires an explicit cast, where you tell the compiler
that you're aware of the danger and accept full responsibility. First we'll look at an
implicit cast:

int a = 100;
long b = a; // Implicit cast, an int value always fits in a long

An explicit casts looks like this:

float a = 100.001f;
int b = (int)a; // Explicit cast, the float could lose info

Integer values may be assigned to a double variable without explicit casting,
because any integer value can fit in a 64-bit double. The following line
demonstrates this:

Assignment Operators (Exam Objectives 1.3 and 7.6) 193

194 Chapter 3: Assignments

double d = 100L; // Implicit cast

In the preceding statement, a double is initialized with a long value (as denoted by
the L after the numeric value). No cast is needed in this case because a double can
hold every piece of information that a long can store. If, however, we want to assign
a double value to an integer type, we're attempting a narrowing conversion and the
compiler knows it:

class Casting {
 public static void main(String [] args) {
 int x = 3957.229; // illegal
 }
}

If we try to compile the preceding code, we get an error something like:

%javac Casting.java
Casting.java:3: Incompatible type for declaration. Explicit cast
needed to convert double to int.
 int x = 3957.229; // illegal
1 error

In the preceding code, a floating-point value is being assigned to an integer variable.
Because an integer is not capable of storing decimal places, an error occurs. To make
this work, we'll cast the floating-point number into an int:

class Casting {
 public static void main(String [] args) {
 int x = (int)3957.229; // legal cast
 System.out.println("int x = " + x);
 }
}

When you cast a floating-point number to an integer type, the value loses all the
digits after the decimal. The preceding code will produce the following output:

int x = 3957

We can also cast a larger number type, such as a long, into a smaller number type,
such as a byte. Look at the following:

Assignment Operators (Exam Objectives 1.3 and 7.6) 195

class Casting {
 public static void main(String [] args) {
 long l = 56L;
 byte b = (byte)l;
 System.out.println("The byte is " + b);
 }
}

The preceding code will compile and run fine. But what happens if the long value is
larger than 127 (the largest number a byte can store)? Let's modify the code:

class Casting {
 public static void main(String [] args) {
 long l = 130L;
 byte b = (byte)l;
 System.out.println("The byte is " + b);
 }
}

The code compiles fine, and when we run it we get the following:

%java Casting
The byte is -126

You don't get a runtime error, even when the value being narrowed is too large
for the type. The bits to the left of the lower 8 just…go away. If the leftmost bit (the
sign bit) in the byte (or any integer primitive) now happens to be a 1, the primitive
will have a negative value.

EXERCISE 3-1

Casting Primitives
Create a float number type of any value, and assign it to a short using casting.

 1. Declare a float variable: float f = 234.56F;

 2. Assign the float to a short: short s = (short)f;

196 Chapter 3: Assignments

Assigning Floating-Point Numbers Floating-point numbers have
slightly different assignment behavior than integer types. First, you must know that
every floating-point literal is implicitly a double (64 bits), not a float. So the
literal 32.3, for example, is considered a double. If you try to assign a double to a
float, the compiler knows you don't have enough room in a 32-bit float container
to hold the precision of a 64-bit double, and it lets you know. The following code
looks good, but won't compile:

float f = 32.3;

You can see that 32.3 should fit just fine into a float-sized variable, but the
compiler won't allow it. In order to assign a floating-point literal to a float
variable, you must either cast the value or append an f to the end of the literal. The
following assignments will compile:

float f = (float) 32.3;
float g = 32.3f;
float h = 32.3F;

Assigning a Literal That Is Too Large for the Variable We'll also get
a compiler error if we try to assign a literal value that the compiler knows is too big
to fit into the variable.

byte a = 128; // byte can only hold up to 127

The preceding code gives us an error something like

TestBytes.java:5: possible loss of precision
found : int
required: byte
byte a = 128;

We can fix it with a cast:

byte a = (byte) 128;

But then what's the result? When you narrow a primitive, Java simply truncates
the higher-order bits that won't fit. In other words, it loses all the bits to the left of
the bits you're narrowing to.

Let's take a look at what happens in the preceding code. There, 128 is the bit
pattern 10000000. It takes a full 8 bits to represent 128. But because the literal 128
is an int, we actually get 32 bits, with the 128 living in the right-most (lower-order)
8 bits. So a literal 128 is actually

00000000000000000000000010000000

Take our word for it; there are 32 bits there.
To narrow the 32 bits representing 128, Java simply lops off the leftmost (higher-

order) 24 bits. We're left with just the 10000000. But remember that a byte is
signed, with the leftmost bit representing the sign (and not part of the value of the
variable). So we end up with a negative number (the 1 that used to represent 128
now represents the negative sign bit). Remember, to find out the value of a negative
number using two's complement notation, you flip all of the bits and then add 1.
Flipping the 8 bits gives us 01111111, and adding 1 to that gives us 10000000, or
back to 128! And when we apply the sign bit, we end up with –128.

You must use an explicit cast to assign 128 to a byte, and the assignment leaves
you with the value –128. A cast is nothing more than your way of saying to the
compiler, "Trust me. I'm a professional. I take full responsibility for anything weird
that happens when those top bits are chopped off."

That brings us to the compound assignment operators. The following will compile,

byte b = 3;
b += 7; // No problem - adds 7 to b (result is 10)

and is equivalent to

byte b = 3;
b = (byte) (b + 7); // Won't compile without the
 // cast, since b + 7 results in an int

The compound assignment operator += lets you add to the value of b, without
putting in an explicit cast. In fact, +=, -=, *=, and /= will all put in an implicit cast.

Assignment Operators (Exam Objectives 1.3 and 7.6) 197

Assigning One Primitive Variable to Another Primitive Variable
When you assign one primitive variable to another, the contents of the right-hand
variable are copied. For example,

int a = 6;
int b = a;

This code can be read as, "Assign the bit pattern for the number 6 to the int
variable a. Then copy the bit pattern in a, and place the copy into variable b."

So, both variables now hold a bit pattern for 6, but the two variables have no
other relationship. We used the variable a only to copy its contents. At this point,
a and b have identical contents (in other words, identical values), but if we change
the contents of either a or b, the other variable won't be affected.

Take a look at the following example:

class ValueTest {
 public static void main (String [] args) {
 int a = 10; // Assign a value to a
 System.out.println("a = " + a);
 int b = a;
 b = 30;
 System.out.println("a = " + a + " after change to b");
 }
}

The output from this program is

%java ValueTest
a = 10
a = 10 after change to b

Notice the value of a stayed at 10. The key point to remember is that even after
you assign a to b, a and b are not referring to the same place in memory. The a and b
variables do not share a single value; they have identical copies.

Reference Variable Assignments
You can assign a newly created object to an object reference variable as follows:

Button b = new Button();

198 Chapter 3: Assignments

The preceding line does three key things:

■ Makes a reference variable named b, of type Button

■ Creates a new Button object on the heap

■ Assigns the newly created Button object to the reference variable b

You can also assign null to an object reference variable, which simply means the
variable is not referring to any object:

Button c = null;

The preceding line creates space for the Button reference variable (the bit holder
for a reference value), but doesn't create an actual Button object.

As we discussed in the last chapter, you can also use a reference variable to refer
to any object that is a subclass of the declared reference variable type, as follows:

public class Foo {
 public void doFooStuff() { }
}
public class Bar extends Foo {
 public void doBarStuff() { }
}
class Test {
 public static void main (String [] args) {
 Foo reallyABar = new Bar(); // Legal because Bar is a
 // subclass of Foo
 Bar reallyAFoo = new Foo(); // Illegal! Foo is not a
 // subclass of Bar
 }
}

The rule is that you can assign a subclass of the declared type, but not a superclass
of the declared type. Remember, a Bar object is guaranteed to be able to do anything
a Foo can do, so anyone with a Foo reference can invoke Foo methods even though
the object is actually a Bar.

In the preceding code, we see that Foo has a method doFooStuff() that
someone with a Foo reference might try to invoke. If the object referenced by
the Foo variable is really a Foo, no problem. But it's also no problem if the object
is a Bar, since Bar inherited the doFooStuff() method. You can't make it work

Assignment Operators (Exam Objectives 1.3 and 7.6) 199

in reverse, however. If somebody has a Bar reference, they're going to invoke
doBarStuff(), but if the object is a Foo, it won't know how to respond.

Variable Scope
Once you've declared and initialized a variable, a natural question is "How long will
this variable be around?" This is a question regarding the scope of variables. And not
only is scope an important thing to understand in general, it also plays a big part in
the exam. Let's start by looking at a class file:

class Layout { // class

 static int s = 343; // static variable

 int x; // instance variable

 { x = 7; int x2 = 5; } // initialization block

 Layout() { x += 8; int x3 = 6;} // constructor

 void doStuff() { // method

 int y = 0; // local variable

 for(int z = 0; z < 4; z++) { // 'for' code block
 y += z + x;
 }
 }
}

As with variables in all Java programs, the variables in this program (s, x, x2, x3,
y, and z) all have a scope:

■ s is a static variable.

■ x is an instance variable.

■ y is a local variable (sometimes called a "method local" variable).

■ z is a block variable.

■ x2 is an init block variable, a flavor of local variable.

■ x3 is a constructor variable, a flavor of local variable.

For the purposes of discussing the scope of variables, we can say that there are four
basic scopes:

200 Chapter 3: Assignments

■ Static variables have the longest scope; they are created when the class is
loaded, and they survive as long as the class stays loaded in the Java Virtual
Machine (JVM).

■ Instance variables are the next most long-lived; they are created when a new
instance is created, and they live until the instance is removed.

■ Local variables are next; they live as long as their method remains on the
stack. As we'll soon see, however, local variables can be alive, and still be
"out of scope".

■ Block variables live only as long as the code block is executing.

Scoping errors come in many sizes and shapes. One common mistake happens
when a variable is shadowed and two scopes overlap. We'll take a detailed look at
shadowing in a few pages. The most common reason for scoping errors is when
you attempt to access a variable that is not in scope. Let's look at three common
examples of this type of error:

■ Attempting to access an instance variable from a static context (typically
from main()).

 class ScopeErrors {
 int x = 5;
 public static void main(String[] args) {
 x++; // won't compile, x is an 'instance' variable
 }
 }

■ Attempting to access a local variable from a nested method.

 When a method, say go(), invokes another method, say go2(), go2() won't
have access to go()'s local variables. While go2() is executing, go()'s local
variables are still alive, but they are out of scope. When go2() completes, it
is removed from the stack, and go() resumes execution. At this point, all of
go()'s previously declared variables are back in scope. For example:

 class ScopeErrors {
 public static void main(String [] args) {
 ScopeErrors s = new ScopeErrors();
 s.go();
 }
 void go() {
 int y = 5;

Assignment Operators (Exam Objectives 1.3 and 7.6) 201

 go2();
 y++; // once go2() completes, y is back in scope
 }
 void go2() {
 y++; // won't compile, y is local to go()
 }
 }

■ Attempting to use a block variable after the code block has completed.

 It's very common to declare and use a variable within a code block, but be
careful not to try to use the variable once the block has completed:

 void go3() {
 for(int z = 0; z < 5; z++) {
 boolean test = false;
 if(z == 3) {
 test = true;
 break;
 }
 }
 System.out.print(test); // 'test' is an ex-variable,
 // it has ceased to be...
 }

In the last two examples, the compiler will say something like this:

 cannot find symbol

This is the compiler's way of saying, "That variable you just tried to use? Well, it
might have been valid in the distant past (like one line of code ago), but this is
Internet time baby, I have no memory of such a variable."

202 Chapter 3: Assignments

Pay extra attention to code block scoping errors. You might see them in
switches, try-catches, for, do, and while loops.

Using a Variable or Array Element That Is Uninitialized
and Unassigned

Java gives us the option of initializing a declared variable or leaving it
uninitialized. When we attempt to use the uninitialized variable, we can get
different behavior depending on what type of variable or array we are dealing
with (primitives or objects). The behavior also depends on the level (scope) at
which we are declaring our variable. An instance variable is declared within the
class but outside any method or constructor, whereas a local variable is declared
within a method (or in the argument list of the method).

Local variables are sometimes called stack, temporary, automatic, or method
variables, but the rules for these variables are the same regardless of what you
call them. Although you can leave a local variable uninitialized, the compiler
complains if you try to use a local variable before initializing it with a value, as
we shall see.

Primitive and Object Type Instance Variables
Instance variables (also called member variables) are variables defined at the
class level. That means the variable declaration is not made within a method,
constructor, or any other initializer block. Instance variables are initialized to a
default value each time a new instance is created, although they may be given
an explicit value after the object's super-constructors have completed. Table 3-1
lists the default values for primitive and object types.

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objectives 1.3 & 7.6) 203

Variable Type Default Value

Object reference null (not referencing any object)

byte, short, int, long 0

float, double 0.0

boolean false

char '\u0000'

 TABLE 3-1 Default Values for Primitives and Reference Types

Primitive Instance Variables
In the following example, the integer year is defined as a class member because it is
within the initial curly braces of the class and not within a method's curly braces:

public class BirthDate {
 int year; // Instance variable
 public static void main(String [] args) {
 BirthDate bd = new BirthDate();
 bd.showYear();
 }
 public void showYear() {
 System.out.println("The year is " + year);
 }
}

When the program is started, it gives the variable year a value of zero, the default
value for primitive number instance variables.

It's a good idea to initialize all your variables, even if you're assigning them
with the default value. Your code will be easier to read; programmers who
have to maintain your code (after you win the lottery and move to Tahiti) will
be grateful.

Object Reference Instance Variables
When compared with uninitialized primitive variables, object references that aren't
initialized are a completely different story. Let's look at the following code:

public class Book {
 private String title; // instance reference variable
 public String getTitle() {
 return title;
 }
 public static void main(String [] args) {
 Book b = new Book();
 System.out.println("The title is " + b.getTitle());
 }
}

204 Chapter 3: Assignments

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objectives 1.3 & 7.6) 205

This code will compile fine. When we run it, the output is

The title is null

The title variable has not been explicitly initialized with a String assignment,
so the instance variable value is null. Remember that null is not the same as an
empty String (""). A null value means the reference variable is not referring to any
object on the heap. The following modification to the Book code runs into trouble:

public class Book {
 private String title; // instance reference variable
 public String getTitle() {
 return title;
 }
 public static void main(String [] args) {
 Book b = new Book();
 String s = b.getTitle(); // Compiles and runs
 String t = s.toLowerCase(); // Runtime Exception!
 }
}

When we try to run the Book class, the JVM will produce something like this:

Exception in thread "main" java.lang.NullPointerException
 at Book.main(Book.java:9)

We get this error because the reference variable title does not point (refer) to
an object. We can check to see whether an object has been instantiated by using the
keyword null, as the following revised code shows:

public class Book {
 private String title; // instance reference variable
 public String getTitle() {
 return title;
 }
 public static void main(String [] args) {
 Book b = new Book();
 String s = b.getTitle(); // Compiles and runs
 if (s != null) {
 String t = s.toLowerCase();
 }

 }
}

The preceding code checks to make sure the object referenced by the variable s is
not null before trying to use it. Watch out for scenarios on the exam where you
might have to trace back through the code to find out whether an object reference
will have a value of null. In the preceding code, for example, you look at the
instance variable declaration for title, see that there's no explicit initialization,
recognize that the title variable will be given the default value of null, and then
realize that the variable s will also have a value of null. Remember, the value of s is
a copy of the value of title (as returned by the getTitle() method), so if title is a
null reference, s will be too.

Array Instance Variables
Later in this chapter we'll be taking a very detailed look at declaring, constructing,
and initializing arrays and multidimensional arrays. For now, we're just going to look
at the rule for an array element's default values.

An array is an object; thus, an array instance variable that's declared but not
explicitly initialized will have a value of null, just as any other object reference
instance variable. But…if the array is initialized, what happens to the elements
contained in the array? All array elements are given their default values—the same
default values that elements of that type get when they're instance variables.
The bottom line: Array elements are always, always, always given default values,
regardless of where the array itself is declared or instantiated.

If we initialize an array, object reference elements will equal null if they are not
initialized individually with values. If primitives are contained in an array, they will
be given their respective default values. For example, in the following code, the
array year will contain 100 integers that all equal zero by default:

public class BirthDays {
 static int [] year = new int[100];
 public static void main(String [] args) {
 for(int i=0;i<100;i++)
 System.out.println("year[" + i + "] = " + year[i]);
 }
}

When the preceding code runs, the output indicates that all 100 integers in the
array equal zero.

206 Chapter 3: Assignments

Local (Stack, Automatic) Primitives and Objects (Exam Objectives 1.3 and 7.6) 207

Local (Stack, Automatic) Primitives and Objects

Local variables are defined within a method, and they include a method's parameters.

Local Primitives
In the following time travel simulator, the integer year is defined as an automatic
variable because it is within the curly braces of a method.

public class TimeTravel {
 public static void main(String [] args) {
 int year = 2050;
 System.out.println("The year is " + year);
 }
}

Local variables, including primitives, always, always, always must be initialized
before you attempt to use them (though not necessarily on the same line of code).
Java does not give local variables a default value; you must explicitly initialize them
with a value, as in the preceding example. If you try to use an uninitialized primitive
in your code, you'll get a compiler error:

public class TimeTravel {
 public static void main(String [] args) {
 int year; // Local variable (declared but not initialized)
 System.out.println("The year is " + year); // Compiler error
 }
}

“Automatic” is just another term for “local variable.” It does not mean
the automatic variable is automatically assigned a value! The opposite is true. An
automatic variable must be assigned a value in the code, or the compiler will complain.

Compiling produces output something like this:

%javac TimeTravel.java
TimeTravel.java:4: Variable year may not have been initialized.
 System.out.println("The year is " + year);
1 error

To correct our code, we must give the integer year a value. In this updated
example, we declare it on a separate line, which is perfectly valid:

public class TimeTravel {
 public static void main(String [] args) {
 int year; // Declared but not initialized
 int day; // Declared but not initialized
 System.out.println("You step into the portal.");
 year = 2050; // Initialize (assign an explicit value)
 System.out.println("Welcome to the year " + year);
 }
}

Notice in the preceding example we declared an integer called day that never
gets initialized, yet the code compiles and runs fine. Legally, you can declare a local
variable without initializing it as long as you don't use the variable, but let's face it, if
you declared it, you probably had a reason (although we have heard of programmers
declaring random local variables just for sport, to see if they can figure out how and
why they're being used).

The compiler can't always tell whether a local variable has been initialized
before use. For example, if you initialize within a logically conditional block
(in other words, a code block that may not run, such as an if block or for
loop without a literal value of true or false in the test), the compiler knows
that the initialization might not happen, and can produce an error. The
following code upsets the compiler:

public class TestLocal {
 public static void main(String [] args) {
 int x;
 if (args[0] != null) { // assume you know this will
 // always be true

208 Chapter 3: Assignments

 x = 7; // compiler can't tell that this
 // statement will run
 }
 int y = x; // the compiler will choke here
 }
}

The compiler will produce an error something like this:

TestLocal.java:9: variable x might not have been initialized

Because of the compiler-can't-tell-for-certain problem, you will sometimes
need to initialize your variable outside the conditional block, just to make the
compiler happy. You know why that's important if you've seen the bumper
sticker, "When the compiler's not happy, ain't nobody happy."

Local Object References
Objects references, too, behave differently when declared within a method rather
than as instance variables. With instance variable object references, you can get
away with leaving an object reference uninitialized, as long as the code checks to
make sure the reference isn't null before using it. Remember, to the compiler, null
is a value. You can't use the dot operator on a null reference, because there is no
object at the other end of it, but a null reference is not the same as an uninitialized
reference. Locally declared references can't get away with checking for null before
use, unless you explicitly initialize the local variable to null. The compiler will
complain about the following code:

import java.util.Date;
public class TimeTravel {
 public static void main(String [] args) {
 Date date;
 if (date == null)
 System.out.println("date is null");
 }
}

Compiling the code results in an error similar to the following:

Local (Stack, Automatic) Primitives and Objects (Exam Objectives 1.3 & 7.6) 209

%javac TimeTravel.java
TimeTravel.java:5: Variable date may not have been initialized.
 if (date == null)
1 error

Instance variable references are always given a default value of null, until
explicitly initialized to something else. But local references are not given a default
value; in other words, they aren't null. If you don't initialize a local reference variable,
then by default, its value is…well that's the whole point—it doesn't have any value
at all! So we'll make this simple: Just set the darn thing to null explicitly, until
you're ready to initialize it to something else. The following local variable will
compile properly:

Date date = null; // Explicitly set the local reference
 // variable to null

Local Arrays
Just like any other object reference, array references declared within a method must
be assigned a value before use. That just means you must declare and construct the
array. You do not, however, need to explicitly initialize the elements of an array.
We've said it before, but it's important enough to repeat: array elements are given
their default values (0, false, null, '\u0000', etc.) regardless of whether the array
is declared as an instance or local variable. The array object itself, however, will not
be initialized if it's declared locally. In other words, you must explicitly initialize an
array reference if it's declared and used within a method, but at the moment you
construct an array object, all of its elements are assigned their default values.

Assigning One Reference Variable to Another
With primitive variables, an assignment of one variable to another means the
contents (bit pattern) of one variable are copied into another. Object reference
variables work exactly the same way. The contents of a reference variable are a bit
pattern, so if you assign reference variable a to reference variable b, the bit pattern
in a is copied and the new copy is placed into b. (Some people have created a game
around counting how many times we use the word copy in this chapter…this copy
concept is a biggie!) If we assign an existing instance of an object to a new reference
variable, then two reference variables will hold the same bit pattern—a bit pattern
referring to a specific object on the heap. Look at the following code:

210 Chapter 3: Assignments

import java.awt.Dimension;
class ReferenceTest {
 public static void main (String [] args) {
 Dimension a = new Dimension(5,10);
 System.out.println("a.height = " + a.height);
 Dimension b = a;
 b.height = 30;
 System.out.println("a.height = " + a.height +
 " after change to b");
 }
}

In the preceding example, a Dimension object a is declared and initialized with
a width of 5 and a height of 10. Next, Dimension b is declared, and assigned the
value of a. At this point, both variables (a and b) hold identical values, because
the contents of a were copied into b. There is still only one Dimension object—the
one that both a and b refer to. Finally, the height property is changed using the b
reference. Now think for a minute: is this going to change the height property of a as
well? Let's see what the output will be:

%java ReferenceTest
a.height = 10
a.height = 30 after change to b

From this output, we can conclude that both variables refer to the same instance
of the Dimension object. When we made a change to b, the height property was also
changed for a.

One exception to the way object references are assigned is String. In Java, String
objects are given special treatment. For one thing, String objects are immutable; you
can't change the value of a String object (lots more on this concept in Chapter 6).
But it sure looks as though you can. Examine the following code:

class StringTest {
 public static void main(String [] args) {
 String x = "Java"; // Assign a value to x
 String y = x; // Now y and x refer to the same
 // String object

 System.out.println("y string = " + y);
 x = x + " Bean"; // Now modify the object using
 // the x reference

Local (Stack, Automatic) Primitives and Objects (Exam Objectives 1.3 and 7.6) 211

 System.out.println("y string = " + y);
 }
}

You might think String y will contain the characters Java Bean after the
variable x is changed, because Strings are objects. Let's see what the output is:

%java StringTest
y string = Java
y string = Java

As you can see, even though y is a reference variable to the same object that x
refers to, when we change x, it doesn't change y! For any other object type, where
two references refer to the same object, if either reference is used to modify the
object, both references will see the change because there is still only a single object.
But any time we make any changes at all to a String, the VM will update the reference
variable to refer to a different object. The different object might be a new object, or it
might not, but it will definitely be a different object. The reason we can't say for sure
whether a new object is created is because of the String constant pool, which we'll
cover in Chapter 6.

You need to understand what happens when you use a String reference variable to
modify a string:

■ A new string is created (or a matching String is found in the String pool),
leaving the original String object untouched.

■ The reference used to modify the String (or rather, make a new String by
modifying a copy of the original) is then assigned the brand new String object.

So when you say

1. String s = "Fred";
2. String t = s; // Now t and s refer to the same
 // String object
3. t.toUpperCase(); // Invoke a String method that changes
 // the String

you haven't changed the original String object created on line 1. When line 2
completes, both t and s reference the same String object. But when line 3 runs,
rather than modifying the object referred to by t (which is the one and only String

212 Chapter 3: Assignments

object up to this point), a brand new String object is created. And then abandoned.
Because the new String isn't assigned to a String variable, the newly created String
(which holds the string "FRED") is toast. So while two String objects were created
in the preceding code, only one is actually referenced, and both t and s refer to
it. The behavior of Strings is extremely important in the exam, so we'll cover it in
much more detail in Chapter 6.

CERTIFICATION OBJECTIVE

Passing Variables into Methods (Objective 7.3)
7.3 Determine the effect upon object references and primitive values when they are passed
into methods that perform assignments or other modifying operations on the parameters.

Methods can be declared to take primitives and/or object references. You need to
know how (or if) the caller's variable can be affected by the called method. The
difference between object reference and primitive variables, when passed into
methods, is huge and important. To understand this section, you'll need to be
comfortable with the assignments section covered in the first part of this chapter.

Passing Object Reference Variables
When you pass an object variable into a method, you must keep in mind that you're
passing the object reference, and not the actual object itself. Remember that a
reference variable holds bits that represent (to the underlying VM) a way to get to
a specific object in memory (on the heap). More importantly, you must remember
that you aren't even passing the actual reference variable, but rather a copy of the
reference variable. A copy of a variable means you get a copy of the bits in that
variable, so when you pass a reference variable, you're passing a copy of the bits
representing how to get to a specific object. In other words, both the caller and the
called method will now have identical copies of the reference, and thus both will
refer to the same exact (not a copy) object on the heap.

For this example, we'll use the Dimension class from the java.awt package:

 1. import java.awt.Dimension;
 2. class ReferenceTest {

Passing Object Reference Variables (Exam Objective 7.3) 213

 3. public static void main (String [] args) {
 4. Dimension d = new Dimension(5,10);
 5. ReferenceTest rt = new ReferenceTest();
 6. System.out.println("Before modify() d.height = "
 + d.height);
 7. rt.modify(d);
 8. System.out.println("After modify() d.height = "
 + d.height);
 9. }
10. void modify(Dimension dim) {
11. dim.height = dim.height + 1;
12. System.out.println("dim = " + dim.height);
13. }
14. }

When we run this class, we can see that the modify() method was indeed able to
modify the original (and only) Dimension object created on line 4.

C:\Java Projects\Reference>java ReferenceTest
Before modify() d.height = 10
dim = 11
After modify() d.height = 11

Notice when the Dimension object on line 4 is passed to the modify() method,
any changes to the object that occur inside the method are being made to the object
whose reference was passed. In the preceding example, reference variables d and dim
both point to the same object.

Does Java Use Pass-By-Value Semantics?
If Java passes objects by passing the reference variable instead, does that mean Java
uses pass-by-reference for objects? Not exactly, although you'll often hear and read
that it does. Java is actually pass-by-value for all variables running within a single
VM. Pass-by-value means pass-by-variable-value. And that means, pass-by-copy-of-
the-variable! (There's that word copy again!)

It makes no difference if you're passing primitive or reference variables, you are
always passing a copy of the bits in the variable. So for a primitive variable, you're
passing a copy of the bits representing the value. For example, if you pass an int
variable with the value of 3, you're passing a copy of the bits representing 3. The
called method then gets its own copy of the value, to do with it what it likes.

214 Chapter 3: Assignments

And if you're passing an object reference variable, you're passing a copy of the
bits representing the reference to an object. The called method then gets its own
copy of the reference variable, to do with it what it likes. But because two identical
reference variables refer to the exact same object, if the called method modifies the
object (by invoking setter methods, for example), the caller will see that the object
the caller's original variable refers to has also been changed. In the next section,
we'll look at how the picture changes when we're talking about primitives.

The bottom line on pass-by-value: the called method can't change the caller's
variable, although for object reference variables, the called method can change the
object the variable referred to. What's the difference between changing the variable
and changing the object? For object references, it means the called method can't
reassign the caller's original reference variable and make it refer to a different object,
or null. For example, in the following code fragment,

void bar() {
 Foo f = new Foo();
 doStuff(f);
}
void doStuff(Foo g) {
 g.setName("Boo");
 g = new Foo();
}

reassigning g does not reassign f! At the end of the bar() method, two Foo objects
have been created, one referenced by the local variable f and one referenced by
the local (argument) variable g. Because the doStuff() method has a copy of the
reference variable, it has a way to get to the original Foo object, for instance to call
the setName() method. But, the doStuff() method does not have a way to get to
the f reference variable. So doStuff() can change values within the object f refers
to, but doStuff() can't change the actual contents (bit pattern) of f. In other
words, doStuff() can change the state of the object that f refers to, but it can't
make f refer to a different object!

Passing Primitive Variables
Let's look at what happens when a primitive variable is passed to a method:

class ReferenceTest {
 public static void main (String [] args) {

Passing Primitive Variables (Exam Objective 7.3) 215

 int a = 1;
 ReferenceTest rt = new ReferenceTest();
 System.out.println("Before modify() a = " + a);
 rt.modify(a);
 System.out.println("After modify() a = " + a);
 }
 void modify(int number) {
 number = number + 1;
 System.out.println("number = " + number);
 }
}

In this simple program, the variable a is passed to a method called modify(),
which increments the variable by 1. The resulting output looks like this:

Before modify() a = 1
number = 2
After modify() a = 1

Notice that a did not change after it was passed to the method. Remember, it was
a copy of a that was passed to the method. When a primitive variable is passed to a
method, it is passed by value, which means pass-by-copy-of-the-bits-in-the-variable.

216 Chapter 3: Assignments

The Shadowy World of Variables

Just when you think you’ve got it all figured
out, you see a piece of code with variables
not behaving the way you think they should.
You might have stumbled into code with a
shadowed variable. You can shadow a variable
in several ways. We’ll look at the one most
likely to trip you up: hiding an instance
variable by shadowing it with a local variable.
Shadowing involves redeclaring a variable
that’s already been declared somewhere else.

The effect of shadowing is to hide the
previously declared variable in such a way
that it may look as though you’re using the
hidden variable, but you’re actually using the
shadowing variable. You might find reasons to
shadow a variable intentionally, but typically
it happens by accident and causes hard-to-
find bugs. On the exam, you can expect to see
questions where shadowing plays a role.

FROM THE CLASSROOM

Passing Primitive Variables (Exam Objective 7.3) 217

FROM THE CLASSROOM

 You can shadow an instance variable by declaring a local variable of the same name, either
directly or as part of an argument:

 class Foo {

 static int size = 7;

 static void changeIt(int size) {

 size = size + 200;

 System.out.println("size in changeIt is " + size);

 }

 public static void main (String [] args) {

 Foo f = new Foo();

 System.out.println("size = " + size);

 changeIt(size);

 System.out.println("size after changeIt is " + size);

 }

 }

 The preceding code appears to change the size instance variable in the changeIt() method,
but because changeIt() has a parameter named size, the local size variable is modified while
the instance variable size is untouched. Running class Foo prints

 %java Foo

 size = 7

 size in changeIt is 207

 size after changeIt is 7

 Things become more interesting when the shadowed variable is an object reference, rather than
a primitive:

 class Bar {

 int barNum = 28;

 }

218 Chapter 3: Assignments

 class Foo {

 Bar myBar = new Bar();

 void changeIt(Bar myBar) {

 myBar.barNum = 99;

 System.out.println("myBar.barNum in changeIt is " + myBar.barNum);

 myBar = new Bar();

 myBar.barNum = 420;

 System.out.println("myBar.barNum in changeIt is now " + myBar.barNum);

 }

 public static void main (String [] args) {

 Foo f = new Foo();

 System.out.println("f.myBar.barNum is " + f.myBar.barNum);

 f.changeIt(f.myBar);

 System.out.println("f.myBar.barNum after changeIt is "

 + f.myBar.barNum);

 }

 }

 The preceding code prints out this:

 f.myBar.barNum is 28

 myBar.barNum in changeIt is 99

 myBar.barNum in changeIt is now 420

 f.myBar.barNum after changeIt is 99

 You can see that the shadowing variable (the local parameter myBar in changeIt()) can still
affect the myBar instance variable, because the myBar parameter receives a reference to the same
Bar object. But when the local myBar is reassigned a new Bar object, which we then modify by
changing its barNum value, Foo’s original myBar instance variable is untouched.

FROM THE CLASSROOM

CERTIFICATION OBJECTIVE

Array Declaration, Construction, and Initialization
(Exam Objective 1.3)

1.3 Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for variable names.

Arrays are objects in Java that store multiple variables of the same type. Arrays can
hold either primitives or object references, but the array itself will always be an
object on the heap, even if the array is declared to hold primitive elements. In other
words, there is no such thing as a primitive array, but you can make an array
of primitives. For this objective, you need to know three things:

■ How to make an array reference variable (declare)

■ How to make an array object (construct)

■ How to populate the array with elements (initialize)

There are several different ways to do each of those, and you need to know about
all of them for the exam.

Arrays are efficient, but most of the time you'll want to use one of the
Collection types from java.util (including HashMap, ArrayList, TreeSet).
Collection classes offer more flexible ways to access an object (for insertion,
deletion, and so on) and unlike arrays, can expand or contract dynamically
as you add or remove elements (they're really managed arrays, since they use
arrays behind the scenes). There's a Collection type for a wide range of needs.
Do you need a fast sort? A group of objects with no duplicates? A way to
access a name/value pair? A linked list? Chapter 7 covers them in more detail.

Declaring an Array
Arrays are declared by stating the type of element the array will hold, which can
be an object or a primitive, followed by square brackets to the left or right of
the identifier.

Declaring an Array (Exam Objective 1.3) 219

Declaring an array of primitives:

int[] key; // brackets before name (recommended)
int key []; // brackets after name (legal but less readable)
 // spaces between the name and [] legal, but bad

Declaring an array of object references:

Thread[] threads; // Recommended
Thread threads[]; // Legal but less readable

When declaring an array reference, you should always put the array brackets
immediately after the declared type, rather than after the identifier (variable
name). That way, anyone reading the code can easily tell that, for example, key is a
reference to an int array object, and not an int primitive.

We can also declare multidimensional arrays, which are in fact arrays of arrays.
This can be done in the following manner:

String[][][] occupantName; // recommended
String[] ManagerName []; // yucky, but legal

The first example is a three-dimensional array (an array of arrays of arrays) and
the second is a two-dimensional array. Notice in the second example we have one
square bracket before the variable name and one after. This is perfectly legal to the
compiler, proving once again that just because it's legal doesn't mean it's right.

It is never legal to include the size of the array in your declaration. Yes, we know
you can do that in some other languages, which is why you might see a question or
two that include code similar to the following:

int[5] scores;

The preceding code won't make it past the compiler. Remember, the JVM
doesn't allocate space until you actually instantiate the array object. That's when size
matters.

Constructing an Array
Constructing an array means creating the array object on the heap (where all objects
live)—i.e., doing a new on the array type. To create an array object, Java must know

220 Chapter 3: Assignments

how much space to allocate on the heap, so you must specify the size of the array at
creation time. The size of the array is the number of elements the array will hold.

Constructing One-Dimensional Arrays
The most straightforward way to construct an array is to use the keyword new
followed by the array type, with a bracket specifying how many elements of that type
the array will hold. The following is an example of constructing an array of type int:

int[] testScores; // Declares the array of ints
testScores = new int[4]; // constructs an array and assigns it
 // to the testScores variable

The preceding code puts one new object on the heap—an array object holding four
elements—with each element containing an int with a default value of 0. Think of
this code as saying to the compiler, "Create an array object that will hold four ints,
and assign it to the reference variable named testScores. Also, go ahead and set
each int element to zero. Thanks." (The compiler appreciates good manners.)
Figure 3-2 shows the testScores array on the heap, after construction.

You can also declare and construct an array in one statement as follows:

int[] testScores = new int[4];

This single statement produces the same result as the two previous statements.
Arrays of object types can be constructed in the same way:

Thread[] threads = new Thread[5];

Constructing an Array (Exam Objective 1.3) 221

 FIGURE 3-2

A one-dimensional
array on the Heap

testScores

0 0 0 0

0 1 2 3

int[]array
reference
variable

int[]array object

The heap

Values

Indices

222 Chapter 3: Assignments

Remember that—despite how the code appears—the Thread constructor is not
being invoked. We're not creating a Thread instance, but rather a single Thread
array object. After the preceding statement, there are still no actual Thread objects!

Remember, arrays must always be given a size at the time they are constructed.
The JVM needs the size to allocate the appropriate space on the heap for the new
array object. It is never legal, for example, to do the following:

int[] carList = new int[]; // Will not compile; needs a size

So don't do it, and if you see it on the test, run screaming toward the nearest
answer marked "Compilation fails."

In addition to being constructed with new, arrays can also be created using a kind
of syntax shorthand that creates the array while simultaneously initializing the array
elements to values supplied in code (as opposed to default values). We'll look at
that in the next section. For now, understand that because of these syntax shortcuts,
objects can still be created even without you ever using or seeing the keyword new.

Think carefully about how many objects are on the heap after a code
statement or block executes. The exam will expect you to know, for example, that the
preceding code produces just one object (the array assigned to the reference variable
named threads). The single object referenced by threads holds fi ve Thread reference
variables, but no Thread objects have been created or assigned to those references.

You may see the words "construct", "create", and "instantiate" used
interchangeably. They all mean, “An object is built on the heap.” This also implies that
the object’s constructor runs, as a result of the construct/create/instantiate code. You can
say with certainty, for example, that any code that uses the keyword new, will (if it runs
successfully) cause the class constructor and all superclass constructors to run.

int[]array object

int[][] (2-D array)
reference variable

int[][] myArray = new int[3][];
myArray[0] = new int[2];
myArray[0][0] = 6;
myArray[0][1] = 7;
myArray[1] = new int[3];
myArray[1][0] = 9;
myArray[1][1] = 8;
myArray[1][2] = 5;

Picture demonstrates the result of the following code:

myArray

null

2-D int[][]array object

int[]array object

myArray[0]

myArray[1]

The heap

Constructing Multidimensional Arrays
Multidimensional arrays, remember, are simply arrays of arrays. So a two-
dimensional array of type int is really an object of type int array (int []), with
each element in that array holding a reference to another int array. The second
dimension holds the actual int primitives. The following code declares and
constructs a two-dimensional array of type int:

int[][] myArray = new int[3][];

Notice that only the first brackets are given a size. That's acceptable in Java, since
the JVM needs to know only the size of the object assigned to the variable myArray.

Figure 3-3 shows how a two-dimensional int array works on the heap.

Constructing an Array (Exam Objective 1.3) 223

 FIGURE 3-3

A two-dimensional
array on the Heap

Initializing an Array
Initializing an array means putting things into it. The "things" in the array are the
array's elements, and they're either primitive values (2, x, false, and so on), or
objects referred to by the reference variables in the array. If you have an array of
objects (as opposed to primitives), the array doesn't actually hold the objects, just as
any other nonprimitive variable never actually holds the object, but instead holds
a reference to the object. But we talk about arrays as, for example, "an array of five
strings," even though what we really mean is, "an array of five references to String
objects." Then the big question becomes whether or not those references are actually
pointing (oops, this is Java, we mean referring) to real String objects, or are simply
null. Remember, a reference that has not had an object assigned to it is a null
reference. And if you try to actually use that null reference by, say, applying the dot
operator to invoke a method on it, you'll get the infamous NullPointerException.

The individual elements in the array can be accessed with an index number. The
index number always begins with zero, so for an array of ten objects the index numbers
will run from 0 through 9. Suppose we create an array of three Animals as follows:

Animal [] pets = new Animal[3];

We have one array object on the heap, with three null references of type Animal,
but we don't have any Animal objects. The next step is to create some Animal
objects and assign them to index positions in the array referenced by pets:

pets[0] = new Animal();
pets[1] = new Animal();
pets[2] = new Animal();

This code puts three new Animal objects on the heap and assigns them to the
three index positions (elements) in the pets array.

224 Chapter 3: Assignments

Look for code that tries to access an out-of-range array index. For
example, if an array has three elements, trying to access the [3] element will raise an
ArrayIndexOutOfBoundsException, because in an array of three elements, the
legal index values are 0, 1, and 2. You also might see an attempt to use a negative number
as an array index. The following are examples of legal and illegal array access attempts.
Be sure to recognize that these cause runtime exceptions and not compiler errors!

A two-dimensional array (an array of arrays) can be initialized as follows:

int[][] scores = new int[3][];
// Declare and create an array holding three references
// to int arrays

scores[0] = new int[4];
// the first element in the scores array is an int array
// of four int elements

scores[1] = new int[6];
// the second element in the scores array is an int array
// of six int elements

scores[2] = new int[1];
// the third element in the scores array is an int array
// of one int element

Initializing Elements in a Loop
Array objects have a single public variable, length that gives you the number of
elements in the array. The last index value, then, is always one less than the length.
For example, if the length of an array is 4, the index values are from 0 through 3.
Often, you'll see array elements initialized in a loop as follows:

Initializing an Array (Exam Objective 1.3) 225

Nearly all of the exam questions list both runtime exception and compiler
error as possible answers.

int[] x = new int[5];
x[4] = 2; // OK, the last element is at index 4
x[5] = 3; // Runtime exception. There is no element at index
5!

int[] z = new int[2];
int y = -3;
z[y] = 4; // Runtime exception. y is a negative number

These can be hard to spot in a complex loop, but that’s where you’re
most likely to see array index problems in exam questions.

226 Chapter 3: Assignments

 Dog[] myDogs = new Dog[6]; // creates an array of 6
 // Dog references

for(int x = 0; x < myDogs.length; x++) {
 myDogs[x] = new Dog(); // assign a new Dog to the
 // index position x
}

The length variable tells us how many elements the array holds, but it does not
tell us whether those elements have been initialized.

Declaring, Constructing, and Initializing on One Line
You can use two different array-specific syntax shortcuts to both initialize (put
explicit values into an array's elements) and construct (instantiate the array object
itself) in a single statement. The first is used to declare, create, and initialize in one
statement as follows:

1. int x = 9;
2. int[] dots = {6,x,8};

Line 2 in the preceding code does four things:

■ Declares an int array reference variable named dots.

■ Creates an int array with a length of three (three elements).

■ Populates the array's elements with the values 6, 9, and 8.

■ Assigns the new array object to the reference variable dots.

The size (length of the array) is determined by the number of comma-separated
items between the curly braces. The code is functionally equivalent to the following
longer code:

int[] dots;
dots = new int[3];
int x = 9;
dots[0] = 6;
dots[1] = x;
dots[2] = 8;

puppy

myDogs

Dog puppy = new Dog (”Frodo”);
Dog[] myDogs = {puppy, new Dog(”Clover”), new Dog(”Aiko”)};

0 1 2

Frodo
Clover

Aiko

Dog object
Dog object

Dog object
Dog reference
variable

Dog[]array
reference variable

Four objects are created:
1 Dog object referenced by puppy and by myDogs[0]
1 Dog[] array referenced by myDogs
2 Dog object referenced by myDogs[1]and myDogs[2]

Picture demonstrates the result of the following code:

Dog[]array object

The heap

This begs the question, "Why would anyone use the longer way?" One reason
come to mind. You might not know—at the time you create the array—the values
that will be assigned to the array's elements. This array shortcut alone (combined
with the stimulating prose) is worth the price of this book.

With object references rather than primitives, it works exactly the same way:

Dog puppy = new Dog("Frodo");
Dog[] myDogs = {puppy, new Dog("Clover"), new Dog("Aiko")};

The preceding code creates one Dog array, referenced by the variable myDogs,
with a length of three elements. It assigns a previously created Dog object (as-
signed to the reference variable puppy) to the first element in the array. It also
creates two new Dog objects (Clover and Aiko), and adds them to the last two
Dog reference variable elements in the myDogs array. Figure 3-4 shows the result.

Initializing an Array (Exam Objective 1.3) 227

 FIGURE 3-4

Declaring,
constructing, and
initializing an array
of objects

228 Chapter 3: Assignments

You can also use the shortcut syntax with multidimensional arrays, as follows:

int[][] scores = {{5,2,4,7}, {9,2}, {3,4}};

The preceding code creates a total of four objects on the heap. First, an array
of int arrays is constructed (the object that will be assigned to the scores
reference variable). The scores array has a length of three, derived from the
number of items (comma-separated) between the outer curly braces. Each of the
three elements in the scores array is a reference variable to an int array, so the
three int arrays are constructed and assigned to the three elements in the
scores array.

The size of each of the three int arrays is derived from the number of items
within the corresponding inner curly braces. For example, the first array has a
length of four, the second array has a length of two, and the third array has a
length of two. So far, we have four objects: one array of int arrays (each element
is a reference to an int array), and three int arrays (each element in the three
int arrays is an int value). Finally, the three int arrays are initialized with
the actual int values within the inner curly braces. Thus, the first int array
contains the values 5, 2, 4, and 7. The following code shows the values of some
of the elements in this two-dimensional array:

scores[0] // an array of four ints
scores[1] // an array of 2 ints
scores[2] // an array of 2 ints
scores[0][1] // the int value 2
scores[2][1] // the int value 4

Figure 3-5 shows the result of declaring, constructing, and initializing a two-
dimensional array in one statement.

Constructing and Initializing an Anonymous Array
The second shortcut is called "anonymous array creation" and can be used
to construct and initialize an array, and then assign the array to a previously
declared array reference variable:

int[] testScores;
testScores = new int[] {4,7,2};

Cat

Cat[]array
object

Cat[][] myCats =
new Cat(”Bilbo”), new Cat(”Legolas”), new Cat(”Bert”)

{{

{

}

}}

new Cat(”Fluffy”), new Cat(”Zeus”) ,

Cat[]array
object

2-D Cat[][] array object

Picture demonstrates the result of the following code:

Cat[][] array
reference variable

Eight objects are created:
1 2-D Cat[][] array object
2 Cat[] array object
5 Cat object

Fluffy

0 0 21

0 1

1

Zeus
Bilbo

Legolas

Bert

object
Cat object

Cat object

Cat object

Cat object

The heap

The preceding code creates a new int array with three elements, initializes the
three elements with the values 4, 7, and 2, and then assigns the new array to
the previously declared int array reference variable testScores. We call this
anonymous array creation because with this syntax you don't even need to assign
the new array to anything. Maybe you're wondering, "What good is an array if you
don't assign it to a reference variable?" You can use it to create a just-in-time array
to use, for example, as an argument to a method that takes an array parameter.
The following code demonstrates a just-in-time array argument:

Initializing an Array (Exam Objective 1.3) 229

 FIGURE 3-5

Declaring,
constructing, and
initializing a two-
dimensional array

230 Chapter 3: Assignments

public class Foof {
 void takesAnArray(int [] someArray) {
 // use the array parameter
 }
 public static void main (String [] args) {
 Foof f = new Foof();
 f.takesAnArray(new int[] {7,7,8,2,5}); // we need an array
 // argument
 }
}

Legal Array Element Assignments
What can you put in a particular array? For the exam, you need to know that arrays
can have only one declared type (int [], Dog[], String [], and so on), but that
doesn't necessarily mean that only objects or primitives of the declared type can
be assigned to the array elements. And what about the array reference itself? What
kind of array object can be assigned to a particular array reference? For the exam,
you'll need to know the answers to all of these questions. And, as if by magic, we're
actually covering those very same topics in the following sections. Pay attention.

Arrays of Primitives
Primitive arrays can accept any value that can be promoted implicitly to the
declared type of the array. For example, an int array can hold any value that can fit
into a 32-bit int variable. Thus, the following code is legal:

Remember that you do not specify a size when using anonymous array
creation syntax. The size is derived from the number of items (comma-separated)
between the curly braces. Pay very close attention to the array syntax used in exam
questions (and there will be a lot of them). You might see syntax such as

 new Object[3] {null, new Object(), new Object()};
 // not legal;size must not be specified

int[] weightList = new int[5];
byte b = 4;
char c = 'c';
short s = 7;
weightList[0] = b; // OK, byte is smaller than int
weightList[1] = c; // OK, char is smaller than int
weightList[2] = s; // OK, short is smaller than int

Arrays of Object References
If the declared array type is a class, you can put objects of any subclass of the
declared type into the array. For example, if Subaru is a subclass of Car, you can put
both Subaru objects and Car objects into an array of type Car as follows:

class Car {}
class Subaru extends Car {}
class Ferrari extends Car {}
...
Car [] myCars = {new Subaru(), new Car(), new Ferrari()};

It helps to remember that the elements in a Car array are nothing more than Car
reference variables. So anything that can be assigned to a Car reference variable can
be legally assigned to a Car array element.

If the array is declared as an interface type, the array elements can refer to any
instance of any class that implements the declared interface. The following code
demonstrates the use of an interface as an array type:

interface Sporty {
 void beSporty();
}

class Ferrari extends Car implements Sporty {
 public void beSporty() {
 // implement cool sporty method in a Ferrari-specific way
 }
}
class RacingFlats extends AthleticShoe implements Sporty {
 public void beSporty() {
 // implement cool sporty method in a RacingShoe-specific way
 }

Initializing an Array (Exam Objective 1.3) 231

232 Chapter 3: Assignments

}
class GolfClub { }
class TestSportyThings {
 public static void main (String [] args) {
 Sporty[] sportyThings = new Sporty [3];
 sportyThings[0] = new Ferrari(); // OK, Ferrari
 // implements Sporty
 sportyThings[1] = new RacingFlats(); // OK, RacingFlats
 // implements Sporty
 sportyThings[2] = new GolfClub();

 // Not OK; GolfClub does not implement Sporty
 // I don't care what anyone says
 }
}

The bottom line is this: any object that passes the "IS-A" test for the declared
array type can be assigned to an element of that array.

Array Reference Assignments for One-Dimensional Arrays
For the exam, you need to recognize legal and illegal assignments for array reference
variables. We're not talking about references in the array (in other words, array
elements), but rather references to the array object. For example, if you declare an
int array, the reference variable you declared can be reassigned to any int array (of
any size), but cannot be reassigned to anything that is not an int array, including an
int value. Remember, all arrays are objects, so an int array reference cannot refer to
an int primitive. The following code demonstrates legal and illegal assignments for
primitive arrays:

int[] splats;
int[] dats = new int[4];
char[] letters = new char[5];
splats = dats; // OK, dats refers to an int array
splats = letters; // NOT OK, letters refers to a char array

It's tempting to assume that because a variable of type byte, short, or char
can be explicitly promoted and assigned to an int, an array of any of those types
could be assigned to an int array. You can't do that in Java, but it would be just like
those cruel, heartless (but otherwise attractive) exam developers to put tricky array
assignment questions in the exam.

Arrays that hold object references, as opposed to primitives, aren't as restrictive.
Just as you can put a Honda object in a Car array (because Honda extends Car), you
can assign an array of type Honda to a Car array reference variable as follows:

Car[] cars;
Honda[] cuteCars = new Honda[5];
cars = cuteCars; // OK because Honda is a type of Car
Beer[] beers = new Beer [99];
cars = beers; // NOT OK, Beer is not a type of Car

Apply the IS-A test to help sort the legal from the illegal. Honda IS-A Car, so a
Honda array can be assigned to a Car array. Beer IS-A Car is not true; Beer does not
extend Car (plus it doesn't make sense, unless you've already had too much of it).

The rules for array assignment apply to interfaces as well as classes. An array
declared as an interface type can reference an array of any type that implements the
interface. Remember, any object from a class implementing a particular interface will
pass the IS-A (instanceof) test for that interface. For example, if Box implements
Foldable, the following is legal:

Foldable[] foldingThings;
Box[] boxThings = new Box[3];
foldingThings = boxThings;
// OK, Box implements Foldable, so Box IS-A Foldable

Array Reference Assignments for Multidimensional Arrays
When you assign an array to a previously declared array reference, the array you're
assigning must be the same dimension as the reference you're assigning it to. For

Initializing an Array (Exam Objective 1.3) 233

You cannot reverse the legal assignments. A Car array cannot be assigned
to a Honda array. A Car is not necessarily a Honda, so if you’ve declared a Honda array,
it might blow up if you assigned a Car array to the Honda reference variable. Think
about it: a Car array could hold a reference to a Ferrari, so someone who thinks they
have an array of Hondas could suddenly fi nd themselves with a Ferrari. Remember that
the IS-A test can be checked in code using the instanceof operator.

234 Chapter 3: Assignments

example, a two-dimensional array of int arrays cannot be assigned to a regular int
array reference, as follows:

int[] blots;
int[][] squeegees = new int[3][];
blots = squeegees; // NOT OK, squeegees is a
 // two-d array of int arrays
int[] blocks = new int[6];
blots = blocks; // OK, blocks is an int array

Pay particular attention to array assignments using different dimensions. You
might, for example, be asked if it's legal to assign an int array to the first element in
an array of int arrays, as follows:

int[][] books = new int[3][];
int[] numbers = new int[6];
int aNumber = 7;
books[0] = aNumber; // NO, expecting an int array not an int
books[0] = numbers; // OK, numbers is an int array

Figure 3-6 shows an example of legal and illegal assignments for references to
an array.

Initialization Blocks
We've talked about two places in a class where you can put code that performs
operations: methods and constructors. Initialization blocks are the third place in a
Java program where operations can be performed. Initialization blocks run when the
class is first loaded (a static initialization block) or when an instance is created (an
instance initialization block). Let's look at an example:

 class SmallInit {
 static int x;
 int y;

 static { x = 7 ; } // static init block
 { y = 8; } // instance init block
}

As you can see, the syntax for initialization blocks is pretty terse. They don't
have names, they can't take arguments, and they don't return anything. A static
initialization block runs once, when the class is first loaded. An instance initialization
block runs once every time a new instance is created. Remember when we talked about
the order in which constructor code executed? Instance init block code runs right

Initialization Blocks (Exam Objective 1.3) 235

 FIGURE 3-6 Legal and illegal array assignments

moreCats

Cat[]array
reference variable
Array reference variable can
ONLY refer to a 1-D Cat array

Cat[][]2-D array
reference variable
2-D reference variable can
ONLY refer to a 2-D Cat array

myCats = myCats[0];
Can’t assign a 1-D array to a 2-D array reference

myCats = myCats[0][0];
Can’t assign a nonarray object to a 2-D array reference

myCats[1] = myCats[1][2];
Can’t assign a nonarray object to a 1-D array reference

myCats[0][1] = moreCats;

myCats[0][1] can only refer to a Cat object
Can’t assign an array object to a nonarray reference

2-D Cat[][]array object
Element in a 2-D Cat array can ONLY
refer to a 1-D Cat array

Legal

Illegal

Cat[]array
object

Cat[]array
object

Cat[]array
object

0 1

0 1

0 1

0 1 2

The heap

Cat object

B

A

Illegal Array Reference Assignments

A

B

C

D

D

C

KEY

myCats

Cat object

null

Cat object
Cat object

Cat object

Element in a 1-D Cat array can
ONLY refer to a Cat object

Fluffy Zeus Bilbo
Legolas

Bert

//

//

//

//
//

236 Chapter 3: Assignments

after the call to super() in a constructor, in other words, after all
super-constructors have run.

You can have many initialization blocks in a class. It is important to note that
unlike methods or constructors, the order in which initialization blocks appear in a class
matters. When it's time for initialization blocks to run, if a class has more than one,
they will run in the order in which they appear in the class file…in other words,
from the top down. Based on the rules we just discussed, can you determine the
output of the following program?

class Init {
 Init(int x) { System.out.println("1-arg const"); }
 Init() { System.out.println("no-arg const"); }
 static { System.out.println("1st static init"); }
 { System.out.println("1st instance init"); }
 { System.out.println("2nd instance init"); }
 static { System.out.println("2nd static init"); }

 public static void main(String [] args) {
 new Init();
 new Init(7);
 }
}

To figure this out, remember these rules:

■ Init blocks execute in the order they appear.

■ Static init blocks run once, when the class is first loaded.

■ Instance init blocks run every time a class instance is created.

■ Instance init blocks run after the constructor's call to super().

With those rules in mind, the following output should make sense:

1st static init
2nd static init
1st instance init
2nd instance init
no-arg const
1st instance init
2nd instance init
1-arg const

As you can see, the instance init blocks each ran twice. Instance init blocks are
often used as a place to put code that all the constructors in a class should share.
That way, the code doesn't have to be duplicated across constructors.

Finally, if you make a mistake in your static init block, the JVM can throw an
ExceptionInInitializationError. Let's look at an example,

class InitError {
 static int [] x = new int[4];
 static { x[4] = 5; } // bad array index!
 public static void main(String [] args) { }
}

which produces something like:

Exception in thread "main" java.lang.ExceptionInInitializerError
Caused by: java.lang.ArrayIndexOutOfBoundsException: 4
 at InitError.<clinit>(InitError.java:3)

CERTIFICATION OBJECTIVE

Using Wrapper Classes and Boxing
(Exam Objective 3.1)

3.1 Develop code that uses the primitive wrapper classes (such as Boolean,
Character, Double, Integer, etc.), and/or autoboxing & unboxing. Discuss the
differences between the String, StringBuilder, and StringBuffer classes.

Using Wrapper Classes and Boxing (Exam Objective 3.1) 237

By convention, init blocks usually appear near the top of the class fi le,
somewhere around the constructors. However, this is the SCJP exam we’re talking about.
Don’t be surprised if you fi nd an init block tucked in between a couple of methods,
looking for all the world like a compiler error waiting to happen!

238 Chapter 3: Assignments

The wrapper classes in the Java API serve two primary purposes:

■ To provide a mechanism to "wrap" primitive values in an object so that
the primitives can be included in activities reserved for objects, like
being added to Collections, or returned from a method with an object
return value. Note: With Java 5's addition of autoboxing (and unboxing),
which we'll get to in a few pages, many of the wrapping operations that
programmers used to do manually are now handled automatically.

■ To provide an assortment of utility functions for primitives. Most of
these functions are related to various conversions: converting primitives
to and from String objects, and converting primitives and String
 objects to and from different bases (or radix), such as binary, octal,
and hexadecimal.

An Overview of the Wrapper Classes
There is a wrapper class for every primitive in Java. For instance, the wrapper
class for int is Integer, the class for float is Float, and so on. Remember that
the primitive name is simply the lowercase name of the wrapper except for char,
which maps to Character, and int, which maps to Integer. Table 3-2 lists the
wrapper classes in the Java API.

Primitive Wrapper Class Constructor Arguments

boolean Boolean boolean or String

byte Byte byte or String

char Character char

double Double double or String

float Float float, double, or String

int Integer int or String

long Long long or String

short Short short or String

 TABLE 3-2 Wrapper Classes and Their Constructor Arguments

Creating Wrapper Objects
For the exam you need to understand the three most common approaches for
creating wrapper objects. Some approaches take a String representation of a
primitive as an argument. Those that take a String throw NumberFormatException
if the String provided cannot be parsed into the appropriate primitive. For example
"two" can't be parsed into "2". Wrapper objects are immutable. Once they have
been given a value, that value cannot be changed. We'll talk more about wrapper
immutability when we discuss boxing in a few pages.

The Wrapper Constructors
All of the wrapper classes except Character provide two constructors: one that takes
a primitive of the type being constructed, and one that takes a String representation
of the type being constructed—for example,

Integer i1 = new Integer(42);
Integer i2 = new Integer("42");

or

Float f1 = new Float(3.14f);
Float f2 = new Float("3.14f");

The Character class provides only one constructor, which takes a char as an
argument—for example,

Character c1 = new Character('c');

The constructors for the Boolean wrapper take either a boolean value true or
false, or a String. If the String's case-insensitive value is "true" the Boolean will
be true—any other value will equate to false. Until Java 5, a Boolean object
couldn't be used as an expression in a boolean test—for instance,

Boolean b = new Boolean("false");
if (b) // won't compile, using Java 1.4 or earlier

As of Java 5, a Boolean object can be used in a boolean test, because the compiler
will automatically "unbox" the Boolean to a boolean. We'll be focusing on Java 5's
autoboxing capabilities in the very next section—so stay tuned!

Creating Wrapper Objects (Exam Objective 3.1) 239

240 Chapter 3: Assignments

The valueOf() Methods
The two (well, usually two) static valueOf() methods provided in most of the
wrapper classes give you another approach to creating wrapper objects. Both
methods take a String representation of the appropriate type of primitive as
their first argument, the second method (when provided) takes an additional
argument, int radix, which indicates in what base (for example binary, octal, or
hexadecimal) the first argument is represented—for example,

Integer i2 = Integer.valueOf("101011", 2); // converts 101011
 // to 43 and
 // assigns the value
 // 43 to the
 // Integer object i2

or

Float f2 = Float.valueOf("3.14f"); // assigns 3.14 to the
 // Float object f2

Using Wrapper Conversion Utilities
As we said earlier, a wrapper's second big function is converting stuff. The following
methods are the most commonly used, and are the ones you're most likely to see on
the test.

xxxValue()
When you need to convert the value of a wrapped numeric to a primitive, use
one of the many xxxValue() methods. All of the methods in this family are no-
arg methods. As you can see by referring to Table 3-3, there are 36 xxxValue()
methods. Each of the six numeric wrapper classes has six methods, so that any
numeric wrapper can be converted to any primitive numeric type—for example,

Integer i2 = new Integer(42); // make a new wrapper object
byte b = i2.byteValue(); // convert i2's value to a byte
 // primitive
short s = i2.shortValue(); // another of Integer's xxxValue
 // methods
double d = i2.doubleValue(); // yet another of Integer's
 // xxxValue methods

or

Float f2 = new Float(3.14f); // make a new wrapper object
short s = f2.shortValue(); // convert f2's value to a short
 // primitive
System.out.println(s); // result is 3 (truncated, not

 // rounded)

parseXxx() and valueOf()
The six parseXxx() methods (one for each numeric wrapper type) are closely
related to the valueOf() method that exists in all of the numeric wrapper
classes. Both parseXxx() and valueOf() take a String as an argument, throw a
NumberFormatException (a.k.a. NFE) if the String argument is not properly formed,
and can convert String objects from different bases (radix), when the underlying
primitive type is any of the four integer types. (See Table 3-3.) The difference
between the two methods is

■ parseXxx() returns the named primitive.

■ valueOf() returns a newly created wrapped object of the type that invoked
the method.

Here are some examples of these methods in action:

double d4 = Double.parseDouble("3.14"); // convert a String
 // to a primitive

System.out.println("d4 = " + d4); // result is d4 = 3.14

Double d5 = Double.valueOf("3.14"); // create a Double obj
System.out.println(d5 instanceof Double); // result is "true"

The next examples involve using the radix argument (in this case binary):

long L2 = Long.parseLong("101010", 2); // binary String to a
 // primitive
System.out.println("L2 = " + L2); // result is: L2 = 42

Long L3 = Long.valueOf("101010", 2); // binary String to
 // Long object
System.out.println("L3 value = " + L3); // result is:

 // L3 value = 42

Using Wrapper Conversion Utilities (Exam Objective 3.1) 241

242 Chapter 3: Assignments

toString()
Class Object, the alpha class, has a toString() method. Since we know that all
other Java classes inherit from class Object, we also know that all other Java classes
have a toString() method. The idea of the toString() method is to allow you
to get some meaningful representation of a given object. For instance, if you have a
Collection of various types of objects, you can loop through the Collection and print
out some sort of meaningful representation of each object using the toString()
method, which is guaranteed to be in every class. We'll talk more about toString()
in the Collections chapter, but for now let's focus on how toString() relates to
the wrapper classes which, as we know, are marked final. All of the wrapper classes
have a no-arg, nonstatic, instance version of toString(). This method returns a
String with the value of the primitive wrapped in the object—for instance,

Double d = new Double("3.14");
System.out.println("d = "+ d.toString()); // result is d = 3.14

All of the numeric wrapper classes provide an overloaded, static toString()
method that takes a primitive numeric of the appropriate type (Double.
toString() takes a double, Long.toString() takes a long, and so on) and, of
course, returns a String:

String d = Double.toString(3.14); // d = "3.14"

Finally, Integer and Long provide a third toString() method. It's static, its first
argument is the primitive, and its second argument is a radix. The radix tells the
method to take the first argument, which is radix 10 (base 10) by default, and
convert it to the radix provided, then return the result as a String—for instance,

String s = "hex = "+ Long.toString(254,16); // s = "hex = fe"

toXxxString() (Binary, Hexadecimal, Octal)
The Integer and Long wrapper classes let you convert numbers in base 10 to other
bases. These conversion methods, toXxxString(), take an int or long, and return
a String representation of the converted number, for example,

String s3 = Integer.toHexString(254); // convert 254 to hex
System.out.println("254 is " + s3); // result: "254 is fe"

String s4 = Long.toOctalString(254); // convert 254 to octal
System.out.print("254(oct) ="+ s4); // result: "254(oct) =376"

 In summary, the essential method signatures for Wrapper conversion methods are

 primitive xxxValue() - to convert a Wrapper to a primitive

 primitive parseXxx(String) - to convert a String to a primitive

 Wrapper valueOf(String) - to convert a String to a Wrapper

Studying Table 3-3 is the single best way to prepare for this section of the test.
If you can keep the differences between xxxValue(), parseXxx(), and
valueOf() straight, you should do well on this part of the exam.

Using Wrapper Conversion Utilities (Exam Objective 3.1) 243

Method
s = static
n = NFE exception Boolean

Byte

Character

Double

Float

Integer

Long

Short

byteValue x x x x x x

doubleValue x x x x x x

floatValue x x x x x x

intValue x x x x x x

longValue x x x x x x

shortValue x x x x x x

parseXxx s,n x x x x x x

parseXxx s,n
(with radix)

x x x x

valueOf s,n s x x x x x x

valueOf s,n
(with radix)

x x x x

toString x x x x x x x x

toString s
(primitive)

x x x x x x x x

toString s
(primitive, radix)

x x

 TABLE 3-3 Common Wrapper Conversion Methods

244 Chapter 3: Assignments

Autoboxing
New to Java 5 is a feature known variously as: autoboxing, auto-unboxing, boxing,
and unboxing. We'll stick with the terms boxing and unboxing. Boxing and
unboxing make using wrapper classes more convenient. In the old, pre–Java 5 days,
if you wanted to make a wrapper, unwrap it, use it, and then rewrap it, you might do
something like this:

Integer y = new Integer(567); // make it
int x = y.intValue(); // unwrap it
x++; // use it
y = new Integer(x); // re-wrap it
System.out.println("y = " + y); // print it

Now, with new and improved Java 5 you can say

Integer y = new Integer(567); // make it
y++; // unwrap it, increment it,
 // rewrap it
System.out.println("y = " + y); // print it

Both examples produce the output:

y = 568

And yes, you read that correctly. The code appears to be using the postincrement
operator on an object reference variable! But it's simply a convenience. Behind
the scenes, the compiler does the unboxing and reassignment for you. Earlier we
mentioned that wrapper objects are immutable... this example appears to contradict
that statement. It sure looks like y's value changed from 567 to 568. What actually
happened, is that a second wrapper object was created and its value was set to 568. If
only we could access that first wrapper object, we could prove it...

Let's try this:

Integer y = 567; // make a wrapper
Integer x = y; // assign a second ref
 // var to THE wrapper

System.out.println(y==x); // verify that they refer
 // to the same object

y++; // unwrap, use, "rewrap"
System.out.println(x + " " + y); // print values

System.out.println(y==x); // verify that they refer
 // to different objects

Which produces the output:

true
 567 568
 false

So, under the covers, when the compiler got to the line y++; it had to substitute
something like this:

int x2 = y.intValue(); // unwrap it
x2++; // use it
y = new Integer(x2); // re-wrap it

Just as we suspected, there's gotta be a call to new in there somewhere.

Boxing, ==, and equals()
We just used == to do a little exploration of wrappers. Let's take a more thorough
look at how wrappers work with ==, !=, and equals(). We'll talk a lot more about
the equals() method in later chapters. For now all we have to know is that the
intention of the equals() method is to determine whether two instances of a given
class are "meaningfully equivalent." This definition is intentionally subjective; it's
up to the creator of the class to determine what "equivalent" means for objects of the
class in question. The API developers decided that for all the wrapper classes, two
objects are equal if they are of the same type and have the same value. It shouldn't
be surprising that

Integer i1 = 1000;
Integer i2 = 1000;
if(i1 != i2) System.out.println("different objects");
if(i1.equals(i2)) System.out.println("meaningfully equal");

Produces the output:

different objects
 meaningfully equal

Autoboxing (Exam Objective 3.1) 245

246 Chapter 3: Assignments

It's just two wrapper objects that happen to have the same value. Because they
have the same int value, the equals() method considers them to be "meaningfully
equivalent", and therefore returns true. How about this one:

Integer i3 = 10;
Integer i4 = 10;
if(i3 == i4) System.out.println("same object");
if(i3.equals(i4)) System.out.println("meaningfully equal");

This example produces the output:

same object
meaningfully equal

Yikes! The equals() method seems to be working, but what happened with ==
and != ? Why is != telling us that i1 and i2 are different objects, when == is saying
that i3 and i4 are the same object? In order to save memory, two instances of the
following wrapper objects (created through boxing), will always be == when their
primitive values are the same:

■ Boolean

■ Byte

■ Character from \u0000 to \u007f (7f is 127 in decimal)

■ Short and Integer from -128 to 127

Note: When == is used to compare a primitive to a wrapper, the wrapper will be
unwrapped and the comparison will be primitive to primitive.

Where Boxing Can Be Used
As we discussed earlier, it's very common to use wrappers in conjunction with
collections. Any time you want your collection to hold objects and primitives, you'll
want to use wrappers to make those primitives collection-compatible. The general
rule is that boxing and unboxing work wherever you can normally use a primitive or
a wrapped object. The following code demonstrates some legal ways to use boxing:

class UseBoxing {
 public static void main(String [] args) {
 UseBoxing u = new UseBoxing();
 u.go(5);
 }
 boolean go(Integer i) { // boxes the int it was passed
 Boolean ifSo = true; // boxes the literal
 Short s = 300; // boxes the primitive

 if(ifSo) { // unboxing
 System.out.println(++s); // unboxes, increments, reboxes
 }
 return !ifSo; // unboxes, returns the inverse
 }

}

CERTIFICATION OBJECTIVE

Overloading (Exam Objectives 1.5 and 5.4)
1.5 Given a code example, determine if a method is correctly overriding or overloading
another method, and identify legal return values (including covariant returns), for the
method.

5.4 Given a scenario, develop code that declares and/or invokes overridden or
overloaded methods...

Overloading (Exam Objectives 1.5 and 5.4) 247

Remember, wrapper reference variables can be null. That means that you
have to watch out for code that appears to be doing safe primitive operations, but that
could throw a NullPointerException:

class Boxing2 {
 static Integer x;
 public static void main(String [] args) {
 doStuff(x);
 }
 static void doStuff(int z) {
 int z2 = 5;
 System.out.println(z2 + z);
} }

This code compiles fi ne, but the JVM throws a NullPointerException
when it attempts to invoke doStuff(x), because x doesn’t refer to an Integer object, so
there’s no value to unbox.

248 Chapter 3: Assignments

Overloading Made Hard—Method Matching
Although we covered some rules for overloading methods in Chapter 2, in this
chapter we've added some new tools to our Java toolkit. In this section we're going
to take a look at three factors that can make overloading a little tricky:

■ Widening

■ Autoboxing

■ Var-args

When a class has overloaded methods, one of the compiler's jobs is to determine
which method to use whenever it finds an invocation for the overloaded method.
Let's look at an example that doesn't use any new Java 5 features:

class EasyOver {
 static void go(int x) { System.out.print("int "); }
 static void go(long x) { System.out.print("long "); }
 static void go(double x) { System.out.print("double "); }

 public static void main(String [] args) {
 byte b = 5;
 short s = 5;
 long l = 5;
 float f = 5.0f;

 go(b);
 go(s);
 go(l);
 go(f);
 }
}

Which produces the output:

int int long double

This probably isn't much of a surprise; the calls that use byte and the short
arguments are implicitly widened to match the version of the go() method that
takes an int. Of course, the call with the long uses the long version of go(), and
finally, the call that uses a float is matched to the method that takes a double.

In every case, when an exact match isn't found, the JVM uses the method with the
smallest argument that is wider than the parameter.

You can verify for yourself that if there is only one version of the go() method,
and it takes a double, it will be used to match all four invocations of go().

Overloading with Boxing and Var-args
Now let's take our last example, and add boxing into the mix:

class AddBoxing {
 static void go(Integer x) { System.out.println("Integer"); }
 static void go(long x) { System.out.println("long"); }

 public static void main(String [] args) {
 int i = 5;
 go(i); // which go() will be invoked?
 }
}

As we've seen earlier, if the only version of the go() method was one that took
an Integer, then Java 5's boxing capability would allow the invocation of go() to
succeed. Likewise, if only the long version existed, the compiler would use it to
handle the go() invocation. The question is, given that both methods exist, which
one will be used? In other words, does the compiler think that widening a primitive
parameter is more desirable than performing an autoboxing operation? The answer is
that the compiler will choose widening over boxing, so the output will be

long

Java 5's designers decided that the most important rule should be that preexisting
code should function the way it used to, so since widening capability already existed,
a method that is invoked via widening shouldn't lose out to a newly created method
that relies on boxing. Based on that rule, try to predict the output of the following:

class AddVarargs {
 static void go(int x, int y) { System.out.println("int,int");}
 static void go(byte... x) { System.out.println("byte... "); }
 public static void main(String[] args) {
 byte b = 5;
 go(b,b); // which go() will be invoked?
 }
}

Overloading (Exam Objectives 1.5 and 5.4) 249

250 Chapter 3: Assignments

As you probably guessed, the output is

int,int

Because, once again, even though each invocation will require some sort of
conversion, the compiler will choose the older style before it chooses the newer
style, keeping existing code more robust. So far we've seen that

■ Widening beats boxing

■ Widening beats var-args

At this point, inquiring minds want to know, does boxing beat var-args?

class BoxOrVararg {
 static void go(Byte x, Byte y)
 { System.out.println("Byte, Byte"); }
 static void go(byte... x) { System.out.println("byte... "); }

 public static void main(String [] args) {
 byte b = 5;
 go(b,b); // which go() will be invoked?
 }
}

As it turns out, the output is

Byte, Byte

A good way to remember this rule is to notice that the var-args method is "looser"
than the other method, in that it could handle invocations with any number of
byte parameters. A var-args method is more like a catch-all method, in terms of
what invocations it can handle, and as we'll see in Chapter 5, it makes most sense
for catch-all capabilities to be used as a last resort.

Widening Reference Variables
We've seen that it's legal to widen a primitive. Can you widen a reference variable,
and if so, what would it mean? Let's think back to our favorite polymorphic
assignment:

Animal a = new Dog();

Along the same lines, an invocation might be:

class Animal {static void eat() { } }

class Dog3 extends Animal {
 public static void main(String[] args) {
 Dog3 d = new Dog3();
 d.go(d); // is this legal ?
 }
 void go(Animal a) { }
}

No problem! The go() method needs an Animal, and Dog3 IS-A Animal.
(Remember, the go() method thinks it's getting an Animal object, so it will only
ask it to do Animal things, which of course anything that inherits from Animal can
do.) So, in this case, the compiler widens the Dog3 reference to an Animal, and
the invocation succeeds. The key point here is that reference widening depends on
inheritance, in other words the IS-A test. Because of this, it's not legal to widen
from one wrapper class to another, because the wrapper classes are peers to one
another. For instance, it's NOT valid to say that Short IS-A Integer.

Overloading (Exam Objectives 1.5 and 5.4) 251

It’s tempting to think that you might be able to widen an Integer
wrapper to a Long wrapper, but the following will NOT compile:

class Dog4 {
 public static void main(String [] args) {
 Dog4 d = new Dog4();
 d.test(new Integer(5)); // can't widen an Integer
 // to a Long
 }
 void test(Long x) { }
}

Remember, none of the wrapper classes will widen from one to another!
Bytes won’t widen to Shorts, Shorts won’t widen to Longs, etc.

252 Chapter 3: Assignments

Overloading When Combining Widening and Boxing
We've looked at the rules that apply when the compiler can match an invocation to
a method by performing a single conversion. Now let's take a look at what happens
when more than one conversion is required. In this case the compiler will have to
widen and then autobox the parameter for a match to be made:

class WidenAndBox {
 static void go(Long x) { System.out.println("Long"); }

 public static void main(String [] args) {
 byte b = 5;
 go(b); // must widen then box - illegal
 }
}

This is just too much for the compiler:

WidenAndBox.java:6: go(java.lang.Long) in WidenAndBox cannot be
applied to (byte)

Strangely enough, it IS possible for the compiler to perform a boxing operation
followed by a widening operation in order to match an invocation to a method. This
one might blow your mind:

class BoxAndWiden {
 static void go(Object o) {
 Byte b2 = (Byte) o; // ok - it's a Byte object
 System.out.println(b2);
 }

 public static void main(String [] args) {
 byte b = 5;
 go(b); // can this byte turn into an Object ?
 }
}

This compiles (!), and produces the output:

5

Wow! Here's what happened under the covers when the compiler, then the JVM,
got to the line that invokes the go() method:

 1. The byte b was boxed to a Byte.

 2. The Byte reference was widened to an Object (since Byte extends Object).

 3. The go() method got an Object reference that actually refers to a Byte
object.

 4. The go() method cast the Object reference back to a Byte reference (re
member, there was never an object of type Object in this scenario, only an
object of type Byte!).

 5. The go() method printed the Byte's value.

Why didn't the compiler try to use the box-then-widen logic when it tried to deal
with the WidenAndBox class? Think about it…if it tried to box first, the byte would
have been converted to a Byte. Now we're back to trying to widen a Byte to a Long,
and of course, the IS-A test fails.

Overloading in Combination with Var-args
What happens when we attempt to combine var-args with either widening or boxing
in a method-matching scenario? Let's take a look:

class Vararg {
 static void wide_vararg(long... x)
 { System.out.println("long..."); }
 static void box_vararg(Integer... x)
 { System.out.println("Integer..."); }
 public static void main(String [] args) {
 int i = 5;
 wide_vararg(i,i); // needs to widen and use var-args
 box_vararg(i,i); // needs to box and use var-args
 }
}

This compiles and produces:

long...

Integer...

Overloading (Exam Objectives 1.5 and 5.4) 253

254 Chapter 3: Assignments

As we can see, you can successfully combine var-args with either widening or
boxing. Here's a review of the rules for overloading methods using widening, boxing,
and var-args:

■ Primitive widening uses the "smallest" method argument possible.

■ Used individually, boxing and var-args are compatible with overloading.

■ You CANNOT widen from one wrapper type to another. (IS-A fails.)

■ You CANNOT widen and then box. (An int can't become a Long.)

■ You can box and then widen. (An int can become an Object, via Integer.)

■ You can combine var-args with either widening or boxing.

There are more tricky aspects to overloading, but other than a few rules
concerning generics (which we'll cover in Chapter 7), this is all you'll need to know
for the exam. Phew!

CERTIFICATION OBJECTIVE

Garbage Collection (Exam Objective 7.4)
7.4 Given a code example, recognize the point at which an object becomes eligible for
garbage collection, and determine what is and is not guaranteed by the garbage collection
system, and recognize the behaviors of the Object finalize() method.

Overview of Memory Management and Garbage Collection
This is the section you've been waiting for! It's finally time to dig into the wonderful
world of memory management and garbage collection.

Memory management is a crucial element in many types of applications.
Consider a program that reads in large amounts of data, say from somewhere else
on a network, and then writes that data into a database on a hard drive. A typical
design would be to read the data into some sort of collection in memory, perform
some operations on the data, and then write the data into the database. After the
data is written into the database, the collection that stored the data temporarily
must be emptied of old data or deleted and recreated before processing the next

batch. This operation might be performed thousands of times, and in languages
like C or C++ that do not offer automatic garbage collection, a small flaw in the
logic that manually empties or deletes the collection data structures can allow small
amounts of memory to be improperly reclaimed or lost. Forever. These small losses
are called memory leaks, and over many thousands of iterations they can make
enough memory inaccessible that programs will eventually crash. Creating code
that performs manual memory management cleanly and thoroughly is a nontrivial
and complex task, and while estimates vary, it is arguable that manual memory
management can double the development effort for a complex program.

Java's garbage collector provides an automatic solution to memory management.
In most cases it frees you from having to add any memory management logic to
your application. The downside to automatic garbage collection is that you can't
completely control when it runs and when it doesn't.

Overview of Java's Garbage Collector
Let's look at what we mean when we talk about garbage collection in the land of
Java. From the 30,000 ft. level, garbage collection is the phrase used to describe
automatic memory management in Java. Whenever a software program executes (in
Java, C, C++, Lisp, Ruby, and so on), it uses memory in several different ways. We're
not going to get into Computer Science 101 here, but it's typical for memory to be
used to create a stack, a heap, in Java's case constant pools, and method areas. The
heap is that part of memory where Java objects live, and it's the one and only part of
memory that is in any way involved in the garbage collection process.

A heap is a heap is a heap. For the exam it's important to know that you can call it the
heap, you can call it the garbage collectible heap, or you can call it Johnson, but there is
one and only one heap.

So, all of garbage collection revolves around making sure that the heap has as
much free space as possible. For the purpose of the exam, what this boils down to
is deleting any objects that are no longer reachable by the Java program running.
We'll talk more about what reachable means, but let's drill this point in. When
the garbage collector runs, its purpose is to find and delete objects that cannot be
reached. If you think of a Java program as being in a constant cycle of creating the
objects it needs (which occupy space on the heap), and then discarding them when
they're no longer needed, creating new objects, discarding them, and so on, the
missing piece of the puzzle is the garbage collector. When it runs, it looks for those

Overview of Java’s Garbage Collector (Exam Objective 7.4) 255

256 Chapter 3: Assignments

discarded objects and deletes them from memory so that the cycle of using memory
and releasing it can continue. Ah, the great circle of life.

When Does the Garbage Collector Run?
The garbage collector is under the control of the JVM. The JVM decides when to
run the garbage collector. From within your Java program you can ask the JVM to
run the garbage collector, but there are no guarantees, under any circumstances, that
the JVM will comply. Left to its own devices, the JVM will typically run the garbage
collector when it senses that memory is running low. Experience indicates that when
your Java program makes a request for garbage collection, the JVM will usually grant
your request in short order, but there are no guarantees. Just when you think you can
count on it, the JVM will decide to ignore your request.

How Does the Garbage Collector Work?
You just can't be sure. You might hear that the garbage collector uses a mark and
sweep algorithm, and for any given Java implementation that might be true, but the
Java specification doesn't guarantee any particular implementation. You might hear
that the garbage collector uses reference counting; once again maybe yes maybe no.
The important concept to understand for the exam is when does an object become
eligible for garbage collection? To answer this question fully, we have to jump ahead
a little bit and talk about threads. (See Chapter 9 for the real scoop on threads.) In a
nutshell, every Java program has from one to many threads. Each thread has its own
little execution stack. Normally, you (the programmer) cause at least one thread to
run in a Java program, the one with the main() method at the bottom of the stack.
However, as you'll learn in excruciating detail in Chapter 9, there are many really
cool reasons to launch additional threads from your initial thread. In addition to
having its own little execution stack, each thread has its own lifecycle. For now,
all we need to know is that threads can be alive or dead. With this background
information, we can now say with stunning clarity and resolve that an object is eligible
for garbage collection when no live thread can access it. (Note: Due to the vagaries of
the String constant pool, the exam focuses its garbage collection questions on non-
String objects, and so our garbage collection discussions apply to only non-String
objects too.)

Based on that definition, the garbage collector does some magical, unknown
operations, and when it discovers an object that can't be reached by any live thread,
it will consider that object as eligible for deletion, and it might even delete it at
some point. (You guessed it; it also might not ever delete it.) When we talk about
reaching an object, we're really talking about having a reachable reference variable

that refers to the object in question. If our Java program has a reference variable
that refers to an object, and that reference variable is available to a live thread, then
that object is considered reachable. We'll talk more about how objects can become
unreachable in the following section.

Can a Java application run out of memory? Yes. The garbage collection system
attempts to remove objects from memory when they are not used. However, if
you maintain too many live objects (objects referenced from other live objects),
the system can run out of memory. Garbage collection cannot ensure that there
is enough memory, only that the memory that is available will be managed as
efficiently as possible.

Writing Code That Explicitly Makes Objects Eligible for Collection
In the preceding section, we learned the theories behind Java garbage collection.
In this section, we show how to make objects eligible for garbage collection using
actual code. We also discuss how to attempt to force garbage collection if it is
necessary, and how you can perform additional cleanup on objects before they are
removed from memory.

Nulling a Reference
As we discussed earlier, an object becomes eligible for garbage collection when
there are no more reachable references to it. Obviously, if there are no reachable
references, it doesn't matter what happens to the object. For our purposes it is just
floating in space, unused, inaccessible, and no longer needed.

The first way to remove a reference to an object is to set the reference variable
that refers to the object to null. Examine the following code:

1. public class GarbageTruck {
2. public static void main(String [] args) {
3. StringBuffer sb = new StringBuffer("hello");
4. System.out.println(sb);
5. // The StringBuffer object is not eligible for collection
6. sb = null;
7. // Now the StringBuffer object is eligible for collection
8. }
9. }

The StringBuffer object with the value hello is assigned to the reference
variable sb in the third line. To make the object eligible (for GC), we set the
reference variable sb to null, which removes the single reference that existed to the

Writing Code That Explicitly Makes Objects Eligible for Collection (Exam Objective 7.4) 257

258 Chapter 3: Assignments

StringBuffer object. Once line 6 has run, our happy little hello StringBuffer object
is doomed, eligible for garbage collection.

Reassigning a Reference Variable
We can also decouple a reference variable from an object by setting the reference
variable to refer to another object. Examine the following code:

class GarbageTruck {
 public static void main(String [] args) {
 StringBuffer s1 = new StringBuffer("hello");
 StringBuffer s2 = new StringBuffer("goodbye");
 System.out.println(s1);
 // At this point the StringBuffer "hello" is not eligible
 s1 = s2; // Redirects s1 to refer to the "goodbye" object
 // Now the StringBuffer "hello" is eligible for collection
 }
}

Objects that are created in a method also need to be considered. When a method
is invoked, any local variables created exist only for the duration of the method.
Once the method has returned, the objects created in the method are eligible for
garbage collection. There is an obvious exception, however. If an object is returned
from the method, its reference might be assigned to a reference variable in the
method that called it; hence, it will not be eligible for collection. Examine the
following code:

import java.util.Date;
public class GarbageFactory {
 public static void main(String [] args) {
 Date d = getDate();
 doComplicatedStuff();
 System.out.println("d = " + d);
 }

 public static Date getDate() {
 Date d2 = new Date();
 StringBuffer now = new StringBuffer(d2.toString());
 System.out.println(now);
 return d2;
 }
}

In the preceding example, we created a method called getDate() that returns a
Date object. This method creates two objects: a Date and a StringBuffer containing
the date information. Since the method returns the Date object, it will not be
eligible for collection even after the method has completed. The StringBuffer object,
though, will be eligible, even though we didn't explicitly set the now variable to null.

Isolating a Reference
There is another way in which objects can become eligible for garbage collection,
even if they still have valid references! We call this scenario "islands of isolation."

A simple example is a class that has an instance variable that is a reference
variable to another instance of the same class. Now imagine that two such instances
exist and that they refer to each other. If all other references to these two objects
are removed, then even though each object still has a valid reference, there will be
no way for any live thread to access either object. When the garbage collector runs,
it can usually discover any such islands of objects and remove them. As you can
imagine, such islands can become quite large, theoretically containing hundreds of
objects. Examine the following code:

public class Island {
 Island i;
 public static void main(String [] args) {

 Island i2 = new Island();
 Island i3 = new Island();
 Island i4 = new Island();

 i2.i = i3; // i2 refers to i3
 i3.i = i4; // i3 refers to i4
 i4.i = i2; // i4 refers to i2

 i2 = null;
 i3 = null;
 i4 = null;

 // do complicated, memory intensive stuff
 }
}

When the code reaches // do complicated, the three Island objects
(previously known as i2, i3, and i4) have instance variables so that they refer to

Writing Code That Explicitly Makes Objects Eligible for Collection (Exam Objective 7.4) 259

260 Chapter 3: Assignments

each other, but their links to the outside world (i2, i3, and i4) have been nulled.
These three objects are eligible for garbage collection.

This covers everything you will need to know about making objects eligible for
garbage collection. Study Figure 3-7 to reinforce the concepts of objects without
references and islands of isolation.

Forcing Garbage Collection
The first thing that should be mentioned here is that, contrary to this section's
title, garbage collection cannot be forced. However, Java provides some methods
that allow you to request that the JVM perform garbage collection.

Note: As of the Java 6 exam, the topic of using System.gc() has been removed
from the exam. The garbage collector has evolved to such an advanced state that
it’s recommended that you never invoke System.gc() in your code - leave it to the
JVM. We are leaving this section in the book in case you’re studying for a version
of the exam prior to SCJP 6.

 FIGURE 3-7 "Island" objects eligible for garbage collection

i2

i3
i3.n

Three island Objects

i2.n

i4.n

The heap

Indicated an
active reference

x

Indicates a
deleted reference

Lost Object

i4

public class Island (

Island i2 = new Island();
Island i3 = new Island();
Island i4 = new Island();
i2.n = i3;
i3.n = i4;

i2 = null;
i3 = null;
i4 = null;
doComplexStuff();

public class Lost
public static void main(String
Lost x = new Lost ();
x = null;
doComplexStuff();

args)

i4.n = i2;

public static void main(String [] args) {

{

[{]

}

}

}

}

Island n;

In reality, it is possible only to suggest to the JVM that it perform garbage
collection. However, there are no guarantees the JVM will actually remove all of the
unused objects from memory (even if garbage collection is run). It is essential that
you understand this concept for the exam.

The garbage collection routines that Java provides are members of the Runtime
class. The Runtime class is a special class that has a single object (a Singleton) for
each main program. The Runtime object provides a mechanism for communicating
directly with the virtual machine. To get the Runtime instance, you can use the
method Runtime.getRuntime(), which returns the Singleton. Once you have
the Singleton you can invoke the garbage collector using the gc() method.
Alternatively, you can call the same method on the System class, which has static
methods that can do the work of obtaining the Singleton for you. The simplest way
to ask for garbage collection (remember—just a request) is

System.gc();

Theoretically, after calling System.gc(), you will have as much free memory as
possible. We say theoretically because this routine does not always work that way.
First, your JVM may not have implemented this routine; the language specification
allows this routine to do nothing at all. Second, another thread (again, see the
Chapter 9) might grab lots of memory right after you run the garbage collector.

This is not to say that System.gc() is a useless method—it's much better than
nothing. You just can't rely on System.gc() to free up enough memory so that
you don't have to worry about running out of memory. The Certification Exam is
interested in guaranteed behavior, not probable behavior.

Now that we are somewhat familiar with how this works, let's do a little
experiment to see if we can see the effects of garbage collection. The following
program lets us know how much total memory the JVM has available to it and how
much free memory it has. It then creates 10,000 Date objects. After this, it tells us
how much memory is left and then calls the garbage collector (which, if it decides
to run, should halt the program until all unused objects are removed). The final free
memory result should indicate whether it has run. Let's look at the program:

 1. import java.util.Date;
 2. public class CheckGC {
 3. public static void main(String [] args) {
 4. Runtime rt = Runtime.getRuntime();
 5. System.out.println("Total JVM memory: "
 + rt.totalMemory());

Writing Code That Explicitly Makes Objects Eligible for Collection (Exam Objective 7.4) 261

262 Chapter 3: Assignments

 6. System.out.println("Before Memory = "
 + rt.freeMemory());
 7. Date d = null;
 8. for(int i = 0;i<10000;i++) {
 9. d = new Date();
10. d = null;
11. }
12. System.out.println("After Memory = "
 + rt.freeMemory());
13. rt.gc(); // an alternate to System.gc()
14. System.out.println("After GC Memory = "
 + rt.freeMemory());
15. }
16. }

Now, let's run the program and check the results:

Total JVM memory: 1048568
Before Memory = 703008
After Memory = 458048
After GC Memory = 818272

As we can see, the JVM actually did decide to garbage collect (i.e., delete) the
eligible objects. In the preceding example, we suggested to the JVM to perform
garbage collection with 458,048 bytes of memory remaining, and it honored our
request. This program has only one user thread running, so there was nothing else
going on when we called rt.gc(). Keep in mind that the behavior when gc() is
called may be different for different JVMs, so there is no guarantee that the unused
objects will be removed from memory. About the only thing you can guarantee is
that if you are running very low on memory, the garbage collector will run before it
throws an OutOfMemoryException.

EXERCISE 3-2

Garbage Collection Experiment
Try changing the CheckGC program by putting lines 13 and 14 inside a loop.
You might see that not all memory is released on any given run of the GC.

Cleaning Up Before Garbage Collection—the finalize() Method
Java provides you a mechanism to run some code just before your object is deleted
by the garbage collector. This code is located in a method named finalize() that
all classes inherit from class Object. On the surface this sounds like a great idea;
maybe your object opened up some resources, and you'd like to close them before
your object is deleted. The problem is that, as you may have gathered by now, you
can't count on the garbage collector to ever delete an object. So, any code that you
put into your class's overridden finalize() method is not guaranteed to run. The
finalize() method for any given object might run, but you can't count on it, so
don't put any essential code into your finalize() method. In fact, we recommend
that in general you don't override finalize() at all.

Tricky Little finalize() Gotcha's
There are a couple of concepts concerning finalize() that you need to remember.

■ For any given object, finalize() will be called only once (at most) by the
garbage collector.

■ Calling finalize() can actually result in saving an object from deletion.

Let's look into these statements a little further. First of all, remember that any
code that you can put into a normal method you can put into finalize(). For
example, in the finalize() method you could write code that passes a reference
to the object in question back to another object, effectively uneligiblizing the object
for garbage collection. If at some point later on this same object becomes eligible for
garbage collection again, the garbage collector can still process this object and delete
it. The garbage collector, however, will remember that, for this object, finalize()
already ran, and it will not run finalize() again.

CERTIFICATION SUMMARY
This was a monster chapter! Don't worry if you find that you have to review some of
these topics as you get into later chapters. This chapter has a lot of foundation stuff
that will come into play later.

We started the chapter by reviewing the stack and the heap; remember local
variables live on the stack, and instance variables live with their objects on the heap.

Certifi cation Summary 263

264 Chapter 3: Assignments

We reviewed legal literals for primitives and Strings, then we discussed the
basics of assigning values to primitives and reference variables, and the rules for
casting primitives.

Next we discussed the concept of scope, or "How long will this variable live?"
Remember the four basic scopes, in order of lessening life span: static, instance,
local, block.

We covered the implications of using uninitialized variables, and the importance
of the fact that local variables MUST be assigned a value explicitly. We talked
about some of the tricky aspects of assigning one reference variable to another, and
some of the finer points of passing variables into methods, including a discussion of
"shadowing."

The next topic was creating arrays, where we talked about declaring,
constructing, and initializing one-, and multi-dimensional arrays. We talked about
anonymous arrays, and arrays of references.

Next we reviewed static and instance initialization blocks, what they look like,
and when they are called.

Phew!
We continued the chapter with a discussion of the wrapper classes; used to

create immutable objects that hold a primitive, and also used to provide conversion
capabilities for primitives: remember valueOf(), xxxValue(), and parseXxx().

Closely related to wrappers, we talked about a big new feature in Java 5,
autoboxing. Boxing is a way to automate the use of wrappers, and we covered some
of its trickier aspects such as how wrappers work with == and the equals() method.

Having added boxing to our toolbox, it was time to take a closer look at
method overloading and how boxing and var-args, in conjunction with widening
conversions, make overloading more complicated.

Finally, we dove into garbage collection, Java's automatic memory management
feature. We learned that the heap is where objects live and where all the cool
garbage collection activity takes place. We learned that in the end, the JVM will
perform garbage collection whenever it wants to. You (the programmer) can request
a garbage collection run, but you can't force it. We talked about garbage collection
only applying to objects that are eligible, and that eligible means "inaccessible from
any live thread." Finally, we discussed the rarely useful finalize() method, and what
you'll have to know about it for the exam. All in all, one fascinating chapter.

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Stack and Heap

❑ Local variables (method variables) live on the stack.

❑ Objects and their instance variables live on the heap.

Literals and Primitive Casting (Objective 1.3)
❑ Integer literals can be decimal, octal (e.g. 013), or hexadecimal (e.g. 0x3d).

❑ Literals for longs end in L or l.

❑ Float literals end in F or f, double literals end in a digit or D or d.

❑ The boolean literals are true and false.

❑ Literals for chars are a single character inside single quotes: 'd'.

Scope (Objectives 1.3 and 7.6)
❑ Scope refers to the lifetime of a variable.

❑ There are four basic scopes:

 ❑ Static variables live basically as long as their class lives.

 ❑ Instance variables live as long as their object lives.

 ❑ Local variables live as long as their method is on the stack; however, if
 their method invokes another method, they are temporarily unavailable.

 ❑ Block variables (e.g., in a for or an if) live until the block completes.

Basic Assignments (Objectives 1.3 and 7.6)
❑ Literal integers are implicitly ints.

❑ Integer expressions always result in an int-sized result, never smaller.

❑ Floating-point numbers are implicitly doubles (64 bits).

❑ Narrowing a primitive truncates the high order bits.

❑ Compound assignments (e.g. +=), perform an automatic cast.

❑ A reference variable holds the bits that are used to refer to an object.

❑ Reference variables can refer to subclasses of the declared type but not to
superclasses.

Two-Minute Drill 265

✓

266 Chapter 3: Assignments

❑ When creating a new object, e.g., Button b = new Button();, three
things happen:

 ❑ Make a reference variable named b, of type Button

 ❑ Create a new Button object

 ❑ Assign the Button object to the reference variable b

Using a Variable or Array Element That Is Uninitialized and
Unassigned (Objectives 1.3 and 7.6)

❑ When an array of objects is instantiated, objects within the array are not
instantiated automatically, but all the references get the default value of null.

❑ When an array of primitives is instantiated, elements get default values.

❑ Instance variables are always initialized with a default value.

❑ Local/automatic/method variables are never given a default value. If you
attempt to use one before initializing it, you'll get a compiler error.

Passing Variables into Methods (Objective 7.3)

❑ Methods can take primitives and/or object references as arguments.

❑ Method arguments are always copies.

❑ Method arguments are never actual objects (they can be references to objects).

❑ A primitive argument is an unattached copy of the original primitive.

❑ A reference argument is another copy of a reference to the original object.

❑ Shadowing occurs when two variables with different scopes share the same
name. This leads to hard-to-find bugs, and hard-to-answer exam questions.

Array Declaration, Construction, and Initialization (Obj. 1.3)

❑ Arrays can hold primitives or objects, but the array itself is always an object.

❑ When you declare an array, the brackets can be left or right of the name.

❑ It is never legal to include the size of an array in the declaration.

❑ You must include the size of an array when you construct it (using new)
unless you are creating an anonymous array.

❑ Elements in an array of objects are not automatically created, although
primitive array elements are given default values.

❑ You'll get a NullPointerException if you try to use an array element in an
object array, if that element does not refer to a real object.

❑ Arrays are indexed beginning with zero.

❑ An ArrayIndexOutOfBoundsException occurs if you use a bad index value.

❑ Arrays have a length variable whose value is the number of array elements.

❑ The last index you can access is always one less than the length of the array.

❑ Multidimensional arrays are just arrays of arrays.

❑ The dimensions in a multidimensional array can have different lengths.

❑ An array of primitives can accept any value that can be promoted implicitly
to the array's declared type;. e.g., a byte variable can go in an int array.

❑ An array of objects can hold any object that passes the IS-A (or instanceof)
test for the declared type of the array. For example, if Horse extends Animal,
then a Horse object can go into an Animal array.

❑ If you assign an array to a previously declared array reference, the array you're
assigning must be the same dimension as the reference you're assigning it to.

❑ You can assign an array of one type to a previously declared array reference of
one of its supertypes. For example, a Honda array can be assigned to an array
declared as type Car (assuming Honda extends Car).

Initialization Blocks (Objectives 1.3 and 7.6)

❑ Static initialization blocks run once, when the class is first loaded.

❑ Instance initialization blocks run every time a new instance is created. They
run after all super-constructors and before the constructor's code has run.

❑ If multiple init blocks exist in a class, they follow the rules stated above,
AND they run in the order in which they appear in the source file.

Using Wrappers (Objective 3.1)

❑ The wrapper classes correlate to the primitive types.

❑ Wrappers have two main functions:

 ❑ To wrap primitives so that they can be handled like objects

 ❑ To provide utility methods for primitives (usually conversions)

❑ The three most important method families are

 ❑ xxxValue() Takes no arguments, returns a primitive

 ❑ parseXxx() Takes a String, returns a primitive, throws NFE

 ❑ valueOf() Takes a String, returns a wrapped object, throws NFE

Two-Minute Drill 267

268 Chapter 3: Assignments

❑ Wrapper constructors can take a String or a primitive, except for Character,
which can only take a char.

❑ Radix refers to bases (typically) other than 10; octal is radix = 8, hex = 16.

Boxing (Objective 3.1)

❑ As of Java 5, boxing allows you to convert primitives to wrappers or to
convert wrappers to primitives automatically.

❑ Using == with wrappers created through boxing is tricky; those with the same
small values (typically lower than 127), will be ==, larger values will not be ==.

Advanced Overloading (Objectives 1.5 and 5.4)

❑ Primitive widening uses the "smallest" method argument possible.

❑ Used individually, boxing and var-args are compatible with overloading.

❑ You CANNOT widen from one wrapper type to another. (IS-A fails.)

❑ You CANNOT widen and then box. (An int can't become a Long.)

❑ You can box and then widen. (An int can become an Object, via an Integer.)

❑ You can combine var-args with either widening or boxing.

Garbage Collection (Objective 7.4)

❑ In Java, garbage collection (GC) provides automated memory management.

❑ The purpose of GC is to delete objects that can't be reached.

❑ Only the JVM decides when to run the GC, you can only suggest it.

❑ You can't know the GC algorithm for sure.

❑ Objects must be considered eligible before they can be garbage collected.

❑ An object is eligible when no live thread can reach it.

❑ To reach an object, you must have a live, reachable reference to that object.

❑ Java applications can run out of memory.

❑ Islands of objects can be GCed, even though they refer to each other.

❑ Request garbage collection with System.gc(); (only before the SCJP 6).

❑ Class Object has a finalize() method.

❑ The finalize() method is guaranteed to run once and only once before the
garbage collector deletes an object.

❑ The garbage collector makes no guarantees, finalize() may never run.

❑ You can uneligibilize an object for GC from within finalize().

SELF TEST
 1. Given:

class CardBoard {
 Short story = 200;
 CardBoard go(CardBoard cb) {
 cb = null;
 return cb;
 }
 public static void main(String[] args) {
 CardBoard c1 = new CardBoard();
 CardBoard c2 = new CardBoard();
 CardBoard c3 = c1.go(c2);
 c1 = null;
 // do Stuff
} }

 When // doStuff is reached, how many objects are eligible for GC?
 A. 0
 B. 1
 C. 2
 D. Compilation fails
 E. It is not possible to know
 F. An exception is thrown at runtime

 2. Given:
class Alien {
 String invade(short ships) { return "a few"; }
 String invade(short... ships) { return "many"; }
}
class Defender {
 public static void main(String [] args) {
 System.out.println(new Alien().invade(7));
 }
}

 What is the result?
 A. many
 B. a few

 C. Compilation fails
 D. The output is not predictable
 E. An exception is thrown at runtime

Self Test 269

 3. Given:
 1. class Dims {
 2. public static void main(String[] args) {
 3. int[][] a = {{1,2,}, {3,4}};
 4. int[] b = (int[]) a[1];
 5. Object o1 = a;
 6. int[][] a2 = (int[][]) o1;
 7. int[] b2 = (int[]) o1;
 8. System.out.println(b[1]);
 9. } }

 What is the result?

 A. 2

 B. 4

 C. An exception is thrown at runtime

 D. Compilation fails due to an error on line 4

 E. Compilation fails due to an error on line 5

 F. Compilation fails due to an error on line 6

 G. Compilation fails due to an error on line 7

 4. Given:
class Mixer {
 Mixer() { }
 Mixer(Mixer m) { m1 = m; }
 Mixer m1;
 public static void main(String[] args) {
 Mixer m2 = new Mixer();
 Mixer m3 = new Mixer(m2); m3.go();
 Mixer m4 = m3.m1; m4.go();
 Mixer m5 = m2.m1; m5.go();
 }
 void go() { System.out.print("hi "); }

}

 What is the result?
 A. hi
 B. hi hi
 C. hi hi hi

270 Chapter 3: Assignments

 D. Compilation fails
 E. hi, followed by an exception
 F. hi hi, followed by an exception

 5. Given:
class Fizz {
 int x = 5;
 public static void main(String[] args) {
 final Fizz f1 = new Fizz();
 Fizz f2 = new Fizz();
 Fizz f3 = FizzSwitch(f1,f2);
 System.out.println((f1 == f3) + " " + (f1.x == f3.x));
 }
 static Fizz FizzSwitch(Fizz x, Fizz y) {
 final Fizz z = x;
 z.x = 6;
 return z;
} }

 What is the result?
 A. true true
 B. false true

 C. true false
 D. false false
 E. Compilation fails

 F. An exception is thrown at runtime

 6. Given:
class Bird {
 { System.out.print("b1 "); }
 public Bird() { System.out.print("b2 "); }
}
class Raptor extends Bird {
 static { System.out.print("r1 "); }
 public Raptor() { System.out.print("r2 "); }
 { System.out.print("r3 "); }
 static { System.out.print("r4 "); }
}
class Hawk extends Raptor {
 public static void main(String[] args) {
 System.out.print("pre ");
 new Hawk();
 System.out.println("hawk ");
 }
}

Self Test 271

272 Chapter 3: Assignments

 What is the result?

 A. pre b1 b2 r3 r2 hawk

 B. pre b2 b1 r2 r3 hawk

 C. pre b2 b1 r2 r3 hawk r1 r4

 D. r1 r4 pre b1 b2 r3 r2 hawk

 E. r1 r4 pre b2 b1 r2 r3 hawk

 F. pre r1 r4 b1 b2 r3 r2 hawk

 G. pre r1 r4 b2 b1 r2 r3 hawk

 H. The order of output cannot be predicted

 I. Compilation fails

 7. Given:
 3. public class Bridge {
 4. public enum Suits {
 5. CLUBS(20), DIAMONDS(20), HEARTS(30), SPADES(30),
 6. NOTRUMP(40) { public int getValue(int bid) {
 return ((bid-1)*30)+40; } };
 7. Suits(int points) { this.points = points; }
 8. private int points;
 9. public int getValue(int bid) { return points * bid; }
10. }
11. public static void main(String[] args) {
12. System.out.println(Suits.NOTRUMP.getValue(3));
13. System.out.println(Suits.SPADES + " " + Suits.SPADES.points);
14. System.out.println(Suits.values());
15. }
16. }

 Which are true? (Choose all that apply.)

 A. The output could contain 30

 B. The output could contain @bf73fa

 C. The output could contain DIAMONDS

 D. Compilation fails due to an error on line 6

 E. Compilation fails due to an error on line 7

 F. Compilation fails due to an error on line 8

 G. Compilation fails due to an error on line 9

 H. Compilation fails due to an error within lines 12 to 14

 8. Given:
 3. public class Ouch {
 4. static int ouch = 7;
 5. public static void main(String[] args) {
 6. new Ouch().go(ouch);
 7. System.out.print(" " + ouch);
 8. }
 9. void go(int ouch) {
10. ouch++;
11. for(int ouch = 3; ouch < 6; ouch++)
12. ;
13. System.out.print(" " + ouch);
14. }
15. }

 What is the result?

 A. 5 7

 B. 5 8

 C. 8 7

 D. 8 8

 E. Compilation fails

 F. An exception is thrown at runtime

 9. Given:
 3. public class Bertha {
 4. static String s = "";
 5. public static void main(String[] args) {
 6. int x = 4; Boolean y = true; short[] sa = {1,2,3};
 7. doStuff(x, y);
 8. doStuff(x);
 9. doStuff(sa, sa);
10. System.out.println(s);
11. }
12. static void doStuff(Object o) { s += "1"; }
13. static void doStuff(Object... o) { s += "2"; }
14. static void doStuff(Integer... i) { s += "3"; }
15. static void doStuff(Long L) { s += "4"; }
16. }

Self Test 273

274 Chapter 3: Assignments

 What is the result?

 A. 212

 B. 232

 C. 234

 D. 312

 E. 332

 F. 334

 G. Compilation fails

 10. Given:
 3. class Dozens {
 4. int[] dz = {1,2,3,4,5,6,7,8,9,10,11,12};
 5. }
 6. public class Eggs {
 7. public static void main(String[] args) {
 8. Dozens [] da = new Dozens[3];
 9. da[0] = new Dozens();
10. Dozens d = new Dozens();
11. da[1] = d;
12. d = null;
13. da[1] = null;
14. // do stuff
15. }
16. }

 Which two are true about the objects created within main(), and eligible for garbage collection
when line 14 is reached?

 A. Three objects were created

 B. Four objects were created

 C. Five objects were created

 D. Zero objects are eligible for GC

 E. One object is eligible for GC

 F. Two objects are eligible for GC

 G. Three objects are eligible for GC

 11. Given:
 3. class Beta { }
 4. class Alpha {
 5. static Beta b1;
 6. Beta b2;
 7. }
 8. public class Tester {
 9. public static void main(String[] args) {
10. Beta b1 = new Beta(); Beta b2 = new Beta();
11. Alpha a1 = new Alpha(); Alpha a2 = new Alpha();
12. a1.b1 = b1;
13. a1.b2 = b1;
14. a2.b2 = b2;
15. a1 = null; b1 = null; b2 = null;
16. // do stuff
17. }
18. }

 When line 16 is reached, how many objects will be eligible for garbage collection?

 A. 0

 B. 1

 C. 2

 D. 3

 E. 4

 F. 5

 12. Given:
 3. class Box {
 4. int size;
 5. Box(int s) { size = s; }
 6. }
 7. public class Laser {
 8. public static void main(String[] args) {
 9. Box b1 = new Box(5);
10. Box[] ba = go(b1, new Box(6));
11. ba[0] = b1;
12. for(Box b : ba) System.out.print(b.size + " ");
13. }
14. static Box[] go(Box b1, Box b2) {
15. b1.size = 4;
16. Box[] ma = {b2, b1};
17. return ma;
18. }
19. }

Self Test 275

276 Chapter 3: Assignments

 What is the result?

 A. 4 4

 B. 5 4

 C. 6 4

 D. 4 5

 E. 5 5

 F. Compilation fails

 13. Given:
 3. public class Dark {
 4. int x = 3;
 5. public static void main(String[] args) {
 6. new Dark().go1();
 7. }
 8. void go1() {
 9. int x;
10. go2(++x);
11. }
12. void go2(int y) {
13. int x = ++y;
14. System.out.println(x);
15. }
16. }

 What is the result?

 A. 2

 B. 3

 C. 4

 D. 5

 E. Compilation fails

 F. An exception is thrown at runtime

SELF TEST ANSWERS
 1. Given:

class CardBoard {
 Short story = 200;
 CardBoard go(CardBoard cb) {
 cb = null;
 return cb;
 }
 public static void main(String[] args) {
 CardBoard c1 = new CardBoard();
 CardBoard c2 = new CardBoard();
 CardBoard c3 = c1.go(c2);
 c1 = null;
 // do Stuff

} }

 When // doStuff is reached, how many objects are eligible for GC?
 A. 0
 B. 1
 C. 2
 D. Compilation fails
 E. It is not possible to know
 F. An exception is thrown at runtime

 Answer:

 ® ✓ C is correct. Only one CardBoard object (c1) is eligible, but it has an associated Short
wrapper object that is also eligible.

 ®̊ A, B, D, E, and F are incorrect based on the above. (Objective 7.4)

 2. Given:
class Alien {
 String invade(short ships) { return "a few"; }
 String invade(short... ships) { return "many"; }
}
class Defender {
 public static void main(String [] args) {
 System.out.println(new Alien().invade(7));
} }

Self Test Answers 277

 What is the result?
 A. many
 B. a few

 C. Compilation fails
 D. The output is not predictable
 E. An exception is thrown at runtime

 Answer:

 ® ✓ C is correct, compilation fails. The var-args declaration is fine, but invade takes a short,
so the argument 7 needs to be cast to a short. With the cast, the answer is B, 'a few'.

 ®̊ A, B, D, and E are incorrect based on the above. (Objective 1.3)

 3. Given:
 1. class Dims {
 2. public static void main(String[] args) {
 3. int[][] a = {{1,2,}, {3,4}};
 4. int[] b = (int[]) a[1];
 5. Object o1 = a;
 6. int[][] a2 = (int[][]) o1;
 7. int[] b2 = (int[]) o1;
 8. System.out.println(b[1]);
 9. } }

 What is the result?
 A. 2
 B. 4

 C. An exception is thrown at runtime
 D. Compilation fails due to an error on line 4
 E. Compilation fails due to an error on line 5
 F. Compilation fails due to an error on line 6
 G. Compilation fails due to an error on line 7

 Answer:

 ® ✓ C is correct. A ClassCastException is thrown at line 7 because o1 refers to an int[][]
not an int[]. If line 7 was removed, the output would be 4.

 ®̊ A, B, D, E, F, and G are incorrect based on the above. (Objective 1.3)

278 Chapter 3: Assignments

 4. Given:
class Mixer {
 Mixer() { }
 Mixer(Mixer m) { m1 = m; }
 Mixer m1;
 public static void main(String[] args) {
 Mixer m2 = new Mixer();
 Mixer m3 = new Mixer(m2); m3.go();
 Mixer m4 = m3.m1; m4.go();
 Mixer m5 = m2.m1; m5.go();
 }
 void go() { System.out.print("hi "); }
}

 What is the result?
 A. hi
 B. hi hi
 C. hi hi hi
 D. Compilation fails
 E. hi, followed by an exception
 F. hi hi, followed by an exception

 Answer:

 ® ✓ F is correct. The m2 object’s m1 instance variable is never initialized, so when m5 tries to
use it a NullPointerException is thrown.

 ®̊ A, B, C, D, and E are incorrect based on the above. (Objective 7.3)

 5. Given:
class Fizz {
 int x = 5;
 public static void main(String[] args) {
 final Fizz f1 = new Fizz();
 Fizz f2 = new Fizz();
 Fizz f3 = FizzSwitch(f1,f2);
 System.out.println((f1 == f3) + " " + (f1.x == f3.x));
 }
 static Fizz FizzSwitch(Fizz x, Fizz y) {
 final Fizz z = x;
 z.x = 6;
 return z;
} }

Self Test Answers 279

280 Chapter 3: Assignments

 What is the result?
 A. true true

 B. false true
 C. true false
 D. false false

 E. Compilation fails

 F. An exception is thrown at runtime

 Answer:

 ® ✓ A is correct. The references f1, z, and f3 all refer to the same instance of Fizz. The final
modifier assures that a reference variable cannot be referred to a different object, but final
doesn’t keep the object’s state from changing.

 ®̊ B, C, D, E, and F are incorrect based on the above. (Objective 7.3)

 6. Given:
class Bird {
 { System.out.print("b1 "); }
 public Bird() { System.out.print("b2 "); }
}
class Raptor extends Bird {
 static { System.out.print("r1 "); }
 public Raptor() { System.out.print("r2 "); }
 { System.out.print("r3 "); }
 static { System.out.print("r4 "); }
}
class Hawk extends Raptor {
 public static void main(String[] args) {
 System.out.print("pre ");
 new Hawk();
 System.out.println("hawk ");
 }
}

 What is the result?

 A. pre b1 b2 r3 r2 hawk

 B. pre b2 b1 r2 r3 hawk

 C. pre b2 b1 r2 r3 hawk r1 r4

 D. r1 r4 pre b1 b2 r3 r2 hawk

 E. r1 r4 pre b2 b1 r2 r3 hawk

 F. pre r1 r4 b1 b2 r3 r2 hawk

 G. pre r1 r4 b2 b1 r2 r3 hawk

 H. The order of output cannot be predicted

 I. Compilation fails

 Answer:

 ® ✓ D is correct. Static init blocks are executed at class loading time, instance init blocks run
right after the call to super() in a constructor. When multiple init blocks of a single type
occur in a class, they run in order, from the top down.

 ®̊ A, B, C, E, F, G, H, and I are incorrect based on the above. Note: you’ll probably never
see this many choices on the real exam! (Objective 1.3)

 7. Given:
 3. public class Bridge {
 4. public enum Suits {
 5. CLUBS(20), DIAMONDS(20), HEARTS(30), SPADES(30),
 6. NOTRUMP(40) { public int getValue(int bid) {
 return ((bid-1)*30)+40; } };
 7. Suits(int points) { this.points = points; }
 8. private int points;
 9. public int getValue(int bid) { return points * bid; }
10. }
11. public static void main(String[] args) {
12. System.out.println(Suits.NOTRUMP.getBidValue(3));
13. System.out.println(Suits.SPADES + " " + Suits.SPADES.points);
14. System.out.println(Suits.values());
15. }
16. }

 Which are true? (Choose all that apply.)

 A. The output could contain 30

 B. The output could contain @bf73fa

 C. The output could contain DIAMONDS

 D. Compilation fails due to an error on line 6

 E. Compilation fails due to an error on line 7

 F. Compilation fails due to an error on line 8

Self Test Answers 281

282 Chapter 3: Assignments

 G. Compilation fails due to an error on line 9

 H. Compilation fails due to an error within lines 12 to 14

 Answer:

 ® ✓ A and B are correct. The code compiles and runs without exception. The values()
method returns an array reference, not the contents of the enum, so DIAMONDS is never
printed.

 ®̊ C, D, E, F, G, and H are incorrect based on the above. (Objective 1.3)

 8. Given:
 3. public class Ouch {
 4. static int ouch = 7;
 5. public static void main(String[] args) {
 6. new Ouch().go(ouch);
 7. System.out.print(" " + ouch);
 8. }
 9. void go(int ouch) {
10. ouch++;
11. for(int ouch = 3; ouch < 6; ouch++)
12. ;
13. System.out.print(" " + ouch);
14. }
15. }

 What is the result?

 A. 5 7

 B. 5 8

 C. 8 7

 D. 8 8

 E. Compilation fails

 F. An exception is thrown at runtime

 Answer:

 ® ✓ E is correct. The parameter declared on line 9 is valid (although ugly), but the variable
name ouch cannot be declared again on line 11 in the same scope as the declaration on
line 9.

 ®̊ A, B, C, D, and F are incorrect based on the above. (Objective 1.3)

 9. Given:
 3. public class Bertha {
 4. static String s = "";
 5. public static void main(String[] args) {
 6. int x = 4; Boolean y = true; short[] sa = {1,2,3};
 7. doStuff(x, y);
 8. doStuff(x);
 9. doStuff(sa, sa);
10. System.out.println(s);
11. }
12. static void doStuff(Object o) { s += "1"; }
13. static void doStuff(Object... o) { s += "2"; }
14. static void doStuff(Integer... i) { s += "3"; }
15. static void doStuff(Long L) { s += "4"; }
16. }

 What is the result?

 A. 212

 B. 232

 C. 234

 D. 312

 E. 332

 F. 334

 G. Compilation fails

 Answer:

 ® ✓ A is correct. It's legal to autobox and then widen. The first call to doStuff() boxes
the int to an Integer then passes two objects. The second call cannot widen and then
box (making the Long method unusable), so it boxes the int to an Integer. As always, a
var-args method will be chosen only if no non-var-arg method is possible. The third call is
passing two objects—they are of type 'short array.'

 ®̊ B, C, D, E, F, and G are incorrect based on the above. (Objective 3.1)

 10. Given:
 3. class Dozens {
 4. int[] dz = {1,2,3,4,5,6,7,8,9,10,11,12};
 5. }
 6. public class Eggs {
 7. public static void main(String[] args) {

Self Test Answers 283

284 Chapter 3: Assignments

 8. Dozens [] da = new Dozens[3];
 9. da[0] = new Dozens();
10. Dozens d = new Dozens();
11. da[1] = d;
12. d = null;
13. da[1] = null;
14. // do stuff
15. }
16. }

 Which two are true about the objects created within main(), and eligible for garbage collection
when line 14 is reached?

 A. Three objects were created

 B. Four objects were created

 C. Five objects were created

 D. Zero objects are eligible for GC

 E. One object is eligible for GC

 F. Two objects are eligible for GC

 G. Three objects are eligible for GC

 Answer:

 ® ✓ C and F are correct. da refers to an object of type "Dozens array," and each Dozens object
that is created comes with its own "int array" object. When line 14 is reached, only the
second Dozens object (and its "int array" object) are not reachable.

 ®̊ A, B, D, E, and G are incorrect based on the above. (Objective 7.4)

 11. Given:
 3. class Beta { }
 4. class Alpha {
 5. static Beta b1;
 6. Beta b2;
 7. }
 8. public class Tester {
 9. public static void main(String[] args) {
10. Beta b1 = new Beta(); Beta b2 = new Beta();
11. Alpha a1 = new Alpha(); Alpha a2 = new Alpha();
12. a1.b1 = b1;
13. a1.b2 = b1;
14. a2.b2 = b2;
15. a1 = null; b1 = null; b2 = null;

16. // do stuff
17. }
18. }

 When line 16 is reached, how many objects will be eligible for garbage collection?

 A. 0

 B. 1

 C. 2

 D. 3

 E. 4

 F. 5

 Answer:

 ® ✓ B is correct. It should be clear that there is still a reference to the object referred to by
a2, and that there is still a reference to the object referred to by a2.b2. What might be
less clear is that you can still access the other Beta object through the static variable
a2.b1—because it's static.

 ®̊ A, C, D, E, and F are incorrect based on the above. (Objective 7.4)

 12. Given:
 3. class Box {
 4. int size;
 5. Box(int s) { size = s; }
 6. }
 7. public class Laser {
 8. public static void main(String[] args) {
 9. Box b1 = new Box(5);
10. Box[] ba = go(b1, new Box(6));
11. ba[0] = b1;
12. for(Box b : ba) System.out.print(b.size + " ");
13. }
14. static Box[] go(Box b1, Box b2) {
15. b1.size = 4;
16. Box[] ma = {b2, b1};
17. return ma;
18. }
19. }

 What is the result?

 A. 4 4

 B. 5 4

Self Test Answers 285

286 Chapter 3: Assignments

 C. 6 4

 D. 4 5

 E. 5 5

 F. Compilation fails

 Answer:

 ® ✓ A is correct. Although main()'s b1 is a different reference variable than go()'s b1, they
refer to the same Box object.

 ®̊ B, C, D, E, and F are incorrect based on the above. (Objective 7.3)

 13. Given:
 3. public class Dark {
 4. int x = 3;
 5. public static void main(String[] args) {
 6. new Dark().go1();
 7. }
 8. void go1() {
 9. int x;
10. go2(++x);
11. }
12. void go2(int y) {
13. int x = ++y;
14. System.out.println(x);
15. }
16. }

 What is the result?

 A. 2

 B. 3

 C. 4

 D. 5

 E. Compilation fails

 F. An exception is thrown at runtime

 Answer:

 ® ✓ E is correct. In go1() the local variable x is not initialized.

 ®̊ A, B, C, D, and F are incorrect based on the above. (Objective 1.3)

4
Operators

CERTIFICATION OBJECTIVES

 Using Operators

 ✓ Two-Minute Drill

Q&A Self Test

288 Chapter 4: Operators

If you've got variables, you're going to modify them. You'll increment them, add them together,
and compare one to another (in about a dozen different ways). In this chapter, you'll learn
how to do all that in Java. For an added bonus, you'll learn how to do things that you'll

probably never use in the real world, but that will almost certainly be on the exam.

CERTIFICATION OBJECTIVE

Java Operators (Exam Objective 7.6)
7.6 Write code that correctly applies the appropriate operators including assignment
operators (limited to: =, +=, -=), arithmetic operators (limited to: +, -, *, /, %, ++, --),
relational operators (limited to: <, <=, >, >=, ==, !=), the instanceof operator, logical
operators (limited to: &, |, ^, !, &&, ||), and the conditional operator (? :), to produce
a desired result. Write code that determines the equality of two objects or two primitives.

Java operators produce new values from one or more operands (just so we're all clear,
remember the operands are the things on the right or left side of the operator). The
result of most operations is either a boolean or numeric value. Because you know by
now that Java is not C++, you won't be surprised that Java operators aren't typically
overloaded. There are, however, a few exceptional operators that come overloaded:

■ The + operator can be used to add two numeric primitives together, or to
perform a concatenation operation if either operand is a String.

■ The &, |, and ^ operators can all be used in two different ways, although as
of this version of the exam, their bit-twiddling capabilities won't be tested.

Stay awake. Operators are often the section of the exam where candidates see
their lowest scores. Additionally, operators and assignments are a part of many
questions in other topics…it would be a shame to nail a really tricky threads
question, only to blow it on a pre-increment statement.

Assignment Operators
We covered most of the functionality of the assignment operator, "=", in Chapter 3.
To summarize:

■ When assigning a value to a primitive, size matters. Be sure you know when
implicit casting will occur, when explicit casting is necessary, and when trun-
cation might occur.

■ Remember that a reference variable isn't an object; it's a way to get to an
object. (We know all you C++ programmers are just dying for us to say "it's a
pointer", but we're not going to.)

■ When assigning a value to a reference variable, type matters. Remember the
rules for supertypes, subtypes, and arrays.

Next we'll cover a few more details about the assignment operators that are on
the exam, and when we get to Chapter 7, we'll take a look at how the assignment
operator "=" works with Strings (which are immutable).

Compound Assignment Operators
There are actually 11 or so compound assignment operators, but only the four
most commonly used (+=, -=, *=, and /=), are on the exam (despite what the
objectives say). The compound assignment operators let lazy typists shave a few
keystrokes off their workload. Here are several example assignments, first without
using a compound operator,

Assignment Operators (Exam Objective 7.6) 289

Don’t spend time preparing for topics that are no longer on the exam!
In a nutshell, the Java 5 exam differs from the 1.4 exam by moving away from bits, and
towards the API. Many 1.4 topics related to operators have been removed from the exam,
so in this chapter you WON’T see

■ bit shifting operators

■ bitwise operators

■ two’s complement

■ divide by zero stuff

It’s not that these aren’t important topics, it’s just that they’re not on the
exam anymore, and we’re really focused on the exam.

y = y - 6;
x = x + 2 * 5;

Now, with compound operators:

y -= 6;
x += 2 * 5;

The last two assignments give the same result as the first two.

Earlier versions of the exam put big emphasis on operator precedence
(like: What’s the result of: x = y++ + ++x/z;). Other than a very basic knowledge
of precedence (such as: * and / are higher precedence than + and -), you won’t need to
study operator precedence, except that when using a compound operator, the expression
on the right side of the = will always be evaluated fi rst. For example, you might expect

 x *= 2 + 5;

to be evaluated like this:

x = (x * 2) + 5; // incorrect precedence

 since multiplication has higher precedence than addition. But instead, the
expression on the right is always placed inside parentheses. it is evaluated like this:

 x = x * (2 + 5);

Relational Operators
The exam covers six relational operators (<, <=, >, >=, ==, and !=). Relational
operators always result in a boolean (true or false) value. This boolean value is
most often used in an if test, as follows,

int x = 8;
if (x < 9) {
 // do something
}

290 Chapter 4: Operators

but the resulting value can also be assigned directly to a boolean primitive:

class CompareTest {
 public static void main(String [] args) {
 boolean b = 100 > 99;
 System.out.println("The value of b is " + b);
 }
}

Java has four relational operators that can be used to compare any combination of
integers, floating-point numbers, or characters:

■ > greater than

■ >= greater than or equal to

■ < less than

■ <= less than or equal to

Let's look at some legal comparisons:

class GuessAnimal {
 public static void main(String[] args) {
 String animal = "unknown";
 int weight = 700;
 char sex = 'm';
 double colorWaveLength = 1.630;
 if (weight >= 500) { animal = "elephant"; }
 if (colorWaveLength > 1.621) { animal = "gray " + animal; }
 if (sex <= 'f') { animal = "female " + animal; }
 System.out.println("The animal is a " + animal);
 }
}

In the preceding code, we are using a comparison between characters. It's also
legal to compare a character primitive with any number (though it isn't great
programming style). Running the preceding class will output the following:

The animal is a gray elephant

We mentioned that characters can be used in comparison operators. When
comparing a character with a character, or a character with a number, Java will use
the Unicode value of the character as the numerical value, for comparison.

Relational Operators (Exam Objective 7.6) 291

"Equality" Operators
Java also has two relational operators (sometimes called "equality operators") that
compare two similar "things" and return a boolean the represents what's true about
the two "things" being equal. These operators are

■ == equals (also known as "equal to")

■ != not equals (also known as "not equal to")

Each individual comparison can involve two numbers (including char), two
boolean values, or two object reference variables. You can't compare incompatible
types, however. What would it mean to ask if a boolean is equal to a char? Or if a
Button is equal to a String array? (Exactly, nonsense, which is why you can't do
it.) There are four different types of things that can be tested:

■ numbers

■ characters

■ boolean primitives

■ Object reference variables

So what does == look at? The value in the variable—in other words, the bit pattern.

Equality for Primitives
Most programmers are familiar with comparing primitive values. The following code
shows some equality tests on primitive variables:

class ComparePrimitives {
 public static void main(String[] args) {
 System.out.println("char 'a' == 'a'? " + ('a' == 'a'));
 System.out.println("char 'a' == 'b'? " + ('a' == 'b'));
 System.out.println("5 != 6? " + (5 != 6));
 System.out.println("5.0 == 5L? " + (5.0 == 5L));
 System.out.println("true == false? " + (true == false));
 }
}

This program produces the following output:

char 'a' == 'a'? true
char 'a' == 'b'? false
5 != 6? true
5.0 == 5L? true
true == false? false

292 Chapter 4: Operators

As we can see, usually if a floating-point number is compared with an integer and
the values are the same, the == operator returns true as expected.

Equality for Reference Variables
As we saw earlier, two reference variables can refer to the same object, as the
following code snippet demonstrates:

JButton a = new JButton("Exit");
JButton b = a;

After running this code, both variable a and variable b will refer to the same object
(a JButton with the label Exit). Reference variables can be tested to see if they
refer to the same object by using the == operator. Remember, the == operator is
looking at the bits in the variable, so for reference variables this means that if the

Relational Operators (Exam Objective 7.6) 293

Don't mistake = for == in a boolean expression. The following is legal:

11. boolean b = false;
12. if (b = true) { System.out.println("b is true");
13. } else { System.out.println("b is false"); }

Look carefully! You might be tempted to think the output is b is false
but look at the boolean test in line 12. The boolean variable b is not being compared to
true, it's being set to true, so the println executes and we get b is true . The result
of any assignment expression is the value of the variable following the assignment. This
substitution of = for == works only with boolean variables, since the if test can be done
only on boolean expressions. Thus, this does not compile:

7. int x = 1;
8. if (x = 0) { }

Because x is an integer (and not a boolean), the result of (x = 0) is 0
(the result of the assignment). Primitive ints cannot be used where a boolean value is
expected, so the code in line 8 won't work unless changed from an assignment (=) to an
equality test (==) as follows:

8. if (x == 0) { }

bits in both reference variables are identical, then both refer to the same object.
Look at the following code:

import javax.swing.JButton;
class CompareReference {
 public static void main(String[] args) {
 JButton a = new JButton("Exit");
 JButton b = new JButton("Exit");
 JButton c = a;
 System.out.println("Is reference a == b? " + (a == b));
 System.out.println("Is reference a == c? " + (a == c));
 }
}

This code creates three reference variables. The first two, a and b, are separate
JButton objects that happen to have the same label. The third reference variable, c,
is initialized to refer to the same object that a refers to. When this program runs, the
following output is produced:

Is reference a == b? false
Is reference a == c? true

This shows us that a and c reference the same instance of a JButton. The ==
operator will not test whether two objects are "meaningfully equivalent," a concept
we'll cover in much more detail in Chapter 7, when we look at the equals() method
(as opposed to the equals operator we're looking at here).

Equality for Enums
Once you've declared an enum, it's not expandable. At runtime, there's no way to
make additional enum constants. Of course, you can have as many variables as you'd
like refer to a given enum constant, so it's important to be able to compare two
enum reference variables to see if they're "equal", i.e. do they refer to the same enum
constant. You can use either the == operator or the equals() method to determine
if two variables are referring to the same enum constant:

class EnumEqual {
 enum Color {RED, BLUE} // ; is optional
 public static void main(String[] args) {
 Color c1 = Color.RED; Color c2 = Color.RED;
 if(c1 == c2) { System.out.println("=="); }
 if(c1.equals(c2)) { System.out.println("dot equals"); }
} }

294 Chapter 4: Operators

(We know } } is ugly, we're prepping you). This produces the output:

==
dot equals

instanceof Comparison
The instanceof operator is used for object reference variables only, and you can
use it to check whether an object is of a particular type. By type, we mean class or
interface type—in other words, if the object referred to by the variable on the left
side of the operator passes the IS-A test for the class or interface type on the right
side (Chapter 2 covered IS-A relationships in detail). The following simple example

public static void main(String[] args) {
 String s = new String("foo");
 if (s instanceof String) {
 System.out.print("s is a String");
 }
}

prints this: s is a String

Even if the object being tested is not an actual instantiation of the class type on
the right side of the operator, instanceof will still return true if the object being
compared is assignment compatible with the type on the right.

The following example demonstrates a common use for instanceof: testing an
object to see if it's an instance of one of its subtypes, before attempting a "downcast":

class A { }
class B extends A {
 public static void main (String [] args) {
 A myA = new B();
 m2(myA);
 }
 public static void m2(A a) {
 if (a instanceof B)
 ((B)a).doBstuff(); // downcasting an A reference
 // to a B reference
 }
 public static void doBstuff() {
 System.out.println("'a' refers to a B");
 }
}

instanceof Comparison (Exam Objective 7.6) 295

The preceding code compiles and produces the output:

'a' refers to a B

In examples like this, the use of the instanceof operator protects the program from
attempting an illegal downcast.

You can test an object reference against its own class type, or any of its
superclasses. This means that any object reference will evaluate to true if you use
the instanceof operator against type Object, as follows,

B b = new B();
if (b instanceof Object) {
 System.out.print("b is definitely an Object");
}

which prints this: b is definitely an Object

Look for instanceof questions that test whether an object is an instance
of an interface, when the object's class implements the interface indirectly. An indirect
implementation occurs when one of an object's superclasses implements an interface,
but the actual class of the instance does not—for example,

interface Foo { }
class A implements Foo { }
class B extends A { }
...
A a = new A();
B b = new B();

the following are true:

a instanceof Foo
b instanceof A
b instanceof Foo // implemented indirectly

An object is said to be of a particular interface type (meaning it will pass
the instanceof test) if any of the object's superclasses implement the interface.

296 Chapter 4: Operators

In addition, it is legal to test whether the null reference is an instance of a class.
This will always result in false, of course. For example:

class InstanceTest {
 public static void main(String [] args) {
 String a = null;
 boolean b = null instanceof String;
 boolean c = a instanceof String;
 System.out.println(b + " " + c);
 }
}

prints this: false false

instanceof Compiler Error
You can't use the instanceof operator to test across two different class hierarchies.
For instance, the following will NOT compile:

class Cat { }
class Dog {
 public static void main(String [] args) {
 Dog d = new Dog();
 System.out.println(d instanceof Cat);
 }
}

Compilation fails—there's no way d could ever refer to a Cat or a subtype of Cat.

instanceof Comparison (Exam Objective 7.6) 297

Remember that arrays are objects, even if the array is an array of
primitives. Watch for questions that look something like this:

int [] nums = new int[3];
if (nums instanceof Object) { } // result is true

An array is always an instance of Object. Any array.

Table 4-1 summarizes the use of the instanceof operator given the following:

interface Face { }
class Bar implements Face{ }
class Foo extends Bar { }

Arithmetic Operators
We're sure you're familiar with the basic arithmetic operators.

■ + addition

■ – subtraction

■ * multiplication

■ / division

These can be used in the standard way:

int x = 5 * 3;
int y = x - 4;
System.out.println("x - 4 is " + y); // Prints 11

First Operand
(Reference Being Tested)

instanceof Operand
(Type We’re Comparing
the Reference Against) Result

null Any class or interface type false

Foo instance Foo, Bar, Face, Object true

Bar instance Bar, Face, Object true

Bar instance Foo false

Foo [] Foo, Bar, Face false

Foo [] Object true

Foo [1] Foo, Bar, Face, Object true

 TABLE 4-1 Operands and Results Using instanceof Operator.

298 Chapter 4: Operators

The Remainder (%) Operator
One operator you might not be as familiar with is the remainder operator, %. The
remainder operator divides the left operand by the right operand, and the result is
the remainder, as the following code demonstrates:

class MathTest {
 public static void main (String [] args) {
 int x = 15;
 int y = x % 4;
 System.out.println("The result of 15 % 4 is the "
 + "remainder of 15 divided by 4. The remainder is " + y);
 }
}

Running class MathTest prints the following:

The result of 15 % 4 is the remainder of 15 divided by 4. The
remainder is 3

(Remember: Expressions are evaluated from left to right by default. You can change
this sequence, or precedence, by adding parentheses. Also remember that the * , / ,
and % operators have a higher precedence than the + and - operators.)

String Concatenation Operator
The plus sign can also be used to concatenate two strings together, as we saw earlier
(and as we'll definitely see again):

String animal = "Grey " + "elephant";

String concatenation gets interesting when you combine numbers with Strings.
Check out the following:

String a = "String";
int b = 3;
int c = 7;
System.out.println(a + b + c);

Will the + operator act as a plus sign when adding the int variables b + c? Or will
the + operator treat 3 and 7 as characters, and concatenate them individually? Will
the result be String10 or String37? OK, you've had long enough to think about it.
The int values were simply treated as characters and glued on to the right side of
the String, giving the result:

Arithmetic Operators (Exam Objective 7.6) 299

String37

So we could read the previous code as

 "Start with String a, String, and add the character 3 (the value of b) to it,
 to produce a new string String3, and then add the character 7 (the value of c)
 to that, to produce a new string String37, then print it out."

However, if you put parentheses around the two int variables, as follows,

System.out.println(a + (b + c));

you'll get this: String10

Using parentheses causes the (b + c) to evaluate first, so the rightmost + operator
functions as the addition operator, given that both operands are int values. The key
point here is that within the parentheses, the left-hand operand is not a String. If it
were, then the + operator would perform String concatenation. The previous code
can be read as

 "Add the values of b + c together, then take the sum and convert it to a String
 and concatenate it with the String from variable a."

The rule to remember is this:

 If either operand is a String, the + operator becomes a String concatenation
 operator. If both operands are numbers, the + operator is the addition operator.

You'll find that sometimes you might have trouble deciding whether, say, the left-
hand operator is a String or not. On the exam, don't expect it to always be obvious.
(Actually, now that we think about it, don't expect it ever to be obvious.) Look at
the following code:

System.out.println(x.foo() + 7);

You can't know how the + operator is being used until you find out what the foo()
method returns! If foo() returns a String, then 7 is concatenated to the returned

300 Chapter 4: Operators

String. But if foo() returns a number, then the + operator is used to add 7 to the
return value of foo().

Finally, you need to know that it's legal to mush together the compound additive
operator (+=) and Strings, like so:

String s = "123";
s += "45";
s += 67;
System.out.println(s);

Since both times the += operator was used and the left operand was a String,
both operations were concatenations, resulting in

1234567

If you don't understand how String concatenation works, especially
within a print statement, you could actually fail the exam even if you know the rest of
the answer to the questions! Because so many questions ask, "What is the result?", you
need to know not only the result of the code running, but also how that result is printed.
Although there will be at least a few questions directly testing your String knowledge,
String concatenation shows up in other questions on virtually every objective.
Experiment! For example, you might see a line such as

int b = 2;
System.out.println("" + b + 3);

which prints 23

but if the print statement changes to

System.out.println(b + 3);

then the result becomes 5

Arithmetic Operators (Exam Objective 7.6) 301

Increment and Decrement Operators
Java has two operators that will increment or decrement a variable by exactly one.
These operators are composed of either two plus signs (++) or two minus signs (--):

■ ++ increment (prefix and postfix)

■ -- decrement (prefix and postfix)

The operator is placed either before (prefix) or after (postfix) a variable to change
its value. Whether the operator comes before or after the operand can change the
outcome of an expression. Examine the following:

1. class MathTest {
2. static int players = 0;
3. public static void main (String [] args) {
4. System.out.println("players online: " + players++);
5. System.out.println("The value of players is "
 + players);
6. System.out.println("The value of players is now "
 + ++players);
7. }
8. }

Notice that in the fourth line of the program the increment operator is after the
variable players. That means we're using the postfix increment operator, which
causes players to be incremented by one but only after the value of players is used
in the expression. When we run this program, it outputs the following:

%java MathTest
players online: 0
The value of players is 1
The value of players is now 2

Notice that when the variable is written to the screen, at first it says the value is
0. Because we used the postfix increment operator, the increment doesn't happen
until after the players variable is used in the print statement. Get it? The "post"
in postfix means after. Line 5 doesn't increment players; it just outputs its value to
the screen, so the newly incremented value displayed is 1. Line 6 applies the prefix
increment operator to players, which means the increment happens before the
value of the variable is used, so the output is 2.

Expect to see questions mixing the increment and decrement operators with
other operators, as in the following example:

302 Chapter 4: Operators

int x = 2; int y = 3;
if ((y == x++) | (x < ++y)) {
 System.out.println("x = " + x + " y = " + y);
 }

The preceding code prints: x = 3 y = 4

You can read the code as follows: "If 3 is equal to 2 OR 3 < 4"

The first expression compares x and y, and the result is false, because the
increment on x doesn't happen until after the == test is made. Next, we increment
x, so now x is 3. Then we check to see if x is less than y, but we increment y before
comparing it with x! So the second logical test is (3 < 4). The result is true, so the
print statement runs.

As with String concatenation, the increment and decrement operators are used
throughout the exam, even on questions that aren't trying to test your knowledge
of how those operators work. You might see them in questions on for loops,
exceptions, even threads. Be ready.

Arithmetic Operators (Exam Objective 7.6) 303

Look out for questions that use the increment or decrement operators on
a fi nal variable. Because fi nal variables can't be changed, the increment and decrement
operators can't be used with them, and any attempt to do so will result in a compiler
error. The following code won't compile:

final int x = 5;
int y = x++;

and produces the error:

Test.java:4: cannot assign a value to final variable x
int y = x++;
 ^

You can expect a violation like this to be buried deep in a complex piece
of code. If you spot it, you know the code won't compile and you can move on without
working through the rest of the code.

This question might seem to be testing you on some complex arithmetic
operator trivia, when in fact it’s testing you on your knowledge of the fi nal modifi er.

Conditional Operator
The conditional operator is a ternary operator (it has three operands) and is used
to evaluate boolean expressions, much like an if statement except instead of
executing a block of code if the test is true, a conditional operator will assign a
value to a variable. In other words, the goal of the conditional operator is to decide
which of two values to assign to a variable. This operator is constructed using a ?
(question mark) and a : (colon). The parentheses are optional. Its structure is:

x = (boolean expression) ? value to assign if true : value to assign if false

Let's take a look at a conditional operator in code:

class Salary {
 public static void main(String [] args) {
 int numOfPets = 3;
 String status = (numOfPets<4) ? "Pet limit not exceeded"
 : "too many pets";
 System.out.println("This pet status is " + status);
 }
}

You can read the preceding code as

 Set numOfPets equal to 3. Next we're going to assign a String to the status
 variable. If numOfPets is less than 4, assign "Pet limit not exceeded" to the
 status variable; otherwise, assign "too many pets" to the status variable.

A conditional operator starts with a boolean operation, followed by two possible
values for the variable to the left of the assignment (=) operator. The first value (the
one to the left of the colon) is assigned if the conditional (boolean) test is true,
and the second value is assigned if the conditional test is false. You can even nest
conditional operators into one statement:

class AssignmentOps {
 public static void main(String [] args) {
 int sizeOfYard = 10;
 int numOfPets = 3;
 String status = (numOfPets<4)?"Pet count OK"
 :(sizeOfYard > 8)? "Pet limit on the edge"
 :"too many pets";
 System.out.println("Pet status is " + status);

304 Chapter 4: Operators

 }
}

Don't expect many questions using conditional operators, but remember that
conditional operators are sometimes confused with assertion statements, so be
certain you can tell the difference. Chapter 5 covers assertions in detail.

Logical Operators
The exam objectives specify six "logical" operators (&, |, ^, !, &&, and ||). Some
Sun documentation uses other terminology for these operators, but for our purposes
the "logical operators" are the six listed above, and in the exam objectives.

Bitwise Operators (Not on the Exam!)
Okay, this is going to be confusing. Of the six logical operators listed above, three of
them (&, |, and ^) can also be used as "bitwise" operators. Bitwise operators were
included in previous versions of the exam, but they're not on the Java 5 exam. Here
are several legal statements that use bitwise operators:

byte b1 = 6 & 8;
byte b2 = 7 | 9;
byte b3 = 5 ^ 4;
System.out.println(b1 + " " + b2 + " " + b3);

Bitwise operators compare two variables bit by bit, and return a variable
whose bits have been set based on whether the two variables being compared had
respective bits that were either both "on" (&), one or the other "on" (|), or exactly
one "on" (^). By the way, when we run the preceding code, we get

0 15 1

Having said all this about bitwise operators, the key thing to remember is this:

BITWISE OPERATORS ARE NOT ON THE EXAM!

So why did we bring them up? If you get hold of an old exam preparation book, or if
you find some mock exams that haven't been properly updated, you're bound to find
questions that perform bitwise operations. Unless you're a glutton for punishment,
you can skip this kind of mock question.

Logical Operators (Exam Objective 7.6) 305

Short-Circuit Logical Operators
There are five logical operators on the exam that are used to evaluate statements
that contain more than one boolean expression. The most commonly used of the
five are the two short-circuit logical operators. They are

■ && short-circuit AND

■ || short-circuit OR

They are used to link little boolean expressions together to form bigger boolean
expressions. The && and || operators evaluate only boolean values. For an AND
(&&) expression to be true, both operands must be true—for example,

if ((2 < 3) && (3 < 4)) { }

The preceding expression evaluates to true because both operand one (2 < 3) and
operand two (3 < 4) evaluate to true.

The short-circuit feature of the && operator is so named because it doesn't waste
its time on pointless evaluations. A short-circuit && evaluates the left side of the
operation first (operand one), and if it resolves to false, the && operator doesn't
bother looking at the right side of the expression (operand two) since the &&
operator already knows that the complete expression can't possibly be true.

class Logical {
 public static void main(String [] args) {
 boolean b = true && false;
 System.out.println("boolean b = " + b);
 }
}

When we run the preceding code, we get

%java Logical
boolean b = false

The || operator is similar to the && operator, except that it evaluates to true if
EITHER of the operands is true. If the first operand in an OR operation is true, the
result will be true, so the short-circuit || doesn't waste time looking at the right
side of the equation. If the first operand is false, however, the short-circuit ||
has to evaluate the second operand to see if the result of the OR operation will be

306 Chapter 4: Operators

true or false. Pay close attention to the following example; you'll see quite a few
questions like this on the exam:

 1. class TestOR {
 2. public static void main(String[] args) {
 3. if ((isItSmall(3)) || (isItSmall(7))) {
 4. System.out.println("Result is true");
 5. }
 6. if ((isItSmall(6)) || (isItSmall(9))) {
 7. System.out.println("Result is true");
 8. }
 9. }
10.
11. public static boolean isItSmall(int i) {
12. if (i < 5) {
13. System.out.println("i < 5");
14. return true;
15. } else {
16. System.out.println("i >= 5");
17. return false;
18. }
19. }
20. }

What is the result?

% java TestOR
i < 5
Result is true
i >= 5
i >= 5

Here's what happened when the main() method ran:

1. When we hit line 3, the first operand in the || expression (in other words,
the left side of the || operation) is evaluated.

2. The isItSmall(3) method is invoked, prints "i < 5", and returns true.

3. Because the first operand in the || expression on line 3 is true, the ||
operator doesn't bother evaluating the second operand. So we never see the
"i >= 5" that would have printed had the second operand been evaluated
(which would have invoked isItSmall(7)).

Logical Operators (Exam Objective 7.6) 307

4. Line 6 is evaluated, beginning with the first operand in the || expression.

5. The isItSmall(6) method is called, prints "i >= 5", and returns false.

6. Because the first operand in the || expression on line 6 is false, the ||
operator can't skip the second operand; there's still a chance the expression
can be true, if the second operand evaluates to true.

7. The isItSmall(9) method is invoked and prints "i >= 5".

8. The isItSmall(9) method returns false, so the expression on line 6 is
false, and thus line 7 never executes.

Logical Operators (Not Short-Circuit)
There are two non-short-circuit logical operators.

■ & non-short-circuit AND

■ | non-short-circuit OR

These operators are used in logical expressions just like the && and || operators
are used, but because they aren't the short-circuit operators, they evaluate both sides
of the expression, always! They're inefficient. For example, even if the first operand
(left side) in an & expression is false, the second operand will still be evaluated—
even though it's now impossible for the result to be true! And the | is just as
inefficient: if the first operand is true, the Java Virtual Machine (JVM) still plows
ahead and evaluates the second operand even when it knows the expression will be
true regardless.

308 Chapter 4: Operators

The || and && operators work only with boolean operands. The exam
may try to fool you by using integers with these operators:

if (5 && 6) { }

It looks as though we're trying to do a bitwise AND on the bits
representing the integers 5 and 6, but the code won't even compile.

You'll find a lot of questions on the exam that use both the short-circuit and
non-short-circuit logical operators. You'll have to know exactly which operands are
evaluated and which are not, since the result will vary depending on whether the
second operand in the expression is evaluated:

int z = 5;
if(++z > 5 || ++z > 6) z++; // z = 7 after this code

versus:

int z = 5;
if(++z > 5 | ++z > 6) z++; // z = 8 after this code

Logical Operators ^ and !
The last two logical operators on the exam are

■ ^ exclusive-OR (XOR)

■ ! boolean invert

The ^ (exclusive-OR) operator evaluates only boolean values. The ^ operator
is related to the non-short-circuit operators we just reviewed, in that it always
evaluates both the left and right operands in an expression. For an exclusive-OR (^)
expression to be true, EXACTLY one operand must be true—for example,

System.out.println("xor " + ((2<3) ^ (4>3)));

produces the output: xor false

The preceding expression evaluates to false because BOTH operand one (2 < 3)
and operand two (4 > 3) evaluate to true.

The ! (boolean invert) operator returns the opposite of a boolean's current value:

 if(!(7 == 5)) { System.out.println("not equal"); }

can be read "if it's not true that 7 == 5," and the statement produces this output:

not equal

Here's another example using booleans:

Logical Operators (Exam Objective 7.6) 309

boolean t = true;
boolean f = false;
System.out.println("! " + (t & !f) + " " + f);

produces the output:

! true false

In the preceding example, notice that the & test succeeded (printing true), and
that the value of the boolean variable f did not change, so it printed false.

CERTIFICATION SUMMARY
If you've studied this chapter diligently, you should have a firm grasp on Java
operators, and you should understand what equality means when tested with the ==
operator. Let's review the highlights of what you've learned in this chapter.

The logical operators (&& , ||, &, |, and ^) can be used only to evaluate two
boolean expressions. The difference between && and & is that the && operator
won't bother testing the right operand if the left evaluates to false, because the
result of the && expression can never be true. The difference between || and | is
that the || operator won't bother testing the right operand if the left evaluates to
true, because the result is already known to be true at that point.

The == operator can be used to compare values of primitives, but it can also
be used to determine whether two reference variables refer to the same object.

The instanceof operator is used to determine if the object referred to by a
reference variable passes the IS-A test for a specified type.

The + operator is overloaded to perform String concatenation tasks, and can
also concatenate Strings and primitives, but be careful—concatenation can be
tricky.

The conditional operator (a.k.a. the "ternary operator") has an unusual, three-
operand syntax—don't mistake it for a complex assert statement.

The ++ and -- operators will be used throughout the exam, and you must pay
attention to whether they are prefixed or postfixed to the variable being updated.

Be prepared for a lot of exam questions involving the topics from this chapter.
Even within questions testing your knowledge of another objective, the code will
frequently use operators, assignments, object and primitive passing, and so on.

310 Chapter 4: Operators

TWO-MINUTE DRILL

Here are some of the key points from each section in this chapter.

Relational Operators (Objective 7.6)

❑ Relational operators always result in a boolean value (true or false).

❑ There are six relational operators: >, >=, <, <=, ==, and !=. The last two (==
and !=) are sometimes referred to as equality operators.

❑ When comparing characters, Java uses the Unicode value of the character as
the numerical value.

❑ Equality operators

 ❑ There are two equality operators: == and !=.

 ❑ Four types of things can be tested: numbers, characters, booleans, and
 reference variables.

❑ When comparing reference variables, == returns true only if both references
refer to the same object.

instanceof Operator (Objective 7.6)

❑ instanceof is for reference variables only, and checks for whether the object
is of a particular type.

❑ The instanceof operator can be used only to test objects (or null) against
class types that are in the same class hierarchy.

❑ For interfaces, an object passes the instanceof test if any of its superclasses
implement the interface on the right side of the instanceof operator.

Arithmetic Operators (Objective 7.6)

❑ There are four primary math operators: add, subtract, multiply, and divide.

❑ The remainder operator (%), returns the remainder of a division.

❑ Expressions are evaluated from left to right, unless you add parentheses, or
unless some operators in the expression have higher precedence than others.

❑ The *, /, and % operators have higher precedence than + and -.

Two-Minute Drill 311

✓

String Concatenation Operator (Objective 7.6)

❑ If either operand is a String, the + operator concatenates the operands.

❑ If both operands are numeric, the + operator adds the operands.

Increment/Decrement Operators (Objective 7.6)

❑ Prefix operators (++ and --) run before the value is used in the expression.

❑ Postfix operators (++ and --) run after the value is used in the expression.

❑ In any expression, both operands are fully evaluated before the operator
is applied.

❑ Variables marked final cannot be incremented or decremented.

Ternary (Conditional Operator) (Objective 7.6)

❑ Returns one of two values based on whether a boolean expression is true
or false.

 ❑ Returns the value after the ? if the expression is true.

 ❑ Returns the value after the : if the expression is false.

Logical Operators (Objective 7.6)

❑ The exam covers six "logical" operators: &, |, ^, !, &&, and ||.

❑ Logical operators work with two expressions (except for !) that must resolve
to boolean values.

❑ The && and & operators return true only if both operands are true.

❑ The || and | operators return true if either or both operands are true.

❑ The && and || operators are known as short-circuit operators.

❑ The && operator does not evaluate the right operand if the left operand
is false.

❑ The || does not evaluate the right operand if the left operand is true.

❑ The & and | operators always evaluate both operands.

❑ The ^ operator (called the "logical XOR"), returns true if exactly one oper-
and is true.

❑ The ! operator (called the "inversion" operator), returns the opposite value of
the boolean operand it precedes.

312 Chapter 4: Operators

Self Test 313

SELF TEST
 1. Given:

class Hexy {
 public static void main(String[] args) {
 Integer i = 42;
 String s = (i<40)?"life":(i>50)?"universe":"everything";
 System.out.println(s);
 }
}

 What is the result?
 A. null

 B. life

 C. universe

 D. everything

 E. Compilation fails
 F. An exception is thrown at runtime

 2. Given:

 1. class Comp2 {
 2. public static void main(String[] args) {
 3. float f1 = 2.3f;
 4. float[][] f2 = {{42.0f}, {1.7f, 2.3f}, {2.6f, 2.7f}};
 5. float[] f3 = {2.7f};
 6. Long x = 42L;
 7. // insert code here
 8. System.out.println("true");
 9. }
10. }

 And the following five code fragments:

F1. if(f1 == f2)
F2. if(f1 == f2[2][1])
F3. if(x == f2[0][0])
F4. if(f1 == f2[1,1])
F5. if(f3 == f2[2])

314 Chapter 4: Operators

 What is true?
 A. One of them will compile, only one will be true
 B. Two of them will compile, only one will be true
 C. Two of them will compile, two will be true
 D. Three of them will compile, only one will be true
 E. Three of them will compile, exactly two will be true
 F. Three of them will compile, exactly three will be true

 3. Given:

class Fork {
 public static void main(String[] args) {
 if(args.length == 1 | args[1].equals("test")) {
 System.out.println("test case");
 } else {
 System.out.println("production " + args[0]);
 }
 }
}

 And the command-line invocation:
java Fork live2

 What is the result?
 A. test case

 B. production live2

 C. test case live2

 D. Compilation fails
 E. An exception is thrown at runtime

 4. Given:

class Feline {
 public static void main(String[] args) {
 Long x = 42L;
 Long y = 44L;
 System.out.print(" " + 7 + 2 + " ");
 System.out.print(foo() + x + 5 + " ");
 System.out.println(x + y + foo());
 }
 static String foo() { return "foo"; }
}

 What is the result?

 A. 9 foo47 86foo

 B. 9 foo47 4244foo

 C. 9 foo425 86foo

 D. 9 foo425 4244foo

 E. 72 foo47 86foo

 F. 72 foo47 4244foo

 G. 72 foo425 86foo

 H. 72 foo425 4244foo

 I. Compilation fails

 5. Place the fragments into the code to produce the output 33. Note, you must use each fragment
exactly once.

 CODE:
class Incr {
 public static void main(String[] args) {
 Integer x = 7;
 int y = 2;

 x ___ ___;
 ___ ___ ___;
 ___ ___ ___;
 ___ ___ ___;

 System.out.println(x);
 }
}

 FRAGMENTS:

 y y y y

 y x x

 -= *= *= *=

Self Test 315

 6. Given:

 3. public class Twisty {
 4. { index = 1; }
 5. int index;
 6. public static void main(String[] args) {
 7. new Twisty().go();
 8. }
 9. void go() {
10. int [][] dd = {{9,8,7}, {6,5,4}, {3,2,1,0}};
11. System.out.println(dd[index++][index++]);
12. }
13. }

 What is the result? (Choose all that apply.)

 A. 1

 B. 2

 C. 4

 D. 6

 E. 8

 F. Compilation fails

 G. An exception is thrown at runtime

 7. Given:

 3. public class McGee {
 4. public static void main(String[] args) {
 5. Days d1 = Days.TH;
 6. Days d2 = Days.M;
 7. for(Days d: Days.values()) {
 8. if(d.equals(Days.F)) break;
 9. d2 = d;
10. }
11. System.out.println((d1 == d2)?"same old" : "newly new");
12. }
13. enum Days {M, T, W, TH, F, SA, SU};
14. }

 What is the result?

 A. same old

 B. newly new

316 Chapter 4: Operators

 C. Compilation fails due to multiple errors

 D. Compilation fails due only to an error on line 7

 E. Compilation fails due only to an error on line 8

 F. Compilation fails due only to an error on line 11

 G. Compilation fails due only to an error on line 13

 8. Given:

 4. public class SpecialOps {
 5. public static void main(String[] args) {
 6. String s = "";
 7. Boolean b1 = true;
 8. boolean b2 = false;
 9. if((b2 = false) | (21%5) > 2) s += "x";
10. if(b1 || (b2 == true)) s += "y";
11. if(b2 == true) s += "z";
12. System.out.println(s);
13. }
14. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. x will be included in the output

 C. y will be included in the output

 D. z will be included in the output

 E. An exception is thrown at runtime

 9. Given:

 3. public class Spock {
 4. public static void main(String[] args) {
 5. int mask = 0;
 6. int count = 0;
 7. if(((5<7) || (++count < 10)) | mask++ < 10) mask = mask + 1;
 8. if((6 > 8) ^ false) mask = mask + 10;
 9. if(!(mask > 1) && ++count > 1) mask = mask + 100;
10. System.out.println(mask + " " + count);
11. }
12. }

Self Test 317

 Which two are true about the value of mask and the value of count at line 10?
(Choose two.)

 A. mask is 0

 B. mask is 1

 C. mask is 2

 D. mask is 10

 E. mask is greater than 10

 F. count is 0

 G. count is greater than 0

 10. Given:

 3. interface Vessel { }
 4. interface Toy { }
 5. class Boat implements Vessel { }
 6. class Speedboat extends Boat implements Toy { }
 7. public class Tree {
 8. public static void main(String[] args) {
 9. String s = "0";
10. Boat b = new Boat();
11. Boat b2 = new Speedboat();
12. Speedboat s2 = new Speedboat();
13. if((b instanceof Vessel) && (b2 instanceof Toy)) s += "1";
14. if((s2 instanceof Vessel) && (s2 instanceof Toy)) s += "2";
15. System.out.println(s);
16. }
17. }

 What is the result?

 A. 0

 B. 01

 C. 02

 D. 012

 E. Compilation fails

 F. An exception is thrown at runtime

318 Chapter 4: Operators

SELF TEST ANSWERS
 1. Given:

class Hexy {
 public static void main(String[] args) {
 Integer i = 42;
 String s = (i<40)?"life":(i>50)?"universe":"everything";
 System.out.println(s);
 }
}

 What is the result?
 A. null

 B. life

 C. universe

 D. everything

 E. Compilation fails
 F. An exception is thrown at runtime

Answer:
 ✓ D is correct. This is a ternary nested in a ternary with a little unboxing thrown in.

Both of the ternary expressions are false.

 A, B, C, E, and F are incorrect based on the above.
(Objective 7.6)

 2. Given:

 1. class Comp2 {
 2. public static void main(String[] args) {
 3. float f1 = 2.3f;
 4. float[][] f2 = {{42.0f}, {1.7f, 2.3f}, {2.6f, 2.7f}};
 5. float[] f3 = {2.7f};
 6. Long x = 42L;
 7. // insert code here
 8. System.out.println("true");
 9. }
10. }

Self Test Answers 319

 And the following five code fragments:

F1. if(f1 == f2)
F2. if(f1 == f2[2][1])
F3. if(x == f2[0][0])
F4. if(f1 == f2[1,1])
F5. if(f3 == f2[2])

 What is true?
 A. One of them will compile, only one will be true
 B. Two of them will compile, only one will be true
 C. Two of them will compile, two will be true
 D. Three of them will compile, only one will be true
 E. Three of them will compile, exactly two will be true
 F. Three of them will compile, exactly three will be true

Answer:

 ✓ D is correct. Fragments F2, F3, and F5 will compile, and only F3 is true.
 A, B, C, E, and F are incorrect. F1 is incorrect because you can’t compare a primitive to

an array. F4 is incorrect syntax to access an element of a two-dimensional array.
(Objective 7.6)

 3. Given:

class Fork {
 public static void main(String[] args) {
 if(args.length == 1 | args[1].equals("test")) {
 System.out.println("test case");
 } else {
 System.out.println("production " + args[0]);
 }
 }
}

 And the command-line invocation:

java Fork live2

 What is the result?
 A. test case

 B. production live2

320 Chapter 4: Operators

 C. test case live2

 D. Compilation fails
 E. An exception is thrown at runtime

Answer:

 ✓ E is correct. Because the short circuit (||) is not used, both operands are evaluated. Since
args[1] is past the args array bounds, an ArrayIndexOutOfBoundsException is thrown.

 A, B, C, and D are incorrect based on the above. (Objective 7.6)

 4. Given:

class Feline {
 public static void main(String[] args) {
 Long x = 42L;
 Long y = 44L;
 System.out.print(" " + 7 + 2 + " ");
 System.out.print(foo() + x + 5 + " ");
 System.out.println(x + y + foo());
 }
 static String foo() { return "foo"; }
}

 What is the result?
 A. 9 foo47 86foo

 B. 9 foo47 4244foo

 C. 9 foo425 86foo

 D. 9 foo425 4244foo

 E. 72 foo47 86foo

 F. 72 foo47 4244foo

 G. 72 foo425 86foo

 H. 72 foo425 4244foo
 I. Compilation fails

Answer:

 ✓ G is correct. Concatenation runs from left to right, and if either operand is a String,
the operands are concatenated. If both operands are numbers they are added together.
Unboxing works in conjunction with concatenation.

 A, B, C, D, E, F, H, and I are incorrect based on the above. (Objective 7.6)

Self Test Answers 321

 5. Place the fragments into the code to produce the output 33. Note, you must use each fragment
exactly once.

 CODE:

class Incr {
 public static void main(String[] args) {
 Integer x = 7;
 int y = 2;

 x ___ ___;
 ___ ___ ___;
 ___ ___ ___;
 ___ ___ ___;

 System.out.println(x);
 }
}

 FRAGMENTS:

 y y y y

 y x x

 -= *= *= *=

Answer:

class Incr {
 public static void main(String[] args) {
 Integer x = 7;
 int y = 2;

 x *= x;
 y *= y;
 y *= y;
 x -= y;

 System.out.println(x);
 }
}

 Yeah, we know it’s kind of puzzle-y, but you might encounter something like it on the real exam.

 (Objective 7.6)

322 Chapter 4: Operators

 6. Given:

 3. public class Twisty {
 4. { index = 1; }
 5. int index;
 6. public static void main(String[] args) {
 7. new Twisty().go();
 8. }
 9. void go() {
10. int [][] dd = {{9,8,7}, {6,5,4}, {3,2,1,0}};
11. System.out.println(dd[index++][index++]);
12. }
13. }

 What is the result? (Choose all that apply.)

 A. 1

 B. 2

 C. 4

 D. 6

 E. 8

 F. Compilation fails

 G. An exception is thrown at runtime

Answer:

 ✓ C is correct. Multidimensional arrays' dimensions can be inconsistent, the code uses an
initialization block, and the increment operators are both post-increment operators.

 A, B, D, E, F, and G are incorrect based on the above. (Objective 1.3)

 7. Given:

 3. public class McGee {
 4. public static void main(String[] args) {
 5. Days d1 = Days.TH;
 6. Days d2 = Days.M;
 7. for(Days d: Days.values()) {
 8. if(d.equals(Days.F)) break;
 9. d2 = d;
10. }
11. System.out.println((d1 == d2)?"same old" : "newly new");

Self Test Answers 323

12. }
13. enum Days {M, T, W, TH, F, SA, SU};
14. }

 What is the result?

 A. same old

 B. newly new

 C. Compilation fails due to multiple errors

 D. Compilation fails due only to an error on line 7

 E. Compilation fails due only to an error on line 8

 F. Compilation fails due only to an error on line 11

 G. Compilation fails due only to an error on line 13

Answer:

 ✓ A is correct. All of this syntax is correct. The for-each iterates through the enum using
the values() method to return an array. Enums can be compared using either equals()
or ==. Enums can be used in a ternary operator's Boolean test.

 B, C, D, E, F, and G are incorrect based on the above. (Objective 7.6)

 8. Given:

 4. public class SpecialOps {
 5. public static void main(String[] args) {
 6. String s = "";
 7. Boolean b1 = true;
 8. Boolean b2 = false;
 9. if((b2 = false) | (21%5) > 2) s += "x";
10. if(b1 || (b2 = true)) s += "y";
11. if(b2 == true) s += "z";
12. System.out.println(s);
13. }
14. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. x will be included in the output

 C. y will be included in the output

324 Chapter 4: Operators

 D. z will be included in the output

 E. An exception is thrown at runtime

Answer:

 ✓ C is correct. First of all, boxing takes care of the Boolean. Line 9 uses the modulus operator,
which returns the remainder of the division, which in this case is 1. Also, line 9 sets b2 to
false, and it doesn't test b2's value. Line 10 sets b2 to true, and it doesn’t test its value;
however, the short circuit operator keeps the expression b2 = true from being executed.

 A, B, D, and E are incorrect based on the above. (Objective 7.6)

 9. Given:

 3. public class Spock {
 4. public static void main(String[] args) {
 5. int mask = 0;
 6. int count = 0;
 7. if(((5<7) || (++count < 10)) | mask++ < 10) mask = mask + 1;
 8. if((6 > 8) ^ false) mask = mask + 10;
 9. if(!(mask > 1) && ++count > 1) mask = mask + 100;
10. System.out.println(mask + " " + count);
11. }
12. }

 Which two answers are true about the value of mask and the value of count at line 10?
(Choose two.)

 A. mask is 0

 B. mask is 1

 C. mask is 2

 D. mask is 10

 E. mask is greater than 10

 F. count is 0

 G. count is greater than 0

Answer:

 ✓ C and F are correct. At line 7 the || keeps count from being incremented, but the
| allows mask to be incremented. At line 8 the ^ returns true only if exactly one operand
is true. At line 9 mask is 2 and the && keeps count from being incremented.

 A, B, D, E, and G are incorrect based on the above. (Objective 7.6)

Self Test Answers 325

 10. Given:

 3. interface Vessel { }
 4. interface Toy { }
 5. class Boat implements Vessel { }
 6. class Speedboat extends Boat implements Toy { }
 7. public class Tree {
 8. public static void main(String[] args) {
 9. String s = "0";
10. Boat b = new Boat();
11. Boat b2 = new Speedboat();
12. Speedboat s2 = new Speedboat();
13. if((b instanceof Vessel) && (b2 instanceof Toy)) s += "1";
14. if((s2 instanceof Vessel) && (s2 instanceof Toy)) s += "2";
15. System.out.println(s);
16. }
17. }

 What is the result?

 A. 0

 B. 01

 C. 02

 D. 012

 E. Compilation fails

 F. An exception is thrown at runtime

Answer:

 ✓ D is correct. First, remember that instanceof can look up through multiple levels of an
inheritance tree. Also remember that instanceof is commonly used before attempting
a downcast, so in this case, after line 15, it would be possible to say Speedboat s3 =
(Speedboat)b2;.

 A, B, C, E, and F are incorrect based on the above. (Objective 7.6)

326 Chapter 4: Operators

5
Flow Control,
Exceptions, and
Assertions

CERTIFICATION OBJECTIVES

 Use if and switch Statements

Develop for, do, and while Loops
 Use break and continue Statements

Develop Code with Assertions

Use try, catch, and finally Statements

 State the Effects of Exceptions

Recognize Common Exceptions

✓ Two-Minute Drill

 Q&A Self Test

328 Chapter 5: Flow Control, Exceptions, and Assertions

Can you imagine trying to write code using a language that didn't give you a way to
execute statements conditionally? Flow control is a key part of most any useful
programming language, and Java offers several ways to do it. Some, like if statements

and for loops, are common to most languages. But Java also throws in a couple of flow control
features you might not have used before—exceptions and assertions.

The if statement and the switch statement are types of conditional/decision
controls that allow your program to behave differently at a "fork in the road,"
depending on the result of a logical test. Java also provides three different looping
constructs—for, while, and do—so you can execute the same code over and
over again depending on some condition being true. Exceptions give you a clean,
simple way to organize code that deals with problems that might crop up at runtime.
Finally, the assertion mechanism, added to the language with version 1.4, gives you
a way to do testing and debugging checks on conditions you expect to smoke out
while developing, when you don't necessarily need or want the runtime overhead
associated with exception handling.

With these tools, you can build a robust program that can handle any logical
situation with grace. Expect to see a wide range of questions on the exam that
include flow control as part of the question code, even on questions that aren't
testing your knowledge of flow control.

CERTIFICATION OBJECTIVE

if and switch Statements (Exam Objective 2.1)
2.1 Develop code that implements an if or switch statement; and identify legal argument
types for these statements.

The if and switch statements are commonly referred to as decision statements.
When you use decision statements in your program, you're asking the program to
evaluate a given expression to determine which course of action to take. We'll look
at the if statement first.

if-else Branching (Exam Objective 2.1) 329

if-else Branching
The basic format of an if statement is as follows:

if (booleanExpression) {
 System.out.println("Inside if statement");
}

The expression in parentheses must evaluate to (a boolean) true or false.
Typically you're testing something to see if it's true, and then running a code block
(one or more statements) if it is true, and (optionally) another block of code if it
isn't. The following code demonstrates a legal if-else statement:

if (x > 3) {
 System.out.println("x is greater than 3");
} else {
 System.out.println("x is not greater than 3");
}

The else block is optional, so you can also use the following:

if (x > 3) {
 y = 2;
}
z += 8;
a = y + x;

The preceding code will assign 2 to y if the test succeeds (meaning x really is greater
than 3), but the other two lines will execute regardless. Even the curly braces
are optional if you have only one statement to execute within the body of the
conditional block. The following code example is legal (although not recommended
for readability):

if (x > 3) // bad practice, but seen on the exam
 y = 2;
z += 8;
a = y + x;

Sun considers it good practice to enclose blocks within curly braces, even if
there's only one statement in the block. Be careful with code like the above, because
you might think it should read as,

330 Chapter 5: Flow Control, Exceptions, and Assertions

"If x is greater than 3, then set y to 2, z to z + 8, and a to y + x."

But the last two lines are going to execute no matter what! They aren't part of the
conditional flow. You might find it even more misleading if the code were indented
as follows:

if (x > 3)
 y = 2;
 z += 8;
 a = y + x;

You might have a need to nest if-else statements (although, again, it's not
recommended for readability, so nested if tests should be kept to a minimum). You
can set up an if-else statement to test for multiple conditions. The following
example uses two conditions so that if the first test fails, we want to perform a
second test before deciding what to do:

if (price < 300) {
 buyProduct();
} else {
 if (price < 400) {
 getApproval();
 }
 else {
 dontBuyProduct();
 }
}

This brings up the other if-else construct, the if, else if, else. The preceding
code could (and should) be rewritten:

if (price < 300) {
 buyProduct();
} else if (price < 400) {
 getApproval();
} else {
 dontBuyProduct();
}

There are a couple of rules for using else and else if:

if-else Branching (Exam Objective 2.1) 331

■ You can have zero or one else for a given if, and it must come after any
else ifs.

■ You can have zero to many else ifs for a given if and they must come
before the (optional) else.

■ Once an else if succeeds, none of the remaining else ifs or elses will
be tested.

The following example shows code that is horribly formatted for the real world.
As you've probably guessed, it's fairly likely that you'll encounter formatting like this
on the exam. In any case, the code demonstrates the use of multiple else ifs:

int x = 1;
if (x == 3) { }
else if (x < 4) {System.out.println("<4"); }
else if (x < 2) {System.out.println("<2"); }
else { System.out.println("else"); }

It produces the output:

<4

(Notice that even though the second else if is true, it is never reached.)
Sometimes you can have a problem figuring out which if your else should pair
with, as follows:

if (exam.done())
if (exam.getScore() < 0.61)
System.out.println("Try again.");
// Which if does this belong to?
else System.out.println("Java master!");

We intentionally left out the indenting in this piece of code so it doesn't give clues
as to which if statement the else belongs to. Did you figure it out? Java law decrees
that an else clause belongs to the innermost if statement to which it might
possibly belong (in other words, the closest preceding if that doesn't have an else).
In the case of the preceding example, the else belongs to the second if statement
in the listing. With proper indenting, it would look like this:

332 Chapter 5: Flow Control, Exceptions, and Assertions

if (exam.done())
 if (exam.getScore() < 0.61)
 System.out.println("Try again.");
 // Which if does this belong to?
 else
 System.out.println("Java master!");

Following our coding conventions by using curly braces, it would be even easier to read:

if (exam.done()) {
 if (exam.getScore() < 0.61) {
 System.out.println("Try again.");
 // Which if does this belong to?
 } else {
 System.out.println("Java master!");
 }
}

Don't get your hopes up about the exam questions being all nice and indented
properly. Some exam takers even have a slogan for the way questions are presented
on the exam: anything that can be made more confusing, will be.

Be prepared for questions that not only fail to indent nicely, but intentionally
indent in a misleading way: Pay close attention for misdirection like the following:

if (exam.done())
 if (exam.getScore() < 0.61)
 System.out.println("Try again.");
else
 System.out.println("Java master!"); // Hmmmmm… now where does
 // it belong?

Of course, the preceding code is exactly the same as the previous two examples,
except for the way it looks.

Legal Expressions for if Statements
The expression in an if statement must be a boolean expression. Any expression
that resolves to a boolean is fine, and some of the expressions can be complex.
Assume doStuff() returns true,

int y = 5;
int x = 2;

if-else Branching (Exam Objective 2.1) 333

if (((x > 3) && (y < 2)) | doStuff()) {
 System.out.println("true");
}

which prints

true

You can read the preceding code as, "If both (x > 3) and (y < 2) are true, or if the
result of doStuff() is true, then print true." So basically, if just doStuff() alone
is true, we'll still get true. If doStuff() is false, though, then both (x > 3) and
(y < 2) will have to be true in order to print true. The preceding code is even
more complex if you leave off one set of parentheses as follows,

int y = 5;
int x = 2;
if ((x > 3) && (y < 2) | doStuff()) {
 System.out.println("true");
}

which now prints…nothing! Because the preceding code (with one less set of
parentheses) evaluates as though you were saying, "If (x > 3) is true, and either
(y < 2) or the result of doStuff() is true, then print true." So if (x > 3) is not
true, no point in looking at the rest of the expression." Because of the short-circuit
&&, the expression is evaluated as though there were parentheses around (y < 2) |
doStuff(). In other words, it is evaluated as a single expression before the && and a
single expression after the &&.

Remember that the only legal expression in an if test is a boolean. In some
languages, 0 == false, and 1 == true. Not so in Java! The following code shows if
statements that might look tempting, but are illegal, followed by legal substitutions:

int trueInt = 1;
int falseInt = 0;
if (trueInt) // illegal
if (trueInt == true) // illegal
if (1) // illegal
if (falseInt == false) // illegal
if (trueInt == 1) // legal
if (falseInt == 0) // legal

334 Chapter 5: Flow Control, Exceptions, and Assertions

switch Statements
A way to simulate the use of multiple if statements is with the switch statement.
Take a look at the following if-else code, and notice how confusing it can be to
have nested if tests, even just a few levels deep:

int x = 3;
if(x == 1) {

One common mistake programmers make (and that can be diffi cult to
spot), is assigning a boolean variable when you meant to test a boolean variable. Look
out for code like the following:

boolean boo = false;
if (boo = true) { }

You might think one of three things:
1. The code compiles and runs fi ne, and the if test fails because

boo is false.
2. The code won’t compile because you’re using an assignment (=)

rather than an equality test (==).
3. The code compiles and runs fi ne and the if test succeeds because

boo is SET to true (rather than TESTED for true) in the if argument!

Well, number 3 is correct. Pointless, but correct. Given that the result of any assignment is
the value of the variable after the assignment, the expression (boo = true) has a result
of true. Hence, the if test succeeds. But the only variables that can be assigned (rather
than tested against something else) are a boolean or a Boolean; all other assignments
will result in something non-boolean, so they’re not legal, as in the following:

int x = 3;
if (x = 5) { } // Won't compile because x is not a boolean!

Because if tests require boolean expressions, you need to be really solid
on both logical operators and if test syntax and semantics.

switch Statements (Exam Objective 2.1) 335

 System.out.println("x equals 1");
}
else if(x == 2) {
 System.out.println("x equals 2");
 }
 else if(x == 3) {
 System.out.println("x equals 3");
 }
 else {
 System.out.println("No idea what x is");
 }

Now let's see the same functionality represented in a switch construct:

int x = 3;
switch (x) {
 case 1:
 System.out.println("x is equal to 1");
 break;
 case 2:
 System.out.println("x is equal to 2");
 break;
 case 3:
 System.out.println("x is equal to 3");
 break;
 default:
 System.out.println("Still no idea what x is");
}

Note: The reason this switch statement emulates the nested ifs listed earlier is
because of the break statements that were placed inside of the switch. In general,
break statements are optional, and as we will see in a few pages, their inclusion or
exclusion causes huge changes in how a switch statement will execute.

Legal Expressions for switch and case
The general form of the switch statement is:

switch (expression) {
 case constant1: code block
 case constant2: code block
 default: code block
}

336 Chapter 5: Flow Control, Exceptions, and Assertions

A switch's expression must evaluate to a char, byte, short, int, or, as of Java
6, an enum. That means if you're not using an enum, only variables and values
that can be automatically promoted (in other words, implicitly cast) to an int are
acceptable. You won't be able to compile if you use anything else, including the
remaining numeric types of long, float, and double.

A case constant must evaluate to the same type as the switch expression can
use, with one additional—and big—constraint: the case constant must be a
compile time constant! Since the case argument has to be resolved at compile
time, that means you can use only a constant or final variable that is assigned a
literal value. It is not enough to be final, it must be a compile time constant. For
example:

final int a = 1;
final int b;
b = 2;
int x = 0;
switch (x) {
 case a: // ok
 case b: // compiler error

Also, the switch can only check for equality. This means that the other relational
operators such as greater than are rendered unusable in a case. The following is an
example of a valid expression using a method invocation in a switch statement.
Note that for this code to be legal, the method being invoked on the object
reference must return a value compatible with an int.

String s = "xyz";
switch (s.length()) {
 case 1:
 System.out.println("length is one");
 break;
 case 2:
 System.out.println("length is two");
 break;
 case 3:
 System.out.println("length is three");
 break;
 default:
 System.out.println("no match");
}

switch Statements (Exam Objective 2.1) 337

One other rule you might not expect involves the question, "What happens if I
switch on a variable smaller than an int?" Look at the following switch:

byte g = 2;
switch(g) {
 case 23:
 case 128:
}

This code won't compile. Although the switch argument is legal—a byte is
implicitly cast to an int—the second case argument (128) is too large for a byte,
and the compiler knows it! Attempting to compile the preceding example gives
you an error something like

Test.java:6: possible loss of precision
found : int
required: byte
 case 128:
 ^

It's also illegal to have more than one case label using the same value. For example,
the following block of code won't compile because it uses two cases with the same
value of 80:

int temp = 90;
switch(temp) {
 case 80 : System.out.println("80");
 case 80 : System.out.println("80"); // won't compile!
 case 90 : System.out.println("90");
 default : System.out.println("default");
}

It is legal to leverage the power of boxing in a switch expression. For instance,
the following is legal:

switch(new Integer(4)) {
 case 4: System.out.println("boxing is OK");
}

338 Chapter 5: Flow Control, Exceptions, and Assertions

Break and Fall-Through in switch Blocks
We're finally ready to discuss the break statement, and more details about flow
control within a switch statement. The most important thing to remember about
the flow of execution through a switch statement is this:

case constants are evaluated from the top down, and the first case constant
that matches the switch's expression is the execution entry point.

In other words, once a case constant is matched, the JVM will execute the
associated code block, and ALL subsequent code blocks (barring a break statement)
too! The following example uses an enum in a case statement.

enum Color {red, green, blue}
class SwitchEnum {
 public static void main(String [] args) {
 Color c = Color.green;
 switch(c) {

Look for any violation of the rules for switch and case arguments.
For example, you might fi nd illegal examples like the following snippets:

switch(x) {
 case 0 {
 y = 7;
 }
}

switch(x) {
 0: { }
 1: { }
}

 In the fi rst example, the case uses a curly brace and omits the colon.
The second example omits the keyword case.

switch Statements (Exam Objective 2.1) 339

 case red: System.out.print("red ");
 case green: System.out.print("green ");
 case blue: System.out.print("blue ");
 default: System.out.println("done");
 }
 }
}

In this example case green: matched, so the JVM executed that code block and
all subsequent code blocks to produce the output:

green blue done

Again, when the program encounters the keyword break during the execution
of a switch statement, execution will immediately move out of the switch block
to the next statement after the switch. If break is omitted, the program just
keeps executing the remaining case blocks until either a break is found or the
switch statement ends. Examine the following code:

int x = 1;
switch(x) {
 case 1: System.out.println("x is one");
 case 2: System.out.println("x is two");
 case 3: System.out.println("x is three");
}
System.out.println("out of the switch");

The code will print the following:

x is one
x is two
x is three
out of the switch

This combination occurs because the code didn't hit a break statement; execution
just kept dropping down through each case until the end. This dropping down is
actually called "fall-through," because of the way execution falls from one case to
the next. Remember, the matching case is simply your entry point into the switch
block! In other words, you must not think of it as, "Find the matching case, execute
just that code, and get out." That's not how it works. If you do want that "just the
matching code" behavior, you'll insert a break into each case as follows:

340 Chapter 5: Flow Control, Exceptions, and Assertions

int x = 1;
switch(x) {
 case 1: {
 System.out.println("x is one"); break;
 }
 case 2: {
 System.out.println("x is two"); break;
 }
 case 3: {
 System.out.println("x is two"); break;
 }
}
System.out.println("out of the switch");

Running the preceding code, now that we've added the break statements, will print

x is one
out of the switch

and that's it. We entered into the switch block at case 1. Because it matched the
switch() argument, we got the println statement, then hit the break and jumped
to the end of the switch.

An interesting example of this fall-through logic is shown in the following code:

int x = someNumberBetweenOneAndTen;

switch (x) {
 case 2:
 case 4:
 case 6:
 case 8:
 case 10: {
 System.out.println("x is an even number"); break;
 }
}

This switch statement will print x is an even number or nothing, depending on
whether the number is between one and ten and is odd or even. For example, if x is
4, execution will begin at case 4, but then fall down through 6, 8, and 10, where
it prints and then breaks. The break at case 10, by the way, is not needed; we're
already at the end of the switch anyway.

Note: Because fall-through is less than intuitive, Sun recommends that you add a
comment like: // fall through when you use fall-through logic.

switch Statements (Exam Objective 2.1) 341

The Default Case
What if, using the preceding code, you wanted to print "x is an odd number"
if none of the cases (the even numbers) matched? You couldn't put it after the
switch statement, or even as the last case in the switch, because in both of those
situations it would always print x is an odd number. To get this behavior, you'll
use the default keyword. (By the way, if you've wondered why there is a default
keyword even though we don't use a modifier for default access control, now you'll
see that the default keyword is used for a completely different purpose.) The only
change we need to make is to add the default case to the preceding code:

int x = someNumberBetweenOneAndTen;

switch (x) {
 case 2:
 case 4:
 case 6:
 case 8:
 case 10: {
 System.out.println("x is an even number");
 break;
 }
 default: System.out.println("x is an odd number");
}

The default case doesn’t have to come at the end of the switch.
Look for it in strange places such as the following:

int x = 2;
switch (x) {
 case 2: System.out.println("2");
 default: System.out.println("default");
 case 3: System.out.println("3");
 case 4: System.out.println("4");
}

342 Chapter 5: Flow Control, Exceptions, and Assertions

EXERCISE 5-1

Creating a switch-case Statement
Try creating a switch statement using a char value as the case. Include a default
behavior if none of the char values match.

■ Make sure a char variable is declared before the switch statement.

■ Each case statement should be followed by a break.

■ The default case can be located at the end, middle, or top.

Running the preceding code prints

2
default
3
4

And if we modify it so that the only match is the default case:

int x = 7;
switch (x) {
 case 2: System.out.println("2");
 default: System.out.println("default");
 case 3: System.out.println("3");
 case 4: System.out.println("4");
}

Running the preceding code prints

default
3
4

The rule to remember is that default works just like any other case
for fall-through!

Using while Loops (Exam Objective 2.2) 343

CERTIFICATION OBJECTIVE

Loops and Iterators (Exam Objective 2.2)
2.2 Develop code that implements all forms of loops and iterators, including the use of
for, the enhanced for loop (for-each), do, while, labels, break, and continue; and explain
the values taken by loop counter variables during and after loop execution.

Java loops come in three flavors: while, do, and for (and as of Java 6, the for
loop has two variations). All three let you repeat a block of code as long as some
condition is true, or for a specific number of iterations. You're probably familiar with
loops from other languages, so even if you're somewhat new to Java, these won't be a
problem to learn.

Using while Loops
The while loop is good for scenarios where you don't know how many times a
block or statement should repeat, but you want to continue looping as long as some
condition is true. A while statement looks like this:

while (expression) {
 // do stuff
}

 or

int x = 2;
while(x == 2) {
 System.out.println(x);
 ++x;
}

In this case, as in all loops, the expression (test) must evaluate to a boolean
result. The body of the while loop will only execute if the expression (sometimes
called the "condition") results in a value of true. Once inside the loop, the loop
body will repeat until the condition is no longer met because it evaluates to false.
In the previous example, program control will enter the loop body because x is equal
to 2. However, x is incremented in the loop, so when the condition is checked again
it will evaluate to false and exit the loop.

344 Chapter 5: Flow Control, Exceptions, and Assertions

Any variables used in the expression of a while loop must be declared before the
expression is evaluated. In other words, you can't say

while (int x = 2) { } // not legal

Then again, why would you? Instead of testing the variable, you'd be declaring
and initializing it, so it would always have the exact same value. Not much of a
test condition!

The key point to remember about a while loop is that it might not ever run. If
the test expression is false the first time the while expression is checked, the loop
body will be skipped and the program will begin executing at the first statement after
the while loop. Look at the following example:

int x = 8;
while (x > 8) {
 System.out.println("in the loop");
 x = 10;
}
System.out.println("past the loop");

Running this code produces

past the loop

Because the expression (x > 8) evaluates to false, none of the code within the
while loop ever executes.

Using do Loops
The do loop is similar to the while loop, except that the expression is not evaluated
until after the do loop's code is executed. Therefore the code in a do loop is
guaranteed to execute at least once. The following shows a do loop in action:

do {
 System.out.println("Inside loop");
} while(false);

The System.out.println() statement will print once, even though the
expression evaluates to false. Remember, the do loop will always run the code
in the loop body at least once. Be sure to note the use of the semicolon at the
end of the while expression.

Using for Loops (Exam Objective 2.2) 345

Using for Loops
As of Java 6, the for loop took on a second structure. We'll call the old style of for
loop the "basic for loop", and we'll call the new style of for loop the "enhanced
for loop" (even though the Sun objective 2.2 refers to it as the for-each).
Depending on what documentation you use (Sun's included), you'll see both terms,
along with for-in. The terms for-in, for-each, and "enhanced for" all refer to
the same Java construct.

The basic for loop is more flexible than the enhanced for loop, but the
enhanced for loop was designed to make iterating through arrays and collections
easier to code.

The Basic for Loop
The for loop is especially useful for flow control when you already know how
many times you need to execute the statements in the loop's block. The for loop
declaration has three main parts, besides the body of the loop:

■ Declaration and initialization of variables

■ The boolean expression (conditional test)

■ The iteration expression

The three for declaration parts are separated by semicolons. The following two
examples demonstrate the for loop. The first example shows the parts of a for loop
in a pseudocode form, and the second shows a typical example of a for loop.

As with if tests, look for while loops (and the while test in a do loop)
with an expression that does not resolve to a boolean. Take a look at the following
examples of legal and illegal while expressions:

int x = 1;
while (x) { } // Won't compile; x is not a boolean
while (x = 5) { } // Won't compile; resolves to 5
 //(as the result of assignment)
while (x == 5) { } // Legal, equality test
while (true) { } // Legal

346 Chapter 5: Flow Control, Exceptions, and Assertions

for (/*Initialization*/ ; /*Condition*/ ; /* Iteration */) {
 /* loop body */
}

for (int i = 0; i<10; i++) {
 System.out.println("i is " + i);
}

The Basic for Loop: Declaration and Initialization
The first part of the for statement lets you declare and initialize zero, one, or
multiple variables of the same type inside the parentheses after the for keyword. If
you declare more than one variable of the same type, then you'll need to separate
them with commas as follows:

for (int x = 10, y = 3; y > 3; y++) { }

The declaration and initialization happens before anything else in a for loop. And
whereas the other two parts—the boolean test and the iteration expression—will
run with each iteration of the loop, the declaration and initialization happens just
once, at the very beginning. You also must know that the scope of variables declared
in the for loop ends with the for loop! The following demonstrates this:

for (int x = 1; x < 2; x++) {
 System.out.println(x); // Legal
}
System.out.println(x); // Not Legal! x is now out of scope
 // and can't be accessed.

If you try to compile this, you'll get something like this:

Test.java:19: cannot resolve symbol
symbol : variable x
location: class Test
 System.out.println(x);
 ^

Basic for Loop: Conditional (boolean) Expression
The next section that executes is the conditional expression, which (like all
other conditional tests) must evaluate to a boolean value. You can have only one

Using for Loops (Exam Objective 2.2) 347

logical expression, but it can be very complex. Look out for code that uses logical
expressions like this:

for (int x = 0; ((((x < 10) && (y-- > 2)) | x == 3)); x++) { }

The preceding code is legal, but the following is not:

for (int x = 0; (x > 5), (y < 2); x++) { } // too many
 //expressions

The compiler will let you know the problem:

TestLong.java:20: ';' expected
for (int x = 0; (x > 5), (y < 2); x++) { }
 ^

The rule to remember is this: You can have only one test expression.

In other words, you can't use multiple tests separated by commas, even though
the other two parts of a for statement can have multiple parts.

Basic for Loop: Iteration Expression
After each execution of the body of the for loop, the iteration expression is
executed. This is where you get to say what you want to happen with each iteration
of the loop. Remember that it always happens after the loop body runs! Look at the
following:

for (int x = 0; x < 1; x++) {
 // body code that doesn't change the value of x
}

The preceding loop executes just once. The first time into the loop x is set to 0,
then x is tested to see if it's less than 1 (which it is), and then the body of the
loop executes. After the body of the loop runs, the iteration expression runs,
incrementing x by 1. Next, the conditional test is checked, and since the result is
now false, execution jumps to below the for loop and continues on.

Keep in mind that barring a forced exit, evaluating the iteration expression and
then evaluating the conditional expression are always the last two things that
happen in a for loop!

348 Chapter 5: Flow Control, Exceptions, and Assertions

Examples of forced exits include a break, a return, a System.exit(), or an
exception, which will all cause a loop to terminate abruptly, without running the
iteration expression. Look at the following code:

static boolean doStuff() {
 for (int x = 0; x < 3; x++) {
 System.out.println("in for loop");
 return true;
 }
 return true;
}

Running this code produces

in for loop

The statement only prints once, because a return causes execution to leave not just
the current iteration of a loop, but the entire method. So the iteration expression
never runs in that case. Table 5-1 lists the causes and results of abrupt loop
termination.

Basic for Loop: for Loop Issues
None of the three sections of the for declaration are required! The following
example is perfectly legal (although not necessarily good practice):

for(; ;) {
 System.out.println("Inside an endless loop");
}

In the preceding example, all the declaration parts are left out so the for loop will
act like an endless loop. For the exam, it's important to know that with the absence

Code in Loop What Happens

break Execution jumps immediately to the 1st statement after the for loop.

return Execution jumps immediately back to the calling method.

System.exit() All program execution stops; the VM shuts down.

 TABLE 5-1 Causes of Early Loop Termination

Using for Loops (Exam Objective 2.2) 349

of the initialization and increment sections, the loop will act like a while loop. The
following example demonstrates how this is accomplished:

int i = 0;

for (;i<10;) {
 i++;
 //do some other work
}

The next example demonstrates a for loop with multiple variables in play. A
comma separates the variables, and they must be of the same type. Remember that
the variables declared in the for statement are all local to the for loop, and can't
be used outside the scope of the loop.

for (int i = 0,j = 0; (i<10) && (j<10); i++, j++) {
 System.out.println("i is " + i + " j is " +j);
}

The last thing to note is that all three sections of the for loop are independent of

each other. The three expressions in the for statement don't need to operate on the
same variables, although they typically do. But even the iterator expression, which

Variable scope plays a large role in the exam. You need to know that a
variable declared in the for loop can’t be used beyond the for loop. But a variable only
initialized in the for statement (but declared earlier) can be used beyond the loop. For
example, the following is legal,

int x = 3;
for (x = 12; x < 20; x++) { }
System.out.println(x);

while this is not

for (int x = 3; x < 20; x++) { } System.out.println(x);

350 Chapter 5: Flow Control, Exceptions, and Assertions

many mistakenly call the "increment expression," doesn't need to increment or set
anything; you can put in virtually any arbitrary code statements that you want to
happen with each iteration of the loop. Look at the following:

int b = 3;
for (int a = 1; b != 1; System.out.println("iterate")) {
 b = b - a;
}

The preceding code prints

iterate
iterate

The Enhanced for Loop (for Arrays)
 The enhanced for loop, new to Java 6, is a specialized for loop that simplifies
looping through an array or a collection. In this chapter we're going to focus on
using the enhanced for to loop through arrays. In Chapter 7 we'll revisit the
enhanced for as we discuss collections—where the enhanced for really comes into
its own.

Instead of having three components, the enhanced for has two. Let's loop
through an array the basic (old) way, and then using the enhanced for:

int [] a = {1,2,3,4};
for(int x = 0; x < a.length; x++) // basic for loop
 System.out.print(a[x]);
for(int n : a) // enhanced for loop
 System.out.print(n);

Many questions in the new (Java 6) exam list “Compilation fails” and
“An exception occurs at runtime” as possible answers. This makes it more diffi cult
because you can’t simply work through the behavior of the code. You must fi rst make
sure the code isn’t violating any fundamental rules that will lead to compiler error,
and then look for possible exceptions. Only after you’ve satisfi ed those two, should
you dig into the logic and fl ow of the code in the question.

Using for Loops (Exam Objective 2.2) 351

Which produces this output:

12341234

More formally, let's describe the enhanced for as follows:

for(declaration : expression)

The two pieces of the for statement are

■ declaration The newly declared block variable, of a type compatible with
the elements of the array you are accessing. This variable will be available
within the for block, and its value will be the same as the current array
element.

■ expression This must evaluate to the array you want to loop through.
This could be an array variable or a method call that returns an array. The
array can be any type: primitives, objects, even arrays of arrays.

Using the above definitions, let's look at some legal and illegal enhanced for
declarations:

int x;
long x2;
Long [] La = {4L, 5L, 6L};
long [] la = {7L, 8L, 9L};
int [][] twoDee = {{1,2,3}, {4,5,6}, {7,8,9}};
String [] sNums = {"one", "two", "three"};
Animal [] animals = {new Dog(), new Cat()};

// legal 'for' declarations
for(long y : la) ; // loop thru an array of longs
for(long lp : La) ; // autoboxing the Long objects
 // into longs
for(int[] n : twoDee) ; // loop thru the array of arrays
for(int n2 : twoDee[2]) ; // loop thru the 3rd sub-array
for(String s : sNums) ; // loop thru the array of Strings
for(Object o : sNums) ; // set an Object reference to
 // each String
for(Animal a : animals) ; // set an Animal reference to each
 // element

352 Chapter 5: Flow Control, Exceptions, and Assertions

// ILLEGAL 'for' declarations
for(x2 : la) ; // x2 is already declared
for(int x2 : twoDee) ; // can't stuff an array into an int
for(int x3 : la) ; // can't stuff a long into an int
for(Dog d : animals) ; // you might get a Cat!

The enhanced for loop assumes that, barring an early exit from the loop, you'll
always loop through every element of the array. The following discussions of break
and continue apply to both the basic and enhanced for loops.

Using break and continue
The break and continue keywords are used to stop either the entire loop
(break) or just the current iteration (continue). Typically if you're using break
or continue, you'll do an if test within the loop, and if some condition becomes
true (or false depending on the program), you want to get out immediately. The
difference between them is whether or not you continue with a new iteration or
jump to the first statement below the loop and continue from there.

The break statement causes the program to stop execution of the innermost loop
and start processing the next line of code after the block.

The continue statement causes only the current iteration of the innermost loop
to cease and the next iteration of the same loop to start if the condition of the loop
is met. When using a continue statement with a for loop, you need to consider the
effects that continue has on the loop iteration. Examine the following code:

for (int i = 0; i < 10; i++) {
 System.out.println("Inside loop");
 continue;
}

The question is, is this an endless loop? The answer is no. When the continue
statement is hit, the iteration expression still runs! It runs just as though the current

Remember, continue statements must be inside a loop; otherwise,
you’ll get a compiler error. break statements must be used inside either a loop or
switch statement. (Note: this does not apply to labeled break statements.).

Unlabeled Statements (Exam Objective 2.2) 353

iteration ended "in the natural way." So in the preceding example, i will still
increment before the condition (i < 10) is checked again. Most of the time, a
continue is used within an if test as follows:

for (int i = 0; i < 10; i++) {
 System.out.println("Inside loop");
 if (foo.doStuff() == 5) {
 continue;
 }
 // more loop code, that won't be reached when the above if
 // test is true
}

Unlabeled Statements
Both the break statement and the continue statement can be unlabeled or
labeled. Although it's far more common to use break and continue unlabeled, the
exam expects you to know how labeled break and continue statements work. As
stated before, a break statement (unlabeled) will exit out of the innermost looping
construct and proceed with the next line of code beyond the loop block. The
following example demonstrates a break statement:

boolean problem = true;
while (true) {
 if (problem) {
 System.out.println("There was a problem");
 break;
 }
}
// next line of code

In the previous example, the break statement is unlabeled. The following is an
example of an unlabeled continue statement:

while (!EOF) {
 //read a field from a file
 if (wrongField) {
 continue; // move to the next field in the file
 }
 // otherwise do other stuff with the field
}

354 Chapter 5: Flow Control, Exceptions, and Assertions

In this example, a file is being read one field at a time. When an error is
encountered, the program moves to the next field in the file and uses the continue
statement to go back into the loop (if it is not at the end of the file) and keeps
reading the various fields. If the break command were used instead, the code would
stop reading the file once the error occurred and move on to the next line of code
after the loop. The continue statement gives you a way to say, "This particular
iteration of the loop needs to stop, but not the whole loop itself. I just don't want the
rest of the code in this iteration to finish, so do the iteration expression and then start
over with the test, and don't worry about what was below the continue statement."

Labeled Statements
Although many statements in a Java program can be labeled, it's most common to
use labels with loop statements like for or while, in conjunction with break and
continue statements. A label statement must be placed just before the statement
being labeled, and it consists of a valid identifier that ends with a colon (:).

You need to understand the difference between labeled and unlabeled break and
continue. The labeled varieties are needed only in situations where you have a
nested loop, and need to indicate which of the nested loops you want to break from,
or from which of the nested loops you want to continue with the next iteration. A
break statement will exit out of the labeled loop, as opposed to the innermost loop,
if the break keyword is combined with a label. An example of what a label looks
like is in the following code:

foo:
 for (int x = 3; x < 20; x++) {
 while(y > 7) {
 y--;
 }
 }

The label must adhere to the rules for a valid variable name and should adhere to the
Java naming convention. The syntax for the use of a label name in conjunction with a
break statement is the break keyword, then the label name, followed by a semicolon.
A more complete example of the use of a labeled break statement is as follows:

boolean isTrue = true;
outer:
 for(int i=0; i<5; i++) {
 while (isTrue) {

Labeled Statements (Exam Objective 2.2) 355

 System.out.println("Hello");
 break outer;
 } // end of inner while loop
 System.out.println("Outer loop."); // Won't print
 } // end of outer for loop
System.out.println("Good-Bye");

Running this code produces

Hello
Good-Bye

In this example the word Hello will be printed one time. Then, the labeled
break statement will be executed, and the flow will exit out of the loop labeled
outer. The next line of code will then print out Good-Bye. Let's see what will
happen if the continue statement is used instead of the break statement. The
following code example is similar to the preceding one, with the exception of
substituting continue for break:

outer:
 for (int i=0; i<5; i++) {
 for (int j=0; j<5; j++) {
 System.out.println("Hello");
 continue outer;
 } // end of inner loop
 System.out.println("outer"); // Never prints
 }
System.out.println("Good-Bye");

Running this code produces

Hello
Hello
Hello
Hello
Hello
Good-Bye

In this example, Hello will be printed five times. After the continue statement is
executed, the flow continues with the next iteration of the loop identified with the
label. Finally, when the condition in the outer loop evaluates to false, this loop
will finish and Good-Bye will be printed.

356 Chapter 5: Flow Control, Exceptions, and Assertions

EXERCISE 5-2

Creating a Labeled while Loop
Try creating a labeled while loop. Make the label outer and provide a condition to
check whether a variable age is less than or equal to 21. Within the loop, increment
age by one. Every time the program goes through the loop, check whether age is 16.
If it is, print the message "get your driver's license" and continue to the outer loop. If
not, print "Another year."

■ The outer label should appear just before the while loop begins.

■ Make sure age is declared outside of the while loop.

CERTIFICATION OBJECTIVE

Handling Exceptions (Exam Objectives 2.4 and 2.5)
2.4 Develop code that makes use of exceptions and exception handling clauses (try, catch,
finally), and declares methods and overriding methods that throw exceptions.

2.5 Recognize the effect of an exception arising at a specific point in a code fragment.
Note that the exception may be a runtime exception, a checked exception, or an error.

An old maxim in software development says that 80 percent of the work is used
20 percent of the time. The 80 percent refers to the effort required to check and
handle errors. In many languages, writing program code that checks for and deals
with errors is tedious and bloats the application source into confusing spaghetti.

Labeled continue and break statements must be inside the loop that
has the same label name; otherwise, the code will not compile.

Still, error detection and handling may be the most important ingredient of any
robust application. Java arms developers with an elegant mechanism for handling
errors that produces efficient and organized error-handling code: exception handling.

Exception handling allows developers to detect errors easily without writing
special code to test return values. Even better, it lets us keep exception-handling code
cleanly separated from the exception-generating code. It also lets us use the same
exception-handling code to deal with a range of possible exceptions.

The exam has three objectives covering exception handling. We'll cover the first
two in this section, and in the next section we'll cover those aspects of exception
handling that are new to the exam as of Java 6.

Catching an Exception Using try and catch
Before we begin, let's introduce some terminology. The term "exception" means
"exceptional condition" and is an occurrence that alters the normal program flow.
A bunch of things can lead to exceptions, including hardware failures, resource
exhaustion, and good old bugs. When an exceptional event occurs in Java, an
exception is said to be "thrown." The code that's responsible for doing something
about the exception is called an "exception handler," and it "catches" the thrown
exception.

Exception handling works by transferring the execution of a program to an
appropriate exception handler when an exception occurs. For example, if you call
a method that opens a file but the file cannot be opened, execution of that method
will stop, and code that you wrote to deal with this situation will be run. Therefore,
we need a way to tell the JVM what code to execute when a certain exception
happens. To do this, we use the try and catch keywords. The try is used to define a
block of code in which exceptions may occur. This block of code is called a guarded
region (which really means "risky code goes here"). One or more catch clauses
match a specific exception (or group of exceptions—more on that later) to a block
of code that handles it. Here's how it looks in pseudocode:

 1. try {
 2. // This is the first line of the "guarded region"
 3. // that is governed by the try keyword.
 4. // Put code here that might cause some kind of exception.
 5. // We may have many code lines here or just one.
 6. }
 7. catch(MyFirstException) {
 8. // Put code here that handles this exception.

Catching an Exception Using try and catch (Exam Objectives 2.4 and 2.5) 357

358 Chapter 5: Flow Control, Exceptions, and Assertions

 9. // This is the next line of the exception handler.
10. // This is the last line of the exception handler.
11. }
12. catch(MySecondException) {
13. // Put code here that handles this exception
14. }
15.
16. // Some other unguarded (normal, non-risky) code begins here

In this pseudocode example, lines 2 through 5 constitute the guarded region that
is governed by the try clause. Line 7 is an exception handler for an exception of
type MyFirstException. Line 12 is an exception handler for an exception of type
MySecondException. Notice that the catch blocks immediately follow the try
block. This is a requirement; if you have one or more catch blocks, they must
immediately follow the try block. Additionally, the catch blocks must all follow
each other, without any other statements or blocks in between. Also, the order in
which the catch blocks appear matters, as we'll see a little later.

Execution of the guarded region starts at line 2. If the program executes all the
way past line 5 with no exceptions being thrown, execution will transfer to line
15 and continue downward. However, if at any time in lines 2 through 5 (the try
block) an exception is thrown of type MyFirstException, execution will immediately
transfer to line 7. Lines 8 through 10 will then be executed so that the entire catch
block runs, and then execution will transfer to line 15 and continue.

Note that if an exception occurred on, say, line 3 of the try block, the rest of
the lines in the try block (4 and 5) would never be executed. Once control jumps
to the catch block, it never returns to complete the balance of the try block.
This is exactly what you want, though. Imagine your code looks something like
this pseudocode:

try {
 getTheFileFromOverNetwork
 readFromTheFileAndPopulateTable
}
catch(CantGetFileFromNetwork) {
 displayNetworkErrorMessage
}

The preceding pseudocode demonstrates how you typically work with exceptions.
Code that's dependent on a risky operation (as populating a table with file data is
dependent on getting the file from the network) is grouped into a try block in such

a way that if, say, the first operation fails, you won't continue trying to run other
code that's also guaranteed to fail. In the pseudocode example, you won't be able to
read from the file if you can't get the file off the network in the first place.

One of the benefits of using exception handling is that code to handle any
particular exception that may occur in the governed region needs to be written only
once. Returning to our earlier code example, there may be three different places
in our try block that can generate a MyFirstException, but wherever it occurs it
will be handled by the same catch block (on line 7). We'll discuss more benefits of
exception handling near the end of this chapter.

Using fi nally
Although try and catch provide a terrific mechanism for trapping and handling
exceptions, we are left with the problem of how to clean up after ourselves if an
exception occurs. Because execution transfers out of the try block as soon as an
exception is thrown, we can't put our cleanup code at the bottom of the try block
and expect it to be executed if an exception occurs. Almost as bad an idea would be
placing our cleanup code in each of the catch blocks—let's see why.

Exception handlers are a poor place to clean up after the code in the try block
because each handler then requires its own copy of the cleanup code. If, for example,
you allocated a network socket or opened a file somewhere in the guarded region,
each exception handler would have to close the file or release the socket. That
would make it too easy to forget to do cleanup, and also lead to a lot of redundant
code. To address this problem, Java offers the finally block.

A finally block encloses code that is always executed at some point after the
try block, whether an exception was thrown or not. Even if there is a return
statement in the try block, the finally block executes right after the return
statement is encountered, and before the return executes!

This is the right place to close your files, release your network sockets, and
perform any other cleanup your code requires. If the try block executes with
no exceptions, the finally block is executed immediately after the try block
completes. If there was an exception thrown, the finally block executes
immediately after the proper catch block completes. Let's look at another
pseudocode example:

 1: try {
 2: // This is the first line of the "guarded region".
 3: }
 4: catch(MyFirstException) {

Using fi nally (Exam Objectives 2.4 and 2.5) 359

360 Chapter 5: Flow Control, Exceptions, and Assertions

 5: // Put code here that handles this exception
 6: }
 7: catch(MySecondException) {
 8: // Put code here that handles this exception
 9: }
10: finally {
11: // Put code here to release any resource we
12: // allocated in the try clause.
13: }
14:
15: // More code here

As before, execution starts at the first line of the try block, line 2. If there are no
exceptions thrown in the try block, execution transfers to line 11, the first line of
the finally block. On the other hand, if a MySecondException is thrown while
the code in the try block is executing, execution transfers to the first line of that
exception handler, line 8 in the catch clause. After all the code in the catch clause
is executed, the program moves to line 11, the first line of the finally clause.
Repeat after me: finally always runs! OK, we'll have to refine that a little, but for
now, start burning in the idea that finally always runs. If an exception is thrown,
finally runs. If an exception is not thrown, finally runs. If the exception is
caught, finally runs. If the exception is not caught, finally runs. Later we'll look
at the few scenarios in which finally might not run or complete.

Remember, finally clauses are not required. If you don't write one, your code
will compile and run just fine. In fact, if you have no resources to clean up after your
try block completes, you probably don't need a finally clause. Also, because the
compiler doesn't even require catch clauses, sometimes you'll run across code that
has a try block immediately followed by a finally block. Such code is useful when
the exception is going to be passed back to the calling method, as explained in the
next section. Using a finally block allows the cleanup code to execute even when
there isn't a catch clause.

The following legal code demonstrates a try with a finally but no catch:

try {
 // do stuff
} finally {
 //clean up
}

The following legal code demonstrates a try, catch, and finally:

try {
 // do stuff
} catch (SomeException ex) {
 // do exception handling
} finally {
 // clean up
}

The following ILLEGAL code demonstrates a try without a catch or finally:

try {
 // do stuff
}
// need a catch or finally here
System.out.println("out of try block");

The following ILLEGAL code demonstrates a misplaced catch block:

try {
 // do stuff
}
// can't have code between try/catch
System.out.println("out of try block");
catch(Exception ex) { }

Using fi nally (Exam Objectives 2.4 and 2.5) 361

It is illegal to use a try clause without either a catch clause or a fi nally
clause. A try clause by itself will result in a compiler error. Any catch clauses must
immediately follow the try block. Any fi nally clause must immediately follow the last
catch clause (or it must immediately follow the try block if there is no catch). It is legal
to omit either the catch clause or the fi nally clause, but not both.

362 Chapter 5: Flow Control, Exceptions, and Assertions

Propagating Uncaught Exceptions

Why aren't catch clauses required? What happens to an exception that's thrown
in a try block when there is no catch clause waiting for it? Actually, there's no
requirement that you code a catch clause for every possible exception that could
be thrown from the corresponding try block. In fact, it's doubtful that you could
accomplish such a feat! If a method doesn't provide a catch clause for a particular
exception, that method is said to be "ducking" the exception (or "passing the buck").

So what happens to a ducked exception? Before we discuss that, we need to
briefly review the concept of the call stack. Most languages have the concept of
a method stack or a call stack. Simply put, the call stack is the chain of methods
that your program executes to get to the current method. If your program starts in
method main() and main() calls method a(), which calls method b(), which in
turn calls method c(), the call stack consists of the following:

c
b
a
main

We will represent the stack as growing upward (although it can also be visualized
as growing downward). As you can see, the last method called is at the top of the
stack, while the first calling method is at the bottom. The method at the very top of
the stack trace would be the method you were currently executing. If we move back
down the call stack, we're moving from the current method to the previously called
method. Figure 5-1 illustrates a way to think about how the call stack in Java works.

You can’t sneak any code in between the try, catch, or fi nally blocks.
The following won’t compile:

try {
 // do stuff
}
System.out.print("below the try"); //Illegal!
catch(Exception ex) { }

Now let's examine what happens to ducked exceptions. Imagine a building, say,
five stories high, and at each floor there is a deck or balcony. Now imagine that on
each deck, one person is standing holding a baseball mitt. Exceptions are like balls
dropped from person to person, starting from the roof. An exception is first thrown
from the top of the stack (in other words, the person on the roof), and if it isn't
caught by the same person who threw it (the person on the roof), it drops down
the call stack to the previous method, which is the person standing on the deck one
floor down. If not caught there, by the person one floor down, the exception/ball
again drops down to the previous method (person on the next floor down), and
so on until it is caught or until it reaches the very bottom of the call stack. This is
called exception propagation.

If an exception reaches the bottom of the call stack, it's like reaching the bottom
of a very long drop; the ball explodes, and so does your program. An exception that's
never caught will cause your application to stop running. A description (if one is
available) of the exception will be displayed, and the call stack will be "dumped."
This helps you debug your application by telling you what exception was thrown,
from what method it was thrown, and what the stack looked like at the time.

 FIGURE 5-1

The Java method
call stack

Propagating Uncaught Exceptions (Exam Objectives 2.4 and 2.5) 363

1) The call stack while method3() is running.

2) The call stack after method3() completes
Execution returns to method2()

The order in which methods are put on the call stack

The order in which methods complete

4
3
2
1

1
2
3

method3()
method2()
method1()

main()

method2()
method1()

main()

method2 invokes method3
method1 invokes method2
main invokes method1
main begins

method2() will complete
method1() will complete
main() will complete and the JVM will exit

364 Chapter 5: Flow Control, Exceptions, and Assertions

EXERCISE 5-3

Propagating and Catching an Exception
In this exercise you're going to create two methods that deal with exceptions. One of
the methods is the main() method, which will call another method. If an exception
is thrown in the other method, main() must deal with it. A finally statement will
be included to indicate that the program has completed. The method that main()

You can keep throwing an exception down through the methods on
the stack. But what about when you get to the main() method at the bottom? You can
throw the exception out of main() as well. This results in the Java Virtual Machine (JVM)
halting, and the stack trace will be printed to the output.
 The following code throws an exception,

class TestEx {
 public static void main (String [] args) {
 doStuff();
 }
 static void doStuff() {
 doMoreStuff();
 }
 static void doMoreStuff() {
 int x = 5/0; // Can't divide by zero!
 // ArithmeticException is thrown here
 }
}

which prints out a stack trace something like,

 %java TestEx
Exception in thread "main" java.lang.ArithmeticException: /
by zero
at TestEx.doMoreStuff(TestEx.java:10)
at TestEx.doStuff(TestEx.java:7)
at TestEx.main(TestEx.java:3)

will call will be named reverse, and it will reverse the order of the characters in a
String. If the String contains no characters, reverse will propagate an exception up
to the main() method.

■ Create a class called Propagate and a main() method, which will remain
empty for now.

■ Create a method called reverse. It takes an argument of a String and
returns a String.

■ In reverse, check if the String has a length of 0 by using the
String.length() method. If the length is 0, the reverse method will
throw an exception.

■ Now include the code to reverse the order of the String. Because this isn't
the main topic of this chapter, the reversal code has been provided, but feel
free to try it on your own.

 String reverseStr = "";
 for(int i=s.length()-1;i>=0;--i) {
 reverseStr += s.charAt(i);
 }
 return reverseStr;

■ Now in the main() method you will attempt to call this method and deal
with any potential exceptions. Additionally, you will include a finally
statement that displays when main() has finished.

Defi ning Exceptions
We have been discussing exceptions as a concept. We know that they are thrown
when a problem of some type happens, and we know what effect they have on
the flow of our program. In this section we will develop the concepts further and
use exceptions in functional Java code. Earlier we said that an exception is an
occurrence that alters the normal program flow. But because this is Java, anything
that's not a primitive must be…an object. Exceptions are no, well, exception to
this rule. Every exception is an instance of a class that has class Exception in its
inheritance hierarchy. In other words, exceptions are always some subclass of
java.lang.Exception.

Defi ning Exceptions (Exam Objectives 2.4 and 2.5) 365

366 Chapter 5: Flow Control, Exceptions, and Assertions

When an exception is thrown, an object of a particular Exception subtype is
instantiated and handed to the exception handler as an argument to the catch
clause. An actual catch clause looks like this:

try {
 // some code here
}
catch (ArrayIndexOutOfBoundsException e) {
 e.printStackTrace();
}

In this example, e is an instance of the ArrayIndexOutOfBoundsException class.
As with any other object, you can call its methods.

Exception Hierarchy
All exception classes are subtypes of class Exception. This class derives from the
class Throwable (which derives from the class Object). Figure 5-2 shows the
hierarchy for the exception classes.

As you can see, there are two subclasses that derive from Throwable: Exception
and Error. Classes that derive from Error represent unusual situations that are
not caused by program errors, and indicate things that would not normally happen

 FIGURE 5-2

Exception class
hierarchy

Object

Throwable

Error Exception

RuntimeException

during program execution, such as the JVM running out of memory. Generally, your
application won't be able to recover from an Error, so you're not required to handle
them. If your code does not handle them (and it usually won't), it will still compile
with no trouble. Although often thought of as exceptional conditions, Errors are
technically not exceptions because they do not derive from class Exception.

In general, an exception represents something that happens not as a result of
a programming error, but rather because some resource is not available or some
other condition required for correct execution is not present. For example, if your
application is supposed to communicate with another application or computer that
is not answering, this is an exception that is not caused by a bug. Figure 5-2 also
shows a subtype of Exception called RuntimeException. These exceptions are
a special case because they sometimes do indicate program errors. They can also
represent rare, difficult-to-handle exceptional conditions. Runtime exceptions are
discussed in greater detail later in this chapter.

Java provides many exception classes, most of which have quite descriptive
names. There are two ways to get information about an exception. The first is
from the type of the exception itself. The next is from information that you can
get from the exception object. Class Throwable (at the top of the inheritance
tree for exceptions) provides its descendants with some methods that are useful in
exception handlers. One of these is printStackTrace(). As expected, if you call
an exception object's printStackTrace() method, as in the earlier example, a
stack trace from where the exception occurred will be printed.

We discussed that a call stack builds upward with the most recently called method
at the top. You will notice that the printStackTrace() method prints the most
recently entered method first and continues down, printing the name of each
method as it works its way down the call stack (this is called unwinding the stack)
from the top.

For the exam, it is not necessary to know any of the methods
contained in the Throwable classes, including Exception and Error. You are expected
to know that Exception, Error, RuntimeException, and Throwable types can all be
thrown using the throw keyword, and can all be caught (although you rarely will
catch anything other than Exception subtypes).

Exception Hierarchy (Exam Objectives 2.4 and 2.5) 367

368 Chapter 5: Flow Control, Exceptions, and Assertions

Handling an Entire Class Hierarchy of Exceptions
We've discussed that the catch keyword allows you to specify a particular type of
exception to catch. You can actually catch more than one type of exception in a
single catch clause. If the exception class that you specify in the catch clause has
no subclasses, then only the specified class of exception will be caught. However, if
the class specified in the catch clause does have subclasses, any exception object
that subclasses the specified class will be caught as well.

For example, class IndexOutOfBoundsException has two subclasses,
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.
You may want to write one exception handler that deals with exceptions produced
by either type of boundary error, but you might not be concerned with which
exception you actually have. In this case, you could write a catch clause like
the following:

try {
 // Some code here that can throw a boundary exception
}
catch (IndexOutOfBoundsException e) {
 e.printStackTrace();
}

If any code in the try block throws ArrayIndexOutOfBoundsException or
StringIndexOutOfBoundsException, the exception will be caught and handled.
This can be convenient, but it should be used sparingly. By specifying an exception
class's superclass in your catch clause, you're discarding valuable information about
the exception. You can, of course, find out exactly what exception class you have,
but if you're going to do that, you're better off writing a separate catch clause for
each exception type of interest.

ON THE JOB

Resist the temptation to write a single catchall exception handler such as the
following:

try {
 // some code
}
catch (Exception e) {
 e.printStackTrace();
}

This code will catch every exception generated. Of course, no single exception
handler can properly handle every exception, and programming in this way
defeats the design objective. Exception handlers that trap many errors at once
will probably reduce the reliability of your program because it's likely that an
exception will be caught that the handler does not know how to handle.

Exception Matching
If you have an exception hierarchy composed of a superclass exception and a number
of subtypes, and you're interested in handling one of the subtypes in a special way
but want to handle all the rest together, you need write only two catch clauses.

When an exception is thrown, Java will try to find (by looking at the available
catch clauses from the top down) a catch clause for the exception type. If it doesn't
find one, it will search for a handler for a supertype of the exception. If it does not
find a catch clause that matches a supertype for the exception, then the exception
is propagated down the call stack. This process is called exception matching. Let's
look at an example:

 1: import java.io.*;
 2: public class ReadData {
 3: public static void main(String args[]) {
 4: try {
 5: RandomAccessFile raf =
 6: new RandomAccessFile("myfile.txt", "r");
 7: byte b[] = new byte[1000];
 8: raf.readFully(b, 0, 1000);
 9: }
10: catch(FileNotFoundException e) {
11: System.err.println("File not found");
12: System.err.println(e.getMessage());
13: e.printStackTrace();
14: }
15: catch(IOException e) {
16: System.err.println("IO Error");
17: System.err.println(e.toString());
18: e.printStackTrace();
19: }
20: }
21: }

Exception Matching (Exam Objectives 2.4 and 2.5) 369

370 Chapter 5: Flow Control, Exceptions, and Assertions

This short program attempts to open a file and to read some data from it. Opening
and reading files can generate many exceptions, most of which are some type of
IOException. Imagine that in this program we're interested in knowing only
whether the exact exception is a FileNotFoundException. Otherwise, we don't
care exactly what the problem is.

FileNotFoundException is a subclass of IOException. Therefore, we
could handle it in the catch clause that catches all subtypes of IOException,
but then we would have to test the exception to determine whether it was a
FileNotFoundException. Instead, we coded a special exception handler for
the FileNotFoundException and a separate exception handler for all other
IOException subtypes.

If this code generates a FileNotFoundException, it will be handled by the
catch clause that begins at line 10. If it generates another IOException—perhaps
EOFException, which is a subclass of IOException—it will be handled by the
catch clause that begins at line 15. If some other exception is generated, such as
a runtime exception of some type, neither catch clause will be executed and the
exception will be propagated down the call stack.

Notice that the catch clause for the FileNotFoundException was placed above
the handler for the IOException. This is really important! If we do it the opposite
way, the program will not compile. The handlers for the most specific exceptions
must always be placed above those for more general exceptions. The following will
not compile:

try {
 // do risky IO things
} catch (IOException e) {
 // handle general IOExceptions
} catch (FileNotFoundException ex) {
 // handle just FileNotFoundException
}

You'll get a compiler error something like this:

TestEx.java:15: exception java.io.FileNotFoundException has
 already been caught
} catch (FileNotFoundException ex) {
 ^

If you think back to the people with baseball mitts (in the section "Propagating
Uncaught Exceptions"), imagine that the most general mitts are the largest, and
can thus catch many different kinds of balls. An IOException mitt is large enough

and flexible enough to catch any type of IOException. So if the person on the
fifth floor (say, Fred) has a big ‘ol IOException mitt, he can't help but catch a
FileNotFoundException ball with it. And if the guy (say, Jimmy) on the second
floor is holding a FileNotFoundException mitt, that FileNotFoundException
ball will never get to him, since it will always be stopped by Fred on the fifth floor,
standing there with his big-enough-for-any-IOException mitt.

So what do you do with exceptions that are siblings in the class hierarchy? If one
Exception class is not a subtype or supertype of the other, then the order in which
the catch clauses are placed doesn't matter.

Exception Declaration and the Public Interface
So, how do we know that some method throws an exception that we have to catch?
Just as a method must specify what type and how many arguments it accepts and
what is returned, the exceptions that a method can throw must be declared (unless
the exceptions are subclasses of RuntimeException). The list of thrown exceptions
is part of a method's public interface. The throws keyword is used as follows to list
the exceptions that a method can throw:

void myFunction() throws MyException1, MyException2 {
 // code for the method here
}

This method has a void return type, accepts no arguments, and declares that
it can throw one of two types of exceptions: either type MyException1 or type
MyException2. (Just because the method declares that it throws an exception
doesn't mean it always will. It just tells the world that it might.)

Suppose your method doesn't directly throw an exception, but calls a method that
does. You can choose not to handle the exception yourself and instead just declare it,
as though it were your method that actually throws the exception. If you do declare
the exception that your method might get from another method, and you don't
provide a try/catch for it, then the method will propagate back to the method that
called your method, and either be caught there or continue on to be handled by a
method further down the stack.

Any method that might throw an exception (unless it's a subclass of
RuntimeException) must declare the exception. That includes methods that
aren't actually throwing it directly, but are "ducking" and letting the exception pass
down to the next method in the stack. If you "duck" an exception, it is just as if you
were the one actually throwing the exception. RuntimeException subclasses are

Exception Declaration and the Public Interface (Exam Objectives 2.4 and 2.5) 371

372 Chapter 5: Flow Control, Exceptions, and Assertions

exempt, so the compiler won't check to see if you've declared them. But all non-
RuntimeExceptions are considered "checked" exceptions, because the compiler
checks to be certain you've acknowledged that "bad things could happen here."

Remember this:

Each method must either handle all checked exceptions by supplying a catch clause or
list each unhandled checked exception as a thrown exception.

This rule is referred to as Java's "handle or declare" requirement. (Sometimes
called "catch or declare.")

Look for code that invokes a method declaring an exception, where the
calling method doesn’t handle or declare the checked exception. The following code
(which uses the throw keyword to throw an exception manually—more on this next) has
two big problems that the compiler will prevent:

void doStuff() {
 doMore();
}
void doMore() {
 throw new IOException();
}

First, the doMore() method throws a checked exception, but does not
declare it! But suppose we fi x the doMore() method as follows:

void doMore() throws IOException { … }

The doStuff() method is still in trouble because it, too, must declare the
IOException, unless it handles it by providing a try/catch, with a catch clause that can
take an IOException.

Again, some exceptions are exempt from this rule. An object of type
RuntimeException may be thrown from any method without being specified as
part of the method's public interface (and a handler need not be present). And
even if a method does declare a RuntimeException, the calling method is under
no obligation to handle or declare it. RuntimeException, Error, and all of their
subtypes are unchecked exceptions and unchecked exceptions do not have to be
specified or handled. Here is an example:

import java.io.*;
class Test {
 public int myMethod1() throws EOFException {
 return myMethod2();
 }
 public int myMethod2() throws EOFException {
 // code that actually could throw the exception goes here
 return 1;
 }
}

Let's look at myMethod1(). Because EOFException subclasses IOException and
IOException subclasses Exception, it is a checked exception and must be declared
as an exception that may be thrown by this method. But where will the exception
actually come from? The public interface for method myMethod2() called here
declares that an exception of this type can be thrown. Whether that method actually
throws the exception itself or calls another method that throws it is unimportant to
us; we simply know that we have to either catch the exception or declare that we
throw it. The method myMethod1() does not catch the exception, so it declares that
it throws it. Now let's look at another legal example, myMethod3().

public void myMethod3() {
 // code that could throw a NullPointerException goes here
}

According to the comment, this method can throw a NullPointerException.
Because RuntimeException is the superclass of NullPointerException, it is an
unchecked exception and need not be declared. We can see that myMethod3() does
not declare any exceptions.

Runtime exceptions are referred to as unchecked exceptions. All other exceptions
are checked exceptions, and they don't derive from java.lang.RuntimeException.
A checked exception must be caught somewhere in your code. If you invoke a
method that throws a checked exception but you don't catch the checked exception

Exception Declaration and the Public Interface (Exam Objectives 2.4 and 2.5) 373

374 Chapter 5: Flow Control, Exceptions, and Assertions

somewhere, your code will not compile. That's why they're called checked
exceptions; the compiler checks to make sure that they're handled or declared.
A number of the methods in the Java 2 Standard Edition libraries throw checked
exceptions, so you will often write exception handlers to cope with exceptions
generated by methods you didn't write.

You can also throw an exception yourself, and that exception can be either
an existing exception from the Java API or one of your own. To create your own
exception, you simply subclass Exception (or one of its subclasses) as follows:

class MyException extends Exception { }

And if you throw the exception, the compiler will guarantee that you declare it
as follows:

class TestEx {
 void doStuff() {
 throw new MyException(); // Throw a checked exception
 }
}

The preceding code upsets the compiler:

TestEx.java:6: unreported exception MyException; must be caught
or
declared to be thrown
 throw new MyException();
 ^

When an object of a subtype of Exception is thrown, it must be handled
or declared. These objects are called checked exceptions, and include all exceptions
except those that are subtypes of RuntimeException, which are unchecked exceptions.
Be ready to spot methods that don’t follow the “handle or declare” rule, such as

class MyException extends Exception {
 void someMethod () {
 doStuff();
 }

You need to know how an Error compares with checked and unchecked
exceptions. Objects of type Error are not Exception objects, although they do
represent exceptional conditions. Both Exception and Error share a common
superclass, Throwable, thus both can be thrown using the throw keyword. When an
Error or a subclass of Error is thrown, it's unchecked. You are not required to catch
Error objects or Error subtypes. You can also throw an Error yourself (although
other than AssertionError you probably won't ever want to), and you can catch
one, but again, you probably won't. What, for example, would you actually do if you
got an OutOfMemoryError? It's not like you can tell the garbage collector to run;
you can bet the JVM fought desperately to save itself (and reclaimed all the memory
it could) by the time you got the error. In other words, don't expect the JVM at that
point to say, "Run the garbage collector? Oh, thanks so much for telling me. That
just never occurred to me. Sure, I'll get right on it." Even better, what would you do
if a VirtualMachineError arose? Your program is toast by the time you'd catch the
Error, so there's really no point in trying to catch one of these babies. Just remember,
though, that you can! The following compiles just fine:

Exception Declaration and the Public Interface (Exam Objectives 2.4 and 2.5) 375

 void doStuff() throws MyException {
 try {
 throw new MyException();
 }
 catch(MyException me) {
 throw me;
 }
 }
}

You need to recognize that this code won’t compile. If you try, you’ll get

MyException.java:3: unreported exception MyException; must
be caught or declared to be thrown
doStuff();
 ^

Notice that someMethod() fails to either handle or declare the exception
that can be thrown by doStuff().

376 Chapter 5: Flow Control, Exceptions, and Assertions

class TestEx {
 public static void main (String [] args) {
 badMethod();
 }
 static void badMethod() { // No need to declare an Error
 doStuff();
 }
 static void doStuff() { //No need to declare an Error
 try {
 throw new Error();
 }
 catch(Error me) {
 throw me; // We catch it, but then rethrow it
 }
 }
}

If we were throwing a checked exception rather than Error, then the doStuff()
method would need to declare the exception. But remember, since Error is not a
subtype of Exception, it doesn't need to be declared. You're free to declare it if you
like, but the compiler just doesn't care one way or another when or how the Error
is thrown, or by whom.

ON THE JOB

Because Java has checked exceptions, it's commonly said that Java forces
developers to handle exceptions. Yes, Java forces us to write exception
handlers for each exception that can occur during normal operation, but it's
up to us to make the exception handlers actually do something useful. We
know software managers who melt down when they see a programmer write:

try {
 callBadMethod();
} catch (Exception ex) { }

Notice anything missing? Don't "eat" the exception by catching it without
actually handling it. You won't even be able to tell that the exception occurred,
because you'll never see the stack trace.

Rethrowing the Same Exception
Just as you can throw a new exception from a catch clause, you can also throw the
same exception you just caught. Here's a catch clause that does this:

catch(IOException e) {
 // Do things, then if you decide you can't handle it…
 throw e;
}

All other catch clauses associated with the same try are ignored, if a finally
block exists, it runs, and the exception is thrown back to the calling method (the
next method down the call stack). If you throw a checked exception from a catch
clause, you must also declare that exception! In other words, you must handle and
declare, as opposed to handle or declare. The following example is illegal:

public void doStuff() {
 try {
 // risky IO things
 } catch(IOException ex) {
 // can't handle it
 throw ex; // Can't throw it unless you declare it
 }
}

In the preceding code, the doStuff() method is clearly able to throw a checked
exception—in this case an IOException—so the compiler says, "Well, that's just
peachy that you have a try/catch in there, but it's not good enough. If you might
rethrow the IOException you catch, then you must declare it!"

EXERCISE 5-4

Creating an Exception
In this exercise we attempt to create a custom exception. We won't put in any new
methods (it will have only those inherited from Exception), and because it extends
Exception, the compiler considers it a checked exception. The goal of the program
is to determine whether a command-line argument, representing a particular food
(as a string), is considered bad or OK.

■ Let's first create our exception. We will call it BadFoodException. This
exception will be thrown when a bad food is encountered.

■ Create an enclosing class called MyException and a main() method,
which will remain empty for now.

Rethrowing the Same Exception (Exam Objectives 2.4 and 2.5) 377

378 Chapter 5: Flow Control, Exceptions, and Assertions

■ Create a method called checkFood(). It takes a String argument and
throws our exception if it doesn't like the food it was given. Otherwise, it
tells us it likes the food. You can add any foods you aren't particularly fond of
to the list.

■ Now in the main() method, you'll get the command-line argument out of
the String array, and then pass that String on to the checkFood() meth-
od. Because it's a checked exception, the checkFood() method must declare
it, and the main() method must handle it (using a try/catch). Do not have
main() declare the exception, because if main() ducks the exception, who
else is back there to catch it?

■ As nifty as exception handling is, it's still up to the developer to make
proper use of it. Exception handling makes organizing our code and signaling
problems easy, but the exception handlers still have to be written. You'll find
that even the most complex situations can be handled, and your code will be
reusable, readable, and maintainable.

CERTIFICATION OBJECTIVE

Common Exceptions and Errors
(Exam Objective 2.6)

2.6 Recognize situations that will result in any of the following being thrown:
ArrayIndexOutOfBoundsException, ClassCastException, IllegalArgumentException,
IllegalStateException, NullPointerException, NumberFormatException, AssertionError,
ExceptionInInitializerError, StackOverflowError, or NoClassDefFoundError. Understand
which of these are thrown by the virtual machine and recognize situations in which others
should be thrown programmatically.

Exception handling is another area that the exam creation team decided to expand
for the SCJP 5 exam. This section discusses the aspects of exceptions that were
added for this new version. The intention of Objective 2.6 is to make sure that you
are familiar with some of the most common exceptions and errors you'll encounter
as a Java programmer.

This is another one of those objectives that will turn up all through the real
exam (does "An exception is thrown at runtime" ring a bell?), so make sure this
section gets a lot of your attention.

Where Exceptions Come From
Jump back a page and take a look at the last sentence of Objective 2.6. It's
important to understand what causes exceptions and errors, and where they come
from. For the purposes of exam preparation, let's define two broad categories of
exceptions and errors:

■ JVM exceptions Those exceptions or errors that are either exclusively
or most logically thrown by the JVM.

■ Programmatic exceptions Those exceptions that are thrown explicitly
by application and/or API programmers.

JVM Thrown Exceptions
Let's start with a very common exception, the NullPointerException. As we
saw in Chapter 3, this exception occurs when you attempt to access an object
using a reference variable with a current value of null. There's no way that
the compiler can hope to find these problems before runtime. Let's look at the
following:

Common Exceptions and Errors (Exam Objective 2.6) 379

The questions from this section are likely to be along the lines of, "Here’s
some code that just did something bad, which exception will be thrown?"

Throughout the exam, questions will present some code and ask you to
determine whether the code will run, or whether an exception will be thrown. Since these
questions are so common, understanding the causes for these exceptions is critical to
your success.

380 Chapter 5: Flow Control, Exceptions, and Assertions

class NPE {
 static String s;
 public static void main(String [] args) {
 System.out.println(s.length());
 }
}

Surely, the compiler can find the problem with that tiny little program! Nope,
you're on your own. The code will compile just fine, and the JVM will throw a
NullPointerException when it tries to invoke the length() method.

Earlier in this chapter we discussed the call stack. As you recall, we used the
convention that main() would be at the bottom of the call stack, and that as
main() invokes another method, and that method invokes another, and so on,
the stack grows upward. Of course the stack resides in memory, and even if your
OS gives you a gigabyte of RAM for your program, it's still a finite amount. It's
possible to grow the stack so large that the OS runs out of space to store the call
stack. When this happens you get (wait for it...), a StackOverflowError. The
most common way for this to occur is to create a recursive method. A recursive
method is one that invokes itself in the method body. While that may sound
weird, it's a very common and useful technique for such things as searching and
sorting algorithms. Take a look at this code:

void go() { // recursion gone bad
 go();
}

As you can see, if you ever make the mistake of invoking the go()
method, your program will fall into a black hole; go() invoking go()
invoking go(), until, no matter how much memory you have, you'll get a
StackOverflowError. Again, only the JVM knows when this moment occurs,
and the JVM will be the source of this error.

Programmatically Thrown Exceptions
Now let's look at programmatically thrown exceptions. Remember we defined
"programmatically" as meaning something like this:

 Created by an application and/or API developer.

For instance, many classes in the Java API have methods that take String
arguments, and convert these Strings into numeric primitives. A good example
of these classes are the so-called "wrapper classes" that we studied in Chapter 3.

At some point long ago, some programmer wrote the java.lang.
Integer class, and created methods like parseInt() and valueOf().
That programmer wisely decided that if one of these methods was passed a
String that could not be converted into a number, the method should throw
a NumberFormatException. The partially implemented code might look
something like this:

 int parseInt(String s) throws NumberFormatException {
 boolean parseSuccess = false;
 int result = 0;
 // do complicated parsing
 if (!parseSuccess) // if the parsing failed
 throw new NumberFormatException();
 return result;
 }

Other examples of programmatic exceptions include an AssertionError (okay,
it's not an exception, but it IS thrown programmatically), and throwing an
IllegalArgumentException. In fact, our mythical API developer could have
used IllegalArgumentException for her parseInt() method. But it turns
out that NumberFormatException extends IllegalArgumentException, and
is a little more precise, so in this case, using NumberFormatException supports
the notion we discussed earlier: that when you have an exception hierarchy, you
should use the most precise exception that you can.

Of course, as we discussed earlier, you can also make up your very own special,
custom exceptions, and throw them whenever you want to. These homemade
exceptions also fall into the category of "programmatically thrown exceptions."

A Summary of the Exam's Exceptions and Errors
Objective 2.6 lists ten specific exceptions and errors. In this section we discussed
the StackOverflowError. The other nine exceptions and errors listed in the
objective are covered elsewhere in this book. Table 5-2 summarizes this list and
provides chapter references to the exceptions and errors we did not discuss here.

Common Exceptions and Errors (Exam Objective 2.6) 381

Exception
(Chapter Location)

Description Typically
Thrown

ArrayIndexOutOfBoundsException
(Chapter 3, "Assignments")

Thrown when attempting to access an array
with an invalid index value (either negative
or beyond the length of the array).

By the JVM

ClassCastException
(Chapter 2, "Object Orientation")

Thrown when attempting to cast a reference
variable to a type that fails the IS-A test.

By the JVM

IllegalArgumentException
(This chapter)

Thrown when a method receives an argument
formatted differently than the method
expects.

Programmatically

IllegalStateException
(Chapter 6, "Formatting")

Thrown when the state of the environment
doesn’t match the operation being attempted,
e.g., using a Scanner that’s been closed.

Programmatically

NullPointerException
(Chapter 3, "Assignments")

Thrown when attempting to access an object
with a reference variable whose current value
is null.

By the JVM

NumberFormatException
(Chapter 3, "Assignments")

Thrown when a method that converts a
String to a number receives a String that it
cannot convert.

Programmatically

AssertionError
(This chapter)

Thrown when a statement’s boolean test
returns false.

Programmatically

ExceptionInInitializerError
(Chapter 3, "Assignments")

Thrown when attempting to initialize a static
variable or an initialization block.

By the JVM

StackOverflowError
(This chapter)

Typically thrown when a method recurses
too deeply. (Each invocation is added to the
stack.)

By the JVM

NoClassDefFoundError
(Chapter 10, "Development")

Thrown when the JVM can’t find a class it
needs, because of a command-line error, a
classpath issue, or a missing .class file.

By the JVM

 TABLE 5-2 Descriptions and Sources of Common Exceptions.

382 Chapter 5: Flow Control, Exceptions, and Assertions

CERTIFICATION OBJECTIVE

Working with the Assertion Mechanism
(Exam Objective 2.3)

2.3 Develop code that makes use of assertions, and distinguish appropriate from
inappropriate uses of assertions.

You know you're not supposed to make assumptions, but you can't help it when
you're writing code. You put them in comments:

if (x > 2 && y) {
 // do something
} else if (x < 2 || y) {
 // do something
} else {
 // x must be 2
 // do something else
}

You write print statements with them:

while (true) {
 if (x > 2) {
 break;
 }
 System.out.print("If we got here " +
 "something went horribly wrong");
}

Added to the Java language beginning with version 1.4, assertions let you test your
assumptions during development, without the expense (in both your time and
program overhead) of writing exception handlers for exceptions that you assume
will never happen once the program is out of development and fully deployed.

Starting with exam 310-035 (version 1.4 of the Sun Certified Java Programmer
exam) and continuing through to the current exam 310-065 (SCJP 6), you're
expected to know the basics of how assertions work, including how to enable them,
how to use them, and how not to use them.

Working with the Assertion Mechanism (Exam Objective 2.3) 383

384 Chapter 5: Flow Control, Exceptions, and Assertions

Assertions Overview
Suppose you assume that a number passed into a method (say, methodA())
will never be negative. While testing and debugging, you want to validate your
assumption, but you don't want to have to strip out print statements, runtime
exception handlers, or if/else tests when you're done with development. But
leaving any of those in is, at the least, a performance hit. Assertions to the rescue!
Check out the following code:

private void methodA(int num) {
 if (num >= 0) {
 useNum(num + x);
 } else { // num must be < 0
 // This code should never be reached!
 System.out.println("Yikes! num is a negative number! "
 + num);
 }
}

Because you're so certain of your assumption, you don't want to take the time (or
program performance hit) to write exception-handling code. And at runtime, you
don't want the if/else either because if you do reach the else condition, it means
your earlier logic (whatever was running prior to this method being called) is flawed.

Assertions let you test your assumptions during development, but the assertion
code basically evaporates when the program is deployed, leaving behind no overhead
or debugging code to track down and remove. Let's rewrite methodA() to validate
that the argument was not negative:

private void methodA(int num) {
 assert (num>=0); // throws an AssertionError
 // if this test isn't true
 useNum(num + x);
}

Not only do assertions let your code stay cleaner and tighter, but because assertions
are inactive unless specifically "turned on" (enabled), the code will run as though it
were written like this:

private void methodA(int num) {
 useNum(num + x); // we've tested this;
 // we now know we're good here
}

Assertions work quite simply. You always assert that something is true. If it is, no
problem. Code keeps running. But if your assertion turns out to be wrong (false),
then a stop-the-world AssertionError is thrown (that you should never, ever
handle!) right then and there, so you can fix whatever logic flaw led to the problem.

Assertions come in two flavors: really simple and simple, as follows:

Really simple:

private void doStuff() {
 assert (y > x);
 // more code assuming y is greater than x
}

Simple:

private void doStuff() {
 assert (y > x): "y is " + y + " x is " + x;
 // more code assuming y is greater than x
}

The difference between the two is that the simple version adds a second expression,
separated from the first (boolean expression) by a colon, this expression's
string value is added to the stack trace. Both versions throw an immediate
AssertionError, but the simple version gives you a little more debugging help
while the really simple version simply tells you only that your assumption was false.

Assertions are typically enabled when an application is being tested and
debugged, but disabled when the application is deployed. The assertions are
still in the code, although ignored by the JVM, so if you do have a deployed
application that starts misbehaving, you can always choose to enable
assertions in the field for additional testing.

Assertion Expression Rules
Assertions can have either one or two expressions, depending on whether you're
using the "simple" or the "really simple." The first expression must always result in
a boolean value! Follow the same rules you use for if and while tests. The whole
point is to assert aTest, which means you're asserting that aTest is true. If it is
true, no problem. If it's not true, however, then your assumption was wrong and
you get an AssertionError.

Assertions Overview (Exam Objective 2.3) 385

386 Chapter 5: Flow Control, Exceptions, and Assertions

The second expression, used only with the simple version of an assert
statement, can be anything that results in a value. Remember, the second expression
is used to generate a String message that displays in the stack trace to give you a
little more debugging information. It works much like System.out.println() in
that you can pass it a primitive or an object, and it will convert it into a String
representation. It must resolve to a value!

The following code lists legal and illegal expressions for both parts of an assert
statement. Remember, expression2 is used only with the simple assert statement,
where the second expression exists solely to give you a little more debugging detail:

void noReturn() { }
int aReturn() { return 1; }
void go() {
 int x = 1;
 boolean b = true;

 // the following six are legal assert statements
 assert(x == 1);
 assert(b);
 assert true;
 assert(x == 1) : x;
 assert(x == 1) : aReturn();
 assert(x == 1) : new ValidAssert();

 // the following six are ILLEGAL assert statements
 assert(x = 1); // none of these are booleans
 assert(x);
 assert 0;
 assert(x == 1) : ; // none of these return a value
 assert(x == 1) : noReturn();
 assert(x == 1) : ValidAssert va;
}

If you see the word “expression” in a question about assertions, and the
question doesn’t specify whether it means expression1 (the boolean test) or expression2
(the value to print in the stack trace), then always assume the word "expression" refers
to expression1, the boolean test. For example, consider the following question:

Enabling Assertions
If you want to use assertions, you have to think first about how to compile with
assertions in your code, and then about how to run with assertions enabled. Both
require version 1.4 or greater, and that brings us to the first issue: how to compile
with assertions in your code.

Identifier vs. Keyword
Prior to version 1.4, you might very well have written code like this:

int assert = getInitialValue();
if (assert == getActualResult()) {
 // do something
}

Notice that in the preceding code, assert is used as an identifier. That's not a
problem prior to 1.4. But you cannot use a keyword/reserved word as an identifier, and
beginning with version 1.4, assert is a keyword. The bottom line is this:

You can use assert as a keyword or as an identifier, but not both.

If for some reason you're using a Java 1.4 compiler, and if you're using assert
as a keyword (in other words, you're actually trying to assert something in
your code), then you must explicitly enable assertion-awareness at compile
time, as follows:

javac -source 1.4 com/geeksanonymous/TestClass.java

Enabling Assertions (Exam Objective 2.3) 387

 An assert expression must result in a boolean value, true or false?

Assume that the word 'expression' refers to expression1 of an assert,
so the question statement is correct. If the statement were referring to expression2,
however, the statement would not be correct, since expression2 can have a result of any
value, not just a boolean.

388 Chapter 5: Flow Control, Exceptions, and Assertions

You can read that as "compile the class TestClass, in the directory
com/geeksanonymous, and do it in the 1.4 way, where assert is a keyword."

Use Version 6 of java and javac
As far as the exam is concerned, you'll ALWAYS be using version 6 of the Java
compiler (javac), and version 6 of the Java application launcher (java). You might
see questions about older versions of source code, but those questions will always
be in the context of compiling and launching old code with the current versions of
javac and java.

Compiling Assertion-Aware Code
The Java 6 compiler will use the assert keyword by default. Unless you tell it
otherwise, the compiler will generate an error message if it finds the word assert
used as an identifier. However, you can tell the compiler that you're giving it an old
piece of code to compile, and that it should pretend to be an old compiler! (More
about compiler commands in Chapter 10.) Let's say you've got to make a quick fix to
an old piece of 1.3 code that uses assert as an identifier. At the command line you
can type

javac -source 1.3 OldCode.java

The compiler will issue warnings when it discovers the word assert used as an
identifier, but the code will compile and execute. Suppose you tell the compiler that
your code is version 1.4 or later, for instance:

javac -source 1.4 NotQuiteSoOldCode.java

In this case, the compiler will issue errors when it discovers the word assert used as
an identifier.

If you want to tell the compiler to use Java 6 rules you can do one of three
things: omit the -source option, which is the default, or add one of two source
options:

 -source 1.6 or -source 6.

If you want to use assert as an identifier in your code, you MUST compile using
the -source 1.3 option. Table 5-3 summarizes how the Java 6 compiler will react
to assert as either an identifier or a keyword.

Running with Assertions
Here's where it gets cool. Once you've written your assertion-aware code (in
other words, code that uses assert as a keyword, to actually perform assertions at
runtime), you can choose to enable or disable your assertions at runtime! Remember,
assertions are disabled by default.

Enabling Assertions at Runtime
You enable assertions at runtime with

java -ea com.geeksanonymous.TestClass

or

java -enableassertions com.geeksanonymous.TestClass

The preceding command-line switches tell the JVM to run with assertions enabled.

Command Line If assert Is an Identifier If assert Is a Keyword

javac -source 1.3 TestAsserts.java Code compiles with warnings. Compilation fails.

javac -source 1.4 TestAsserts.java Compilation fails. Code compiles.

javac -source 1.5 TestAsserts.java Compilation fails. Code compiles.

javac -source 5 TestAsserts.java Compilation fails. Code compiles.

javac -source 1.6 TestAsserts.java Compilation fails. Code compiles.

javac -source 6 TestAsserts.java Compilation fails. Code compiles.

javac TestAsserts.java Compilation fails. Code compiles.

 TABLE 5-3 Using Java 6 to Compile Code That Uses assert as an Identifier or a Keyword

Enabling Assertions (Exam Objective 2.3) 389

390 Chapter 5: Flow Control, Exceptions, and Assertions

Disabling Assertions at Runtime
You must also know the command-line switches for disabling assertions,

java -da com.geeksanonymous.TestClass

or

java -disableassertions com.geeksanonymous.TestClass

Because assertions are disabled by default, using the disable switches might seem
unnecessary. Indeed, using the switches the way we do in the preceding example just
gives you the default behavior (in other words, you get the same result regardless
of whether you use the disabling switches). But…you can also selectively enable
and disable assertions in such a way that they're enabled for some classes and/or
packages, and disabled for others, while a particular program is running.

Selective Enabling and Disabling
The command-line switches for assertions can be used in various ways:

■ With no arguments (as in the preceding examples) Enables or disables
assertions in all classes, except for the system classes.

■ With a package name Enables or disables assertions in the package speci-
fied, and any packages below this package in the same directory hierarchy
(more on that in a moment).

■ With a class name Enables or disables assertions in the class specified.

You can combine switches to, say, disable assertions in a single class, but keep

them enabled for all others, as follows:

java -ea -da:com.geeksanonymous.Foo

The preceding command line tells the JVM to enable assertions in general,
but disable them in the class com.geeksanonymous.Foo. You can do the same
selectivity for a package as follows:

java -ea -da:com.geeksanonymous...

The preceding command line tells the JVM to enable assertions in general, but
disable them in the package com.geeksanonymous, and all of its subpackages! You
may not be familiar with the term subpackages, since there wasn't much use of that
term prior to assertions. A subpackage is any package in a subdirectory of the named
package. For example, look at the following directory tree:

com
 |_geeksanonymous
 |_Foo
 |_twelvesteps
 |_StepOne
 |_StepTwo

This tree lists three directories,

com
geeksanonymous
twelvesteps
and three classes:
com.geeksanonymous.Foo
com.geeksanonymous.twelvesteps.StepOne
com.geeksanonymous.twelvesteps.StepTwo

The subpackage of com.geeksanonymous is the twelvesteps package. Remember
that in Java, the com.geeksanonymous.twelvesteps package is treated as a
completely distinct package that has no relationship with the packages above it
(in this example, the com.geeksanonymous package), except they just happen to
share a couple of directories. Table 5-4 lists examples of command-line switches for
enabling and disabling assertions.

Enabling Assertions (Exam Objective 2.3) 391

Command-Line Example What It Means

java -ea
java -enableassertions

Enable assertions.

java -da
java -disableassertions

Disable assertions (the default behavior of Java 6).

java -ea:com.foo.Bar Enable assertions in class com.foo.Bar.

java -ea:com.foo... Enable assertions in package com.foo and any of its subpackages.

java -ea -dsa Enable assertions in general, but disable assertions in system classes.

java -ea -da:com.foo... Enable assertions in general, but disable assertions in package
com.foo and any of its subpackages.

 TABLE 5-4 Assertion Command-Line Switches

392 Chapter 5: Flow Control, Exceptions, and Assertions

Using Assertions Appropriately
Not all legal uses of assertions are considered appropriate. As with so much of Java,
you can abuse the intended use of assertions, despite the best efforts of Sun's Java
engineers to discourage you from doing so. For example, you're never supposed
to handle an assertion failure. That means you shouldn't catch it with a catch
clause and attempt to recover. Legally, however, AssertionError is a subclass
of Throwable, so it can be caught. But just don't do it! If you're going to try to
recover from something, it should be an exception. To discourage you from trying
to substitute an assertion for an exception, the AssertionError doesn't provide
access to the object that generated it. All you get is the String message.

So who gets to decide what's appropriate? Sun. The exam uses Sun's "official"
assertion documentation to define appropriate and inappropriate uses.

Don't Use Assertions to Validate Arguments to a Public Method
The following is an inappropriate use of assertions:

public void doStuff(int x) {
 assert (x > 0); // inappropriate !
 // do things with x
}

A public method might be called from code that you don't control (or from code
you have never seen). Because public methods are part of your interface to the
outside world, you're supposed to guarantee that any constraints on the arguments
will be enforced by the method itself. But since assertions aren't guaranteed to
actually run (they're typically disabled in a deployed application), the enforcement
won't happen if assertions aren't enabled. You don't want publicly accessible code
that works only conditionally, depending on whether assertions are enabled.

If you see the word "appropriate" on the exam, do not mistake that for
"legal." "Appropriate" always refers to the way in which something is supposed to be
used, according to either the developers of the mechanism or best practices offi cially
embraced by Sun. If you see the word “correct” in the context of assertions, as in, “Line
3 is a correct use of assertions,” you should also assume that correct is referring to how
assertions SHOULD be used rather than how they legally COULD be used.

If you need to validate public method arguments, you'll probably use exceptions
to throw, say, an IllegalArgumentException if the values passed to the public
method are invalid.

Do Use Assertions to Validate Arguments to a Private Method
If you write a private method, you almost certainly wrote (or control) any code
that calls it. When you assume that the logic in code calling your private method
is correct, you can test that assumption with an assertion as follows:

private void doMore(int x) {
 assert (x > 0);
 // do things with x
}

The only difference that matters between the preceding example and the one before
it is the access modifier. So, do enforce constraints on private methods' arguments,
but do not enforce constraints on public methods. You're certainly free to compile
assertion code with an inappropriate validation of public arguments, but for the
exam (and real life) you need to know that you shouldn't do it.

Don't Use Assertions to Validate Command-Line Arguments
This is really just a special case of the "Do not use assertions to validate arguments to
a public method" rule. If your program requires command-line arguments, you'll
probably use the exception mechanism to enforce them.

Do Use Assertions, Even in Public Methods, to Check for Cases
that You Know Are Never, Ever Supposed to Happen
This can include code blocks that should never be reached, including the default of
a switch statement as follows:

switch(x) {
 case 1: y = 3; break;
 case 2: y = 9; break;
 case 3: y = 27; break;
 default: assert false; // we're never supposed to get here!
}

If you assume that a particular code block won't be reached, as in the preceding
example where you assert that x must be either 1, 2, or 3, then you can use assert
false to cause an AssertionError to be thrown immediately if you ever do reach
that code. So in the switch example, we're not performing a boolean test—we've

Using Assertions Appropriately (Exam Objective 2.3) 393

394 Chapter 5: Flow Control, Exceptions, and Assertions

already asserted that we should never be there, so just getting to that point is an
automatic failure of our assertion/assumption.

Don't Use Assert Expressions that Can Cause Side Effects!
The following would be a very bad idea:

public void doStuff() {
 assert (modifyThings());
 // continues on
}
public boolean modifyThings() {
 y = x++;
 return true;
}

The rule is, an assert expression should leave the program in the same state it was
in before the expression! Think about it. assert expressions aren't guaranteed to
always run, so you don't want your code to behave differently depending on whether
assertions are enabled. Assertions must not cause any side effects. If assertions are
enabled, the only change to the way your program runs is that an AssertionError
can be thrown if one of your assertions (think: assumptions) turns out to be false.

Using assertions that cause side effects can cause some of the most maddening
and hard-to-find bugs known to man! When a hot tempered Q.A. analyst is
screaming at you that your code doesn't work, trotting out the old "well it
works on MY machine" excuse won't get you very far.

CERTIFICATION SUMMARY
This chapter covered a lot of ground, all of which involves ways of controlling your
program flow, based on a conditional test. First you learned about if and switch
statements. The if statement evaluates one or more expressions to a boolean
result. If the result is true, the program will execute the code in the block that is
encompassed by the if. If an else statement is used and the if expression evaluates
to false, then the code following the else will be performed. If no else block is
defined, then none of the code associated with the if statement will execute.

You also learned that the switch statement can be used to replace multiple if-
else statements. The switch statement can evaluate integer primitive types that
can be implicitly cast to an int (those types are byte, short, int, and char), or it
can evaluate enums.

 At runtime, the JVM will try to find a match between the expression in the
switch statement and a constant in a corresponding case statement. If a match
is found, execution will begin at the matching case, and continue on from there,
executing code in all the remaining case statements until a break statement is
found or the end of the switch statement occurs. If there is no match, then the
default case will execute, if there is one.

You've learned about the three looping constructs available in the Java language.
These constructs are the for loop (including the basic for and the enhanced
for which is new to Java 6), the while loop, and the do loop. In general, the for
loop is used when you know how many times you need to go through the loop. The
while loop is used when you do not know how many times you want to go through,
whereas the do loop is used when you need to go through at least once. In the for
loop and the while loop, the expression will have to evaluate to true to get inside
the block and will check after every iteration of the loop. The do loop does not
check the condition until after it has gone through the loop once. The major benefit
of the for loop is the ability to initialize one or more variables and increment or
decrement those variables in the for loop definition.

The break and continue statements can be used in either a labeled or unlabeled
fashion. When unlabeled, the break statement will force the program to stop
processing the innermost looping construct and start with the line of code following
the loop. Using an unlabeled continue command will cause the program to stop
execution of the current iteration of the innermost loop and proceed with the next
iteration. When a break or a continue statement is used in a labeled manner, it
will perform in the same way, with one exception: the statement will not apply to
the innermost loop; instead, it will apply to the loop with the label. The break
statement is used most often in conjunction with the switch statement. When
there is a match between the switch expression and the case constant, the code
following the case constant will be performed. To stop execution, a break is needed.

You've seen how Java provides an elegant mechanism in exception handling.
Exception handling allows you to isolate your error-correction code into separate
blocks so that the main code doesn't become cluttered by error-checking code.
Another elegant feature allows you to handle similar errors with a single error-
handling block, without code duplication. Also, the error handling can be deferred
to methods further back on the call stack.

You learned that Java's try keyword is used to specify a guarded region—a block
of code in which problems might be detected. An exception handler is the code that
is executed when an exception occurs. The handler is defined by using Java's catch
keyword. All catch clauses must immediately follow the related try block. Java
also provides the finally keyword. This is used to define a block of code that is
always executed, either immediately after a catch clause completes or immediately

Certifi cation Summary 395

396 Chapter 5: Flow Control, Exceptions, and Assertions

after the associated try block in the case that no exception was thrown (or there
was a try but no catch). Use finally blocks to release system resources and to
perform any cleanup required by the code in the try block. A finally block is not
required, but if there is one it must immediately follow the last catch. (If there is
no catch block, the finally block must immediately follow the try block.) It's
guaranteed to be called except when the try or catch issues a System.exit().

An exception object is an instance of class Exception or one of its subclasses.
The catch clause takes, as a parameter, an instance of an object of a type derived
from the Exception class. Java requires that each method either catches any
checked exception it can throw or else declares that it throws the exception. The
exception declaration is part of the method's public interface. To declare that an
exception may be thrown, the throws keyword is used in a method definition, along
with a list of all checked exceptions that might be thrown.

Runtime exceptions are of type RuntimeException (or one of its subclasses).
These exceptions are a special case because they do not need to be handled or
declared, and thus are known as "unchecked" exceptions. Errors are of type
java.lang.Error or its subclasses, and like runtime exceptions, they do not need
to be handled or declared. Checked exceptions include any exception types that
are not of type RuntimeException or Error. If your code fails to either handle a
checked exception or declare that it is thrown, your code won't compile. But with
unchecked exceptions or objects of type Error, it doesn't matter to the compiler
whether you declare them or handle them, do nothing about them, or do some
combination of declaring and handling. In other words, you're free to declare them
and handle them, but the compiler won't care one way or the other. It's not good
practice to handle an Error, though, because you can rarely recover from one.

Exceptions can be generated by the JVM, or by a programmer.
 Assertions, added to the language in version 1.4, are a useful debugging tool. You
learned how you can use them for testing, by enabling them, but keep them disabled
when the application is deployed. If you have older Java code that uses the
word assert as an identifier, then you won't be able to use assertions, and you
must recompile your older code using the -source 1.3 flag. Remember that as
of Java 6, assertions are compiled as a keyword by default, but must be enabled
explicitly at runtime.

You learned how assert statements always include a boolean expression, and
if the expression is true the code continues on, but if the expression is false,
an AssertionError is thrown. If you use the two-expression assert statement,
then the second expression is evaluated, converted to a String representation and
inserted into the stack trace to give you a little more debugging info. Finally, you
saw why assertions should not be used to enforce arguments to public methods, and
why assert expressions must not contain side effects!

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
You might want to loop through them several times.

Writing Code Using if and switch Statements (Obj. 2.1)

❑ The only legal expression in an if statement is a boolean expression, in
other words an expression that resolves to a boolean or a Boolean variable.

❑ Watch out for boolean assignments (=) that can be mistaken for boolean
equality (==) tests:

 boolean x = false;
if (x = true) { } // an assignment, so x will always be true!

❑ Curly braces are optional for if blocks that have only one conditional state-
ment. But watch out for misleading indentations.

❑ switch statements can evaluate only to enums or the byte, short, int, and
char data types. You can't say,

 long s = 30;
 switch(s) { }

❑ The case constant must be a literal or final variable, or a constant
expression, including an enum. You cannot have a case that includes a non-
final variable, or a range of values.

❑ If the condition in a switch statement matches a case constant, execution
will run through all code in the switch following the matching case
statement until a break statement or the end of the switch statement is
encountered. In other words, the matching case is just the entry point into
the case block, but unless there's a break statement, the matching case is
not the only case code that runs.

❑ The default keyword should be used in a switch statement if you want to
run some code when none of the case values match the conditional value.

❑ The default block can be located anywhere in the switch block, so if no
case matches, the default block will be entered, and if the default does
not contain a break, then code will continue to execute (fall-through) to the
end of the switch or until the break statement is encountered.

Two-Minute Drill 397

✓

398 Chapter 5: Flow Control, Exceptions, and Assertions

Writing Code Using Loops (Objective 2.2)

❑ A basic for statement has three parts: declaration and/or initialization, bool-
ean evaluation, and the iteration expression.

❑ If a variable is incremented or evaluated within a basic for loop, it must be
declared before the loop, or within the for loop declaration.

❑ A variable declared (not just initialized) within the basic for loop declara-
tion cannot be accessed outside the for loop (in other words, code below the
for loop won't be able to use the variable).

❑ You can initialize more than one variable of the same type in the first part
of the basic for loop declaration; each initialization must be separated by a
comma.

❑ An enhanced for statement (new as of Java 6), has two parts, the declaration
and the expression. It is used only to loop through arrays or collections.

❑ With an enhanced for, the expression is the array or collection through
which you want to loop.

❑ With an enhanced for, the declaration is the block variable, whose type is
compatible with the elements of the array or collection, and that variable
contains the value of the element for the given iteration.

❑ You cannot use a number (old C-style language construct) or anything that
does not evaluate to a boolean value as a condition for an if statement or
looping construct. You can't, for example, say if(x), unless x is a boolean
variable.

❑ The do loop will enter the body of the loop at least once, even if the test
condition is not met.

 Using break and continue (Objective 2.2)

❑ An unlabeled break statement will cause the current iteration of the inner-
most looping construct to stop and the line of code following the loop to run.

❑ An unlabeled continue statement will cause: the current iteration of the
innermost loop to stop, the condition of that loop to be checked, and if
the condition is met, the loop to run again.

❑ If the break statement or the continue statement is labeled, it will cause
similar action to occur on the labeled loop, not the innermost loop.

Handling Exceptions (Objectives 2.4, 2.5, and 2.6)

❑ Exceptions come in two flavors: checked and unchecked.

❑ Checked exceptions include all subtypes of Exception, excluding classes
that extend RuntimeException.

❑ Checked exceptions are subject to the handle or declare rule; any method
that might throw a checked exception (including methods that invoke meth-
ods that can throw a checked exception) must either declare the exception
using throws, or handle the exception with an appropriate try/catch.

❑ Subtypes of Error or RuntimeException are unchecked, so the compiler
doesn't enforce the handle or declare rule. You're free to handle them, or to
declare them, but the compiler doesn't care one way or the other.

❑ If you use an optional finally block, it will always be invoked, regardless of
whether an exception in the corresponding try is thrown or not, and regard-
less of whether a thrown exception is caught or not.

❑ The only exception to the finally-will-always-be-called rule is that a fi-
nally will not be invoked if the JVM shuts down. That could happen if code
from the try or catch blocks calls System.exit().

❑ Just because finally is invoked does not mean it will complete. Code in the
finally block could itself raise an exception or issue a System.exit().

❑ Uncaught exceptions propagate back through the call stack, starting from
the method where the exception is thrown and ending with either the first
method that has a corresponding catch for that exception type or a JVM
shutdown (which happens if the exception gets to main(), and main() is
"ducking" the exception by declaring it).

❑ You can create your own exceptions, normally by extending Exception or
one of its subtypes. Your exception will then be considered a checked excep-
tion, and the compiler will enforce the handle or declare rule for that exception.

❑ All catch blocks must be ordered from most specific to most general.
If you have a catch clause for both IOException and Exception, you must
put the catch for IOException first in your code. Otherwise, the IOExcep-
tion would be caught by catch(Exception e), because a catch argument
can catch the specified exception or any of its subtypes! The compiler will
stop you from defining catch clauses that can never be reached.

❑ Some exceptions are created by programmers, some by the JVM.

Two-Minute Drill 399

400 Chapter 5: Flow Control, Exceptions, and Assertions

 Working with the Assertion Mechanism (Objective 2.3)

❑ Assertions give you a way to test your assumptions during development and
debugging.

❑ Assertions are typically enabled during testing but disabled during deployment.

❑ You can use assert as a keyword (as of version 1.4) or an identifier, but not
both together. To compile older code that uses assert as an identifier
(for example, a method name), use the -source 1.3 command-line flag
to javac.

❑ Assertions are disabled at runtime by default. To enable them, use a com-
mand-line flag -ea or -enableassertions.

❑ Selectively disable assertions by using the -da or -disableassertions flag.

❑ If you enable or disable assertions using the flag without any arguments,
you're enabling or disabling assertions in general. You can combine enabling
and disabling switches to have assertions enabled for some classes and/or
packages, but not others.

❑ You can enable and disable assertions on a class-by-class basis, using the fol-
lowing syntax:
java -ea -da:MyClass TestClass

❑ You can enable and disable assertions on a package-by-package basis, and any
package you specify also includes any subpackages (packages further down the
directory hierarchy).

❑ Do not use assertions to validate arguments to public methods.

❑ Do not use assert expressions that cause side effects. Assertions aren't guar-
anteed to always run, and you don't want behavior that changes depending
on whether assertions are enabled.

❑ Do use assertions—even in public methods—to validate that a particular
code block will never be reached. You can use assert false; for code that
should never be reached, so that an assertion error is thrown immediately if
the assert statement is executed.

Self Test 401

SELF TEST

 1. Given two files:

1. class One {
2. public static void main(String[] args) {
3. int assert = 0;
4. }
5. }

1. class Two {
2. public static void main(String[] args) {
3. assert(false);
4. }
5. }

 And the four command-line invocations:

javac -source 1.3 One.java
javac -source 1.4 One.java
javac -source 1.3 Two.java
javac -source 1.4 Two.java

 What is the result? (Choose all that apply.)
 A. Only one compilation will succeed
 B. Exactly two compilations will succeed
 C. Exactly three compilations will succeed
 D. All four compilations will succeed
 E. No compiler warnings will be produced
 F. At least one compiler warning will be produced

 2. Given:

class Plane {
 static String s = "-";
 public static void main(String[] args) {
 new Plane().s1();
 System.out.println(s);
 }
 void s1() {
 try { s2(); }
 catch (Exception e) { s += "c"; }
 }
 void s2() throws Exception {

 s3(); s += "2";
 s3(); s += "2b";
 }
 void s3() throws Exception {
 throw new Exception();
 }
}

 What is the result?

 A. -

 B. -c

 C. -c2

 D. -2c

 E. -c22b

 F. -2c2b

 G. -2c2bc

 H. Compilation fails

 3. Given:

try { int x = Integer.parseInt("two"); }

 Which could be used to create an appropriate catch block? (Choose all that apply.)
 A. ClassCastException

 B. IllegalStateException

 C. NumberFormatException

 D. IllegalArgumentException

 E. ExceptionInInitializerError

 F. ArrayIndexOutOfBoundsException

 4. Which are true? (Choose all that apply.)

 A. It is appropriate to use assertions to validate arguments to methods marked public

 B. It is appropriate to catch and handle assertion errors

 C. It is NOT appropriate to use assertions to validate command-line arguments

 D. It is appropriate to use assertions to generate alerts when you reach code that should not
be reachable

 E. It is NOT appropriate for assertions to change a program’s state

402 Chapter 5: Flow Control, Exceptions, and Assertions

Self Test 403

 5. Given:

1. class Loopy {
2. public static void main(String[] args) {
3. int[] x = {7,6,5,4,3,2,1};
4. // insert code here
5. System.out.print(y + " ");
6. }
7. }
8. }

 Which, inserted independently at line 4, compiles? (Choose all that apply.)

 A. for(int y : x) {

 B. for(x : int y) {

 C. int y = 0; for(y : x) {

 D. for(int y=0, z=0; z<x.length; z++) { y = x[z];

 E. for(int y=0, int z=0; z<x.length; z++) { y = x[z];

 F. int y = 0; for(int z=0; z<x.length; z++) { y = x[z];

 6. Given:

class Emu {
 static String s = "-";
 public static void main(String[] args) {
 try {
 throw new Exception();
 } catch (Exception e) {
 try {
 try { throw new Exception();
 } catch (Exception ex) { s += "ic "; }
 throw new Exception(); }
 catch (Exception x) { s += "mc "; }
 finally { s += "mf "; }
 } finally { s += "of "; }
 System.out.println(s);
} }

 What is the result?

 A. -ic of

 B. -mf of

 C. -mc mf

404 Chapter 5: Flow Control, Exceptions, and Assertions

 D. -ic mf of

 E. -ic mc mf of

 F. -ic mc of mf

 G. Compilation fails

 7. Given:

 3. class SubException extends Exception { }
 4. class SubSubException extends SubException { }
 5.
 6. public class CC { void doStuff() throws SubException { } }
 7.
 8. class CC2 extends CC { void doStuff() throws SubSubException { } }
 9.
10. class CC3 extends CC { void doStuff() throws Exception { } }
11.
12. class CC4 extends CC { void doStuff(int x) throws Exception { } }
13.
14. class CC5 extends CC { void doStuff() { } }

 What is the result? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails due to an error on line 8

 C. Compilation fails due to an error on line 10

 D. Compilation fails due to an error on line 12

 E. Compilation fails due to an error on line 14

 8. Given:

 3. public class Ebb {
 4. static int x = 7;
 5. public static void main(String[] args) {
 6. String s = "";
 7. for(int y = 0; y < 3; y++) {
 8. x++;
 9. switch(x) {
10. case 8: s += "8 ";
11. case 9: s += "9 ";
12. case 10: { s+= "10 "; break; }
13. default: s += "d ";
14. case 13: s+= "13 ";

15. }
16. }
17. System.out.println(s);
18. }
19. static { x++; }
20. }

 What is the result?

 A. 9 10 d

 B. 8 9 10 d

 C. 9 10 10 d

 D. 9 10 10 d 13

 E. 8 9 10 10 d 13

 F. 8 9 10 9 10 10 d 13

 G. Compilation fails

 9. Given:

 3. class Infinity { }
 4. public class Beyond extends Infinity {
 5. static Integer i;
 6. public static void main(String[] args) {
 7. int sw = (int)(Math.random() * 3);
 8. switch(sw) {
 9. case 0: { for(int x = 10; x > 5; x++)
10. if(x > 10000000) x = 10;
11. break; }
12. case 1: { int y = 7 * i; break; }
13. case 2: { Infinity inf = new Beyond();
14. Beyond b = (Beyond)inf; }
15. }
16. }
17. }

 And given that line 7 will assign the value 0, 1, or 2 to sw, which are true? (Choose all that apply.)

 A. Compilation fails

 B. A ClassCastException might be thrown

 C. A StackOverflowError might be thrown

 D. A NullPointerException might be thrown

Self Test 405

406 Chapter 5: Flow Control, Exceptions, and Assertions

 E. An IllegalStateException might be thrown

 F. The program might hang without ever completing

 G. The program will always complete without exception

 10. Given:

 3. public class Circles {
 4. public static void main(String[] args) {
 5. int[] ia = {1,3,5,7,9};
 6. for(int x : ia) {
 7. for(int j = 0; j < 3; j++) {
 8. if(x > 4 && x < 8) continue;
 9. System.out.print(" " + x);
10. if(j == 1) break;
11. continue;
12. }
13. continue;
14. }
15. }
16. }

 What is the result?

 A. 1 3 9

 B. 5 5 7 7

 C. 1 3 3 9 9

 D. 1 1 3 3 9 9

 E. 1 1 1 3 3 3 9 9 9

 F. Compilation fails

 11. Given:

 3. public class OverAndOver {
 4. static String s = "";
 5. public static void main(String[] args) {
 6. try {
 7. s += "1";
 8. throw new Exception();
 9. } catch (Exception e) { s += "2";
10. } finally { s += "3"; doStuff(); s += "4";
11. }

12. System.out.println(s);
13. }
14. static void doStuff() { int x = 0; int y = 7/x; }
15. }

 What is the result?

 A. 12

 B. 13

 C. 123

 D. 1234

 E. Compilation fails

 F. 123 followed by an exception

 G. 1234 followed by an exception

 H. An exception is thrown with no other output

 12. Given:

 3. public class Wind {
 4. public static void main(String[] args) {
 5. foreach:
 6. for(int j=0; j<5; j++) {
 7. for(int k=0; k< 3; k++) {
 8. System.out.print(" " + j);
 9. if(j==3 && k==1) break foreach;
10. if(j==0 || j==2) break;
11. }
12. }
13. }
14. }

 What is the result?

 A. 0 1 2 3

 B. 1 1 1 3 3

 C. 0 1 1 1 2 3 3

 D. 1 1 1 3 3 4 4 4

 E. 0 1 1 1 2 3 3 4 4 4

 F. Compilation fails

Self Test 407

408 Chapter 5: Flow Control, Exceptions, and Assertions

 13. Given:

 3. public class Gotcha {
 4. public static void main(String[] args) {
 5. // insert code here
 6.
 7. }
 8. void go() {
 9. go();
10. }
11. }

 And given the following three code fragments:

I. new Gotcha().go();
II. try { new Gotcha().go(); }
 catch (Error e) { System.out.println("ouch"); }

III. try { new Gotcha().go(); }
 catch (Exception e) { System.out.println("ouch"); }

 When fragments I - III are added, independently, at line 5, which are true? (Choose all that apply.)

 A. Some will not compile

 B. They will all compile

 C. All will complete normally

 D. None will complete normally

 E. Only one will complete normally

 F. Two of them will complete normally

 14. Given:

 3. public class Clumsy {
 4. public static void main(String[] args) {
 5. int j = 7;
 6. assert(++j > 7);
 7. assert(++j > 8): "hi";
 8. assert(j > 10): j=12;
 9. assert(j==12): doStuff();

10. assert(j==12): new Clumsy();
11. }
12. static void doStuff() { }
13. }

 Which are true? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails due to an error on line 6

 C. Compilation fails due to an error on line 7

 D. Compilation fails due to an error on line 8

 E. Compilation fails due to an error on line 9

 F. Compilation fails due to an error on line 10

 15. Given:

 1. public class Frisbee {
 2. // insert code here
 3. int x = 0;
 4. System.out.println(7/x);
 5. }
 6. }

 And given the following four code fragments:

I. public static void main(String[] args) {
II. public static void main(String[] args) throws Exception {
III. public static void main(String[] args) throws IOException {
IV. public static void main(String[] args) throws RuntimeException {

 If the four fragments are inserted independently at line 4, which are true? (Choose all that apply.)

 A. All four will compile and execute without exception

 B. All four will compile and execute and throw an exception

 C. Some, but not all, will compile and execute without exception

 D. Some, but not all, will compile and execute and throw an exception

 E. When considering fragments II, III, and IV, of those that will compile, adding a try/catch
block around line 6 will cause compilation to fail

Self Test 409

410 Chapter 5: Flow Control, Exceptions, and Assertions

 16. Given:

 2. class MyException extends Exception { }
 3. class Tire {
 4. void doStuff() { }
 5. }
 6. public class Retread extends Tire {
 7. public static void main(String[] args) {
 8. new Retread().doStuff();
 9. }
10. // insert code here
11. System.out.println(7/0);
12. }
13. }

 And given the following four code fragments:

I. void doStuff() {
II. void doStuff() throws MyException {
III. void doStuff() throws RuntimeException {
IV. void doStuff() throws ArithmeticException {

 When fragments I - IV are added, independently, at line 10, which are true? (Choose all that apply.)

 A. None will compile

 B. They will all compile

 C. Some, but not all, will compile

 D. All of those that compile will throw an exception at runtime

 E. None of those that compile will throw an exception at runtime

 F. Only some of those that compile will throw an exception at runtime

SELF TEST ANSWERS

 1. Given two files:

1. class One {
2. public static void main(String[] args) {
3. int assert = 0;
4. }
5. }
1. class Two {
2. public static void main(String[] args) {
3. assert(false);
4. }
5. }

 And the four command-line invocations:

javac -source 1.3 One.java
javac -source 1.4 One.java
javac -source 1.3 Two.java
javac -source 1.4 Two.java

 What is the result? (Choose all that apply.)
 A. Only one compilation will succeed
 B. Exactly two compilations will succeed
 C. Exactly three compilations will succeed
 D. All four compilations will succeed
 E. No compiler warnings will be produced
 F. At least one compiler warning will be produced

Answer:

 ✓ B and F are correct. Class One will compile (and issue a warning) using the 1.3 flag, and
class Two will compile using the 1.4 flag.

 A, C, D, and E are incorrect based on the above. (Objective 2.3)

 2. Given:
class Plane {
 static String s = "-";
 public static void main(String[] args) {
 new Plane().s1();

Self Test Answers 411

 System.out.println(s);
 }
 void s1() {
 try { s2(); }
 catch (Exception e) { s += "c"; }
 }
 void s2() throws Exception {
 s3(); s += "2";
 s3(); s += "2b";
 }
 void s3() throws Exception {
 throw new Exception();
} }

 What is the result?
 A. -

 B. -c

 C. -c2

 D. -2c

 E. -c22b

 F. -2c2b

 G. -2c2bc

 H. Compilation fails

Answer:

 ✓ B is correct. Once s3() throws the exception to s2(), s2() throws it to s1(), and no
more of s2()’s code will be executed.

 A, C, D, E, F, G, and H are incorrect based on the above. (Objective 2.5)

 3. Given:
try { int x = Integer.parseInt("two"); }

 Which could be used to create an appropriate catch block? (Choose all that apply.)

 A. ClassCastException

 B. IllegalStateException

 C. NumberFormatException

 D. IllegalArgumentException

412 Chapter 5: Flow Control, Exceptions, and Assertions

 E. ExceptionInInitializerError

 F. ArrayIndexOutOfBoundsException

Answer:

 ✓ C and D are correct. Integer.parseInt can throw a NumberFormatException, and
IllegalArgumentException is its superclass (i.e., a broader exception).

 A, B, E, and F are not in NumberFormatException’s class hierarchy. (Objective 2.6)

 4. Which are true? (Choose all that apply.)

 A. It is appropriate to use assertions to validate arguments to methods marked public

 B. It is appropriate to catch and handle assertion errors

 C. It is NOT appropriate to use assertions to validate command-line arguments

 D. It is appropriate to use assertions to generate alerts when you reach code that should not
be reachable

 E. It is NOT appropriate for assertions to change a program’s state

Answer:

 ✓ C, D, and E are correct statements.

 A is incorrect. It is acceptable to use assertions to test the arguments of private methods.
B is incorrect. While assertion errors can be caught, Sun discourages you from doing so.
(Objective 2.3)

 5. Given:

1. class Loopy {
2. public static void main(String[] args) {
3. int[] x = {7,6,5,4,3,2,1};
4. // insert code here
5. System.out.print(y + " ");
6. }
7. } }

 Which, inserted independently at line 4, compiles? (Choose all that apply.)

 A. for(int y : x) {

 B. for(x : int y) {

 C. int y = 0; for(y : x) {

Self Test Answers 413

414 Chapter 5: Flow Control, Exceptions, and Assertions

 D. for(int y=0, z=0; z<x.length; z++) { y = x[z];

 E. for(int y=0, int z=0; z<x.length; z++) { y = x[z];

 F. int y = 0; for(int z=0; z<x.length; z++) { y = x[z];

Answer:

 ✓ A, D, and F are correct. A is an example of the enhanced for loop. D and F are examples
of the basic for loop.

 B is incorrect because its operands are swapped. C is incorrect because the enhanced
for must declare its first operand. E is incorrect syntax to declare two variables in a for
statement. (Objective 2.2)

 6. Given:

class Emu {
 static String s = "-";
 public static void main(String[] args) {
 try {
 throw new Exception();
 } catch (Exception e) {
 try {
 try { throw new Exception();
 } catch (Exception ex) { s += "ic "; }
 throw new Exception(); }
 catch (Exception x) { s += "mc "; }
 finally { s += "mf "; }
 } finally { s += "of "; }
 System.out.println(s);
} }

 What is the result?

 A. -ic of

 B. -mf of

 C. -mc mf

 D. -ic mf of

 E. -ic mc mf of

 F. -ic mc of mf

 G. Compilation fails

Answer:

 ✓ E is correct. There is no problem nesting try / catch blocks. As is normal, when an
exception is thrown, the code in the catch block runs, then the code in the finally block
runs.

 A, B, C, D, and F are incorrect based on the above. (Objective 2.5)

 7. Given:

 3. class SubException extends Exception { }
 4. class SubSubException extends SubException { }
 5.
 6. public class CC { void doStuff() throws SubException { } }
 7.
 8. class CC2 extends CC { void doStuff() throws SubSubException { } }
 9.
10. class CC3 extends CC { void doStuff() throws Exception { } }
11.
12. class CC4 extends CC { void doStuff(int x) throws Exception { } }
13.
14. class CC5 extends CC { void doStuff() { } }

 What is the result? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails due to an error on line 8

 C. Compilation fails due to an error on line 10

 D. Compilation fails due to an error on line 12

 E. Compilation fails due to an error on line 14

Answer:

 ✓ C is correct. An overriding method cannot throw a broader exception than the method it's
overriding. Class CC4's method is an overload, not an override.

 A, B, D, and E are incorrect based on the above. (Objectives 1.5, 2.4)

 8. Given:

 3. public class Ebb {
 4. static int x = 7;
 5. public static void main(String[] args) {
 6. String s = "";

Self Test Answers 415

416 Chapter 5: Flow Control, Exceptions, and Assertions

 7. for(int y = 0; y < 3; y++) {
 8. x++;
 9. switch(x) {
10. case 8: s += "8 ";
11. case 9: s += "9 ";
12. case 10: { s+= "10 "; break; }
13. default: s += "d ";
14. case 13: s+= "13 ";
15. }
16. }
17. System.out.println(s);
18. }
19. static { x++; }
20. }

 What is the result?

 A. 9 10 d

 B. 8 9 10 d

 C. 9 10 10 d

 D. 9 10 10 d 13

 E. 8 9 10 10 d 13

 F. 8 9 10 9 10 10 d 13

 G. Compilation fails

Answer:

 ✓ D is correct. Did you catch the static initializer block? Remember that switches work on
"fall-thru" logic, and that fall-thru logic also applies to the default case, which is used when
no other case matches.

 A, B, C, E, F, and G are incorrect based on the above. (Objective 2.1)

 9. Given:

 3. class Infinity { }
 4. public class Beyond extends Infinity {
 5. static Integer i;
 6. public static void main(String[] args) {
 7. int sw = (int)(Math.random() * 3);
 8. switch(sw) {
 9. case 0: { for(int x = 10; x > 5; x++)

10. if(x > 10000000) x = 10;
11. break; }
12. case 1: { int y = 7 * i; break; }
13. case 2: { Infinity inf = new Beyond();
14. Beyond b = (Beyond)inf; }
15. }
16. }
17. }

 And given that line 7 will assign the value 0, 1, or 2 to sw, which are true? (Choose all that apply.)

 A. Compilation fails

 B. A ClassCastException might be thrown

 C. A StackOverflowError might be thrown

 D. A NullPointerException might be thrown

 E. An IllegalStateException might be thrown

 F. The program might hang without ever completing

 G. The program will always complete without exception

Answer:

 ✓ D and F are correct. Because i was not initialized, case 1 will throw an NPE. Case 0 will
initiate an endless loop, not a stack overflow. Case 2's downcast will not cause an exception.

 A, B, C, E, and G are incorrect based on the above. (Objective 2.6)

 10. Given:

 3. public class Circles {
 4. public static void main(String[] args) {
 5. int[] ia = {1,3,5,7,9};
 6. for(int x : ia) {
 7. for(int j = 0; j < 3; j++) {
 8. if(x > 4 && x < 8) continue;
 9. System.out.print(" " + x);
10. if(j == 1) break;
11. continue;
12. }
13. continue;
14. }
15. }
16. }

Self Test Answers 417

418 Chapter 5: Flow Control, Exceptions, and Assertions

 What is the result?

 A. 1 3 9

 B. 5 5 7 7

 C. 1 3 3 9 9

 D. 1 1 3 3 9 9

 E. 1 1 1 3 3 3 9 9 9

 F. Compilation fails

Answer:

 ✓ D is correct. The basic rule for unlabeled continue statements is that the current iteration
stops early and execution jumps to the next iteration. The last two continue statements are
redundant!

 A, B, C, E, and F are incorrect based on the above. (Objective 2.2)

 11. Given:

 3. public class OverAndOver {
 4. static String s = "";
 5. public static void main(String[] args) {
 6. try {
 7. s += "1";
 8. throw new Exception();
 9. } catch (Exception e) { s += "2";
10. } finally { s += "3"; doStuff(); s += "4";
11. }
12. System.out.println(s);
13. }
14. static void doStuff() { int x = 0; int y = 7/x; }
15. }

 What is the result?

 A. 12

 B. 13

 C. 123

 D. 1234

 E. Compilation fails

 F. 123 followed by an exception

 G. 1234 followed by an exception

 H. An exception is thrown with no other output

Answer:

 ✓ H is correct. It's true that the value of String s is 123 at the time that the divide-by-
zero exception is thrown, but finally() is not guaranteed to complete, and in this case
finally() never completes, so the System.out.println (S.O.P.) never executes.

 A, B, C, D, E, F, and G are incorrect based on the above. (Objective 2.5)

 12. Given:

 3. public class Wind {
 4. public static void main(String[] args) {
 5. foreach:
 6. for(int j=0; j<5; j++) {
 7. for(int k=0; k< 3; k++) {
 8. System.out.print(" " + j);
 9. if(j==3 && k==1) break foreach;
10. if(j==0 || j==2) break;
11. }
12. }
13. }
14. }

 What is the result?

 A. 0 1 2 3

 B. 1 1 1 3 3

 C. 0 1 1 1 2 3 3

 D. 1 1 1 3 3 4 4 4

 E. 0 1 1 1 2 3 3 4 4 4

 F. Compilation fails

Answer:

 ✓ C is correct. A break breaks out of the current innermost loop and continues. A labeled
break breaks out of and terminates the current loops.

 A, B, D, E, and F are incorrect based on the above. (Objective 2.2)

Self Test Answers 419

420 Chapter 5: Flow Control, Exceptions, and Assertions

 13. Given:

 3. public class Gotcha {
 4. public static void main(String[] args) {
 5. // insert code here
 6.
 7. }
 8. void go() {
 9. go();
10. }
11. }

 And given the following three code fragments:

I. new Gotcha().go();
II. try { new Gotcha().go(); }
 catch (Error e) { System.out.println("ouch"); }

III. try { new Gotcha().go(); }
 catch (Exception e) { System.out.println("ouch"); }

 When fragments I - III are added, independently, at line 5, which are true? (Choose all that apply.)

 A. Some will not compile

 B. They will all compile

 C. All will complete normally

 D. None will complete normally

 E. Only one will complete normally

 F. Two of them will complete normally

Answer:

 ✓ B and E are correct. First off, go() is a badly designed recursive method, guaranteed to
cause a StackOverflowError. Since Exception is not a superclass of Error, catching an
Exception will not help handle an Error, so fragment III will not complete normally.
Only fragment II will catch the Error.

 A, C, D, and F are incorrect based on the above. (Objective 2.5)

 14. Given:

 3. public class Clumsy {
 4. public static void main(String[] args) {
 5. int j = 7;
 6. assert(++j > 7);
 7. assert(++j > 8): "hi";
 8. assert(j > 10): j=12;
 9. assert(j==12): doStuff();
10. assert(j==12): new Clumsy();
11. }
12. static void doStuff() { }
13. }

 Which are true? (Choose all that apply.)

 A. Compilation succeeds

 B. Compilation fails due to an error on line 6

 C. Compilation fails due to an error on line 7

 D. Compilation fails due to an error on line 8

 E. Compilation fails due to an error on line 9

 F. Compilation fails due to an error on line 10

Answer:

 ✓ E is correct. When an assert statement has two expressions, the second expression must
return a value. The only two-expression assert statement that doesn’t return a value is on
line 9.

 A, B, C, D, and F are incorrect based on the above. (Objective 2.3)

 15. Given:

 1. public class Frisbee {
 2. // insert code here
 3. int x = 0;
 4. System.out.println(7/x);
 5. }
 6. }

Self Test Answers 421

422 Chapter 5: Flow Control, Exceptions, and Assertions

 And given the following four code fragments:

I. public static void main(String[] args) {
II. public static void main(String[] args) throws Exception {
III. public static void main(String[] args) throws IOException {
IV. public static void main(String[] args) throws RuntimeException {

 If the four fragments are inserted independently at line 4, which are true? (Choose all that apply.)

 A. All four will compile and execute without exception

 B. All four will compile and execute and throw an exception

 C. Some, but not all, will compile and execute without exception

 D. Some, but not all, will compile and execute and throw an exception

 E. When considering fragments II, III, and IV, of those that will compile, adding a try/catch
block around line 6 will cause compilation to fail

Answer:

 ✓ D is correct. This is kind of sneaky, but remember that we're trying to toughen you up for
the real exam. If you're going to throw an IOException, you have to import the java.io
package or declare the exception with a fully qualified name.

 E is incorrect because it's okay to both handle and declare an exception. A, B, and C are
incorrect based on the above. (Objective 2.4)

 16. Given:

 2. class MyException extends Exception { }
 3. class Tire {
 4. void doStuff() { }
 5. }
 6. public class Retread extends Tire {
 7. public static void main(String[] args) {
 8. new Retread().doStuff();
 9. }
10. // insert code here
11. System.out.println(7/0);
12. }
13. }

 And given the following four code fragments:

I. void doStuff() {
II. void doStuff() throws MyException {
III. void doStuff() throws RuntimeException {
IV. void doStuff() throws ArithmeticException {

 When fragments I - IV are added, independently, at line 10, which are true? (Choose all that apply.)

 A. None will compile

 B. They will all compile

 C. Some, but not all, will compile

 D. All of those that compile will throw an exception at runtime

 E. None of those that compile will throw an exception at runtime

 F. Only some of those that compile will throw an exception at runtime

Answer:

 ✓ C and D are correct. An overriding method cannot throw checked exceptions that are
broader than those thrown by the overridden method. However an overriding method can
throw RuntimeExceptions not thrown by the overridden method.

 A, B, E, and F are incorrect based on the above. (Objective 2.4)

Self Test Answers 423

6
Strings, I/O,
Formatting,
and Parsing

CERTIFICATION OBJECTIVES

Using String, StringBuilder, and
 StringBuffer

File I/O using the java.io package

Serialization using the java.io
 package

 Working with Dates, Numbers,
 and Currencies

Using Regular Expressions

✓ Two-Minute Drill

 Q&A Self Test

426 Chapter 6: Strings, I/O, Formatting, and Parsing

This chapter focuses on the various API-related topics that were added to the exam
for Java 5 and remain in the Java 6 exam. J2SE comes with an enormous API, and a lot
of your work as a Java programmer will revolve around using this API. The exam team

chose to focus on APIs for I/O, formatting, and parsing. Each of these topics could fill an entire
book. Fortunately, you won't have to become a total I/O or regex guru to do well on the exam.
The intention of the exam team was to include just the basic aspects of these technologies, and in
this chapter we cover more than you'll need to get through the String, I/O, formatting, and parsing
objectives on the exam.

CERTIFICATION OBJECTIVE

String, StringBuilder, and StringBuffer
(Exam Objective 3.1)

3.1 Discuss the differences between the String, StringBuilder, and StringBuffer classes.

Everything you needed to know about Strings in the SCJP 1.4 exam, you'll need to
know for the SCJP 5 and SCJP 6 exams. plus, Sun added the StringBuilder class to the
API, to provide faster, nonsynchronized StringBuffer capability. The StringBuilder
class has exactly the same methods as the old StringBuffer class, but StringBuilder
is faster because its methods aren't synchronized. Both classes give you String-like
objects that handle some of the String class's shortcomings (like immutability).

The String Class
This section covers the String class, and the key concept to understand is that once
a String object is created, it can never be changed—so what is happening when a
String object seems to be changing? Let's find out.

Strings Are Immutable Objects
We'll start with a little background information about strings. You may not need
this for the test, but a little context will help. Handling "strings" of characters is a
fundamental aspect of most programming languages. In Java, each character in a

The String Class (Exam Objective 3.1) 427

string is a 16-bit Unicode character. Because Unicode characters are 16 bits (not
the skimpy 7 or 8 bits that ASCII provides), a rich, international set of characters is
easily represented in Unicode.

In Java, strings are objects. Just like other objects, you can create an instance of a
String with the new keyword, as follows:

String s = new String();

This line of code creates a new object of class String, and assigns it to the
reference variable s. So far, String objects seem just like other objects. Now, let's
give the String a value:

s = "abcdef";

As you might expect, the String class has about a zillion constructors, so you can
use a more efficient shortcut:

String s = new String("abcdef");

And just because you'll use strings all the time, you can even say this:

String s = "abcdef";

There are some subtle differences between these options that we'll discuss later,
but what they have in common is that they all create a new String object, with a
value of "abcdef", and assign it to a reference variable s. Now let's say that you
want a second reference to the String object referred to by s:

String s2 = s; // refer s2 to the same String as s

So far so good. String objects seem to be behaving just like other objects, so
what's all the fuss about?…Immutability! (What the heck is immutability?) Once
you have assigned a String a value, that value can never change— it's immutable,
frozen solid, won't budge, fini, done. (We'll talk about why later, don't let us forget.)
The good news is that while the String object is immutable, its reference variable is
not, so to continue with our previous example:

s = s.concat(" more stuff"); // the concat() method 'appends'
 // a literal to the end

Now wait just a minute, didn't we just say that Strings were immutable? So what's
all this "appending to the end of the string" talk? Excellent question: let's look at
what really happened…

The VM took the value of String s (which was "abcdef"), and tacked " more
stuff" onto the end, giving us the value "abcdef more stuff". Since Strings
are immutable, the VM couldn't stuff this new value into the old String referenced
by s, so it created a new String object, gave it the value "abcdef more stuff",
and made s refer to it. At this point in our example, we have two String objects: the
first one we created, with the value "abcdef", and the second one with the value
"abcdef more stuff". Technically there are now three String objects, because
the literal argument to concat, " more stuff", is itself a new String object. But we
have references only to "abcdef" (referenced by s2) and "abcdef more stuff"
(referenced by s).

What if we didn't have the foresight or luck to create a second reference variable
for the "abcdef" String before we called s = s.concat(" more stuff");? In
that case, the original, unchanged String containing "abcdef" would still exist in
memory, but it would be considered "lost." No code in our program has any way to
reference it—it is lost to us. Note, however, that the original "abcdef" String
didn't change (it can't, remember, it's immutable); only the reference variable s
was changed, so that it would refer to a different String. Figure 6-1 shows what
happens on the heap when you reassign a reference variable. Note that the
dashed line indicates a deleted reference.

To review our first example:

String s = "abcdef"; // create a new String object, with
 // value "abcdef", refer s to it
String s2 = s; // create a 2nd reference variable
 // referring to the same String

// create a new String object, with value "abcdef more stuff",
// refer s to it. (Change s's reference from the old String
// to the new String.) (Remember s2 is still referring to
// the original "abcdef" String.)

s = s.concat(" more stuff");

428 Chapter 6: Strings, I/O, Formatting, and Parsing

 FIGURE 6-1 String objects and their reference variables

The String Class (Exam Objective 3.1) 429

The heap

String objectString reference
variable

String reference
variable

String reference
variable

String reference
variable

String reference
variable

s

s2

s

s2

s

String s = “abc”;

“abc”

The heap

String object

“abc”

The heap

String object

String object

“abc”

“abcdef”

Step 1:

String s2 = s;Step 2:

s = s.concat (”def”);Step 3:

Let's look at another example:

String x = "Java";
x.concat(" Rules!");
System.out.println("x = " + x); // the output is "x = Java"

The first line is straightforward: create a new String object, give it the value
"Java", and refer x to it. Next the VM creates a second String object with the value
"Java Rules!" but nothing refers to it. The second String object is instantly lost;
you can't get to it. The reference variable x still refers to the original String with the
value "Java". Figure 6-2 shows creating a String without assigning a reference to it.

 FIGURE 6-2 A String object is abandoned upon creation

430 Chapter 6: Strings, I/O, Formatting, and Parsing

String reference
variable

String reference
variable

Notice that no reference
variable is created to access
the “Java Rules!” String.

String object

String object

String object

The heap

The heap

Step 1: String x = “Java”;

Step 2: x.concat (” Rules!”);

x

x

“Java”

“Java”

“Java Rules!”

Let's expand this current example. We started with

String x = "Java";
x.concat(" Rules!");
System.out.println("x = " + x); // the output is: x = Java

Now let's add

x.toUpperCase();
System.out.println("x = " + x); // the output is still:
 // x = Java

(We actually did just create a new String object with the value "JAVA", but it was lost,
and x still refers to the original, unchanged String "Java".) How about adding

x.replace('a', 'X');
System.out.println("x = " + x); // the output is still:
 // x = Java

Can you determine what happened? The VM created yet another new String
object, with the value "JXvX", (replacing the a's with X's), but once again this new
String was lost, leaving x to refer to the original unchanged and unchangeable String
object, with the value "Java". In all of these cases we called various String methods
to create a new String by altering an existing String, but we never assigned the newly
created String to a reference variable.

But we can put a small spin on the previous example:

String x = "Java";
x = x.concat(" Rules!"); // Now we're assigning the
 // new String to x
System.out.println("x = " + x); // the output will be:
 // x = Java Rules!

This time, when the VM runs the second line, a new String object is created with
the value of "Java Rules!", and x is set to reference it. But wait, there's more—
now the original String object, "Java", has been lost, and no one is referring to it.
So in both examples we created two String objects and only one reference variable,
so one of the two String objects was left out in the cold. See Figure 6-3 for a graphic
depiction of this sad story. The dashed line indicates a deleted reference.

The String Class (Exam Objective 3.1) 431

 FIGURE 6-3 An old String object being abandoned

Let's take this example a little further:

String x = "Java";
x = x.concat(" Rules!");
System.out.println("x = " + x); // the output is:
 // x = Java Rules!

x.toLowerCase(); // no assignment, create a
 // new, abandoned String

System.out.println("x = " + x); // no assignment, the output
 // is still: x = Java Rules!

432 Chapter 6: Strings, I/O, Formatting, and Parsing

String reference
variable

String reference
variable

Notice in step 2 that there is no
valid reference to the “Java” String;
that object has been “abandoned,”
and a new object created.

String object

String object

String object

The heap

The heap

Step 1: String x = “Java”;

Step 2: x = x.concat (” Rules!”);

x

x

“Java”

“Java”

“Java Rules!”

x = x.toLowerCase(); // create a new String,
 // assigned to x
System.out.println("x = " + x); // the assignment causes the
 // output: x = java rules!

The preceding discussion contains the keys to understanding Java String
immutability. If you really, really get the examples and diagrams, backward and
forward, you should get 80 percent of the String questions on the exam correct.

We will cover more details about Strings next, but make no mistake—in terms of
bang for your buck, what we've already covered is by far the most important part of
understanding how String objects work in Java.

We'll finish this section by presenting an example of the kind of devilish String
question you might expect to see on the exam. Take the time to work it out on paper
(as a hint, try to keep track of how many objects and reference variables there are,
and which ones refer to which).

String s1 = "spring ";
String s2 = s1 + "summer ";
s1.concat("fall ");
s2.concat(s1);
s1 += "winter ";
System.out.println(s1 + " " + s2);

What is the output? For extra credit, how many String objects and how many
reference variables were created prior to the println statement?

Answer: The result of this code fragment is spring winter spring summer.
There are two reference variables, s1 and s2. There were a total of eight String objects
created as follows: "spring", "summer " (lost), "spring summer", "fall" (lost), "spring
fall" (lost), "spring summer spring" (lost), "winter" (lost), "spring winter" (at this point
"spring" is lost). Only two of the eight String objects are not lost in this process.

Important Facts About Strings and Memory
In this section we'll discuss how Java handles String objects in memory, and some of
the reasons behind these behaviors.

One of the key goals of any good programming language is to make efficient use
of memory. As applications grow, it's very common for String literals to occupy large
amounts of a program's memory, and there is often a lot of redundancy within the

Important Facts About Strings and Memory (Exam Objective 3.1) 433

universe of String literals for a program. To make Java more memory efficient, the
JVM sets aside a special area of memory called the "String constant pool." When the
compiler encounters a String literal, it checks the pool to see if an identical String
already exists. If a match is found, the reference to the new literal is directed to the
existing String, and no new String literal object is created. (The existing String simply
has an additional reference.) Now we can start to see why making String objects
immutable is such a good idea. If several reference variables refer to the same String
without even knowing it, it would be very bad if any of them could change the
String's value.

You might say, "Well that's all well and good, but what if someone overrides the
String class functionality; couldn't that cause problems in the pool?" That's one of
the main reasons that the String class is marked final. Nobody can override the
behaviors of any of the String methods, so you can rest assured that the String
objects you are counting on to be immutable will, in fact, be immutable.

Creating New Strings
Earlier we promised to talk more about the subtle differences between the various
methods of creating a String. Let's look at a couple of examples of how a String
might be created, and let's further assume that no other String objects exist in the
pool:

 String s = "abc"; // creates one String object and one
 // reference variable

In this simple case, "abc" will go in the pool and s will refer to it.

 String s = new String("abc"); // creates two objects,
 // and one reference variable

In this case, because we used the new keyword, Java will create a new String object

in normal (nonpool) memory, and s will refer to it. In addition, the literal "abc" will
be placed in the pool.

Important Methods in the String Class
The following methods are some of the more commonly used methods in the String
class, and also the ones that you're most likely to encounter on the exam.

434 Chapter 6: Strings, I/O, Formatting, and Parsing

■ charAt() Returns the character located at the specified index

■ concat() Appends one String to the end of another ("+" also works)

■ equalsIgnoreCase() Determines the equality of two Strings, ignoring case

■ length() Returns the number of characters in a String

■ replace() Replaces occurrences of a character with a new character

■ substring() Returns a part of a String

■ toLowerCase() Returns a String with uppercase characters converted

■ toString() Returns the value of a String

■ toUpperCase() Returns a String with lowercase characters converted

■ trim() Removes whitespace from the ends of a String

Let's look at these methods in more detail.

public char charAt(int index) This method returns the character located at
the String's specified index. Remember, String indexes are zero-based—for example,

String x = "airplane";
System.out.println(x.charAt(2)); // output is 'r'

public String concat(String s) This method returns a String with the value
of the String passed in to the method appended to the end of the String used to
invoke the method—for example,

String x = "taxi";
System.out.println(x.concat(" cab")); // output is "taxi cab"

The overloaded + and += operators perform functions similar to the concat()
method—for example,

String x = "library";
System.out.println(x + " card"); // output is "library card"

String x = "Atlantic";
x+= " ocean";

System.out.println(x); // output is "Atlantic ocean"

Important Methods in the String Class (Exam Objective 3.1) 435

In the preceding "Atlantic ocean" example, notice that the value of x really did
change! Remember that the += operator is an assignment operator, so line 2 is really
creating a new String, "Atlantic ocean", and assigning it to the x variable. After
line 2 executes, the original String x was referring to, "Atlantic", is abandoned.

public boolean equalsIgnoreCase(String s) This method returns a
boolean value (true or false) depending on whether the value of the String in the
argument is the same as the value of the String used to invoke the method. This
method will return true even when characters in the String objects being compared
have differing cases—for example,

String x = "Exit";
System.out.println(x.equalsIgnoreCase("EXIT")); // is "true"
System.out.println(x.equalsIgnoreCase("tixe")); // is "false"

public int length() This method returns the length of the String used to invoke
the method—for example,

String x = "01234567";
System.out.println(x.length()); // returns "8"

public String replace(char old, char new) This method returns a String
whose value is that of the String used to invoke the method, updated so that any
occurrence of the char in the first argument is replaced by the char in the second
argument—for example,

String x = "oxoxoxox";
System.out.println(x.replace('x', 'X')); // output is
 // "oXoXoXoX"

public String substring(int begin)
public String substring(int begin, int end) The substring() method
is used to return a part (or substring) of the String used to invoke the method. The
first argument represents the starting location (zero-based) of the substring. If the call
has only one argument, the substring returned will include the characters to the end
of the original String. If the call has two arguments, the substring returned will end
with the character located in the nth position of the original String where n is the

436 Chapter 6: Strings, I/O, Formatting, and Parsing

second argument. Unfortunately, the ending argument is not zero-based, so if the
second argument is 7, the last character in the returned String will be in the original
String's 7 position, which is index 6 (ouch). Let's look at some examples:

String x = "0123456789"; // as if by magic, the value
 // of each char
 // is the same as its index!
System.out.println(x.substring(5)); // output is "56789"
System.out.println(x.substring(5, 8)); // output is "567"

The first example should be easy: start at index 5 and return the rest of the
String. The second example should be read as follows: start at index 5 and return
the characters up to and including the 8th position (index 7).

public String toLowerCase() This method returns a String whose value is
the String used to invoke the method, but with any uppercase characters converted to
lowercase—for example,

String x = "A New Moon";
System.out.println(x.toLowerCase()); // output is
 // "a new moon"

Important Methods in the String Class (Exam Objective 3.1) 437

Arrays have an attribute (not a method), called length. You may
encounter questions in the exam that attempt to use the length() method on an array,
or that attempt to use the length attribute on a String. Both cause compiler errors—for
example,

String x = "test";
System.out.println(x.length); // compiler error

or

String[] x = new String[3];
System.out.println(x.length()); // compiler error

public String toString() This method returns the value of the String used
to invoke the method. What? Why would you need such a seemingly "do nothing"
method? All objects in Java must have a toString() method, which typically returns
a String that in some meaningful way describes the object in question. In the case of
a String object, what more meaningful way than the String's value? For the sake of
consistency, here's an example:

String x = "big surprise";
System.out.println(x.toString()); // output –
 // reader's exercise

public String toUpperCase() This method returns a String whose value is
the String used to invoke the method, but with any lowercase characters converted to
uppercase—for example,

String x = "A New Moon";
System.out.println(x.toUpperCase()); // output is
 // "A NEW MOON"

public String trim() This method returns a String whose value is the String
used to invoke the method, but with any leading or trailing blank spaces removed—
for example,

String x = " hi ";
System.out.println(x + "x"); // result is
 // " hi x"
System.out.println(x.trim() + "x"); // result is "hix"

The StringBuffer and StringBuilder Classes
The java.lang.StringBuffer and java.lang.StringBuilder classes should be used when
you have to make a lot of modifications to strings of characters. As we discussed in
the previous section, String objects are immutable, so if you choose to do a lot of
manipulations with String objects, you will end up with a lot of abandoned String
objects in the String pool. (Even in these days of gigabytes of RAM, it's not a good
idea to waste precious memory on discarded String pool objects.) On the other hand,
objects of type StringBuffer and StringBuilder can be modified over and over again
without leaving behind a great effluence of discarded String objects.

438 Chapter 6: Strings, I/O, Formatting, and Parsing

The StringBuffer and StringBuilder Classes (Exam Objective 3.1) 439

A common use for StringBuffers and StringBuilders is file I/O when large,
ever-changing streams of input are being handled by the program. In these
cases, large blocks of characters are handled as units, and StringBuffer
objects are the ideal way to handle a block of data, pass it on, and then
reuse the same memory to handle the next block of data.

StringBuffer vs. StringBuilder
The StringBuilder class was added in Java 5. It has exactly the same API as the
StringBuffer class, except StringBuilder is not thread safe. In other words, its
methods are not synchronized. (More about thread safety in Chapter 9.) Sun
recommends that you use StringBuilder instead of StringBuffer whenever possible
because StringBuilder will run faster (and perhaps jump higher). So apart from
synchronization, anything we say about StringBuilder's methods holds true for
StringBuffer's methods, and vice versa. The exam might use these classes in the
creation of thread-safe applications, and we'll discuss how that works in Chapter 9.

Using StringBuilder and StringBuffer
In the previous section, we saw how the exam might test your understanding of
String immutability with code fragments like this:

String x = "abc";
x.concat("def");
System.out.println("x = " + x); // output is "x = abc"

Because no new assignment was made, the new String object created with the
concat() method was abandoned instantly. We also saw examples like this:

String x = "abc";
x = x.concat("def");
System.out.println("x = " + x); // output is "x = abcdef"

We got a nice new String out of the deal, but the downside is that the old String
"abc" has been lost in the String pool, thus wasting memory. If we were using a
StringBuffer instead of a String, the code would look like this:

StringBuffer sb = new StringBuffer("abc");
sb.append("def");

System.out.println("sb = " + sb); // output is "sb = abcdef"

All of the StringBuffer methods we will discuss operate on the value of the
StringBuffer object invoking the method. So a call to sb.append("def"); is actually
appending "def" to itself (StringBuffer sb). In fact, these method calls can be
chained to each other—for example,

StringBuilder sb = new StringBuilder("abc");
sb.append("def").reverse().insert(3, "---");
System.out.println(sb); // output is "fed---cba"

Notice that in each of the previous two examples, there was a single call to new,
concordantly in each example we weren't creating any extra objects. Each example
needed only a single StringXxx object to execute.

Important Methods in the StringBuffer and StringBuilder Classes
The following method returns a StringXxx object with the argument's value
appended to the value of the object that invoked the method.

public synchronized StringBuffer append(String s) As we've seen
earlier, this method will update the value of the object that invoked the method,
whether or not the return is assigned to a variable. This method will take many dif-
ferent arguments, including boolean, char, double, float, int, long, and others, but
the most likely use on the exam will be a String argument—for example,

StringBuffer sb = new StringBuffer("set ");
sb.append("point");

System.out.println(sb); // output is "set point"
StringBuffer sb2 = new StringBuffer("pi = ");
sb2.append(3.14159f);
System.out.println(sb2); // output is "pi = 3.14159"

public StringBuilder delete(int start, int end) This method returns a
StringBuilder object and updates the value of the StringBuilder object that invoked
the method call. In both cases, a substring is removed from the original object. The
starting index of the substring to be removed is defined by the first argument (which
is zero-based), and the ending index of the substring to be removed is defined by the
second argument (but it is one-based)! Study the following example carefully:

StringBuilder sb = new StringBuilder("0123456789");
System.out.println(sb.delete(4,6)); // output is "01236789"

440 Chapter 6: Strings, I/O, Formatting, and Parsing

Important Methods in the StringBuffer and StringBuilder Classes (Exam Objective 3.1) 441

public StringBuilder insert(int offset, String s) This method returns
a StringBuilder object and updates the value of the StringBuilder object that invoked
the method call. In both cases, the String passed in to the second argument is
inserted into the original StringBuilder starting at the offset location represented by
the first argument (the offset is zero-based). Again, other types of data can be passed
in through the second argument (boolean, char, double, float, int, long, and so
on), but the String argument is the one you're most likely to see:

StringBuilder sb = new StringBuilder("01234567");
sb.insert(4, "---");
System.out.println(sb); // output is "0123---4567"

public synchronized StringBuffer reverse() This method returns a
StringBuffer object and updates the value of the StringBuffer object that invoked the
method call. In both cases, the characters in the StringBuffer are reversed, the first
character becoming the last, the second becoming the second to the last, and so on:

StringBuffer s = new StringBuffer("A man a plan a canal Panama");
sb.reverse();
System.out.println(sb); // output: "amanaP lanac a nalp a nam A"

public String toString() This method returns the value of the StringBuffer
object that invoked the method call as a String:

StringBuffer sb = new StringBuffer("test string");
System.out.println(sb.toString()); // output is "test string"

The exam will probably test your knowledge of the difference between
String and StringBuffer objects. Because StringBuffer objects are changeable, the
following code fragment will behave differently than a similar code fragment that uses
String objects:

StringBuffer sb = new StringBuffer("abc");
sb.append("def");
System.out.println(sb);

In this case, the output will be: "abcdef"

That's it for StringBuffers and StringBuilders. If you take only one thing away
from this section, it's that unlike Strings, StringBuffer objects and StringBuilder
objects can be changed.

442 Chapter 6: Strings, I/O, Formatting, and Parsing

Many of the exam questions covering this chapter’s topics use a tricky
(and not very readable) bit of Java syntax known as "chained methods." A statement
with chained methods has this general form:

result = method1().method2().method3();

In theory, any number of methods can be chained in this fashion,
although typically you won't see more than three. Here's how to decipher these
"handy Java shortcuts" when you encounter them:

1. Determine what the leftmost method call will return (let’s call it x).
2. Use x as the object invoking the second (from the left) method. If there

 are only two chained methods, the result of the second method call is
 the expression's result.

3. If there is a third method, the result of the second method call is used
to invoke the third method, whose result is the expression's result—
for example,

String x = "abc";
String y = x.concat("def").toUpperCase().replace('C','x');
//chained methods
System.out.println("y = " + y); // result is "y = ABxDEF"

Let's look at what happened. The literal def was concatenated to abc,
creating a temporary, intermediate String (soon to be lost), with the value abcdef.
The toUpperCase() method created a new (soon to be lost) temporary String with
the value ABCDEF. The replace() method created a fi nal String with the value ABxDEF,
and referred y to it.

CERTIFICATION OBJECTIVE

File Navigation and I/O (Exam Objective 3.2)
3.2 Given a scenario involving navigating file systems, reading from files, or writing to
files, develop the correct solution using the following classes (sometimes in combination),
from java.io: BufferedReader, BufferedWriter, File, FileReader, FileWriter, PrintWriter,
and Console.

I/O has had a strange history with the SCJP certification. It was included in all the
versions of the exam up to and including 1.2, then removed from the 1.4 exam, and
then re-introduced for Java 5 and extended for Java 6.

I/O is a huge topic in general, and the Java APIs that deal with I/O in one fashion
or another are correspondingly huge. A general discussion of I/O could include
topics such as file I/O, console I/O, thread I/O, high-performance I/O, byte-oriented
I/O, character-oriented I/O, I/O filtering and wrapping, serialization, and more.
Luckily for us, the I/O topics included in the Java 5 exam are fairly well restricted to
file I/O for characters, and serialization.

Here's a summary of the I/O classes you'll need to understand for the exam:

■ File The API says that the class File is "An abstract representation of file
and directory pathnames." The File class isn't used to actually read or write
data; it's used to work at a higher level, making new empty files, searching for
files, deleting files, making directories, and working with paths.

■ FileReader This class is used to read character files. Its read() methods are
fairly low-level, allowing you to read single characters, the whole stream of
characters, or a fixed number of characters. FileReaders are usually wrapped
by higher-level objects such as BufferedReaders, which improve performance
and provide more convenient ways to work with the data.

■ BufferedReader This class is used to make lower-level Reader classes like
FileReader more efficient and easier to use. Compared to FileReaders,
BufferedReaders read relatively large chunks of data from a file at once, and
keep this data in a buffer. When you ask for the next character or line of data,
it is retrieved from the buffer, which minimizes the number of times that
time-intensive, file read operations are performed. In addition,

File Navigation and I/O (Exam Objective 3.2) 443

BufferedReader provides more convenient methods such as readLine(), that
allow you to get the next line of characters from a file.

■ FileWriter This class is used to write to character files. Its write()
methods allow you to write character(s) or Strings to a file. FileWriters are
usually wrapped by higher-level Writer objects such as BufferedWriters or
PrintWriters, which provide better performance and higher-level, more
flexible methods to write data.

■ BufferedWriter This class is used to make lower-level classes like
FileWriters more efficient and easier to use. Compared to FileWriters,
BufferedWriters write relatively large chunks of data to a file at once,
minimizing the number of times that slow, file writing operations are
performed. The BufferedWriter class also provides a newLine()
method to create platform-specific line separators automatically.

■ PrintWriter This class has been enhanced significantly in Java 5. Because
of newly created methods and constructors (like building a PrintWriter with
a File or a String), you might find that you can use PrintWriter in places
where you previously needed a Writer to be wrapped with a FileWriter and/or
a BufferedWriter. New methods like format(), printf(), and append()
make PrintWriters very flexible and powerful.

■ Console This new, Java 6 convenience class provides methods to read input
from the console and write formatted output to the console.

444 Chapter 6: Strings, I/O, Formatting, and Parsing

Stream classes are used to read and write bytes, and Readers and Writers
are used to read and write characters. Since all of the fi le I/O on the exam is related
to characters, if you see API class names containing the word "Stream", for instance
DataOutputStream, then the question is probably about serialization, or something
unrelated to the actual I/O objective.

Creating Files Using Class File
Objects of type File are used to represent the actual files (but not the data in the
files) or directories that exist on a computer's physical disk. Just to make sure we're
clear, when we talk about an object of type File, we'll say File, with a capital F.
When we're talking about what exists on a hard drive, we'll call it a file with a
lowercase f (unless it's a variable name in some code). Let's start with a few basic
examples of creating files, writing to them, and reading from them. First, let's create
a new file and write a few lines of data to it:

import java.io.*; // The Java 6 exam focuses on
 // classes from java.io
class Writer1 {
 public static void main(String [] args) {
 File file = new File("fileWrite1.txt"); // There's no
 // file yet!
 }
}

If you compile and run this program, when you look at the contents of
your current directory, you'll discover absolutely no indication of a file called
fileWrite1.txt. When you make a new instance of the class File, you're not yet
making an actual file, you're just creating a filename. Once you have a File object, there
are several ways to make an actual file. Let's see what we can do with the File object
we just made:

import java.io.*;

class Writer1 {
 public static void main(String [] args) {
 try { // warning: exceptions possible
 boolean newFile = false;
 File file = new File // it's only an object
 ("fileWrite1.txt");
 System.out.println(file.exists()); // look for a real file
 newFile = file.createNewFile(); // maybe create a file!
 System.out.println(newFile); // already there?
 System.out.println(file.exists()); // look again
 } catch(IOException e) { }
 }
}

File Navigation and I/O (Exam Objective 3.2) 445

This produces the output

false
true
true

And also produces an empty file in your current directory. If you run the code a
second time you get the output

true
false
true

Let's examine these sets of output:

■ First execution The first call to exists() returned false, which we
expected…remember new File() doesn't create a file on the disk! The
createNewFile() method created an actual file, and returned true,
indicating that a new file was created, and that one didn't already exist.
Finally, we called exists() again, and this time it returned true, indicating
that the file existed on the disk.

■ Second execution The first call to exists() returns true because we
built the file during the first run. Then the call to createNewFile() returns
false since the method didn't create a file this time through. Of course, the
last call to exists() returns true.

A couple of other new things happened in this code. First, notice that we had
to put our file creation code in a try/catch. This is true for almost all of the file I/O
code you'll ever write. I/O is one of those inherently risky things. We're keeping it
simple for now, and ignoring the exceptions, but we still need to follow the handle-
or-declare rule since most I/O methods declare checked exceptions. We'll talk more
about I/O exceptions later. We used a couple of File's methods in this code:

■ boolean exists() This method returns true if it can find the actual file.

■ boolean createNewFile() This method creates a new file if it doesn't
already exist.

446 Chapter 6: Strings, I/O, Formatting, and Parsing

Using FileWriter and FileReader
In practice, you probably won't use the FileWriter and FileReader classes without
wrapping them (more about "wrapping" very soon). That said, let's go ahead and do
a little "naked" file I/O:

import java.io.*;

class Writer2 {
 public static void main(String [] args) {
 char[] in = new char[50]; // to store input
 int size = 0;
 try {
 File file = new File(// just an object
 "fileWrite2.txt");
 FileWriter fw =
 new FileWriter(file); // create an actual file
 // & a FileWriter obj
 fw.write("howdy\nfolks\n"); // write characters to
 // the file
 fw.flush(); // flush before closing
 fw.close(); // close file when done

File Navigation and I/O (Exam Objective 3.2) 447

Remember, the exam creators are trying to jam as much code as they can
into a small space, so in the previous example, instead of these three lines of code,

 boolean newFile = false;
 ...
 newFile = file.createNewFile();
 System.out.println(newFile);

You might see something like the following single line of code, which is a
bit harder to read, but accomplishes the same thing:

 System.out.println(file.createNewFile());

 FileReader fr =
 new FileReader(file); // create a FileReader
 // object
 size = fr.read(in); // read the whole file!
 System.out.print(size + " "); // how many bytes read
 for(char c : in) // print the array
 System.out.print(c);
 fr.close(); // again, always close
 } catch(IOException e) { }
 }
}

which produces the output:

12 howdy
folks

Here's what just happened:

1. FileWriter fw = new FileWriter(file) did three things:

 a. It created a FileWriter reference variable, fw.

 b. It created a FileWriter object, and assigned it to fw.

 c. It created an actual empty file out on the disk (and you can prove it).

2. We wrote 12 characters to the file with the write() method, and we did a
flush() and a close().

3. We made a new FileReader object, which also opened the file on disk for
reading.

4. The read() method read the whole file, a character at a time, and put it into
the char[] in.

5. We printed out the number of characters we read size, and we looped
through the in array printing out each character we read, then we closed
the file.

Before we go any further let's talk about flush() and close(). When you write
data out to a stream, some amount of buffering will occur, and you never know for
sure exactly when the last of the data will actually be sent. You might perform many

448 Chapter 6: Strings, I/O, Formatting, and Parsing

write operations on a stream before closing it, and invoking the flush() method
guarantees that the last of the data you thought you had already written actually
gets out to the file. Whenever you're done using a file, either reading it or writing
to it, you should invoke the close() method. When you are doing file I/O you're
using expensive and limited operating system resources, and so when you're done,
invoking close() will free up those resources.

Now, back to our last example. This program certainly works, but it's painful in a
couple of different ways:

 1. When we were writing data to the file, we manually inserted line separators
 (in this case \n), into our data.

 2. When we were reading data back in, we put it into a character array. It
 being an array and all, we had to declare its size beforehand, so we'd have
 been in trouble if we hadn't made it big enough! We could have read the
 data in one character at a time, looking for the end of file after each
 read(), but that's pretty painful too.

Because of these limitations, we'll typically want to use higher-level I/O classes
like BufferedWriter or BufferedReader in combination with FileWriter or FileReader.

Combining I/O classes
Java's entire I/O system was designed around the idea of using several classes in
combination. Combining I/O classes is sometimes called wrapping and sometimes
called chaining. The java.io package contains about 50 classes, 10 interfaces, and
15 exceptions. Each class in the package has a very specific purpose (creating high
cohesion), and the classes are designed to be combined with each other in countless
ways, to handle a wide variety of situations.

When it's time to do some I/O in real life, you'll undoubtedly find yourself
pouring over the java.io API, trying to figure out which classes you'll need, and
how to hook them together. For the exam, you'll need to do the same thing, but
we've artificially reduced the API. In terms of studying for exam Objective 3.2, we
can imagine that the entire java.io package consisted of the classes listed in exam
Objective 3.2, and summarized in Table 6-1, our mini I/O API.

File Navigation and I/O (Exam Objective 3.2) 449

Now let's say that we want to find a less painful way to write data to a file and
read the file's contents back into memory. Starting with the task of writing data to
a file, here's a process for determining what classes we'll need, and how we'll hook
them together:

 1. We know that ultimately we want to hook to a File object. So whatever
 other class or classes we use, one of them must have a constructor that takes
 an object of type File.

450 Chapter 6: Strings, I/O, Formatting, and Parsing

java.io Class Extends

From
Key Constructor(s)
Arguments

Key Methods

File Object File, String
String
String, String

createNewFile()
delete()
exists()
isDirectory()
isFile()
list()
mkdir()
renameTo()

FileWriter Writer File
String

close()
flush()
write()

BufferedWriter Writer Writer close()
flush()
newLine()
write()

PrintWriter Writer File (as of Java 5)
String (as of Java 5)
OutputStream
Writer

close()
flush()
format()*, printf()*
print(), println()
write()

FileReader Reader File
String

read()

BufferedReader Reader Reader read()
readLine()

*Discussed later

 TABLE 6-1 java.io Mini API

 2. Find a method that sounds like the most powerful, easiest way to accomplish
 the task. When we look at Table 6-1 we can see that BufferedWriter has
 a newLine() method. That sounds a little better than having to manually
 embed a separator after each line, but if we look further we see that
 PrintWriter has a method called println(). That sounds like the easiest
 approach of all, so we'll go with it.

 3. When we look at PrintWriter's constructors, we see that we can build a
 PrintWriter object if we have an object of type File, so all we need to do to
 create a PrintWriter object is the following:

 File file = new File("fileWrite2.txt"); // create a File
 PrintWriter pw = new PrintWriter(file); // pass file to
 // the PrintWriter
 // constructor

Okay, time for a pop quiz. Prior to Java 5, PrintWriter did not have constructors
that took either a String or a File. If you were writing some I/O code in Java 1.4,
how would you get a PrintWriter to write data to a file? Hint: You can figure this out
by studying the mini I/O API, Table 6-1.

Here's one way to go about solving this puzzle: First, we know that we'll create
a File object on one end of the chain, and that we want a PrintWriter object on
the other end. We can see in Table 6-1 that a PrintWriter can also be built using
a Writer object. Although Writer isn't a class we see in the table, we can see that
several other classes extend Writer, which for our purposes is just as good; any class
that extends Writer is a candidate. Looking further, we can see that FileWriter has
the two attributes we're looking for:

 1. It can be constructed using a File.

 2. It extends Writer.

Given all of this information, we can put together the following code (remember,
this is a Java 1.4 example):

 File file = new File("fileWrite2.txt"); // create a File object
 FileWriter fw = new FileWriter(file); // create a FileWriter
 // that will send its
 // output to a File

File Navigation and I/O (Exam Objective 3.2) 451

 PrintWriter pw = new PrintWriter(fw); // create a PrintWriter
 // that will send its
 // output to a Writer

 pw.println("howdy"); // write the data
 pw.println("folks");

At this point it should be fairly easy to put together the code to more easily read
data from the file back into memory. Again, looking through the table, we see a
method called readLine() that sounds like a much better way to read data. Going
through a similar process we get the following code:

 File file =
 new File("fileWrite2.txt"); // create a File object AND
 // open "fileWrite2.txt"
 FileReader fr =
 new FileReader(file); // create a FileReader to get
 // data from 'file'
 BufferedReader br =
 new BufferedReader(fr); // create a BufferReader to
 // get its data from a Reader
 String data = br.readLine(); // read some data

Working with Files and Directories
Earlier we touched on the fact that the File class is used to create files and
directories. In addition, File's methods can be used to delete files, rename files,
determine whether files exist, create temporary files, change a file's attributes, and
differentiate between files and directories. A point that is often confusing is that an
object of type File is used to represent either a file or a directory. We'll talk about both
cases next.

452 Chapter 6: Strings, I/O, Formatting, and Parsing

You’re almost certain to encounter exam questions that test your
knowledge of how I/O classes can be chained. If you’re not totally clear on this last
section, we recommend that you use Table 6-1 as a reference, and write code to
experiment with which chaining combinations are legal and which are illegal.

We saw earlier that the statement

 File file = new File("foo");

always creates a File object, and then does one of two things:

 1. If "foo" does NOT exist, no actual file is created.

 2. If "foo" does exist, the new File object refers to the existing file.

Notice that File file = new File("foo"); NEVER creates an actual file.
There are two ways to create a file:

 1. Invoke the createNewFile() method on a File object. For example:

 File file = new File("foo"); // no file yet
 file.createNewFile(); // make a file, "foo" which
 // is assigned to 'file'

 2. Create a Writer or a Stream. Specifically, create a FileWriter, a PrintWriter,
or a FileOutputStream. Whenever you create an instance of one of these
classes, you automatically create a file, unless one already exists, for instance

 File file = new File("foo"); // no file yet
 PrintWriter pw =

 new PrintWriter(file); // make a PrintWriter object AND
 // make a file, "foo" to which

 // 'file' is assigned, AND assign
 // 'pw' to the PrintWriter

Creating a directory is similar to creating a file. Again, we'll use the convention
of referring to an object of type File that represents an actual directory, as a Directory
File object, capital D, (even though it's of type File.) We'll call an actual directory
on a computer a directory, small d. Phew! As with creating a file, creating a directory
is a two-step process; first we create a Directory (File) object, then we create an
actual directory using the following mkdir() method:

File Navigation and I/O (Exam Objective 3.2) 453

File myDir = new File("mydir"); // create an object
myDir.mkdir(); // create an actual directory

Once you've got a directory, you put files into it, and work with those files:

File myFile = new File(myDir, "myFile.txt");
myFile.createNewFile();

This code is making a new file in a subdirectory. Since you provide the
subdirectory to the constructor, from then on you just refer to the file by its reference
variable. In this case, here's a way that you could write some data to the file myFile:

PrintWriter pw = new PrintWriter(myFile);
pw.println("new stuff");
pw.flush();
pw.close();

Be careful when you're creating new directories! As we've seen, constructing a
Writer or a Stream will often create a file for you automatically if one doesn't exist,
but that's not true for a directory:

File myDir = new File("mydir");
// myDir.mkdir(); // call to mkdir() omitted!
File myFile = new File(
 myDir, "myFile.txt");
myFile.createNewFile(); // exception if no mkdir!

This will generate an exception something like

java.io.IOException: No such file or directory

You can refer a File object to an existing file or directory. For example, assume
that we already have a subdirectory called existingDir in which resides an existing
file existingDirFile.txt, which contains several lines of text. When you run the
following code,

File existingDir = new File("existingDir"); // assign a dir
System.out.println(existingDir.isDirectory());

454 Chapter 6: Strings, I/O, Formatting, and Parsing

File existingDirFile = new File(
 existingDir, "existingDirFile.txt"); // assign a file
System.out.println (existingDirFile.isFile());

FileReader fr = new FileReader(existingDirFile);
BufferedReader br = new BufferedReader(fr); // make a Reader

String s;
while((s = br.readLine()) != null) // read data
 System.out.println(s);

br.close();

the following output will be generated:

true
true
existing sub-dir data
line 2 of text
line 3 of text

Take special note of what the readLine() method returns. When there is no
more data to read, readLine() returns a null—this is our signal to stop reading the
file. Also, notice that we didn't invoke a flush() method. When reading a file, no
flushing is required, so you won't even find a flush() method in a Reader kind of
class.

In addition to creating files, the File class also lets you do things like renaming
and deleting files. The following code demonstrates a few of the most common ins
and outs of deleting files and directories (via delete()), and renaming files and
directories (via renameTo()):

File delDir = new File("deldir"); // make a directory
delDir.mkdir();

File delFile1 = new File(
 delDir, "delFile1.txt"); // add file to directory
delFile1.createNewFile();

File delFile2 = new File(
 delDir, "delFile2.txt"); // add file to directory
delFile2.createNewFile();

File Navigation and I/O (Exam Objective 3.2) 455

456 Chapter 6: Strings, I/O, Formatting, and Parsing

delFile1.delete(); // delete a file
System.out.println("delDir is "
 + delDir.delete()); // attempt to delete
 // the directory
File newName = new File(
 delDir, "newName.txt"); // a new object
delFile2.renameTo(newName); // rename file

File newDir = new File("newDir"); // rename directory
delDir.renameTo(newDir);

This outputs

delDir is false

and leaves us with a directory called newDir that contains a file called
newName.txt. Here are some rules that we can deduce from this result:

■ delete() You can't delete a directory if it's not empty, which is why the
invocation delDir.delete() failed.

■ renameTo() You must give the existing File object a valid new File object
with the new name that you want. (If newName had been null we would
have gotten a NullPointerException.)

■ renameTo() It's okay to rename a directory, even if it isn't empty.

There's a lot more to learn about using the java.io package, but as far as the
exam goes we only have one more thing to discuss, and that is how to search for a
file. Assuming that we have a directory named searchThis that we want to search
through, the following code uses the File.list() method to create a String array
of files and directories, which we then use the enhanced for loop to iterate through
and print:

String[] files = new String[100];
File search = new File("searchThis");
files = search.list(); // create the list

for(String fn : files) // iterate through it
 System.out.println("found " + fn);

On our system, we got the following output:

found dir1
found dir2
found dir3
found file1.txt
found file2.txt

Your results will almost certainly vary :)
In this section we've scratched the surface of what's available in the java.io package.

Entire books have been written about this package, so we're obviously covering only
a very small (but frequently used) portion of the API. On the other hand, if you
understand everything we've covered in this section, you will be in great shape to
handle any java.io questions you encounter on the exam (except for the Console class,
which we'll cover next, and serialization, which is covered in the next section).

The java.io.Console Class
New to Java 6 is the java.io.Console class. In this context, the console is the
physical device with a keyboard and a display (like your Mac or PC). If you’re
running Java SE 6 from the command line, you'll typically have access to a console
object, to which you can get a reference by invoking System.console(). Keep in
mind that it's possible for your Java program to be running in an environment that
doesn't have access to a console object, so be sure that your invocation of System
.console() actually returns a valid console reference and not null.

The Console class makes it easy to accept input from the command line, both
echoed and nonechoed (such as a password), and makes it easy to write formatted
output to the command line. It's a handy way to write test engines for unit testing
or if you want to support a simple but secure user interaction and you don't need
a GUI.

On the input side, the methods you'll have to understand are readLine and
readPassword. The readLine method returns a string containing whatever the
user keyed in—that's pretty intuitive. However, the readPassword method doesn't
return a string: it returns a character array. Here's the reason for this: Once you've
got the password, you can verify it and then absolutely remove it from memory. If a
string was returned, it could exist in a pool somewhere in memory and perhaps some
nefarious hacker could find it.

The java.io.Console Class (Exam Objective 3.2) 457

458 Chapter 6: Strings, I/O, Formatting, and Parsing

Let's take a look at a small program that uses a console to support testing
another class:

import java.io.Console;

public class NewConsole {
 public static void main(String[] args) {
 Console c = System.console(); // #1: get a Console
 char[] pw;
 pw = c.readPassword("%s", "pw: "); // #2: return a char[]
 for(char ch: pw)
 c.format("%c ", ch); // #3: format output
 c.format("\n");

 MyUtility mu = new MyUtility();
 while(true) {
 name = c.readLine("%s", "input?: "); // #4: return a String

 c.format("output: %s \n", mu.doStuff(name));
 }
 }
}

class MyUtility { // #5: class to test
 String doStuff(String arg1) {
 // stub code
 return "result is " + arg1;
 }

}

Let's review this code:

■ At line 1, we get a new console object. Remember that we can't say this:

 Console c = new Console();

■ At line 2, we invoke readPassword, which returns a char[], not a string.
You'll notice when you test this code that the password you enter isn't echoed
on the screen.

■ At line 3, we're just manually displaying the password you keyed in, separat-
ing each character with a space. Later on in this chapter, you'll read about the
format method, so stay tuned.

■ At line 4, we invoke readLine, which returns a string.

■ At line 5 is the class that we want to test. Later in this chapter, when you're
studying regex and formatting, we recommend that you use something like
NewConsole to test the concepts that you're learning.

The Console class has more capabilities than are covered here, but if you
understand everything discussed so far, you'll be in good shape for the exam.

CERTIFICATION OBJECTIVE

Serialization (Exam Objective 3.3)
3.3 Develop code that serializes and/or de-serializes objects using the following APIs from
java.io: DataInputStream, DataOutputStream, FileInputStream, FileOutputStream,
ObjectInputStream, ObjectOutputStream, and Serializable.

Imagine you want to save the state of one or more objects. If Java didn't have
serialization (as the earliest version did not), you'd have to use one of the I/O
classes to write out the state of the instance variables of all the objects you want to
save. The worst part would be trying to reconstruct new objects that were virtually
identical to the objects you were trying to save. You'd need your own protocol for
the way in which you wrote and restored the state of each object, or you could end
up setting variables with the wrong values. For example, imagine you stored an
object that has instance variables for height and weight. At the time you save the
state of the object, you could write out the height and weight as two ints in a file,
but the order in which you write them is crucial. It would be all too easy to re-create
the object but mix up the height and weight values—using the saved height as the
value for the new object's weight and vice versa.

Serialization lets you simply say "save this object and all of its instance variables."
Actually it is a little more interesting than that, because you can add, "... unless I've

Serialization (Exam Objective 3.3) 459

460 Chapter 6: Strings, I/O, Formatting, and Parsing

explicitly marked a variable as transient, which means, don't include the transient
variable's value as part of the object's serialized state."

Working with ObjectOutputStream and ObjectInputStream
The magic of basic serialization happens with just two methods: one to serialize objects
and write them to a stream, and a second to read the stream and deserialize objects.

ObjectOutputStream.writeObject() // serialize and write

ObjectInputStream.readObject() // read and deserialize

The java.io.ObjectOutputStream and java.io.ObjectInputStream classes are
considered to be higher-level classes in the java.io package, and as we learned earlier,
that means that you'll wrap them around lower-level classes, such as
java.io.FileOutputStream and java.io.FileInputStream. Here's a small program that
creates a (Cat) object, serializes it, and then deserializes it:

import java.io.*;

class Cat implements Serializable { } // 1

public class SerializeCat {
 public static void main(String[] args) {
 Cat c = new Cat(); // 2
 try {
 FileOutputStream fs = new FileOutputStream("testSer.ser");
 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(c); // 3
 os.close();
 } catch (Exception e) { e.printStackTrace(); }

 try {
 FileInputStream fis = new FileInputStream("testSer.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 c = (Cat) ois.readObject(); // 4
 ois.close();
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Let's take a look at the key points in this example:

1. We declare that the Cat class implements the Serializable interface.
Serializable is a marker interface; it has no methods to implement. (In the
next several sections, we'll cover various rules about when you need to declare
classes Serializable.)

2. We make a new Cat object, which as we know is serializable.

3. We serialize the Cat object c by invoking the writeObject() method. It
took a fair amount of preparation before we could actually serialize our Cat.
First, we had to put all of our I/O-related code in a try/catch block. Next we
had to create a FileOutputStream to write the object to. Then we wrapped the
FileOutputStream in an ObjectOutputStream, which is the class that has the
magic serialization method that we need. Remember that the invocation of
writeObject() performs two tasks: it serializes the object, and then it writes
the serialized object to a file.

4. We de-serialize the Cat object by invoking the readObject() method. The
readObject() method returns an Object, so we have to cast the deserialized
object back to a Cat. Again, we had to go through the typical I/O hoops to
set this up.

This is a bare-bones example of serialization in action. Over the next set of pages
we'll look at some of the more complex issues that are associated with serialization.

Object Graphs
What does it really mean to save an object? If the instance variables are all primitive
types, it's pretty straightforward. But what if the instance variables are themselves
references to objects? What gets saved? Clearly in Java it wouldn't make any sense to
save the actual value of a reference variable, because the value of a Java reference has
meaning only within the context of a single instance of a JVM. In other words, if you
tried to restore the object in another instance of the JVM, even running on the same
computer on which the object was originally serialized, the reference would be useless.

But what about the object that the reference refers to? Look at this class:

class Dog {
 private Collar theCollar;
 private int dogSize;
 public Dog(Collar collar, int size) {
 theCollar = collar;
 dogSize = size;

Serialization (Exam Objective 3.3) 461

462 Chapter 6: Strings, I/O, Formatting, and Parsing

 }
 public Collar getCollar() { return theCollar; }
}
class Collar {
 private int collarSize;
 public Collar(int size) { collarSize = size; }
 public int getCollarSize() { return collarSize; }
}

Now make a dog... First, you make a Collar for the Dog:

Collar c = new Collar(3);

Then make a new Dog, passing it the Collar:

Dog d = new Dog(c, 8);

Now what happens if you save the Dog? If the goal is to save and then restore a
Dog, and the restored Dog is an exact duplicate of the Dog that was saved, then the
Dog needs a Collar that is an exact duplicate of the Dog's Collar at the time the Dog
was saved. That means both the Dog and the Collar should be saved.

And what if the Collar itself had references to other objects—like perhaps
a Color object? This gets quite complicated very quickly. If it were up to the
programmer to know the internal structure of each object the Dog referred to, so
that the programmer could be sure to save all the state of all those objects…whew.
That would be a nightmare with even the simplest of objects.

Fortunately, the Java serialization mechanism takes care of all of this. When you
serialize an object, Java serialization takes care of saving that object's entire "object
graph." That means a deep copy of everything the saved object needs to be restored.
For example, if you serialize a Dog object, the Collar will be serialized automatically.
And if the Collar class contained a reference to another object, THAT object would
also be serialized, and so on. And the only object you have to worry about saving
and restoring is the Dog. The other objects required to fully reconstruct that Dog are
saved (and restored) automatically through serialization.

Remember, you do have to make a conscious choice to create objects that are
serializable, by implementing the Serializable interface. If we want to save Dog
objects, for example, we'll have to modify the Dog class as follows:

class Dog implements Serializable {
 // the rest of the code as before

 // Serializable has no methods to implement
}

And now we can save the Dog with the following code:

import java.io.*;
public class SerializeDog {
 public static void main(String[] args) {
 Collar c = new Collar(3);
 Dog d = new Dog(c, 8);
 try {
 FileOutputStream fs = new FileOutputStream("testSer.ser");
 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(d);
 os.close();
 } catch (Exception e) { e.printStackTrace(); }
 }
}

But when we run this code we get a runtime exception something like this

java.io.NotSerializableException: Collar

What did we forget? The Collar class must ALSO be Serializable. If we modify
the Collar class and make it serializable, then there's no problem:

class Collar implements Serializable {
 // same
}

Here's the complete listing:

import java.io.*;
public class SerializeDog {
 public static void main(String[] args) {
 Collar c = new Collar(3);
 Dog d = new Dog(c, 5);
 System.out.println("before: collar size is "
 + d.getCollar().getCollarSize());
 try {
 FileOutputStream fs = new FileOutputStream("testSer.ser");

Serialization (Exam Objective 3.3) 463

464 Chapter 6: Strings, I/O, Formatting, and Parsing

 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(d);
 os.close();
 } catch (Exception e) { e.printStackTrace(); }
 try {
 FileInputStream fis = new FileInputStream("testSer.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 d = (Dog) ois.readObject();
 ois.close();
 } catch (Exception e) { e.printStackTrace(); }

 System.out.println("after: collar size is "
 + d.getCollar().getCollarSize());
 }
}
class Dog implements Serializable {
 private Collar theCollar;
 private int dogSize;
 public Dog(Collar collar, int size) {
 theCollar = collar;
 dogSize = size;
 }
 public Collar getCollar() { return theCollar; }
}
class Collar implements Serializable {
 private int collarSize;
 public Collar(int size) { collarSize = size; }
 public int getCollarSize() { return collarSize; }
}

This produces the output:

 before: collar size is 3

 after: collar size is 3

But what would happen if we didn't have access to the Collar class source code?
In other words, what if making the Collar class serializable was not an option? Are
we stuck with a non-serializable Dog?

Obviously we could subclass the Collar class, mark the subclass as Serializable,
and then use the Collar subclass instead of the Collar class. But that's not always an
option either for several potential reasons:

 1. The Collar class might be final, preventing subclassing.
 OR

 2. The Collar class might itself refer to other non-serializable objects, and with-
out knowing the internal structure of Collar, you aren't able to make all these
fixes (assuming you even wanted to TRY to go down that road).
OR

 3. Subclassing is not an option for other reasons related to your design.

So…THEN what do you do if you want to save a Dog?
That's where the transient modifier comes in. If you mark the Dog's Collar

instance variable with transient, then serialization will simply skip the Collar
during serialization:

class Dog implements Serializable {
 private transient Collar theCollar; // add transient
 // the rest of the class as before
}

class Collar { // no longer Serializable
 // same code
}

Now we have a Serializable Dog, with a non-serializable Collar, but the Dog has
marked the Collar transient; the output is

before: collar size is 3

Exception in thread "main" java.lang.NullPointerException

So NOW what can we do?

Using writeObject and readObject
Consider the problem: we have a Dog object we want to save. The Dog has a Collar,
and the Collar has state that should also be saved as part of the Dog's state. But…the
Collar is not Serializable, so we must mark it transient. That means when the Dog
is deserialized, it comes back with a null Collar. What can we do to somehow make
sure that when the Dog is deserialized, it gets a new Collar that matches the one the
Dog had when the Dog was saved?

Serialization (Exam Objective 3.3) 465

466 Chapter 6: Strings, I/O, Formatting, and Parsing

Java serialization has a special mechanism just for this—a set of private methods
you can implement in your class that, if present, will be invoked automatically
during serialization and deserialization. It's almost as if the methods were defined
in the Serializable interface, except they aren't. They are part of a special callback
contract the serialization system offers you that basically says, "If you (the
programmer) have a pair of methods matching this exact signature (you'll see them
in a moment), these methods will be called during the serialization/deserialization
process.

These methods let you step into the middle of serialization and deserialization.
So they're perfect for letting you solve the Dog/Collar problem: when a Dog is
being saved, you can step into the middle of serialization and say, "By the way, I'd
like to add the state of the Collar's variable (an int) to the stream when the Dog
is serialized." You've manually added the state of the Collar to the Dog's serialized
representation, even though the Collar itself is not saved.

Of course, you'll need to restore the Collar during deserialization by stepping into
the middle and saying, "I'll read that extra int I saved to the Dog stream, and use
it to create a new Collar, and then assign that new Collar to the Dog that's being
deserialized." The two special methods you define must have signatures that look
EXACTLY like this:

private void writeObject(ObjectOutputStream os) {
 // your code for saving the Collar variables
}

private void readObject(ObjectInputStream is) {
 // your code to read the Collar state, create a new Collar,
 // and assign it to the Dog
}

Yes, we're going to write methods that have the same name as the ones we've
been calling! Where do these methods go? Let's change the Dog class:

class Dog implements Serializable {
 transient private Collar theCollar; // we can't serialize this
 private int dogSize;
 public Dog(Collar collar, int size) {
 theCollar = collar;
 dogSize = size;
 }
 public Collar getCollar() { return theCollar; }

 private void writeObject(ObjectOutputStream os) {
 // throws IOException { // 1
 try {
 os.defaultWriteObject(); // 2
 os.writeInt(theCollar.getCollarSize()); // 3
 } catch (Exception e) { e.printStackTrace(); }
 }
 private void readObject(ObjectInputStream is) {
 // throws IOException, ClassNotFoundException { // 4
 try {
 is.defaultReadObject(); // 5
 theCollar = new Collar(is.readInt()); // 6
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Let's take a look at the preceding code.
In our scenario we've agreed that, for whatever real-world reason, we can't

serialize a Collar object, but we want to serialize a Dog. To do this we're going
to implement writeObject() and readObject(). By implementing these two
methods you're saying to the compiler: "If anyone invokes writeObject() or
readObject() concerning a Dog object, use this code as part of the read and write."

 1. Like most I/O-related methods writeObject() can throw exceptions. You
 can declare them or handle them but we recommend handling them.

 2. When you invoke defaultWriteObject() from within writeObject()
you're telling the JVM to do the normal serialization process for this object.
When implementing writeObject(), you will typically request the normal
serialization process, and do some custom writing and reading too.

 3. In this case we decided to write an extra int (the collar size) to the stream
 that's creating the serialized Dog. You can write extra stuff before and/or
 after you invoke defaultWriteObject(). BUT…when you read it back in,
 you have to read the extra stuff in the same order you wrote it.

 4. Again, we chose to handle rather than declare the exceptions.

 5. When it's time to deserialize, defaultReadObject() handles the normal
 deserialization you'd get if you didn't implement a readObject() method.

 6. Finally we build a new Collar object for the Dog using the collar size that we
 manually serialized. (We had to invoke readInt() after we invoked
 defaultReadObject() or the streamed data would be out of sync!)

Serialization (Exam Objective 3.3) 467

468 Chapter 6: Strings, I/O, Formatting, and Parsing

Remember, the most common reason to implement writeObject() and
readObject() is when you have to save some part of an object's state manually. If
you choose, you can write and read ALL of the state yourself, but that's very rare.
So, when you want to do only a part of the serialization/deserialization yourself, you
MUST invoke the defaultReadObject() and defaultWriteObject() methods
to do the rest.

Which brings up another question—why wouldn't all Java classes be serializable?
Why isn't class Object serializable? There are some things in Java that simply cannot
be serialized because they are runtime specific. Things like streams, threads, runtime,
etc. and even some GUI classes (which are connected to the underlying OS) cannot
be serialized. What is and is not serializable in the Java API is NOT part of the exam,
but you'll need to keep them in mind if you're serializing complex objects.

How Inheritance Affects Serialization
Serialization is very cool, but in order to apply it effectively you're going to have to
understand how your class's superclasses affect serialization.

That brings up another key issue with serialization…what happens if a superclass

is not marked Serializable, but the subclass is? Can the subclass still be serialized
even if its superclass does not implement Serializable? Imagine this:

 If a superclass is Serializable, then according to normal Java interface
rules, all subclasses of that class automatically implement Serializable implicitly. In other
words, a subclass of a class marked Serializable passes the IS-A test for Serializable,
and thus can be saved without having to explicitly mark the subclass as Serializable.
You simply cannot tell whether a class is or is not Serializable UNLESS you can see the
class inheritance tree to see if any other superclasses implement Serializable. If the class
does not explicitly extend any other class, and does not implement Serializable, then
you know for CERTAIN that the class is not Serializable, because class Object does NOT
implement Serializable.

class Animal { }
class Dog extends Animal implements Serializable {
 // the rest of the Dog code
}

Now you have a Serializable Dog class, with a non-Serializable superclass. This
works! But there are potentially serious implications. To fully understand those
implications, let's step back and look at the difference between an object that comes
from deserialization vs. an object created using new. Remember, when an object
is constructed using new (as opposed to being deserialized), the following things
happen (in this order):

 1. All instance variables are assigned default values.

 2. The constructor is invoked, which immediately invokes the superclass
 constructor (or another overloaded constructor, until one of the overloaded
 constructors invokes the superclass constructor).

 3. All superclass constructors complete.

 4. Instance variables that are initialized as part of their declaration are assigned
 their initial value (as opposed to the default values they're given prior to
 the superclass constructors completing).

 5. The constructor completes.

But these things do NOT happen when an object is deserialized. When an instance of
a serializable class is deserialized, the constructor does not run, and instance variables
are NOT given their initially assigned values! Think about it—if the constructor
were invoked, and/or instance variables were assigned the values given in their
declarations, the object you're trying to restore would revert back to its original
state, rather than coming back reflecting the changes in its state that happened
sometime after it was created. For example, imagine you have a class that declares an
instance variable and assigns it the int value 3, and includes a method that changes
the instance variable value to 10:

class Foo implements Serializable {
 int num = 3;
 void changeNum() { num = 10; }
}

Serialization (Exam Objective 3.3) 469

470 Chapter 6: Strings, I/O, Formatting, and Parsing

Obviously if you serialize a Foo instance after the changeNum() method runs,
the value of the num variable should be 10. When the Foo instance is deserialized,
you want the num variable to still be 10! You obviously don't want the initialization
(in this case, the assignment of the value 3 to the variable num) to happen. Think
of constructors and instance variable assignments together as part of one complete
object initialization process (and in fact, they DO become one initialization method
in the bytecode). The point is, when an object is deserialized we do NOT want any
of the normal initialization to happen. We don't want the constructor to run, and
we don't want the explicitly declared values to be assigned. We want only the values
saved as part of the serialized state of the object to be reassigned.

Of course if you have variables marked transient, they will not be restored to
their original state (unless you implement readObject()), but will instead be given
the default value for that data type. In other words, even if you say

class Bar implements Serializable {
 transient int x = 42;
}

when the Bar instance is deserialized, the variable x will be set to a value of 0.
Object references marked transient will always be reset to null, regardless of
whether they were initialized at the time of declaration in the class.

So, that's what happens when the object is deserialized, and the class of the
serialized object directly extends Object, or has ONLY serializable classes in its
inheritance tree. It gets a little trickier when the serializable class has one or more
non-serializable superclasses. Getting back to our non-serializable Animal class with
a serializable Dog subclass example:

class Animal {
 public String name;
}
class Dog extends Animal implements Serializable {
 // the rest of the Dog code
}

Because Animal is NOT serializable, any state maintained in the Animal class,
even though the state variable is inherited by the Dog, isn't going to be restored
with the Dog when it's deserialized! The reason is, the (unserialized) Animal part of
the Dog is going to be reinitialized just as it would be if you were making a new Dog
(as opposed to deserializing one). That means all the things that happen to an object

during construction, will happen—but only to the Animal parts of a Dog. In other
words, the instance variables from the Dog's class will be serialized and deserialized
correctly, but the inherited variables from the non-serializable Animal superclass will
come back with their default/initially assigned values rather than the values they
had at the time of serialization.

If you are a serializable class, but your superclass is NOT serializable, then any
instance variables you INHERIT from that superclass will be reset to the values they
were given during the original construction of the object. This is because the non-
serializable class constructor WILL run!

In fact, every constructor ABOVE the first non-serializable class constructor will
also run, no matter what, because once the first super constructor is invoked, (during
deserialization), it of course invokes its super constructor and so on up the inheritance
tree.

For the exam, you'll need to be able to recognize which variables will and will not
be restored with the appropriate values when an object is deserialized, so be sure to
study the following code example and the output:

import java.io.*;
class SuperNotSerial {
 public static void main(String [] args) {

 Dog d = new Dog(35, "Fido");
 System.out.println("before: " + d.name + " "
 + d.weight);
 try {
 FileOutputStream fs = new FileOutputStream("testSer.ser");
 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(d);
 os.close();
 } catch (Exception e) { e.printStackTrace(); }
 try {
 FileInputStream fis = new FileInputStream("testSer.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 d = (Dog) ois.readObject();
 ois.close();
 } catch (Exception e) { e.printStackTrace(); }

 System.out.println("after: " + d.name + " "
 + d.weight);
 }
}
class Dog extends Animal implements Serializable {
 String name;

Serialization (Exam Objective 3.3) 471

472 Chapter 6: Strings, I/O, Formatting, and Parsing

 Dog(int w, String n) {
 weight = w; // inherited
 name = n; // not inherited
 }
}
class Animal { // not serializable !
 int weight = 42;
}

which produces the output:

before: Fido 35
after: Fido 42

The key here is that because Animal is not serializable, when the Dog was
deserialized, the Animal constructor ran and reset the Dog's inherited weight variable.

Serialization Is Not for Statics
Finally, you might notice that we've talked ONLY about instance variables, not
static variables. Should static variables be saved as part of the object's state? Isn't the
state of a static variable at the time an object was serialized important? Yes and no.
It might be important, but it isn't part of the instance's state at all. Remember, you
should think of static variables purely as CLASS variables. They have nothing to
do with individual instances. But serialization applies only to OBJECTS. And what
happens if you deserialize three different Dog instances, all of which were serialized
at different times, and all of which were saved when the value of a static variable
in class Dog was different. Which instance would "win"? Which instance's static
value would be used to replace the one currently in the one and only Dog class that's
currently loaded? See the problem?

Static variables are NEVER saved as part of the object's state…because they do
not belong to the object!

If you serialize a collection or an array, every element must be
serializable! A single non-serializable element will cause serialization to fail. Note also
that while the collection interfaces are not serializable, the concrete collection classes in
the Java API are.

As simple as serialization code is to write, versioning problems can occur
in the real world. If you save a Dog object using one version of the class,
but attempt to deserialize it using a newer, different version of the class,
deserialization might fail. See the Java API for details about versioning
issues and solutions.

CERTIFICATION OBJECTIVE

Dates, Numbers, and Currency
(Exam Objective 3.4)

3.4 Use standard J2SE APIs in the java.text package to correctly format or parse dates,
numbers and currency values for a specific locale; and, given a scenario, determine the
appropriate methods to use if you want to use the default locale or a specific locale. Describe
the purpose and use of the java.util.Locale class.

The Java API provides an extensive (perhaps a little too extensive) set of classes
to help you work with dates, numbers, and currency. The exam will test your
knowledge of the basic classes and methods you'll use to work with dates and such.
When you've finished this section you should have a solid foundation in tasks such
as creating new Date and DateFormat objects, converting Strings to Dates and back
again, performing Calendaring functions, printing properly formatted currency
values, and doing all of this for locations around the globe. In fact, a large part of
why this section was added to the exam was to test whether you can do some basic
internationalization (often shortened to "i18n").

Dates, Numbers, and Currency (Exam Objective 3.4) 473

What about DataInputStream and DataOutputStream? They're in the
objectives! It turns out that while the exam was being created, it was decided that those
two classes wouldn't be on the exam after all, but someone forgot to remove them from
the objectives! So you get a break. That's one less thing you'll have to worry about.

474 Chapter 6: Strings, I/O, Formatting, and Parsing

Working with Dates, Numbers, and Currencies
If you want to work with dates from around the world (and who doesn't?), you'll
need to be familiar with at least four classes from the java.text and java.util
packages. In fact, we'll admit it right up front, you might encounter questions on the
exam that use classes that aren't specifically mentioned in the Sun objective. Here
are the four date related classes you'll need to understand:

■ java.util.Date Most of this class's methods have been deprecated, but
you can use this class to bridge between the Calendar and DateFormat class.
An instance of Date represents a mutable date and time, to a millisecond.

■ java.util.Calendar This class provides a huge variety of methods that
help you convert and manipulate dates and times. For instance, if you want
to add a month to a given date, or find out what day of the week January 1,
3000 falls on, the methods in the Calendar class will save your bacon.

■ java.text.DateFormat This class is used to format dates not only
providing various styles such as "01/01/70" or "January 1, 1970," but also to
format dates for numerous locales around the world.

■ java.text.NumberFormat This class is used to format numbers and
currencies for locales around the world.

■ java.util.Locale This class is used in conjunction with DateFormat
and NumberFormat to format dates, numbers and currency for specific lo-
cales. With the help of the Locale class you'll be able to convert a date like
"10/10/2005" to "Segunda-feira, 10 de Outubro de 2005" in no time. If you
want to manipulate dates without producing formatted output, you can use
the Locale class directly with the Calendar class.

Orchestrating Date- and Number-Related Classes
When you work with dates and numbers, you'll often use several classes together.
It's important to understand how the classes we described above relate to each
other, and when to use which classes in combination. For instance, you'll need to
know that if you want to do date formatting for a specific locale, you need to create
your Locale object before your DateFormat object, because you'll need your Locale
object as an argument to your DateFormat factory method. Table 6-2 provides a
quick overview of common date- and number-related use cases and solutions using
these classes. Table 6-2 will undoubtedly bring up specific questions about individual
classes, and we will dive into specifics for each class next. Once you've gone through
the class level discussions, you should find that Table 6-2 provides a good summary.

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 475

Use Case Steps

Get the current date and
time.

1. Create a Date: Date d = new Date();
2. Get its value: String s = d.toString();

Get an object that lets
you perform date and time
calculations in your locale.

1. Create a Calendar:
 Calendar c = Calendar.getInstance();
2. Use c.add(...) and c.roll(...) to perform date and time
 manipulations.

Get an object that lets
you perform date and time
calculations in a different
locale.

1. Create a Locale:
 Locale loc = new Locale(language); or
 Locale loc = new Locale(language, country);
2. Create a Calendar for that locale:
 Calendar c = Calendar.getInstance(loc);
3. Use c.add(...) and c.roll(...) to perform date and time
 manipulations.

Get an object that lets
you perform date and time
calculations, and then format
it for output in different
locales with different date
styles.

1. Create a Calendar:
 Calendar c = Calendar.getInstance();
2. Create a Locale for each location:
 Locale loc = new Locale(...);
3. Convert your Calendar to a Date:
 Date d = c.getTime();
4. Create a DateFormat for each Locale:
 DateFormat df = DateFormat.getDateInstance
 (style, loc);

5. Use the format() method to create formatted dates:
 String s = df.format(d);

Get an object that lets you
format numbers or currencies
across many different locales.

1. Create a Locale for each location:
 Locale loc = new Locale(...);
2. Create a NumberFormat:
 NumberFormat nf = NumberFormat.getInstance(loc);
 -or- NumberFormat nf = NumberFormat.
 getCurrencyInstance(loc);

3. Use the format() method to create formatted output:
 String s = nf.format(someNumber);

 TABLE 6-2 Common Use Cases When Working with Dates and Numbers

476 Chapter 6: Strings, I/O, Formatting, and Parsing

The Date Class
The Date class has a checkered past. Its API design didn't do a good job of handling
internationalization and localization situations. In its current state, most of its
methods have been deprecated, and for most purposes you'll want to use the
Calendar class instead of the Date class. The Date class is on the exam for several
reasons: you might find it used in legacy code, it's really easy if all you want is a
quick and dirty way to get the current date and time, it's good when you want
a universal time that is not affected by time zones, and finally, you'll use it as a
temporary bridge to format a Calendar object using the DateFormat class.

 As we mentioned briefly above, an instance of the Date class represents a
single date and time. Internally, the date and time is stored as a primitive long.
Specifically, the long holds the number of milliseconds (you know, 1000 of these per
second), between the date being represented and January 1, 1970.

Have you ever tried to grasp how big really big numbers are? Let's use the Date
class to find out how long it took for a trillion milliseconds to pass, starting at
January 1, 1970:

import java.util.*;
class TestDates {
 public static void main(String[] args) {
 Date d1 = new Date(1000000000000L); // a trillion!
 System.out.println("1st date " + d1.toString());
 }
}

On our JVM, which has a US locale, the output is

1st date Sat Sep 08 19:46:40 MDT 2001

Okay, for future reference remember that there are a trillion milliseconds for
every 31 and 2/3 years.

Although most of Date's methods have been deprecated, it's still acceptable to
use the getTime and setTime methods, although as we'll soon see, it's a bit painful.
Let's add an hour to our Date instance, d1, from the previous example:

import java.util.*;
class TestDates {
 public static void main(String[] args) {
 Date d1 = new Date(1000000000000L); // a trillion!

 System.out.println("1st date " + d1.toString());
 d1.setTime(d1.getTime() + 3600000); // 3600000 millis / hour
 System.out.println("new time " + d1.toString());
 }
}

which produces (again, on our JVM):

1st date Sat Sep 08 19:46:40 MDT 2001
new time Sat Sep 08 20:46:40 MDT 2001

Notice that both setTime() and getTime() used the handy millisecond scale...
if you want to manipulate dates using the Date class, that's your only choice. While
that wasn't too painful, imagine how much fun it would be to add, say, a year to a
given date.

We'll revisit the Date class later on, but for now the only other thing you need
to know is that if you want to create an instance of Date to represent "now," you use
Date's no-argument constructor:

Date now = new Date();

(We're guessing that if you call now.getTime(), you'll get a number somewhere
between one trillion and two trillion.)

The Calendar Class
We've just seen that manipulating dates using the Date class is tricky. The Calendar
class is designed to make date manipulation easy! (Well, easier.) While the Calendar
class has about a million fields and methods, once you get the hang of a few of them
the rest tend to work in a similar fashion.

When you first try to use the Calendar class you might notice that it's an
abstract class. You can't say

Calendar c = new Calendar(); // illegal, Calendar is abstract

In order to create a Calendar instance, you have to use one of the overloaded
getInstance() static factory methods:

Calendar cal = Calendar.getInstance();

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 477

478 Chapter 6: Strings, I/O, Formatting, and Parsing

When you get a Calendar reference like cal, from above, your Calendar reference
variable is actually referring to an instance of a concrete subclass of Calendar. You
can't know for sure what subclass you'll get (java.util.GregorianCalendar
is what you'll almost certainly get), but it won't matter to you. You'll be using
Calendar's API. (As Java continues to spread around the world, in order to maintain
cohesion, you might find additional, locale-specific subclasses of Calendar.)

Okay, so now we've got an instance of Calendar, let's go back to our earlier
example, and find out what day of the week our trillionth millisecond falls on, and
then let's add a month to that date:

import java.util.*;
class Dates2 {
 public static void main(String[] args) {
 Date d1 = new Date(1000000000000L);
 System.out.println("1st date " + d1.toString());

 Calendar c = Calendar.getInstance();
 c.setTime(d1); // #1

 if(Calendar.SUNDAY == c.getFirstDayOfWeek()) // #2
 System.out.println("Sunday is the first day of the week");
 System.out.println("trillionth milli day of week is "
 + c.get(Calendar.DAY_OF_WEEK)); // #3

 c.add(Calendar.MONTH, 1); // #4
 Date d2 = c.getTime(); // #5
 System.out.println("new date " + d2.toString());
 }
}

This produces something like

1st date Sat Sep 08 19:46:40 MDT 2001
Sunday is the first day of the week
trillionth milli day of week is 7
new date Mon Oct 08 19:46:40 MDT 2001

Let's take a look at this program, focusing on the five highlighted lines:

1. We assign the Date d1 to the Calendar instance c.

2. We use Calendar's SUNDAY field to determine whether, for our JVM, SUNDAY
is considered to be the first day of the week. (In some locales, MONDAY is the
first day of the week.) The Calendar class provides similar fields for days of
the week, months, the day of the month, the day of the year, and so on.

3. We use the DAY_OF_WEEK field to find out the day of the week that the
trillionth millisecond falls on.

4. So far we've used setter and getter methods that should be intuitive to figure
out. Now we're going to use Calendar's add() method. This very
powerful method lets you add or subtract units of time appropriate for
whichever Calendar field you specify. For instance:

c.add(Calendar.HOUR, -4); // subtract 4 hours from c's value
c.add(Calendar.YEAR, 2); // add 2 years to c's value
c.add(Calendar.DAY_OF_WEEK, -2); // subtract two days from

 // c's value

5. Convert c's value back to an instance of Date.

The other Calendar method you should know for the exam is the roll()
method. The roll() method acts like the add() method, except that when a part
of a Date gets incremented or decremented, larger parts of the Date will not get
incremented or decremented. Hmmm…for instance:

// assume c is October 8, 2001
c.roll(Calendar.MONTH, 9); // notice the year in the output
Date d4 = c.getTime();
System.out.println("new date " + d4.toString());

The output would be something like this

new date Fri Jul 08 19:46:40 MDT 2001

Notice that the year did not change, even though we added 9 months to an
October date. In a similar fashion, invoking roll() with HOUR won't change the
date, the month, or the year.

For the exam, you won't have to memorize the Calendar class's fields. If you need
them to help answer a question, they will be provided as part of the question.

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 479

480 Chapter 6: Strings, I/O, Formatting, and Parsing

The DateFormat Class
Having learned how to create dates and manipulate them, let's find out how to
format them. So that we're all on the same page, here's an example of how a date
can be formatted in different ways:

import java.text.*;
import java.util.*;
class Dates3 {
 public static void main(String[] args) {
 Date d1 = new Date(1000000000000L);

 DateFormat[] dfa = new DateFormat[6];
 dfa[0] = DateFormat.getInstance();
 dfa[1] = DateFormat.getDateInstance();
 dfa[2] = DateFormat.getDateInstance(DateFormat.SHORT);
 dfa[3] = DateFormat.getDateInstance(DateFormat.MEDIUM);
 dfa[4] = DateFormat.getDateInstance(DateFormat.LONG);
 dfa[5] = DateFormat.getDateInstance(DateFormat.FULL);

 for(DateFormat df : dfa)
 System.out.println(df.format(d1));
 }
}

which on our JVM produces

9/8/01 7:46 PM
Sep 8, 2001
9/8/01
Sep 8, 2001
September 8, 2001
Saturday, September 8, 2001

Examining this code we see a couple of things right away. First off, it looks
like DateFormat is another abstract class, so we can't use new to create instances
of DateFormat. In this case we used two factory methods, getInstance() and
getDateInstance(). Notice that getDateInstance() is overloaded; when we
discuss locales, we'll look at the other version of getDateInstance() that you'll
need to understand for the exam.

Next, we used static fields from the DateFormat class to customize our various
instances of DateFormat. Each of these static fields represents a formatting style. In

this case it looks like the no-arg version of getDateInstance() gives us the same
style as the MEDIUM version of the method, but that's not a hard and fast rule. (More
on this when we discuss locales.) Finally, we used the format() method to create
Strings representing the properly formatted versions of the Date we're working with.

The last method you should be familiar with is the parse() method. The
parse() method takes a String formatted in the style of the DateFormat instance
being used, and converts the String into a Date object. As you might imagine, this is
a risky operation because the parse() method could easily receive a badly formatted
String. Because of this, parse() can throw a ParseException. The following code
creates a Date instance, uses DateFormat.format() to convert it into a String, and
then uses DateFormat.parse() to change it back into a Date:

 Date d1 = new Date(1000000000000L);
 System.out.println("d1 = " + d1.toString());

 DateFormat df = DateFormat.getDateInstance(
 DateFormat.SHORT);
 String s = df.format(d1);
 System.out.println(s);

 try {
 Date d2 = df.parse(s);
 System.out.println("parsed = " + d2.toString());
 } catch (ParseException pe) {
 System.out.println("parse exc"); }

which on our JVM produces

d1 = Sat Sep 08 19:46:40 MDT 2001
9/8/01
parsed = Sat Sep 08 00:00:00 MDT 2001

Note: If we'd wanted to retain the time along with the date we could have used
the getDateTimeInstance()method, but it's not on the exam.

The API for DateFormat.parse() explains that by default, the parse()
method is lenient when parsing dates. Our experience is that parse() isn't
very lenient about the formatting of Strings it will successfully parse into
dates; take care when you use this method!

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 481

482 Chapter 6: Strings, I/O, Formatting, and Parsing

The Locale Class
Earlier we said that a big part of why this objective exists is to test your ability to
do some basic internationalization tasks. Your wait is over; the Locale class is your
ticket to worldwide domination. Both the DateFormat class and the NumberFormat
class (which we'll cover next) can use an instance of Locale to customize formatted
output to be specific to a locale. You might ask how Java defines a locale? The API
says a locale is "a specific geographical, political, or cultural region." The two Locale
constructors you'll need to understand for the exam are

Locale(String language)
Locale(String language, String country)

The language argument represents an ISO 639 Language Code, so for instance
if you want to format your dates or numbers in Walloon (the language sometimes
used in southern Belgium), you'd use "wa" as your language string. There are over
500 ISO Language codes, including one for Klingon ("tlh"), although unfortunately
Java doesn't yet support the Klingon locale. We thought about telling you that you'd
have to memorize all these codes for the exam…but we didn't want to cause any
heart attacks. So rest assured, you won't have to memorize any ISO Language codes
or ISO Country codes (of which there are about 240) for the exam.

Let's get back to how you might use these codes. If you want to represent basic
Italian in your application, all you need is the language code. If, on the other hand,
you want to represent the Italian used in Switzerland, you'd want to indicate that
the country is Switzerland (yes, the country code for Switzerland is "CH"), but that
the language is Italian:

Locale locPT = new Locale("it"); // Italian
Locale locBR = new Locale("it", "CH"); // Switzerland

Using these two locales on a date could give us output like this:

sabato 1 ottobre 2005

sabato, 1. ottobre 2005

Now let's put this all together in some code that creates a Calendar object, sets its
date, then converts it to a Date. After that we'll take that Date object and print it
out using locales from around the world:

Calendar c = Calendar.getInstance();
c.set(2010, 11, 14); // December 14, 2010
 // (month is 0-based
Date d2 = c.getTime();

Locale locIT = new Locale("it", "IT"); // Italy
Locale locPT = new Locale("pt"); // Portugal
Locale locBR = new Locale("pt", "BR"); // Brazil
Locale locIN = new Locale("hi", "IN"); // India
Locale locJA = new Locale("ja"); // Japan

DateFormat dfUS = DateFormat.getInstance();
System.out.println("US " + dfUS.format(d2));

DateFormat dfUSfull = DateFormat.getDateInstance(
 DateFormat.FULL);
System.out.println("US full " + dfUSfull.format(d2));

DateFormat dfIT = DateFormat.getDateInstance(
 DateFormat.FULL, locIT);
System.out.println("Italy " + dfIT.format(d2));

DateFormat dfPT = DateFormat.getDateInstance(
 DateFormat.FULL, locPT);
System.out.println("Portugal " + dfPT.format(d2));

DateFormat dfBR = DateFormat.getDateInstance(
 DateFormat.FULL, locBR);
System.out.println("Brazil " + dfBR.format(d2));

DateFormat dfIN = DateFormat.getDateInstance(
 DateFormat.FULL, locIN);
System.out.println("India " + dfIN.format(d2));

DateFormat dfJA = DateFormat.getDateInstance(
 DateFormat.FULL, locJA);
System.out.println("Japan " + dfJA.format(d2));

This, on our JVM, produces

US 12/14/10 3:32 PM
US full Sunday, December 14, 2010
Italy domenica 14 dicembre 2010

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 483

484 Chapter 6: Strings, I/O, Formatting, and Parsing

Portugal Domingo, 14 de Dezembro de 2010
Brazil Domingo, 14 de Dezembro de 2010
India ??????, ?? ??????, ????
Japan 2010?12?14?

Oops! Our machine isn't configured to support locales for India or Japan, but you
can see how a single Date object can be formatted to work for many locales.

There are a couple more methods in Locale (getDisplayCountry() and
getDisplayLanguage()) that you'll have to know for the exam. These methods let
you create Strings that represent a given locale's country and language in terms of
both the default locale and any other locale:

Calendar c = Calendar.getInstance();
c.set(2010, 11, 14);
Date d2 = c.getTime();

Locale locBR = new Locale("pt", "BR"); // Brazil
Locale locDK = new Locale("da", "DK"); // Denmark
Locale locIT = new Locale("it", "IT"); // Italy

System.out.println("def " + locBR.getDisplayCountry());
System.out.println("loc " + locBR.getDisplayCountry(locBR));

System.out.println("def " + locDK.getDisplayLanguage());
System.out.println("loc " + locDK.getDisplayLanguage(locDK));
System.out.println("D>I " + locDK.getDisplayLanguage(locIT));

This, on our JVM, produces

Remember that both DateFormat and NumberFormat objects can have
their locales set only at the time of instantiation. Watch for code that attempts to
change the locale of an existing instance —no such methods exist!

def Brazil
loc Brasil
def Danish
loc dansk
D>I danese

Given that our JVM's locale (the default for us) is US, the default for the
country Brazil is "Brazil", and the default for the Danish language is "Danish".
In Brazil, the country is called "Brasil", and in Denmark the language is called
"dansk". Finally, just for fun, we discovered that in Italy, the Danish language is
called "danese".

The NumberFormat Class
We'll wrap up this objective by discussing the NumberFormat class. Like the
DateFormat class, NumberFormat is abstract, so you'll typically use some version
of either getInstance() or getCurrencyInstance() to create a NumberFormat
object. Not surprisingly, you use this class to format numbers or currency values:

float f1 = 123.4567f;
Locale locFR = new Locale("fr"); // France
NumberFormat[] nfa = new NumberFormat[4];

nfa[0] = NumberFormat.getInstance();
nfa[1] = NumberFormat.getInstance(locFR);
nfa[2] = NumberFormat.getCurrencyInstance();
nfa[3] = NumberFormat.getCurrencyInstance(locFR);

for(NumberFormat nf : nfa)
 System.out.println(nf.format(f1));

This, on our JVM, produces

123.457
123,457
$123.46
123,46 ?

Don't be worried if, like us, you're not set up to display the symbols for
francs, pounds, rupees, yen, baht, or drachmas. You won't be expected to

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 485

486 Chapter 6: Strings, I/O, Formatting, and Parsing

know the symbols used for currency: if you need one, it will be specified in
the question. You might encounter methods other than the format method
on the exam. Here's a little code that uses getMaximumFractionDigits(),
setMaximumFractionDigits(), parse(), and setParseIntegerOnly():

float f1 = 123.45678f;
NumberFormat nf = NumberFormat.getInstance();
System.out.print(nf.getMaximumFractionDigits() + " ");
System.out.print(nf.format(f1) + " ");

nf.setMaximumFractionDigits(5);
System.out.println(nf.format(f1) + " ");

try {
 System.out.println(nf.parse("1234.567"));
 nf.setParseIntegerOnly(true);
 System.out.println(nf.parse("1234.567"));
} catch (ParseException pe) {
 System.out.println("parse exc");
}

This, on our JVM, produces

3 123.457 123.45678
1234.567
1234

Notice that in this case, the initial number of fractional digits for the default
NumberFormat is three: and that the format() method rounds f1's value, it
doesn't truncate it. After changing nf's fractional digits, the entire value of f1 is
displayed. Next, notice that the parse() method must run in a try/catch block
and that the setParseIntegerOnly() method takes a boolean and in this
case, causes subsequent calls to parse() to return only the integer part of Strings
formatted as floating-point numbers.

As we've seen, several of the classes covered in this objective are abstract. In
addition, for all of these classes, key functionality for every instance is established
at the time of creation. Table 6-3 summarizes the constructors or methods used to
create instances of all the classes we've discussed in this section.

CERTIFICATION OBJECTIVE

Parsing, Tokenizing, and Formatting
(Exam Objective 3.5)

3.5 Write code that uses standard J2SE APIs in the java.util and java.util.regex packages to
format or parse strings or streams. For strings, write code that uses the Pattern and Matcher
classes and the String.split method. Recognize and use regular expression patterns for matching
(limited to: .(dot), *(star), +(plus), ?, \d, \s, \w, [], ()). The use of *, + , and ? will
be limited to greedy quantifiers, and the parenthesis operator will only be used as a grouping
mechanism, not for capturing content during matching. For streams, write code using the
Formatter and Scanner classes and the PrintWriter.format/printf methods. Recognize and use
formatting parameters (limited to: %b, %c, %d, %f, %s) in format strings.

Parsing, Tokenizing, and Formatting (Exam Objective 3.5) 487

Class Key Instance Creation Options

util.Date new Date();
new Date(long millisecondsSince010170);

util.Calendar Calendar.getInstance();
Calendar.getInstance(Locale);

util.Locale Locale.getDefault();
new Locale(String language);
new Locale(String language, String country);

text.DateFormat DateFormat.getInstance();
DateFormat.getDateInstance();
DateFormat.getDateInstance(style);
DateFormat.getDateInstance(style, Locale);

text.NumberFormat NumberFormat.getInstance()
NumberFormat.getInstance(Locale)
NumberFormat.getNumberInstance()
NumberFormat.getNumberInstance(Locale)
NumberFormat.getCurrencyInstance()
NumberFormat.getCurrencyInstance(Locale)

 TABLE 6-3 Instance Creation for Key java.text and java.util Classes

488 Chapter 6: Strings, I/O, Formatting, and Parsing

We're going to start with yet another disclaimer: This small section isn't going to morph
you from regex newbie to regex guru. In this section we'll cover three basic ideas:

■ Finding stuff You've got big heaps of text to look through. Maybe you're
doing some screen scraping, maybe you're reading from a file. In any case,
you need easy ways to find textual needles in textual haystacks. We'll use the
java.util.regex.Pattern, java.util.regex.Matcher, and java.util.Scanner classes
to help us find stuff.

■ Tokenizing stuff You've got a delimited file that you want to get useful
data out of. You want to transform a piece of a text file that looks like:
"1500.00,343.77,123.4" into some individual float variables. We'll show you
the basics of using the String.split() method and the java.util.Scanner
class, to tokenize your data.

■ Formatting stuff You've got a report to create and you need to take a float
variable with a value of 32500.000f and transform it into a String with a
value of "$32,500.00". We'll introduce you to the java.util.Formatter class
and to the printf() and format() methods.

A Search Tutorial
Whether you're looking for stuff or tokenizing stuff, a lot of the concepts are the
same, so let's start with some basics. No matter what language you're using, sooner
or later you'll probably be faced with the need to search through large amounts of
textual data, looking for some specific stuff.

Regular expressions (regex for short) are a kind of language within a language,
designed to help programmers with these searching tasks. Every language that
provides regex capabilities uses one or more regex engines. Regex engines search
through textual data using instructions that are coded into expressions. A regex
expression is like a very short program or script. When you invoke a regex engine,
you'll pass it the chunk of textual data you want it to process (in Java this is usually
a String or a stream), and you pass it the expression you want it to use to search
through the data.

It's fair to think of regex as a language, and we will refer to it that way throughout
this section. The regex language is used to create expressions, and as we work
through this section, whenever we talk about expressions or expression syntax, we're
talking about syntax for the regex "language." Oh, one more disclaimer…we know
that you regex mavens out there can come up with better expressions than what

we're about to present. Keep in mind that for the most part we're creating these
expressions using only a portion of the total regex instruction set, thanks.

Simple Searches
For our first example, we'd like to search through the following source String

abaaaba

for all occurrences (or matches) of the expression

ab

In all of these discussions we'll assume that our data sources use zero-based
indexes, so if we apply an index to our source string we get

source: abaaaba

index: 0123456

We can see that we have two occurrences of the expression ab: one starting at
position 0 and the second starting at position 4. If we sent the previous source data
and expression to a regex engine, it would reply by telling us that it found matches
at positions 0 and 4:

import java.util.regex.*;
class RegexSmall {
 public static void main(String [] args) {
 Pattern p = Pattern.compile("ab"); // the expression
 Matcher m = p.matcher("abaaaba"); // the source
 while(m.find()) {
 System.out.print(m.start() + " ");
 }
 }
}

This produces

 0 4

A Search Tutorial (Exam Objective 3.5) 489

490 Chapter 6: Strings, I/O, Formatting, and Parsing

We're not going to explain this code right now. In a few pages we're going to
show you a lot more regex code, but first we want to go over some more regex
syntax. Once you understand a little more regex, the code samples will make a lot
more sense. Here's a more complicated example of a source and an expression:

source: abababa

index: 0123456

expression: aba

How many occurrences do we get in this case? Well, there is clearly an occurrence
starting at position 0, and another starting at position 4. But how about starting at
position 2? In general in the world of regex, the aba string that starts at position 2
will not be considered a valid occurrence. The first general regex search rule is

In general, a regex search runs from left to right, and once a source's character has
been used in a match, it cannot be reused.

 So in our previous example, the first match used positions 0, 1, and 2 to match
the expression. (Another common term for this is that the first three characters
of the source were consumed.) Because the character in position 2 was consumed
in the first match, it couldn't be used again. So the engine moved on, and didn't
find another occurrence of aba until it reached position 4. This is the typical way
that a regex matching engine works. However, in a few pages, we'll look at an
exception to the first rule we stated above.

So we've matched a couple of exact strings, but what would we do if we wanted
to find something a little more dynamic? For instance, what if we wanted to find
all of the occurrences of hex numbers or phone numbers or ZIP codes?

Searches Using Metacharacters
As luck would have it, regex has a powerful mechanism for dealing with the cases
we described above. At the heart of this mechanism is the idea of a metacharacter.
As an easy example, let's say that we want to search through some source data
looking for all occurrences of numeric digits. In regex, the following expression is
used to look for numeric digits:

\d

If we change the previous program to apply the expression \d to the following
source string

source: a12c3e456f

index: 0123456789

regex will tell us that it found digits at positions 1, 2, 4, 6, 7, and 8. (If you want to
try this at home, you'll need to "escape" the compile method's "\d" argument by
making it "\\d", more on this a little later.)

Regex provides a rich set of metacharacters that you can find described in the
API documentation for java.util.regex.Pattern. We won't discuss them all here, but
we will describe the ones you'll need for the exam:

\d A digit
\s A whitespace character
\w A word character (letters, digits, or "_" (underscore))

So for example, given

source: "a 1 56 _Z"
index: 012345678
pattern: \w

regex will return positions 0, 2, 4, 5, 7, and 8. The only characters in this source that
don't match the definition of a word character are the whitespaces. (Note: In this
example we enclosed the source data in quotes to clearly indicate that there was no
whitespace at either end.)

You can also specify sets of characters to search for using square brackets and
ranges of characters to search for using square brackets and a dash:

[abc] Searches only for a's, b's or c's
[a-f] Searches only for a, b, c, d, e, or f characters

In addition, you can search across several ranges at once. The following
expression is looking for occurrences of the letters a - f or A - F, it's NOT looking
for an fA combination:

[a-fA-F] Searches for the first six letters of the alphabet, both cases.

A Search Tutorial (Exam Objective 3.5) 491

492 Chapter 6: Strings, I/O, Formatting, and Parsing

So for instance,

source: "cafeBABE"
index: 01234567
pattern: [a-cA-C]

returns positions 0, 1, 4, 5, 6.

In addition to the capabilities described for the exam, you can also apply
the following attributes to sets and ranges within square brackets: "^" to
negate the characters specified, nested brackets to create a union of sets,
and "&&" to specify the intersection of sets. While these constructs are not
on the exam, they are quite useful, and good examples can be found in the
API for the java.util.regex.Pattern class.

Searches Using Quantifiers
Let's say that we want to create a regex pattern to search for hexadecimal literals. As
a first step, let's solve the problem for one-digit hexadecimal numbers:

0[xX][0-9a-fA-F]

The preceding expression could be stated: "Find a set of characters in which the
first character is a "0", the second character is either an "x" or an "X", and the third
character is either a digit from "0" to "9", a letter from "a" to "f" or an uppercase
letter from "A" to "F" ". Using the preceding expression, and the following data,

source: "12 0x 0x12 0Xf 0xg"
index: 012345678901234567

regex would return 6 and 11. (Note: 0x and 0xg are not valid hex numbers.)
As a second step, let's think about an easier problem. What if we just wanted

regex to find occurrences of integers? Integers can be one or more digits long, so it
would be great if we could say "one or more" in an expression. There is a set of regex
constructs called quantifiers that let us specify concepts such as "one or more." In
fact, the quantifier that represents "one or more" is the "+" character. We'll see the
others shortly.

The other issue this raises is that when we're searching for something whose
length is variable, getting only a starting position as a return value has limited value.
So, in addition to returning starting positions, another bit of information that a
regex engine can return is the entire match or group that it finds. We're going to
change the way we talk about what regex returns by specifying each return on its
own line, remembering that now for each return we're going to get back the starting
position AND then the group:

source: "1 a12 234b"
pattern: \d+

You can read this expression as saying: "Find one or more digits in a row." This
expression produces the regex output

0 1
3 12
6 234

You can read this as "At position 0 there's an integer with a value of 1, then at
position 3 there's an integer with a value of 12, then at position 6 there's an integer
with a value of 234." Returning now to our hexadecimal problem, the last thing we
need to know is how to specify the use of a quantifier for only part of an expression.
In this case we must have exactly one occurrence of 0x or 0X but we can have from
one to many occurrences of the hex "digits" that follow. The following expression
adds parentheses to limit the "+" quantifier to only the hex digits:

0[xX]([0-9a-fA-F])+

The parentheses and "+" augment the previous find-the-hex expression by
saying in effect: "Once we've found our 0x or 0X, you can find from one to many
occurrences of hex digits." Notice that we put the "+" quantifier at the end of the
expression. It's useful to think of quantifiers as always quantifying the part of the
expression that precedes them.

The other two quantifiers we're going to look at are

* Zero or more occurrences
? Zero or one occurrence

A Search Tutorial (Exam Objective 3.5) 493

494 Chapter 6: Strings, I/O, Formatting, and Parsing

Let's say you have a text file containing a comma-delimited list of all the file
names in a directory that contains several very important projects. (BTW, this isn't
how we'd arrange our directories :) You want to create a list of all the files whose
names start with proj1. You might discover .txt files, .java files, .pdf files, who
knows? What kind of regex expression could we create to find these various proj1
files? First let's take a look at what a part of this text might look like:

..."proj3.txt,proj1sched.pdf,proj1,proj2,proj1.java"...

To solve this problem we're going to use the regex ^ (carat) operator, which we
mentioned earlier. The regex ^ operator isn't on the exam, but it will help us create
a fairly clean solution to our problem. The ^ is the negation symbol in regex. For
instance, if you want to find anything but a's, b's, or c's in a file you could say

[^abc]

So, armed with the ^ operator and the * (zero or more) quantifier we can create
the following:

proj1([^,])*

If we apply this expression to just the portion of the text file we listed above,
regex returns

10 proj1sched.pdf
25 proj1
37 proj1.java

The key part of this expression is the "give me zero or more characters that aren't
a comma."

The last quantifier example we'll look at is the ? (zero or one) quantifier. Let's say
that our job this time is to search a text file and find anything that might be a local,
7-digit phone number. We're going to say, arbitrarily, that if we find either seven
digits in a row, or three digits followed by a dash or a space followed by 4 digits, that
we have a candidate. Here are examples of "valid" phone numbers:

1234567
123 4567
123-4567

The key to creating this expression is to see that we need "zero or one instance of
either a space or a dash" in the middle of our digits:

\d\d\d([-\s])?\d\d\d\d

The Predefined Dot
In addition to the \s, \d, and \w metacharacters that we discussed, you also have
to understand the "." (dot) metacharacter. When you see this character in a regex
expression, it means "any character can serve here." For instance, the following
source and pattern

source: "ac abc a c"
pattern: a.c

will produce the output

3 abc
7 a c

The "." was able to match both the "b" and the " " in the source data.

Greedy Quantifiers
When you use the *, +, and ? quantifiers, you can fine tune them a bit to produce
behavior that's known as "greedy", "reluctant", or "possessive". Although you need
to understand only the greedy quantifier for the exam, we're also going to discuss the
reluctant quantifier to serve as a basis for comparison. First the syntax:

? is greedy, ?? is reluctant, for zero or once
* is greedy, *? is reluctant, for zero or more
+ is greedy, +? is reluctant, for one or more

What happens when we have the following source and pattern?

source: yyxxxyxx
pattern: .*xx

First off, we're doing something a bit different here by looking for characters that
prefix the static (xx) portion of the expression. We think we're saying something

A Search Tutorial (Exam Objective 3.5) 495

496 Chapter 6: Strings, I/O, Formatting, and Parsing

like: "Find sets of characters that ends with xx". Before we tell what happens, we at
least want you to consider that there are two plausible results…can you find them?
Remember we said earlier that in general, regex engines worked from left to right,
and consumed characters as they went. So, working from left to right, we might
predict that the engine would search the first 4 characters (0–3), find xx starting in
position 2, and have its first match. Then it would proceed and find the second xx
starting in position 6. This would lead us to a result like this:

0 yyxx
4 xyxx

A plausible second argument is that since we asked for a set of characters that
ends with xx we might get a result like this:

0 yyxxxyxx

The way to think about this is to consider the name greedy. In order for the
second answer to be correct, the regex engine would have to look (greedily) at the
entire source data before it could determine that there was an xx at the end. So in
fact, the second result is the correct result because in the original example we used
the greedy quantifier *. The result that finds two different sets can be generated by
using the reluctant quantifier *?. Let's review:

source: yyxxxyxx
pattern: .*xx

is using the greedy quantifier * and produces

0 yyxxxyxx

If we change the pattern to

source: yyxxxyxx
pattern: .*?xx

we're now using the reluctant qualifier *?, and we get the following:

0 yyxx
4 xyxx

The greedy quantifier does in fact read the entire source data, and then it works
backward (from the right) until it finds the rightmost match. At that point, it
includes everything from earlier in the source data up to and including the data that
is part of the rightmost match.

There are a lot more aspects to regex quantifiers than we've discussed
here, but we've covered more than enough for the exam. Sun has several
tutorials that will help you learn more about quantifiers, and turn you into
the go-to person at your job.

When Metacharacters and Strings Collide
So far we've been talking about regex from a theoretical perspective. Before we can
put regex to work we have to discuss one more gotcha. When it's time to implement
regex in our code, it will be quite common that our source data and/or our
expressions will be stored in Strings. The problem is that metacharacters and Strings
don't mix too well. For instance. let's say we just want to do a simple regex pattern
that looks for digits. We might try something like

String pattern = "\d"; // compiler error!

This line of code won't compile! The compiler sees the \ and thinks, "Ok, here
comes an escape sequence, maybe it'll be a new line!" But no, next comes the d and
the compiler says "I've never heard of the \d escape sequence." The way to satisfy
the compiler is to add another backslash in front of the \d

String pattern = "\\d"; // a compilable metacharacter

The first backslash tells the compiler that whatever comes next should be taken
literally, not as an escape sequence. How about the dot (.) metacharacter? If we want
a dot in our expression to be used as a metacharacter, then no problem, but what if
we're reading some source data that happens to use dots as delimiters? Here's another
way to look at our options:

String p = "."; // regex sees this as the "." metacharacter
String p = "\."; // the compiler sees this as an illegal
 // Java escape sequence

A Search Tutorial (Exam Objective 3.5) 497

498 Chapter 6: Strings, I/O, Formatting, and Parsing

String p = "\\."; // the compiler is happy, and regex sees a
 // dot, not a metacharacter

A similar problem can occur when you hand metacharacters to a Java program
via command-line arguments. If we want to pass the \d metacharacter into our Java
program, our JVM does the right thing if we say

% java DoRegex "\d"

But your JVM might not. If you have problems running the following examples, you
might try adding a backslash (i.e., \\d) to your command-line metacharacters. Don't
worry, you won't see any command-line metacharacters on the exam!

The Java language defines several escape sequences, including

 \n = linefeed (which you might see on the exam)
 \b = backspace
 \t = tab

And others, which you can find in the Java Language Specification. Other
than perhaps seeing a \n inside a String, you won't have to worry about
Java's escape sequences on the exam.

At this point we've learned enough of the regex language to start using it in our
Java programs. We'll start by looking at using regex expressions to find stuff, and
then we'll move to the closely related topic of tokenizing stuff.

Locating Data via Pattern Matching
Once you know a little regex, using the java.util.regex.Pattern (Pattern) and
java.util.regex.Matcher (Matcher) classes is pretty straightforward. The Pattern
class is used to hold a representation of a regex expression, so that it can be used
and reused by instances of the Matcher class. The Matcher class is used to invoke
the regex engine with the intention of performing match operations. The following
program shows Pattern and Matcher in action, and it's not a bad way for you to do
your own regex experiments. Note, you might want to modify the following class by
adding some functionality from the Console class. That way you'll get some practice
with the Console class, and it'll be easier to run multiple regex experiments.

import java.util.regex.*;
class Regex {
 public static void main(String [] args) {
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 System.out.println("Pattern is " + m.pattern());
 while(m.find()) {
 System.out.println(m.start() + " " + m.group());
 }
 }
}

This program uses the first command-line argument (args[0]) to represent the
regex expression you want to use, and it uses the second argument (args[1]) to
represent the source data you want to search. Here's a test run:

% java Regex "\d\w" "ab4 56_7ab"

Produces the output

Pattern is \d\w
4 56
7 7a

(Remember, if you want this expression to be represented in a String, you'd use
\\d\\w). Because you'll often have special characters or whitespace as part of
your arguments, you'll probably want to get in the habit of always enclosing your
argument in quotes. Let's take a look at this code in more detail. First off, notice
that we aren't using new to create a Pattern; if you check the API, you'll find no
constructors are listed. You'll use the overloaded, static compile() method (that
takes String expression) to create an instance of Pattern. For the exam, all you'll
need to know to create a Matcher, is to use the Pattern.matcher() method (that
takes String sourceData).

The important method in this program is the find() method. This is the method
that actually cranks up the regex engine and does some searching. The find()
method returns true if it gets a match, and remembers the start position of the
match. If find() returns true, you can call the start() method to get the starting
position of the match, and you can call the group() method to get the string that
represents the actual bit of source data that was matched.

Locating Data via Pattern Matching (Exam Objective 3.5) 499

500 Chapter 6: Strings, I/O, Formatting, and Parsing

A common reason to use regex is to perform search and replace
operations. Although replace operations are not on the exam you should
know that the Matcher class provides several methods that perform search
and replace operations. See the appendReplacement(), appendTail(), and
replaceAll() methods in the Matcher API for more details.

The Matcher class allows you to look at subsets of your source data by using a
concept called regions. In real life, regions can greatly improve performance, but you
won't need to know anything about them for the exam.

To provide the most fl exibility, Matcher.fi nd(), when coupled with the
greedy quantifi ers ? or *, allow for (somewhat unintuitively) the idea of a zero-length
match. As an experiment, modify the previous Regex.java class and add an invocation of
m.end() to the S.O.P. in the while loop. With that modifi cation in place, the invocation

java Regex "a?" "aba"

should produce something very similar to this:

Pattern is a?
0 1 a
1 1
2 3 a
3 3

The lines of output 1 1 and 3 3 are examples of zero-length matches.
Zero-length matches can occur in several places:

■ After the last character of source data (the 3 3 example)
■ In between characters after a match has been found (the 1 1 example)
■ At the beginning of source data (try java Regex "a?" "baba")
■ At the beginning of zero-length source data

Searching Using the Scanner Class Although the java.util.Scanner
class is primarily intended for tokenizing data (which we'll cover next), it can also
be used to find stuff, just like the Pattern and Matcher classes. While Scanner
doesn't provide location information or search and replace functionality, you can
use it to apply regex expressions to source data to tell you how many instances of an
expression exist in a given piece of source data. The following program uses the first
command-line argument as a regex expression, then asks for input using System.in.
It outputs a message every time a match is found:

import java.util.*;
class ScanIn {
 public static void main(String[] args) {
 System.out.print("input: ");
 System.out.flush();
 try {
 Scanner s = new Scanner(System.in);
 String token;
 do {
 token = s.findInLine(args[0]);
 System.out.println("found " + token);
 } while (token != null);
 } catch (Exception e) { System.out.println("scan exc"); }
 }
}

The invocation and input

java ScanIn "\d\d"
input: 1b2c335f456

produce the following:

found 33
found 45

found null

Tokenizing
Tokenizing is the process of taking big pieces of source data, breaking them into
little pieces, and storing the little pieces in variables. Probably the most common
tokenizing situation is reading a delimited file in order to get the contents of the file

Tokenizing (Exam Objective 3.5) 501

502 Chapter 6: Strings, I/O, Formatting, and Parsing

moved into useful places like objects, arrays or collections. We'll look at two classes
in the API that provide tokenizing capabilities: String (using the split() method)
and Scanner, which has many methods that are useful for tokenizing.

Tokens and Delimiters
When we talk about tokenizing, we're talking about data that starts out composed of
two things: tokens and delimiters. Tokens are the actual pieces of data, and delimit-
ers are the expressions that separate the tokens from each other. When most people
think of delimiters, they think of single characters, like commas or backslashes or
maybe a single whitespace. These are indeed very common delimiters, but strictly
speaking, delimiters can be much more dynamic. In fact, as we hinted at a few sen-
tences ago, delimiters can be anything that qualifies as a regex expression. Let's take
a single piece of source data and tokenize it using a couple of different delimiters:

source: "ab,cd5b,6x,z4"

If we say that our delimiter is a comma, then our four tokens would be

ab
cd5b
6x
z4

If we use the same source, but declare our delimiter to be \d, we get three tokens:

ab,cd
b,
x,z

In general, when we tokenize source data, the delimiters themselves are discarded,
and all that we are left with are the tokens. So in the second example, we defined
digits to be delimiters, so the 5, 6, and 4 do not appear in the final tokens.

Tokenizing with String.split()
The String class's split() method takes a regex expression as its argument,
and returns a String array populated with the tokens produced by the split (or
tokenizing) process. This is a handy way to tokenize relatively small pieces of data.
The following program uses args[0] to hold a source string, and args[1] to hold
the regex pattern to use as a delimiter:

import java.util.*;
class SplitTest {
 public static void main(String[] args) {
 String[] tokens = args[0].split(args[1]);
 System.out.println("count " + tokens.length);
 for(String s : tokens)
 System.out.println(">" + s + "<");
 }
}

Everything happens all at once when the split() method is invoked. The source
string is split into pieces, and the pieces are all loaded into the tokens String array.
All the code after that is just there to verify what the split operation generated. The
following invocation

% java SplitTest "ab5 ccc 45 @" "\d"

produces

count 4
>ab<
> ccc <
><
> @<

(Note: Remember that to represent "\" in a string you may need to use the escape
sequence "\\". Because of this, and depending on your OS, your second argument
might have to be "\\d" or even "\\\\d".)

We put the tokens inside "> <" characters to show whitespace. Notice that every
digit was used as a delimiter, and that contiguous digits created an empty token.

One drawback to using the String.split() method is that often you'll want
to look at tokens as they are produced, and possibly quit a tokenization operation
early when you've created the tokens you need. For instance, you might be searching
a large file for a phone number. If the phone number occurs early in the file, you'd
like to quit the tokenization process as soon as you've got your number. The Scanner
class provides a rich API for doing just such on-the-fly tokenization operations.

Tokenizing (Exam Objective 3.5) 503

504 Chapter 6: Strings, I/O, Formatting, and Parsing

Tokenizing with Scanner
The java.util.Scanner class is the Cadillac of tokenizing. When you need to do some
serious tokenizing, look no further than Scanner—this beauty has it all. In addition
to the basic tokenizing capabilities provided by String.split(), the Scanner class
offers the following features:

■ Scanners can be constructed using files, streams, or Strings as a source.

■ Tokenizing is performed within a loop so that you can exit the process at any
point.

■ Tokens can be converted to their appropriate primitive types automatically.

Let's look at a program that demonstrates several of Scanner's methods and
capabilities. Scanner's default delimiter is whitespace, which this program uses.

Because System.out.println() is so heavily used on the exam, you
might see examples of escape sequences tucked in with questions on most any topic,
including regex. Remember that if you need to create a String that contains a double
quote " or a backslash \ you need to add an escape character fi rst:

System.out.println("\" \\");

This prints

" \

So, what if you need to search for periods (.) in your source data? If you
just put a period in the regex expression, you get the "any character" behavior. So, what
if you try \. ? Now the Java compiler thinks you're trying to create an escape sequence
that doesn’t exist. The correct syntax is

 String s = "ab.cde.fg";
 String[] tokens = s.split("\\.");

The program makes two Scanner objects: s1 is iterated over with the more generic
next() method, which returns every token as a String, while s2 is analyzed with
several of the specialized nextXxx() methods (where Xxx is a primitive type):

import java.util.Scanner;
class ScanNext {
 public static void main(String [] args) {
 boolean b2, b;
 int i;
 String s, hits = " ";
 Scanner s1 = new Scanner(args[0]);
 Scanner s2 = new Scanner(args[0]);
 while(b = s1.hasNext()) {
 s = s1.next(); hits += "s";
 }
 while(b = s2.hasNext()) {
 if (s2.hasNextInt()) {
 i = s2.nextInt(); hits += "i";
 } else if (s2.hasNextBoolean()) {
 b2 = s2.nextBoolean(); hits += "b";
 } else {
 s2.next(); hits += "s2";
 }
 }
 System.out.println("hits " + hits);
 }
}

If this program is invoked with

% java ScanNext "1 true 34 hi"

it produces

hits ssssibis2

Of course we're not doing anything with the tokens once we've got them, but you
can see that s2's tokens are converted to their respective primitives. A key point
here is that the methods named hasNextXxx() test the value of the next token

Tokenizing (Exam Objective 3.5) 505

506 Chapter 6: Strings, I/O, Formatting, and Parsing

but do not actually get the token, nor do they move to the next token in the source
data. The nextXxx() methods all perform two functions: they get the next token,
and then they move to the next token.

The Scanner class has nextXxx() (for instance nextLong()) and hasNextXxx()
(for instance hasNextDouble()) methods for every primitive type except char. In
addition, the Scanner class has a useDelimiter() method that allows you to set
the delimiter to be any valid regex expression.

Formatting with printf() and format()
What fun would accounts receivable reports be if the decimal points didn't line up?
Where would you be if you couldn't put negative numbers inside of parentheses?
Burning questions like these caused the exam creation team to include formatting
as a part of the exam. The format() and printf() methods were added to
java.io.PrintStream in Java 5. These two methods behave exactly the same way, so
anything we say about one of these methods applies to both of them. (The rumor is
that Sun added printf() just to make old C programmers happy.)

Behind the scenes, the format() method uses the java.util.Formatter class
to do the heavy formatting work. You can use the Formatter class directly if you
choose, but for the exam all you have to know is the basic syntax of the arguments
you pass to the format() method. The documentation for these formatting
arguments can be found in the Formatter API. We're going to take the "nickel tour"
of the formatting String syntax, which will be more than enough to allow you to do
a lot of basic formatting work, AND ace all the formatting questions on the exam.

Let's start by paraphrasing the API documentation for format strings (for more
complete, way-past-what-you-need-for-the-exam coverage, check out the
java.util.Formatter API):

printf("format string", argument(s));

The format string can contain both normal string literal information that isn't
associated with any arguments, and argument-specific formatting data. The clue to
determining whether you're looking at formatting data, is that formatting data will
always start with a percent sign (%). Let's look at an example, and don't panic, we'll
cover everything that comes after the % next:

System.out.printf("%2$d + %1$d", 123, 456);

This produces

456 + 123

Let's look at what just happened. Inside the double quotes there is a format string,
then a +, and then a second format string. Notice that we mixed literals in with
the format strings. Now let's dive in a little deeper and look at the construction of
format strings:

%[arg_index$][flags][width][.precision]conversion char

The values within [] are optional. In other words, the only required elements of
a format string are the % and a conversion character. In the example above the only
optional values we used were for argument indexing. The 2$ represents the second
argument, and the 1$ represents the first argument. (Notice that there's no problem
switching the order of arguments.) The d after the arguments is a conversion
character (more or less the type of the argument). Here's a rundown of the format
string elements you'll need to know for the exam:

arg_index An integer followed directly by a $, this indicates which argument
should be printed in this position.

flags While many flags are available, for the exam you'll need to know:

■ "-" Left justify this argument

■ "+" Include a sign (+ or -) with this argument

■ "0" Pad this argument with zeroes

■ "," Use locale-specific grouping separators (i.e., the comma in 123,456)

■ "(" Enclose negative numbers in parentheses

width This value indicates the minimum number of characters to print. (If you
want nice even columns, you'll use this value extensively.)

precision For the exam you'll only need this when formatting a floating-point
number, and in the case of floating point numbers, precision indicates the number of
digits to print after the decimal point.

Formatting with printf() and format() (Exam Objective 3.5) 507

508 Chapter 6: Strings, I/O, Formatting, and Parsing

conversion The type of argument you'll be formatting. You'll need to know:

■ b boolean

■ c char

■ d integer

■ f floating point

■ s string

Let's see some of these formatting strings in action:

int i1 = -123;
int i2 = 12345;
System.out.printf(">%1$(7d< \n", i1);
System.out.printf(">%0,7d< \n", i2);
System.out.format(">%+-7d< \n", i2);
System.out.printf(">%2$b + %1$5d< \n", i1, false);

This produces:

> (123)<
>012,345<
>+12345 <
>false + -123<

(We added the > and < literals to help show how minimum widths, and zero
padding and alignments work.) Finally, it's important to remember that if you
have a mismatch between the type specified in your conversion character and your
argument, you'll get a runtime exception:

System.out.format("%d", 12.3);

This produces something like

Exception in thread "main" java.util.IllegalFormatConversionEx-

ception: d != java.lang.Double

CERTIFICATION SUMMARY

Strings The most important thing to remember about Strings is that String
objects are immutable, but references to Strings are not! You can make a new String
by using an existing String as a starting point, but if you don't assign a reference
variable to the new String it will be lost to your program—you will have no way to
access your new String. Review the important methods in the String class.

The StringBuilder class was added in Java 5. It has exactly the same methods as
the old StringBuffer class, except StringBuilder's methods aren't thread-safe. Because
StringBuilder's methods are not thread safe, they tend to run faster than StringBuffer
methods, so choose StringBuilder whenever threading is not an issue. Both
StringBuffer and StringBuilder objects can have their value changed over and over
without having to create new objects. If you're doing a lot of string manipulation,
these objects will be more efficient than immutable String objects, which are, more
or less, "use once, remain in memory forever." Remember, these methods ALWAYS
change the invoking object's value, even with no explicit assignment.

File I/O Remember that objects of type File can represent either files or directo-
ries, but that until you call createNewFile() or mkdir() you haven't actually cre-
ated anything on your hard drive. Classes in the java.io package are designed to be
chained together. It will be rare that you'll use a FileReader or a FileWriter without
"wrapping" them with a BufferedReader or BufferedWriter object, which gives you
access to more powerful, higher-level methods. As of Java 5, the PrintWriter class
has been enhanced with advanced append(), format(), and printf() methods,
and when you couple that with new constructors that allow you to create PrintWrit-
ers directly from a String name or a File object, you may use BufferWriters a lot less.
The Console class allows you to read non-echoed input (returned in a char[]), and is
instantiated using System.console().

Serialization Serialization lets you save, ship, and restore everything you need
to know about a live object. And when your object points to other objects, they get
saved too. The java.io.ObjectOutputStream and java.io.ObjectInputStream classes
are used to serialize and deserialize objects. Typically you wrap them around instanc-
es of FileOutputStream and FileInputStream, respectively.

The key method you invoke to serialize an object is writeObject(), and to
deserialize an object invoke readObject(). In order to serialize an object, it must
implement the Serializable interface. Mark instance variables transient if you
don't want their state to be part of the serialization process. You can augment

Certifi cation Summary 509

510 Chapter 6: Strings, I/O, Formatting, and Parsing

the serialization process for your class by implementing writeObject() and
readObject(). If you do that, an embedded call to defaultReadObject() and
defaultWriteObject() will handle the normal serialization tasks, and you can
augment those invocations with manual reading from and writing to the stream.

If a superclass implements Serializable then all of its subclasses do too. If a
superclass doesn't implement Serializable, then when a subclass object is deserialized
the unserializable superclass's constructor runs—be careful! Finally, remember that
serialization is about instances, so static variables aren't serialized.

Dates, Numbers, and Currency Remember that the Sun objective is a bit
misleading, and that you'll have to understand the basics of five related classes:
java.util.Date, java.util.Calendar, java.util.Locale, java.text.DateFormat, and java.
text.NumberFormat. A Date is the number of milliseconds since Jan 1, 1970, stored
in a long. Most of Date's methods have been deprecated, so use the Calendar class
for your date-manipulation tasks. Remember that in order to create instances of
Calendar, DateFormat, and NumberFormat, you have to use static factory methods
like getInstance(). The Locale class is used with DateFormat and NumberFormat
to generate a variety of output styles that are language and/or country specific.

Parsing, Tokenizing, and Formatting To find specific pieces of data in
large data sources, Java provides several mechanisms that use the concepts of regular
expressions (Regex). regex expressions can be used with the java.util.regex package's
Pattern and Matcher classes, as well as with java.util.Scanner and with the
String.split() method. When creating regex patterns, you can use literal
characters for matching or you can use metacharacters, that allow you to match on
concepts like "find digits" or "find whitespace". Regex provides quantifiers that allow
you to say things like "find one or more of these things in a row." You won't have to
understand the Matcher methods that facilitate replacing strings in data.

Tokenizing is splitting delimited data into pieces. Delimiters are usually as simple
as a comma, but they can be as complex as any other regex pattern. The
java.util.Scanner class provides full tokenizing capabilities using regex, and allows
you to tokenize in a loop so that you can stop the tokenizing process at any point.
String.split() allows full regex patterns for tokenizing, but tokenizing is done in
one step, hence large data sources can take a long time to process.

Formatting data for output can be handled by using the Formatter class, or
more commonly by using the new PrintStream methods format() and printf().
Remember format() and printf() behave identically. To use these methods, you
create a format string that is associated with every piece of data you want to format.

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Using String, StringBuffer, and StringBuilder (Objective 3.1)

❑ String objects are immutable, and String reference variables are not.

❑ If you create a new String without assigning it, it will be lost to your program.

❑ If you redirect a String reference to a new String, the old String can be lost.

❑ String methods use zero-based indexes, except for the second argument of
substring().

❑ The String class is final—its methods can't be overridden.

❑ When the JVM finds a String literal, it is added to the String literal pool.

❑ Strings have a method: length(); arrays have an attribute named length.

❑ The StringBuffer's API is the same as the new StringBuilder's API, except
that StringBuilder's methods are not synchronized for thread safety.

❑ StringBuilder methods should run faster than StringBuffer methods.

❑ All of the following bullets apply to both StringBuffer and StringBuilder:

 ❑ They are mutable—they can change without creating a new object.

 ❑ StringBuffer methods act on the invoking object, and objects can change
 without an explicit assignment in the statement.

 ❑ StringBuffer equals() is not overridden; it doesn't compare values.

❑ Remember that chained methods are evaluated from left to right.

❑ String methods to remember: charAt(), concat(), equalsIgnoreCase(),
length(), replace(), substring(), toLowerCase(), toString(),
toUpperCase(), and trim().

❑ StringBuffer methods to remember: append(), delete(), insert(),
reverse(), and toString().

File I/O (Objective 3.2)

❑ The classes you need to understand in java.io are File, FileReader,
BufferedReader, FileWriter, BufferedWriter, PrintWriter, and Console.

❑ A new File object doesn't mean there's a new file on your hard drive.

❑ File objects can represent either a file or a directory.

Two-Minute Drill 511

✓

❑ The File class lets you manage (add, rename, and delete) files and directories.

❑ The methods createNewFile() and mkdir() add entries to your file system.

❑ FileWriter and FileReader are low-level I/O classes. You can use them to
write and read files, but they should usually be wrapped.

❑ Classes in java.io are designed to be "chained" or "wrapped." (This is a
common use of the decorator design pattern.)

❑ It's very common to "wrap" a BufferedReader around a FileReader
or a BufferedWriter around a FileWriter, to get access to higher-level
(more convenient) methods.

❑ PrintWriters can be used to wrap other Writers, but as of Java 5 they can be
built directly from Files or Strings.

❑ Java 5 PrintWriters have new append(), format(), and printf() methods.

❑ Console objects can read non-echoed input and are instantiated using
System.console().

Serialization (Objective 3.3)

❑ The classes you need to understand are all in the java.io package; they
include: ObjectOutputStream and ObjectInputStream primarily, and
FileOutputStream and FileInputStream because you will use them to create
the low-level streams that the ObjectXxxStream classes will use.

❑ A class must implement Serializable before its objects can be serialized.

❑ The ObjectOutputStream.writeObject() method serializes objects, and
the ObjectInputStream.readObject() method deserializes objects.

❑ If you mark an instance variable transient, it will not be serialized even
thought the rest of the object's state will be.

❑ You can supplement a class's automatic serialization process by implementing
the writeObject() and readObject() methods. If you do this, embedding
calls to defaultWriteObject() and defaultReadObject(), respectively,
will handle the part of serialization that happens normally.

❑ If a superclass implements Serializable, then its subclasses do automatically.

❑ If a superclass doesn't implement Serializable, then when a subclass object
is deserialized, the superclass constructor will be invoked, along with its
superconstructor(s).

❑ DataInputStream and DataOutputStream aren't actually on the exam, in
spite of what the Sun objectives say.

512 Chapter 6: Strings, I/O, Formatting, and Parsing

Dates, Numbers, and Currency (Objective 3.4)

❑ The classes you need to understand are java.util.Date, java.util.Calendar,
java.text.DateFormat, java.text.NumberFormat, and java.util.Locale.

❑ Most of the Date class's methods have been deprecated.

❑ A Date is stored as a long, the number of milliseconds since January 1, 1970.

❑ Date objects are go-betweens the Calendar and Locale classes.

❑ The Calendar provides a powerful set of methods to manipulate dates,
performing tasks such as getting days of the week, or adding some number of
months or years (or other increments) to a date.

❑ Create Calendar instances using static factory methods (getInstance()).

❑ The Calendar methods you should understand are add(), which allows you
to add or subtract various pieces (minutes, days, years, and so on) of dates,
and roll(), which works like add() but doesn't increment a date's bigger
pieces. (For example: adding 10 months to an October date changes the
month to August, but doesn't increment the Calendar's year value.)

❑ DateFormat instances are created using static factory methods
(getInstance() and getDateInstance()).

❑ There are several format "styles" available in the DateFormat class.

❑ DateFormat styles can be applied against various Locales to create a wide
array of outputs for any given date.

❑ The DateFormat.format() method is used to create Strings containing
properly formatted dates.

❑ The Locale class is used in conjunction with DateFormat and NumberFormat.

❑ Both DateFormat and NumberFormat objects can be constructed with a
specific, immutable Locale.

❑ For the exam you should understand creating Locales using language, or a
combination of language and country.

Parsing, Tokenizing, and Formatting (Objective 3.5)

❑ regex is short for regular expressions, which are the patterns used to search for
data within large data sources.

❑ regex is a sub-language that exists in Java and other languages (such as Perl).

❑ regex lets you to create search patterns using literal characters or
metacharacters. Metacharacters allow you to search for slightly more abstract
data like "digits" or "whitespace".

Two-Minute Drill 513

514 Chapter 6: Strings, I/O, Formatting, and Parsing

❑ Study the \d, \s, \w, and . metacharacters

❑ regex provides for quantifiers which allow you to specify concepts like: "look
for one or more digits in a row."

❑ Study the ?, *, and + greedy quantifiers.

❑ Remember that metacharacters and Strings don't mix well unless you
remember to "escape" them properly. For instance String s = "\\d";

❑ The Pattern and Matcher classes have Java's most powerful regex capabilities.

❑ You should understand the Pattern compile() method and the Matcher
matches(), pattern(), find(), start(), and group() methods.

❑ You WON'T need to understand Matcher's replacement-oriented methods.

❑ You can use java.util.Scanner to do simple regex searches, but it is primarily
intended for tokenizing.

❑ Tokenizing is the process of splitting delimited data into small pieces.

❑ In tokenizing, the data you want is called tokens, and the strings that separate
the tokens are called delimiters.

❑ Tokenizing can be done with the Scanner class, or with String.split().

❑ Delimiters are single characters like commas, or complex regex expressions.

❑ The Scanner class allows you to tokenize data from within a loop, which
allows you to stop whenever you want to.

❑ The Scanner class allows you to tokenize Strings or streams or files.

❑ The String.split() method tokenizes the entire source data all at once, so
large amounts of data can be quite slow to process.

❑ New to Java 5 are two methods used to format data for output. These
methods are format() and printf(). These methods are found in the
PrintStream class, an instance of which is the out in System.out.

❑ The format() and printf() methods have identical functionality.

❑ Formatting data with printf() (or format()) is accomplished using
formatting strings that are associated with primitive or string arguments.

❑ The format() method allows you to mix literals in with your format strings.

❑ The format string values you should know are

 ❑ Flags: -, +, 0, "," , and (

 ❑ Conversions: b, c, d, f, and s

❑ If your conversion character doesn't match your argument type, an exception
will be thrown.

 SELF TEST

 1. Given:

import java.util.regex.*;
class Regex2 {
 public static void main(String[] args) {
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 boolean b = false;
 while(b = m.find()) {
 System.out.print(m.start() + m.group());
 }
 }
}

 And the command line:

java Regex2 "\d*" ab34ef

 What is the result?

 A. 234

 B. 334

 C. 2334

 D. 0123456

 E. 01234456

 F. 12334567

 G. Compilation fails

 2. Given:

import java.io.*;
class Player {
 Player() { System.out.print("p"); }
}
class CardPlayer extends Player implements Serializable {
 CardPlayer() { System.out.print("c"); }

Self Test 515

 public static void main(String[] args) {
 CardPlayer c1 = new CardPlayer();
 try {
 FileOutputStream fos = new FileOutputStream("play.txt");
 ObjectOutputStream os = new ObjectOutputStream(fos);
 os.writeObject(c1);
 os.close();
 FileInputStream fis = new FileInputStream("play.txt");
 ObjectInputStream is = new ObjectInputStream(fis);
 CardPlayer c2 = (CardPlayer) is.readObject();
 is.close();
 } catch (Exception x) { }
 }
}

 What is the result?

 A. pc

 B. pcc

 C. pcp

 D. pcpc

 E. Compilation fails

 F. An exception is thrown at runtime

 3. Given:

class TKO {
 public static void main(String[] args) {
 String s = "-";
 Integer x = 343;
 long L343 = 343L;
 if(x.equals(L343)) s += ".e1 ";
 if(x.equals(343)) s += ".e2 ";
 Short s1 = (short)((new Short((short)343)) / (new Short((short)49)));
 if(s1 == 7) s += "=s ";
 if(s1 < new Integer(7+1)) s += "fly ";
 System.out.println(s);
 }
}

516 Chapter 6: Strings, I/O, Formatting, and Parsing

 Which of the following will be included in the output String s? (Choose all that apply.)

 A. .e1

 B. .e2

 C. =s

 D. fly

 E. None of the above

 F. Compilation fails

 G. An exception is thrown at runtime

 4. Given:

import java.io.*;

class Keyboard { }
public class Computer implements Serializable {
 private Keyboard k = new Keyboard();
 public static void main(String[] args) {
 Computer c = new Computer();
 c.storeIt(c);
 }
 void storeIt(Computer c) {
 try {
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream("myFile"));
 os.writeObject(c);
 os.close();
 System.out.println("done");
 } catch (Exception x) {System.out.println("exc"); }
 }
}

 What is the result? (Choose all that apply.)

 A. exc

 B. done

 C. Compilation fails

 D. Exactly one object is serialized

 E. Exactly two objects are serialized

Self Test 517

518 Chapter 6: Strings, I/O, Formatting, and Parsing

 5. Using the fewest fragments possible (and filling the fewest slots possible), complete the code
below so that the class builds a directory named "dir3" and creates a file named "file3" inside
"dir3". Note you can use each fragment either zero or one times.

 Code:

import java.io.______________

class Maker {
 public static void main(String[] args) {

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________
 }
}

 Fragments:

 File; FileDescriptor; FileWriter; Directory;
 try { .createNewDir(); File dir File
 { } (Exception x) ("dir3"); file
 file .createNewFile(); = new File = new File
 dir (dir, "file3"); (dir, file); .createFile();
 } catch ("dir3", "file3"); .mkdir(); File file

Self Test 519

 6. Given that 1119280000000L is roughly the number of milliseconds from Jan 1, 1970, to June
20, 2005, and that you want to print that date in German, using the LONG style such that "June"
will be displayed as "Juni", complete the code using the fragments below. Note: you can use
each fragment either zero or one times, and you might not need to fill all of the slots.

 Code:

import java.___________

import java.___________

class DateTwo {
 public static void main(String[] args) {
 Date d = new Date(1119280000000L);

 DateFormat df = ___________________________

 ________________ , _________________);

 System.out.println(________________
 }
}

 Fragments:

 io.*; new DateFormat(Locale.LONG
 nio.*; DateFormat.getInstance(Locale.GERMANY
 util.*; DateFormat.getDateInstance(DateFormat.LONG
 text.*; util.regex; DateFormat.GERMANY

 date.*; df.format(d)); d.format(df));

 7. Given:

import java.io.*;
class Directories {
 static String [] dirs = {"dir1", "dir2"};
 public static void main(String [] args) {
 for (String d : dirs) {

 // insert code 1 here

 File file = new File(path, args[0]);

 // insert code 2 here
 }
 }
}

520 Chapter 6: Strings, I/O, Formatting, and Parsing

 and that the invocation

java Directories file2.txt

 is issued from a directory that has two subdirectories, "dir1" and "dir2", and that "dir1" has a file
"file1.txt" and "dir2" has a file "file2.txt", and the output is "false true"; which set(s)
of code fragments must be inserted? (Choose all that apply.)

 A. String path = d;

System.out.print(file.exists() + " ");

 B. String path = d;

System.out.print(file.isFile() + " ");

 C. String path = File.separator + d;

System.out.print(file.exists() + " ");

 D. String path = File.separator + d;

System.out.print(file.isFile() + " ");

 8. Given:

import java.io.*;

public class TestSer {
 public static void main(String[] args) {
 SpecialSerial s = new SpecialSerial();
 try {
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream("myFile"));
 os.writeObject(s); os.close();
 System.out.print(++s.z + " ");

 ObjectInputStream is = new ObjectInputStream(
 new FileInputStream("myFile"));
 SpecialSerial s2 = (SpecialSerial)is.readObject();
 is.close();

Self Test 521

 System.out.println(s2.y + " " + s2.z);
 } catch (Exception x) {System.out.println("exc"); }
 }
}
class SpecialSerial implements Serializable {
 transient int y = 7;
 static int z = 9;
}

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output is 10 0 9

 C. The output is 10 0 10

 D. The output is 10 7 9

 E. The output is 10 7 10

 F. In order to alter the standard deserialization process you would implement the
readObject() method in SpecialSerial

 G. In order to alter the standard deserialization process you would implement the
defaultReadObject() method in SpecialSerial

 9. Given:

 3. public class Theory {
 4. public static void main(String[] args) {
 5. String s1 = "abc";
 6. String s2 = s1;
 7. s1 += "d";
 8. System.out.println(s1 + " " + s2 + " " + (s1==s2));
 9.
10. StringBuffer sb1 = new StringBuffer("abc");
11. StringBuffer sb2 = sb1;
12. sb1.append("d");
13. System.out.println(sb1 + " " + sb2 + " " + (sb1==sb2));
14. }
15. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The first line of output is abc abc true

 C. The first line of output is abc abc false

 D. The first line of output is abcd abc false

 E. The second line of output is abcd abc false

 F. The second line of output is abcd abcd true

 G. The second line of output is abcd abcd false

 10. Given:

 3. import java.io.*;
 4. public class ReadingFor {
 5. public static void main(String[] args) {
 6. String s;
 7. try {
 8. FileReader fr = new FileReader("myfile.txt");
 9. BufferedReader br = new BufferedReader(fr);
10. while((s = br.readLine()) != null)
11. System.out.println(s);
12. br.flush();
13. } catch (IOException e) { System.out.println("io error"); }
16. }
17. }

 And given that myfile.txt contains the following two lines of data:

ab
cd

 What is the result?

 A. ab

 B. abcd

 C. ab

 cd

 D. a

 b

 c

 d

 E. Compilation fails

522 Chapter 6: Strings, I/O, Formatting, and Parsing

 11. Given:

 3. import java.io.*;
 4. public class Talker {
 5. public static void main(String[] args) {
 6. Console c = System.console();
 7. String u = c.readLine("%s", "username: ");
 8. System.out.println("hello " + u);
 9. String pw;
10. if(c != null && (pw = c.readPassword("%s", "password: ")) != null)
11. // check for valid password
12. }
13. }

 If line 6 creates a valid Console object, and if the user enters fred as a username and 1234 as a

password, what is the result? (Choose all that apply.)

 A. username:

 password:

 B. username: fred

 password:

 C. username: fred

 password: 1234

 D. Compilation fails

 E. An exception is thrown at runtime

 12. Given:

 3. import java.io.*;
 4. class Vehicle { }
 5. class Wheels { }
 6. class Car extends Vehicle implements Serializable { }
 7. class Ford extends Car { }
 8. class Dodge extends Car {
 9. Wheels w = new Wheels();
10. }

 Instances of which class(es) can be serialized? (Choose all that apply.)

 A. Car

 B. Ford

Self Test 523

524 Chapter 6: Strings, I/O, Formatting, and Parsing

 C. Dodge

 D. Wheels

 E. Vehicle

 13. Given:

 3. import java.text.*;
 4. public class Slice {
 5. public static void main(String[] args) {
 6. String s = "987.123456";
 7. double d = 987.123456d;
 8. NumberFormat nf = NumberFormat.getInstance();
 9. nf.setMaximumFractionDigits(5);
10. System.out.println(nf.format(d) + " ");
11. try {
12. System.out.println(nf.parse(s));
13. } catch (Exception e) { System.out.println("got exc"); }
14. }
15. }

 Which are true? (Choose all that apply.)

 A. The output is 987.12345 987.12345

 B. The output is 987.12346 987.12345

 C. The output is 987.12345 987.123456

 D. The output is 987.12346 987.123456

 E. The try/catch block is unnecessary

 F. The code compiles and runs without exception

 G. The invocation of parse() must be placed within a try/catch block

 14. Given:

 3. import java.util.regex.*;
 4. public class Archie {
 5. public static void main(String[] args) {
 6. Pattern p = Pattern.compile(args[0]);
 7. Matcher m = p.matcher(args[1]);
 8. int count = 0;
 9. while(m.find())
10. count++;

11. System.out.print(count);
12. }
13. }

 And given the command line invocation:

java Archie "\d+" ab2c4d67

 What is the result?

 A. 0

 B. 3

 C. 4

 D. 8

 E. 9

 F. Compilation fails

 15. Given:

 3. import java.util.*;
 4. public class Looking {
 5. public static void main(String[] args) {
 6. String input = "1 2 a 3 45 6";
 7. Scanner sc = new Scanner(input);
 8. int x = 0;
 9. do {
10. x = sc.nextInt();
11. System.out.print(x + " ");
12. } while (x!=0);
13. }
14. }

 What is the result?

 A. 1 2

 B. 1 2 3 45 6

 C. 1 2 3 4 5 6

 D. 1 2 a 3 45 6

 E. Compilation fails

 F. 1 2 followed by an exception

Self Test 525

SELF TEST ANSWERS
 1. Given:

import java.util.regex.*;
class Regex2 {
 public static void main(String[] args) {
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 boolean b = false;
 while(b = m.find()) {
 System.out.print(m.start() + m.group());
 }
 }
}

 And the command line:

java Regex2 "\d*" ab34ef

 What is the result?

 A. 234

 B. 334

 C. 2334

 D. 0123456

 E. 01234456

 F. 12334567

 G. Compilation fails

Answer:
 ✓ E is correct. The \d is looking for digits. The * is a quantifier that looks for 0 to many

occurrences of the pattern that precedes it. Because we specified *, the group() method
returns empty Strings until consecutive digits are found, so the only time group() returns
a value is when it returns 34 when the matcher finds digits starting in position 2. The
start() method returns the starting position of the previous match because, again,
we said find 0 to many occurrences.

 A, B, C, D, F, and G are incorrect based on the above. (Objective 3.5)

526 Chapter 6: Strings, I/O, Formatting, and Parsing

Self Test Answers 527

 2. Given:

import java.io.*;
class Player {
 Player() { System.out.print("p"); }
}
class CardPlayer extends Player implements Serializable {
 CardPlayer() { System.out.print("c"); }
 public static void main(String[] args) {
 CardPlayer c1 = new CardPlayer();
 try {
 FileOutputStream fos = new FileOutputStream("play.txt");
 ObjectOutputStream os = new ObjectOutputStream(fos);
 os.writeObject(c1);
 os.close();
 FileInputStream fis = new FileInputStream("play.txt");
 ObjectInputStream is = new ObjectInputStream(fis);
 CardPlayer c2 = (CardPlayer) is.readObject();
 is.close();
 } catch (Exception x) { }
 }
}

 What is the result?

 A. pc

 B. pcc

 C. pcp

 D. pcpc

 E. Compilation fails

 F. An exception is thrown at runtime

Answer:
 ✓ C is correct. It's okay for a class to implement Serializable even if its superclass doesn't.

However, when you deserialize such an object, the non-serializable superclass must run its
constructor. Remember, constructors don't run on deserialized classes that implement
Serializable.

 A, B, D, E, and F are incorrect based on the above. (Objective 3.3)

528 Chapter 6: Strings, I/O, Formatting, and Parsing

 3. Given:

class TKO {
 public static void main(String[] args) {
 String s = "-";
 Integer x = 343;
 long L343 = 343L;
 if(x.equals(L343)) s += ".e1 ";
 if(x.equals(343)) s += ".e2 ";
 Short s1 = (short)((new Short((short)343)) / (new Short((short)49)));
 if(s1 == 7) s += "=s ";
 if(s1 < new Integer(7+1)) s += "fly ";
 System.out.println(s);
} }

 Which of the following will be included in the output String s? (Choose all that apply.)

 A. .e1

 B. .e2

 C. =s

 D. fly

 E. None of the above

 F. Compilation fails

 G. An exception is thrown at runtime

Answer:
 ✓ B, C, and D are correct. Remember, that the equals() method for the integer wrappers

will only return true if the two primitive types and the two values are equal. With C, it's
okay to unbox and use ==. For D, it's okay to create a wrapper object with an expression,
and unbox it for comparison with a primitive.

 A, E, F, and G are incorrect based on the above. (Remember that A is using the equals()
method to try to compare two different types.) (Objective 3.1)

 4. Given:

import java.io.*;

class Keyboard { }
public class Computer implements Serializable {

 private Keyboard k = new Keyboard();
 public static void main(String[] args) {
 Computer c = new Computer();
 c.storeIt(c);
 }
 void storeIt(Computer c) {
 try {
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream("myFile"));
 os.writeObject(c);
 os.close();
 System.out.println("done");
 } catch (Exception x) {System.out.println("exc"); }
 }
}

 What is the result? (Choose all that apply.)

 A. exc

 B. done

 C. Compilation fails

 D. Exactly one object is serialized

 E. Exactly two objects are serialized

Answer:
 ✓ A is correct. An instance of type Computer Has-a Keyboard. Because Keyboard doesn't

implement Serializable, any attempt to serialize an instance of Computer will cause an
exception to be thrown.

 B, C, D, and E are incorrect based on the above. If Keyboard did implement Serializable
then two objects would have been serialized. (Objective 3.3)

 5. Using the fewest fragments possible (and filling the fewest slots possible), complete the code
below so that the class builds a directory named "dir3" and creates a file named "file3" inside
"dir3". Note you can use each fragment either zero or one times.

Self Test Answers 529

530 Chapter 6: Strings, I/O, Formatting, and Parsing

 Code:

import java.io.______________

class Maker {
 public static void main(String[] args) {

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________
} }

 Fragments:

 File; FileDescriptor; FileWriter; Directory;
 try { .createNewDir(); File dir File
 { } (Exception x) ("dir3"); file
 file .createNewFile(); = new File = new File
 dir (dir, "file3"); (dir, file); .createFile();
 } catch ("dir3", "file3"); .mkdir(); File file

Answer:

import java.io.File;
class Maker {
 public static void main(String[] args) {
 try {
 File dir = new File("dir3");
 dir.mkdir();
 File file = new File(dir, "file3");
 file.createNewFile();
 } catch (Exception x) { }
} }

 Notes: The new File statements don't make actual files or directories, just objects. You
need the mkdir() and createNewFile() methods to actually create the directory and
the file. (Objective 3.2)

 6. Given that 1119280000000L is roughly the number of milliseconds from Jan. 1, 1970, to June
20, 2005, and that you want to print that date in German, using the LONG style such that "June"
will be displayed as "Juni", complete the code using the fragments below. Note: you can use
each fragment either zero or one times, and you might not need to fill all of the slots.

 Code:
import java.___________
import java.___________

class DateTwo {
 public static void main(String[] args) {
 Date d = new Date(1119280000000L);
 DateFormat df = ___________________________

 ________________ , _________________);

 System.out.println(________________
 }
}

 Fragments:

 io.*; new DateFormat(Locale.LONG
 nio.*; DateFormat.getInstance(Locale.GERMANY
 util.*; DateFormat.getDateInstance(DateFormat.LONG
 text.*; util.regex; DateFormat.GERMANY
 date.*; df.format(d)); d.format(df));

Answer:

import java.util.*;
import java.text.*;
class DateTwo {
 public static void main(String[] args) {
 Date d = new Date(1119280000000L);

 DateFormat df = DateFormat.getDateInstance(
 DateFormat.LONG, Locale.GERMANY);
 System.out.println(df.format(d));
 }
}

Self Test Answers 531

532 Chapter 6: Strings, I/O, Formatting, and Parsing

 Notes: Remember that you must build DateFormat objects using static methods. Also
remember that you must specify a Locale for a DateFormat object at the time of instantiation.
The getInstance() method does not take a Locale. (Objective 3.4)

 7. Given:

import java.io.*;

class Directories {
 static String [] dirs = {"dir1", "dir2"};
 public static void main(String [] args) {
 for (String d : dirs) {

 // insert code 1 here

 File file = new File(path, args[0]);

 // insert code 2 here
 }
 }
}

 and that the invocation

java Directories file2.txt

 is issued from a directory that has two subdirectories, "dir1" and "dir2", and that "dir1" has a file
"file1.txt" and "dir2" has a file "file2.txt", and the output is "false true", which set(s)
of code fragments must be inserted? (Choose all that apply.)

 A. String path = d;

System.out.print(file.exists() + " ");

 B. String path = d;

System.out.print(file.isFile() + " ");

 C. String path = File.separator + d;

System.out.print(file.exists() + " ");

 D. String path = File.separator + d;

System.out.print(file.isFile() + " ");

Answer:
 ✓ A and B are correct. Because you are invoking the program from the directory whose

direct subdirectories are to be searched, you don't start your path with a File.separator
character. The exists() method tests for either files or directories; the isFile()
method tests only for files. Since we're looking for a file, both methods work.

 C and D are incorrect based on the above. (Objective 3.2)

 8. Given:

import java.io.*;

public class TestSer {
 public static void main(String[] args) {
 SpecialSerial s = new SpecialSerial();
 try {
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream("myFile"));
 os.writeObject(s); os.close();
 System.out.print(++s.z + " ");

 ObjectInputStream is = new ObjectInputStream(
 new FileInputStream("myFile"));
 SpecialSerial s2 = (SpecialSerial)is.readObject();
 is.close();
 System.out.println(s2.y + " " + s2.z);
 } catch (Exception x) {System.out.println("exc"); }
 }
}
class SpecialSerial implements Serializable {
 transient int y = 7;
 static int z = 9;
}

Self Test Answers 533

534 Chapter 6: Strings, I/O, Formatting, and Parsing

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output is 10 0 9

 C. The output is 10 0 10

 D. The output is 10 7 9

 E. The output is 10 7 10

 F. In order to alter the standard deserialization process you would implement the
readObject() method in SpecialSerial

 G. In order to alter the standard deserialization process you would implement the
defaultReadObject() method in SpecialSerial

Answer:
 ✓ C and F are correct. C is correct because static and transient variables are not

serialized when an object is serialized. F is a valid statement.
 A, B, D, and E are incorrect based on the above. G is incorrect because you

don't implement the defaultReadObject() method, you call it from within the
readObject()method, along with any custom read operations your class needs.
(Objective 3.3)

 9. Given:

 3. public class Theory {
 4. public static void main(String[] args) {
 5. String s1 = "abc";
 6. String s2 = s1;
 7. s1 += "d";
 8. System.out.println(s1 + " " + s2 + " " + (s1==s2));
 9.
10. StringBuffer sb1 = new StringBuffer("abc");
11. StringBuffer sb2 = sb1;
12. sb1.append("d");
13. System.out.println(sb1 + " " + sb2 + " " + (sb1==sb2));
14. }
15. }

 535Self Test Answers 535

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The first line of output is abc abc true

 C. The first line of output is abc abc false

 D. The first line of output is abcd abc false

 E. The second line of output is abcd abc false

 F. The second line of output is abcd abcd true

 G. The second line of output is abcd abcd false

Answer:
 ✓ D and F are correct. While String objects are immutable, references to Strings are mutable.

The code s1 += "d"; creates a new String object. StringBuffer objects are mutable, so the
append() is changing the single StringBuffer object to which both StringBuffer references
refer.

 A, B, C, E, and G are incorrect based on the above. (Objective 3.1)

 10. Given:

 3. import java.io.*;
 4. public class ReadingFor {
 5. public static void main(String[] args) {
 6. String s;
 7. try {
 8. FileReader fr = new FileReader("myfile.txt");
 9. BufferedReader br = new BufferedReader(fr);
10. while((s = br.readLine()) != null)
11. System.out.println(s);
12. br.flush();
13. } catch (IOException e) { System.out.println("io error"); }
16. }
17. }

 And given that myfile.txt contains the following two lines of data:

ab
cd

536 Chapter 6: Strings, I/O, Formatting, and Parsing

 What is the result?

 A. ab

 B. abcd

 C. ab

 cd

 D. a
 b

 c

 d

 E. Compilation fails

Answer:
 ✓ E is correct. You need to call flush() only when you're writing data. Readers don't have

flush() methods. If not for the call to flush(), answer C would be correct.
 A, B, C, and D are incorrect based on the above. (Objective 3.2)

 11. Given:

 3. import java.io.*;
 4. public class Talker {
 5. public static void main(String[] args) {
 6. Console c = System.console();
 7. String u = c.readLine("%s", "username: ");
 8. System.out.println("hello " + u);
 9. String pw;
10. if(c != null && (pw = c.readPassword("%s", "password: ")) != null)
11. // check for valid password
12. }
13. }

 If line 6 creates a valid Console object, and if the user enters fred as a username and 1234 as a
password, what is the result? (Choose all that apply.)

 A. username:

 password:

 B. username: fred

 password:

 537Self Test Answers 537

 C. username: fred

 password: 1234

 D. Compilation fails

 E. An exception is thrown at runtime

Answer:
 ✓ D is correct. The readPassword() method returns a char[]. If a char[] were used,

answer B would be correct.
 A, B, C, and E are incorrect based on the above. (Objective 3.2)

 12. Given:

 3. import java.io.*;
 4. class Vehicle { }
 5. class Wheels { }
 6. class Car extends Vehicle implements Serializable { }
 7. class Ford extends Car { }
 8. class Dodge extends Car {
 9. Wheels w = new Wheels();
10. }

 Instances of which class(es) can be serialized? (Choose all that apply.)

 A. Car

 B. Ford

 C. Dodge

 D. Wheels

 E. Vehicle

Answer:
 ✓ A and B are correct. Dodge instances cannot be serialized because they "have" an instance

of Wheels, which is not serializable. Vehicle instances cannot be serialized even though the
subclass Car can be.

 C, D, and E are incorrect based on the above. (Objective 3.3)

538 Chapter 6: Strings, I/O, Formatting, and Parsing

 13. Given:

 3. import java.text.*;
 4. public class Slice {
 5. public static void main(String[] args) {
 6. String s = "987.123456";
 7. double d = 987.123456d;
 8. NumberFormat nf = NumberFormat.getInstance();
 9. nf.setMaximumFractionDigits(5);
10. System.out.println(nf.format(d) + " ");
11. try {
12. System.out.println(nf.parse(s));
13. } catch (Exception e) { System.out.println("got exc"); }
14. }
15. }

 Which are true? (Choose all that apply.)

 A. The output is 987.12345 987.12345

 B. The output is 987.12346 987.12345

 C. The output is 987.12345 987.123456

 D. The output is 987.12346 987.123456

 E. The try/catch block is unnecessary

 F. The code compiles and runs without exception

 G. The invocation of parse() must be placed within a try/catch block

Answer:
 ✓ D, F, and G are correct. The setMaximumFractionDigits() applies to the formatting

but not the parsing. The try/catch block is placed appropriately. This one might scare you
into thinking that you'll need to memorize more than you really do. If you can remember
that you're formatting the number and parsing the string you should be fine for the exam.

 A, B, C, and E are incorrect based on the above. (Objective 3.4)

 14. Given:

 3. import java.util.regex.*;
 4. public class Archie {
 5. public static void main(String[] args) {
 6. Pattern p = Pattern.compile(args[0]);

 539Self Test Answers 539

 7. Matcher m = p.matcher(args[1]);
 8. int count = 0;
 9. while(m.find())
10. count++;
11. System.out.print(count);
12. }
13. }

 And given the command line invocation:

java Archie "\d+" ab2c4d67

 What is the result?

 A. 0

 B. 3

 C. 4

 D. 8

 E. 9

 F. Compilation fails

Answer:
 ✓ B is correct. The "\d" metacharacter looks for digits, and the + quantifier says look for

"one or more" occurrences. The find() method will find three sets of one or more con-
secutive digits: 2, 4, and 67.

 A, C, D, E, and F are incorrect based on the above. (Objective 3.5)

 15. Given:

 3. import java.util.*;
 4. public class Looking {
 5. public static void main(String[] args) {
 6. String input = "1 2 a 3 45 6";
 7. Scanner sc = new Scanner(input);
 8. int x = 0;
 9. do {
10. x = sc.nextInt();
11. System.out.print(x + " ");
12. } while (x!=0);
13. }
14. }

540 Chapter 6: Strings, I/O, Formatting, and Parsing

 What is the result?

 A. 1 2

 B. 1 2 3 45 6

 C. 1 2 3 4 5 6

 D. 1 2 a 3 45 6

 E. Compilation fails

 F. 1 2 followed by an exception

Answer:
 ✓ F is correct. The nextXxx() methods are typically invoked after a call to a hasNextXxx(),

which determines whether the next token is of the correct type.
 A, B, C, D, and E are incorrect based on the above. (Objective 3.5)

7
Generics and
Collections

CERTIFICATION OBJECTIVES

Design Using Collections

Override equals() and hashCode(),
 Distinguish == and equals()

Use Generic Versions of Collections
 Including Set, List, and Map

Use Type Parameters,
 Write Generics methods

 Use java.util to Sort and Search
 Use Comparable and Comparator

 ✓ Two-Minute Drill

 Q&A Self Test

542 Chapter 7: Generics and Collections

Generics are possibly the most talked about feature of Java 5. Some people love 'em,
some people hate 'em, but they're here to stay. At their simplest, they can help make
code easier to write, and more robust. At their most complex, they can be very,

very hard to create, and maintain. Luckily, the exam creators stuck to the simple end of generics,
covering the most common and useful features, and leaving out most of the especially tricky bits.
Coverage of collections in this exam has expanded in two ways from the previous exam: the use of
generics in collections, and the ability to sort and search through collections.

CERTIFICATION OBJECTIVE

Overriding hashCode() and equals() (Objective 6.2)
6.2 Distinguish between correct and incorrect overrides of corresponding hashCode and
equals methods, and explain the difference between == and the equals method.

You're an object. Get used to it. You have state, you have behavior, you have a job.
(Or at least your chances of getting one will go up after passing the exam.) If you
exclude primitives, everything in Java is an object. Not just an object, but an Object
with a capital O. Every exception, every event, every array extends from
java.lang.Object. For the exam, you don't need to know every method in Object, but
you will need to know about the methods listed in Table 7-1.

Chapter 9 covers wait(), notify(), and notifyAll(). The finalize()
method was covered in Chapter 3. So in this section we'll look at just the
hashCode() and equals() methods. Oh, that leaves out toString(), doesn't it.
Okay, we'll cover that right now because it takes two seconds.

The toString() Method Override toString() when you want a mere mor-
tal to be able to read something meaningful about the objects of your class. Code can
call toString() on your object when it wants to read useful details about your ob-
ject. When you pass an object reference to the System.out.println() method, for
example, the object's toString() method is called, and the return of toString()
is shown in the following example:

Overriding hashCode() and equals() (Exam Objective 6.2) 543

public class HardToRead {
 public static void main (String [] args) {
 HardToRead h = new HardToRead();
 System.out.println(h);
 }
}

Running the HardToRead class gives us the lovely and meaningful,

% java HardToRead
HardToRead@a47e0

The preceding output is what you get when you don't override the toString()
method of class Object. It gives you the class name (at least that's meaningful)
followed by the @ symbol, followed by the unsigned hexadecimal representation of
the object's hashcode.

Trying to read this output might motivate you to override the toString()
method in your classes, for example,

public class BobTest {
 public static void main (String[] args) {
 Bob f = new Bob("GoBobGo", 19);

Method Description

boolean equals (Object obj) Decides whether two objects are meaningfully equivalent.

void finalize() Called by garbage collector when the garbage collector sees that
the object cannot be referenced.

int hashCode() Returns a hashcode int value for an object, so that the object can
be used in Collection classes that use hashing, including Hashtable,
HashMap, and HashSet.

final void notify() Wakes up a thread that is waiting for this object’s lock.

final void notifyAll() Wakes up all threads that are waiting for this object’s lock.

final void wait() Causes the current thread to wait until another thread calls
notify() or notifyAll() on this object.

String toString() Returns a “text representation” of the object.

 TABLE 7-1 Methods of Class Object Covered on the Exam

 System.out.println(f);
 }
}
class Bob {
 int shoeSize;
 String nickName;
 Bob(String nickName, int shoeSize) {
 this.shoeSize = shoeSize;
 this.nickName = nickName;
 }
 public String toString() {
 return ("I am a Bob, but you can call me " + nickName +
 ". My shoe size is " + shoeSize);
 }
}

This ought to be a bit more readable:

% java BobTest
I am a Bob, but you can call me GoBobGo. My shoe size is 19

Some people affectionately refer to toString() as the "spill-your-guts method,"
because the most common implementations of toString() simply spit out
the object's state (in other words, the current values of the important instance
variables). That's it for toString(). Now we'll tackle equals() and hashCode().

Overriding equals()
You learned about the equals() method in earlier chapters, where we looked at
the wrapper classes. We discussed how comparing two object references using the
== operator evaluates to true only when both references refer to the same object
(because == simply looks at the bits in the variable, and they're either identical or
they're not). You saw that the String class and the wrapper classes have overridden
the equals() method (inherited from class Object), so that you could compare
two different objects (of the same type) to see if their contents are meaningfully
equivalent. If two different Integer instances both hold the int value 5, as far as
you're concerned they are equal. The fact that the value 5 lives in two separate
objects doesn't matter.

When you really need to know if two references are identical, use ==. But when
you need to know if the objects themselves (not the references) are equal, use the
equals() method. For each class you write, you must decide if it makes sense to

544 Chapter 7: Generics and Collections

consider two different instances equal. For some classes, you might decide that
two objects can never be equal. For example, imagine a class Car that has instance
variables for things like make, model, year, configuration—you certainly don't want
your car suddenly to be treated as the very same car as someone with a car that has
identical attributes. Your car is your car and you don't want your neighbor Billy
driving off in it just because, "hey, it's really the same car; the equals() method said
so." So no two cars should ever be considered exactly equal. If two references refer to
one car, then you know that both are talking about one car, not two cars that have
the same attributes. So in the case of a Car you might not ever need, or want, to
override the equals() method. Of course, you know that isn't the end of the story.

What It Means If You Don't Override equals()
There's a potential limitation lurking here: if you don't override a class's equals()
method, you won't be able to use those objects as a key in a hashtable and you
probably won't get accurate Sets, such that there are no conceptual duplicates.

The equals() method in class Object uses only the == operator for comparisons,
so unless you override equals(), two objects are considered equal only if the two
references refer to the same object.

Let's look at what it means to not be able to use an object as a hashtable key.
Imagine you have a car, a very specific car (say, John's red Subaru Outback as
opposed to Mary's purple Mini) that you want to put in a HashMap (a type of
hashtable we'll look at later in this chapter), so that you can search on a particular
car and retrieve the corresponding Person object that represents the owner. So you
add the car instance as the key to the HashMap (along with a corresponding Person
object as the value). But now what happens when you want to do a search? You want
to say to the HashMap collection, "Here's the car, now give me the Person object
that goes with this car." But now you're in trouble unless you still have a reference
to the exact object you used as the key when you added it to the Collection. In other
words, you can't make an identical Car object and use it for the search.

The bottom line is this: if you want objects of your class to be used as keys for a
hashtable (or as elements in any data structure that uses equivalency for searching
for—and/or retrieving—an object), then you must override equals() so that two
different instances can be considered the same. So how would we fix the car? You
might override the equals() method so that it compares the unique VIN (Vehicle
Identification Number) as the basis of comparison. That way, you can use one
instance when you add it to a Collection, and essentially re-create an identical
instance when you want to do a search based on that object as the key. Of course,
overriding the equals() method for Car also allows the potential that more than
one object representing a single unique car can exist, which might not be safe

Overriding equals() (Exam Objective 6.2) 545

in your design. Fortunately, the String and wrapper classes work well as keys in
hashtables—they override the equals() method. So rather than using the actual
car instance as the key into the car/owner pair, you could simply use a String that
represents the unique identifier for the car. That way, you'll never have more than
one instance representing a specific car, but you can still use the car—or rather, one
of the car's attributes—as the search key.

Implementing an equals() Method
Let's say you decide to override equals() in your class. It might look like this:

public class EqualsTest {
 public static void main (String [] args) {
 Moof one = new Moof(8);
 Moof two = new Moof(8);
 if (one.equals(two)) {
 System.out.println("one and two are equal");
 }
 }
}
class Moof {
 private int moofValue;
 Moof(int val) {
 moofValue = val;
 }
 public int getMoofValue() {
 return moofValue;
 }
 public boolean equals(Object o) {
 if ((o instanceof Moof) && (((Moof)o).getMoofValue()
 == this.moofValue)) {
 return true;
 } else {
 return false;
 }
 }
}

Let's look at this code in detail. In the main() method of EqualsTest, we create
two Moof instances, passing the same value 8 to the Moof constructor. Now look at
the Moof class and let's see what it does with that constructor argument—it assigns
the value to the moofValue instance variable. Now imagine that you've decided
two Moof objects are the same if their moofValue is identical. So you override the

546 Chapter 7: Generics and Collections

equals() method and compare the two moofValues. It is that simple. But let's
break down what's happening in the equals() method:

1. public boolean equals(Object o) {
2. if ((o instanceof Moof) && (((Moof)o).getMoofValue()
 == this.moofValue)) {
3. return true;
4. } else {
5. return false;
6. }
7. }

First of all, you must observe all the rules of overriding, and in line 1 we are
indeed declaring a valid override of the equals() method we inherited from Object.

Line 2 is where all the action is. Logically, we have to do two things in order to
make a valid equality comparison.

First, be sure that the object being tested is of the correct type! It comes in
polymorphically as type Object, so you need to do an instanceof test on it. Having
two objects of different class types be considered equal is usually not a good idea,
but that's a design issue we won't go into here. Besides, you'd still have to do the
instanceof test just to be sure that you could cast the object argument to the
correct type so that you can access its methods or variables in order to actually do
the comparison. Remember, if the object doesn't pass the instanceof test, then
you'll get a runtime ClassCastException. For example:

public boolean equals(Object o) {
 if (((Moof)o).getMoofValue() == this.moofValue){
 // the preceding line compiles, but it's BAD!
 return true;
 } else {
 return false;
 }
}

The (Moof)o cast will fail if o doesn't refer to something that IS-A Moof.
Second, compare the attributes we care about (in this case, just moofValue).

Only the developer can decide what makes two instances equal. (For best
performance, you're going to want to check the fewest number of attributes.)

In case you were a little surprised by the whole ((Moof)o).getMoofValue()
syntax, we're simply casting the object reference, o, just-in-time as we try to call a
method that's in the Moof class but not in Object. Remember, without the cast, you

Overriding equals() (Exam Objective 6.2) 547

can't compile because the compiler would see the object referenced by o as simply,
well, an Object. And since the Object class doesn't have a getMoofValue() method,
the compiler would squawk (technical term). But then as we said earlier, even with
the cast, the code fails at runtime if the object referenced by o isn't something that's
castable to a Moof. So don't ever forget to use the instanceof test first. Here's
another reason to appreciate the short circuit && operator—if the instanceof test
fails, we'll never get to the code that does the cast, so we're always safe at runtime
with the following:

 if ((o instanceof Moof) && (((Moof)o).getMoofValue()
 == this.moofValue)) {
 return true;
 } else {
 return false;
 }

So that takes care of equals()…
Whoa…not so fast. If you look at the Object class in the Java API spec, you'll

find what we call a contract specified in the equals() method. A Java contract is a
set of rules that should be followed, or rather must be followed if you want to provide
a "correct" implementation as others will expect it to be. Or to put it another way, if
you don't follow the contract, your code may still compile and run, but your code (or
someone else's) may break at runtime in some unexpected way.

548 Chapter 7: Generics and Collections

Remember that the equals(), hashCode(), and toString() methods are
all public. The following would not be a valid override of the equals() method, although
it might appear to be if you don’t look closely enough during the exam:

class Foo { boolean equals(Object o) { } }

And watch out for the argument types as well. The following method is an
overload, but not an override of the equals() method:

class Boo { public boolean equals(Boo b) { } }

The equals() Contract
Pulled straight from the Java docs, the equals() contract says

■ It is reflexive. For any reference value x, x.equals(x) should return true.

■ It is symmetric. For any reference values x and y, x.equals(y) should
return true if and only if y.equals(x) returns true.

■ It is transitive. For any reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) must return true.

■ It is consistent. For any reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, pro-
vided no information used in equals comparisons on the object is modified.

■ For any non-null reference value x, x.equals(null) should return false.

And you're so not off the hook yet. We haven't looked at the hashCode()
method, but equals() and hashCode() are bound together by a joint contract that
specifies if two objects are considered equal using the equals() method, then they
must have identical hashcode values. So to be truly safe, your rule of thumb should
be, if you override equals(), override hashCode() as well. So let's switch over to
hashCode() and see how that method ties in to equals().

Overriding hashCode()
Hashcodes are typically used to increase the performance of large collections of
data. The hashcode value of an object is used by some collection classes (we'll look

Overriding hashCode() (Exam Objective 6.2) 549

Be sure you’re very comfortable with the rules of overriding so that you
can identify whether a method from Object is being overridden, overloaded, or illegally
redeclared in a class. The equals() method in class Boo changes the argument from
Object to Boo, so it becomes an overloaded method and won’t be called unless it’s from
your own code that knows about this new, different method that happens to also be
named equals().

at the collections later in this chapter). Although you can think of it as kind of an
object ID number, it isn't necessarily unique. Collections such as HashMap and
HashSet use the hashcode value of an object to determine how the object should
be stored in the collection, and the hashcode is used again to help locate the object
in the collection. For the exam you do not need to understand the deep details of
how the collection classes that use hashing are implemented, but you do need to
know which collections use them (but, um, they all have "hash" in the name so
you should be good there). You must also be able to recognize an appropriate or
correct implementation of hashCode(). This does not mean legal and does not even
mean efficient. It's perfectly legal to have a terribly inefficient hashcode method
in your class, as long as it doesn't violate the contract specified in the Object class
documentation (we'll look at that contract in a moment). So for the exam, if you're
asked to pick out an appropriate or correct use of hashcode, don't mistake appropriate
for legal or efficient.

Understanding Hashcodes
In order to understand what's appropriate and correct, we have to look at how some
of the collections use hashcodes.

Imagine a set of buckets lined up on the floor. Someone hands you a piece of
paper with a name on it. You take the name and calculate an integer code from it by
using A is 1, B is 2, and so on, and adding the numeric values of all the letters in the
name together. A given name will always result in the same code; see Figure 7-1.

We don't introduce anything random, we simply have an algorithm that will
always run the same way given a specific input, so the output will always be identical
for any two identical inputs. So far so good? Now the way you use that code (and
we'll call it a hashcode now) is to determine which bucket to place the piece of

550 Chapter 7: Generics and Collections

 FIGURE 7-1

A simplified
hashcode
example

Key Hashcode Algorithm Hashcode

Dirk
Fred

HashMap Collection

Hashcode Buckets 19

“Bob” “Fred” “Alex”
“Dirk”

33 42

Bob
Alex A(1) + L(12) + E(5) + X(24)

B(2) + O(15) + B(2) = 19
D(4) + I(9) + R(18) + K(11) = 42
F(6) + R(18) + E(5) + D(4) = 33

= 42

paper into (imagine that each bucket represents a different code number you might
get). Now imagine that someone comes up and shows you a name and says, "Please
retrieve the piece of paper that matches this name." So you look at the name they
show you, and run the same hashcode-generating algorithm. The hashcode tells you
in which bucket you should look to find the name.

You might have noticed a little flaw in our system, though. Two different names
might result in the same value. For example, the names Amy and May have the same
letters, so the hashcode will be identical for both names. That's acceptable, but
it does mean that when someone asks you (the bucket-clerk) for the Amy piece of
paper, you'll still have to search through the target bucket reading each name until
we find Amy rather than May. The hashcode tells you only which bucket to go into,
but not how to locate the name once we're in that bucket.

So for efficiency, your goal is to have the papers distributed as evenly as possible
across all buckets. Ideally, you might have just one name per bucket so that when
someone asked for a paper you could simply calculate the hashcode and just grab the
one paper from the correct bucket (without having to go flipping through different
papers in that bucket until you locate the exact one you're looking for). The least
efficient (but still functional) hashcode generator would return the same hashcode
(say, 42) regardless of the name, so that all the papers landed in the same bucket
while the others stood empty. The bucket-clerk would have to keep going to that
one bucket and flipping painfully through each one of the names in the bucket until
the right one was found. And if that's how it works, they might as well not use the
hashcodes at all but just go to the one big bucket and start from one end and look
through each paper until they find the one they want.

This distributed-across-the-buckets example is similar to the way hashcodes are
used in collections. When you put an object in a collection that uses hashcodes, the
collection uses the hashcode of the object to decide in which bucket/slot the object

Overriding hashCode() (Exam Objective 6.2) 551

In real-life hashing, it’s not uncommon to have more than one entry in a
bucket. Hashing retrieval is a two-step process.

 1. Find the right bucket (using hashCode())
 2. Search the bucket for the right element (using equals()).

should land. Then when you want to fetch that object (or, for a hashtable, retrieve
the associated value for that object), you have to give the collection a reference to
an object that the collection compares to the objects it holds in the collection. As
long as the object (stored in the collection, like a paper in the bucket) you're trying
to search for has the same hashcode as the object you're using for the search (the
name you show to the person working the buckets), then the object will be found.
But…and this is a Big One, imagine what would happen if, going back to our name
example, you showed the bucket-worker a name and they calculated the code based
on only half the letters in the name instead of all of them. They'd never find the
name in the bucket because they wouldn't be looking in the correct bucket!

Now can you see why if two objects are considered equal, their hashcodes must
also be equal? Otherwise, you'd never be able to find the object since the default
hashcode method in class Object virtually always comes up with a unique number
for each object, even if the equals() method is overridden in such a way that two
or more objects are considered equal. It doesn't matter how equal the objects are if
their hashcodes don't reflect that. So one more time: If two objects are equal, their
hashcodes must be equal as well.

Implementing hashCode()
What the heck does a real hashcode algorithm look like? People get their PhDs on
hashing algorithms, so from a computer science viewpoint, it's beyond the scope
of the exam. The part we care about here is the issue of whether you follow the
contract. And to follow the contract, think about what you do in the equals()
method. You compare attributes. Because that comparison almost always involves
instance variable values (remember when we looked at two Moof objects and
considered them equal if their int moofValues were the same?). Your hashCode()
implementation should use the same instance variables. Here's an example:

class HasHash {
 public int x;
 HasHash(int xVal) { x = xVal; }

 public boolean equals(Object o) {
 HasHash h = (HasHash) o; // Don't try at home without
 // instanceof test
 if (h.x == this.x) {
 return true;
 } else {
 return false;
 }

552 Chapter 7: Generics and Collections

 }
 public int hashCode() { return (x * 17); }
}

This equals() method says two objects are equal if they have the same x value,
so objects with the same x value will have to return identical hashcodes.

Typically, you'll see hashCode() methods that do some combination of ^-ing
(XOR-ing) a class's instance variables (in other words, twiddling their bits), along
with perhaps multiplying them by a prime number. In any case, while the goal
is to get a wide and random distribution of objects across buckets, the contract
(and whether or not an object can be found) requires only that two equal objects
have equal hashcodes. The exam does not expect you to rate the efficiency of a
hashCode() method, but you must be able to recognize which ones will and will not
work (work meaning "will cause the object to be found in the collection").

Now that we know that two equal objects must have identical hashcodes, is the
reverse true? Do two objects with identical hashcodes have to be considered equal?
Think about it—you might have lots of objects land in the same bucket because
their hashcodes are identical, but unless they also pass the equals() test, they won't
come up as a match in a search through the collection. This is exactly what you'd

Overriding hashCode() (Exam Objective 6.2) 553

A hashCode() that returns the same value for all instances whether
they’re equal or not is still a legal—even appropriate—hashCode() method! For example,

public int hashCode() { return 1492; }

This does not violate the contract. Two objects with an x value of 8 will
have the same hashcode. But then again, so will two unequal objects, one with an x
value of 12 and the other a value of -920. This hashCode() method is horribly ineffi cient,
remember, because it makes all objects land in the same bucket, but even so, the object
can still be found as the collection cranks through the one and only bucket—using
equals()—trying desperately to fi nally, painstakingly, locate the correct object. In other
words, the hashcode was really no help at all in speeding up the search, even though
improving search speed is hashcode’s intended purpose! Nonetheless, this one-hash-fi ts-
all method would be considered appropriate and even correct because it doesn’t violate
the contract. Once more, correct does not necessarily mean good.

get with our very inefficient everybody-gets-the-same-hashcode method. It's legal
and correct, just slooooow.

So in order for an object to be located, the search object and the object in
the collection must have both identical hashcode values and return true for the
equals() method. So there's just no way out of overriding both methods to be
absolutely certain that your objects can be used in Collections that use hashing.

The hashCode() Contract
Now coming to you straight from the fabulous Java API documentation for class
Object, may we present (drum roll) the hashCode() contract:

■ Whenever it is invoked on the same object more than once during an execu-
tion of a Java application, the hashCode() method must consistently return
the same integer, provided no information used in equals() comparisons
on the object is modified. This integer need not remain consistent from one
execution of an application to another execution of the same application.

■ If two objects are equal according to the equals(Object) method, then
calling the hashCode() method on each of the two objects must produce the
same integer result.

■ It is NOT required that if two objects are unequal according to the
equals(java.lang.Object) method, then calling the hashCode() method
on each of the two objects must produce distinct integer results. However,
the programmer should be aware that producing distinct integer results for
unequal objects may improve the performance of hashtables.

And what this means to you is…

554 Chapter 7: Generics and Collections

Condition Required Not Required (But Allowed)

x.equals(y) == true x.hashCode() ==
y.hashCode()

x.hashCode() ==
y.hashCode()

 x.equals(y) == true

x.equals(y) == false No hashCode()
requirements

x.hashCode() !=
y.hashCode()

x.equals(y) == false

Overriding hashCode() (Exam Objective 6.2) 555

So let's look at what else might cause a hashCode() method to fail. What
happens if you include a transient variable in your hashCode() method? While
that's legal (compiler won't complain), under some circumstances an object you
put in a collection won't be found. As you know, serialization saves an object so
that it can be reanimated later by deserializing it back to full objectness. But danger
Will Robinson—remember that transient variables are not saved when an object is
serialized. A bad scenario might look like this:

class SaveMe implements Serializable{
 transient int x;
 int y;
 SaveMe(int xVal, int yVal) {
 x = xVal;
 y = yVal;
 }
 public int hashCode() {
 return (x ^ y); // Legal, but not correct to
 // use a transient variable
 }
 public boolean equals(Object o) {
 SaveMe test = (SaveMe)o;
 if (test.y == y && test.x == x) { // Legal, not correct
 return true;
 } else {
 return false;
 }
 }
}

Here's what could happen using code like the preceding example:

1. Give an object some state (assign values to its instance variables).

2. Put the object in a HashMap, using the object as a key.

3. Save the object to a file using serialization without altering any of its state.

4. Retrieve the object from the file through deserialization.

5. Use the deserialized (brought back to life on the heap) object to get the
object out of the HashMap.

Oops. The object in the collection and the supposedly same object brought
back to life are no longer identical. The object's transient variable will come

back with a default value rather than the value the variable had at the time it
was saved (or put into the HashMap). So using the preceding SaveMe code, if
the value of x is 9 when the instance is put in the HashMap, then since x is used
in the calculation of the hashcode, when the value of x changes, the hashcode
changes too. And when that same instance of SaveMe is brought back from
deserialization, x == 0, regardless of the value of x at the time the object was
serialized. So the new hashcode calculation will give a different hashcode, and
the equals() method fails as well since x is used to determine object equality.

Bottom line: transient variables can really mess with your equals() and
hashCode() implementations. Keep variables non-transient or, if they must
be marked transient, don't use them to determine hashcodes or equality.

CERTIFICATION OBJECTIVE

Collections (Exam Objective 6.1)
6.1 Given a design scenario, determine which collection classes and/or interfaces should
be used to properly implement that design, including the use of the Comparable interface.

Can you imagine trying to write object-oriented applications without using data
structures like hashtables or linked lists? What would you do when you needed
to maintain a sorted list of, say, all the members in your Simpsons fan club?
Obviously you can do it yourself; Amazon.com must have thousands of algorithm
books you can buy. But with the kind of schedules programmers are under today,
it's almost too painful to consider.

The Collections Framework in Java, which took shape with the release of JDK 1.2
and was expanded in 1.4 and again in Java 5, and yet again in Java 6, gives you lists,
sets, maps, and queues to satisfy most of your coding needs. They've been tried, tested,
and tweaked. Pick the best one for your job and you'll get—at the least—reasonable
performance. And when you need something a little more custom, the Collections
Framework in the java.util package is loaded with interfaces and utilities.

So What Do You Do with a Collection?
There are a few basic operations you'll normally use with collections:

■ Add objects to the collection.

■ Remove objects from the collection.

556 Chapter 7: Generics and Collections

So What Do You Do with a Collection? (Exam Objective 6.1) 557

■ Find out if an object (or group of objects) is in the collection.

■ Retrieve an object from the collection (without removing it).

■ Iterate through the collection, looking at each element (object) one
after another.

Key Interfaces and Classes of the Collections Framework
For the exam you'll need to know which collection to choose based on a stated
requirement. The collections API begins with a group of interfaces, but also gives
you a truckload of concrete classes. The core interfaces you need to know for the
exam (and life in general) are the following nine:

The core concrete implementation classes you need to know for the exam are the
following 13 (there are others, but the exam doesn't specifically cover them):

Not all collections in the Collections Framework actually implement the
Collection interface. In other words, not all collections pass the IS-A test for
Collection. Specifically, none of the Map-related classes and interfaces extend
from Collection. So while SortedMap, Hashtable, HashMap, TreeMap, and
LinkedHashMap are all thought of as collections, none are actually extended
from Collection-with-a-capital-C (see Figure 7-2). To make things a little more
confusing, there are really three overloaded uses of the word "collection":

Collection Set SortedSet

List Map SortedMap

Queue NavigableSet NavigableMap

Maps Sets Lists Queues Utilities

HashMap HashSet ArrayList PriorityQueue Collections

Hashtable LinkedHashSet Vector Arrays

TreeMap TreeSet LinkedList

LinkedHashMap

■ collection (lowercase c), which represents any of the data structures in
which objects are stored and iterated over.

■ Collection (capital C), which is actually the java.util.Collection interface
from which Set, List, and Queue extend. (That's right, extend, not imple-
ment. There are no direct implementations of Collection.)

■ Collections (capital C and ends with s) is the java.util.Collections class
that holds a pile of static utility methods for use with collections.

 FIGURE 7-2 The interface and class hierarchy for collections

558 Chapter 7: Generics and Collections

<<interface>>
Collection

<<interface>>
Set

<<interface>>
List

<<interface>>
Queue

<<interface>>
SortedSet

<<interface>>
NavigableSet

<<interface>>
NavigableMap

LinkedHashSet PriorityQueueLinkedListVectorArrayList

TreeSet

<<interface>>
Map

<<interface>>
SortedMap

LinkedHashMap

Hashtable

TreeMap

HashMapCollectionsArrays

Object

extends

implements

HashSet

Collections come in four basic flavors:

■ Lists Lists of things (classes that implement List).

■ Sets Unique things (classes that implement Set).

■ Maps Things with a unique ID (classes that implement Map).

■ Queues Things arranged by the order in which they are to be processed.

Figure 7-3 illustrates the structure of a List, a Set, and a Map.

So What Do You Do with a Collection? (Exam Objective 6.1) 559

You can so easily mistake "Collections" for "Collection"—be careful.
Keep in mind that Collections is a class, with static utility methods, while Collection
is an interface with declarations of the methods common to most collections
including add(), remove(), contains(), size(), and iterator().

 FIGURE 7-3

The structure of
a List, a Set, and
a Map

Index:

Value:

0 1 2 3 4 5

“Boulder” “Ft. Collins” “Greeley”

List: The salesman’s itinerary (Duplicates allowed)

Set: The salesman’s territory (No duplicates allowed)

Hashcode Buckets:

Values: “Sky Hook” “MonkeyWrench” “Phase Inverter” “Warp Core”
“Flux Capacitor”

HashMap: the salesman’s products (Keys generated from product IDs)

Boulder

Ft. Collins

Dillon
Denver

Idaho Springs

Greeley Vail

“Boulder” “Denver” “Boulder”

But there are sub-flavors within those four flavors of collections:

An implementation class can be unsorted and unordered, ordered but unsorted, or
both ordered and sorted. But an implementation can never be sorted but unordered,
because sorting is a specific type of ordering, as you'll see in a moment. For example,
a HashSet is an unordered, unsorted set, while a LinkedHashSet is an ordered (but
not sorted) set that maintains the order in which objects were inserted.

Maybe we should be explicit about the difference between sorted and ordered, but
first we have to discuss the idea of iteration. When you think of iteration, you may
think of iterating over an array using, say, a for loop to access each element in the
array in order ([0], [1], [2], and so on). Iterating through a collection usually means
walking through the elements one after another starting from the first element.
Sometimes, though, even the concept of first is a little strange—in a Hashtable there
really isn't a notion of first, second, third, and so on. In a Hashtable, the elements
are placed in a (seemingly) chaotic order based on the hashcode of the key. But
something has to go first when you iterate; thus, when you iterate over a Hashtable,
there will indeed be an order. But as far as you can tell, it's completely arbitrary and
can change in apparently random ways as the collection changes.

Ordered When a collection is ordered, it means you can iterate through the
collection in a specific (not-random) order. A Hashtable collection is not ordered.
Although the Hashtable itself has internal logic to determine the order (based on
hashcodes and the implementation of the collection itself), you won't find any order
when you iterate through the Hashtable. An ArrayList, however, keeps the order es-
tablished by the elements' index position (just like an array). LinkedHashSet keeps
the order established by insertion, so the last element inserted is the last element in
the LinkedHashSet (as opposed to an ArrayList, where you can insert an element at
a specific index position). Finally, there are some collections that keep an order re-
ferred to as the natural order of the elements, and those collections are then not just
ordered, but also sorted. Let's look at how natural order works for sorted collections.

560 Chapter 7: Generics and Collections

Sorted Unsorted Ordered Unordered

Sorted A sorted collection means that the order in the collection is determined
according to some rule or rules, known as the sort order. A sort order has nothing
to do with when an object was added to the collection, or when was the last time it
was accessed, or what "position" it was added at. Sorting is done based on properties
of the objects themselves. You put objects into the collection, and the collection
will figure out what order to put them in, based on the sort order. A collection that
keeps an order (such as any List, which uses insertion order) is not really considered
sorted unless it sorts using some kind of sort order. Most commonly, the sort order
used is something called the natural order. What does that mean?

You know how to sort alphabetically—A comes before B, F comes before G, and
so on. For a collection of String objects, then, the natural order is alphabetical. For
Integer objects, the natural order is by numeric value—1 before 2, and so on. And
for Foo objects, the natural order is…um…we don't know. There is no natural
order for Foo unless or until the Foo developer provides one, through an interface
(Comparable)that defines how instances of a class can be compared to one another
(does instance a come before b, or does instance b come before a?). If the developer
decides that Foo objects should be compared using the value of some instance
variable (let's say there's one called bar), then a sorted collection will order the
Foo objects according to the rules in the Foo class for how to use the bar instance
variable to determine the order. Of course, the Foo class might also inherit a natural
order from a superclass rather than define its own order, in some cases.

Aside from natural order as specified by the Comparable interface, it's also
possible to define other, different sort orders using another interface: Comparator.
We will discuss how to use both Comparable and Comparator to define sort orders
later in this chapter. But for now, just keep in mind that sort order (including
natural order) is not the same as ordering by insertion, access, or index.

Now that we know about ordering and sorting, we'll look at each of the four
interfaces, and we'll dive into the concrete implementations of those interfaces.

List Interface
A List cares about the index. The one thing that List has that non-lists don't have
is a set of methods related to the index. Those key methods include things like
get(int index), indexOf(Object o), add(int index, Object obj), and so
on. All three List implementations are ordered by index position—a position that
you determine either by setting an object at a specific index or by adding it without
specifying position, in which case the object is added to the end. The three List
implementations are described in the following sections.

List Interface (Exam Objective 6.1) 561

ArrayList Think of this as a growable array. It gives you fast iteration and fast
random access. To state the obvious: it is an ordered collection (by index), but not
sorted. You might want to know that as of version 1.4, ArrayList now implements
the new RandomAccess interface—a marker interface (meaning it has no methods)
that says, "this list supports fast (generally constant time) random access." Choose
this over a LinkedList when you need fast iteration but aren't as likely to be doing a
lot of insertion and deletion.

Vector Vector is a holdover from the earliest days of Java; Vector and Hashtable
were the two original collections, the rest were added with Java 2 versions 1.2 and
1.4. A Vector is basically the same as an ArrayList, but Vector methods are syn-
chronized for thread safety. You'll normally want to use ArrayList instead of Vector
because the synchronized methods add a performance hit you might not need. And
if you do need thread safety, there are utility methods in class Collections that can
help. Vector is the only class other than ArrayList to implement RandomAccess.

LinkedList A LinkedList is ordered by index position, like ArrayList, except
that the elements are doubly-linked to one another. This linkage gives you new
methods (beyond what you get from the List interface) for adding and removing
from the beginning or end, which makes it an easy choice for implementing a stack
or queue. Keep in mind that a LinkedList may iterate more slowly than an ArrayList,
but it's a good choice when you need fast insertion and deletion. As of Java 5, the
LinkedList class has been enhanced to implement the java.util.Queue interface. As
such, it now supports the common queue methods: peek(), poll(), and offer().

Set Interface
A Set cares about uniqueness—it doesn't allow duplicates. Your good friend the
equals() method determines whether two objects are identical (in which case only
one can be in the set). The three Set implementations are described in the following
sections.

HashSet A HashSet is an unsorted, unordered Set. It uses the hashcode
of the object being inserted, so the more efficient your hashCode() implementation
the better access performance you'll get. Use this class when you want a collection
with no duplicates and you don't care about order when you iterate through it.

562 Chapter 7: Generics and Collections

LinkedHashSet A LinkedHashSet is an ordered version of HashSet that
maintains a doubly-linked List across all elements. Use this class instead of HashSet
when you care about the iteration order. When you iterate through a HashSet the
order is unpredictable, while a LinkedHashSet lets you iterate through the elements
in the order in which they were inserted.

TreeSet The TreeSet is one of two sorted collections (the other being TreeMap).
It uses a Red-Black tree structure (but you knew that), and guarantees that the
elements will be in ascending order, according to natural order. Optionally, you can
construct a TreeSet with a constructor that lets you give the collection your own
rules for what the order should be (rather than relying on the ordering defined by
the elements' class) by using a Comparable or Comparator. As of Java 6, TreeSet
implements NavigableSet.

Map Interface
A Map cares about unique identifiers. You map a unique key (the ID) to a specific
value, where both the key and the value are, of course, objects. You're probably quite
familiar with Maps since many languages support data structures that use a key/value
or name/value pair. The Map implementations let you do things like search for a
value based on the key, ask for a collection of just the values, or ask for a collection
of just the keys. Like Sets, Maps rely on the equals() method to determine whether
two keys are the same or different.

HashMap The HashMap gives you an unsorted, unordered Map. When you
need a Map and you don't care about the order (when you iterate through it), then
HashMap is the way to go; the other maps add a little more overhead. Where the
keys land in the Map is based on the key's hashcode, so, like HashSet, the more ef-
ficient your hashCode() implementation, the better access performance you'll get.
HashMap allows one null key and multiple null values in a collection.

Map Interface (Exam Objective 6.1) 563

When using HashSet or LinkedHashSet, the objects you add to them
must override hashCode(). If they don’t override hashCode(), the default Object.
hashCode() method will allow multiple objects that you might consider "meaningfully
equal" to be added to your "no duplicates allowed" set.

Hashtable Like Vector, Hashtable has existed from prehistoric Java times.
For fun, don't forget to note the naming inconsistency: HashMap vs. Hashtable.
Where's the capitalization of t? Oh well, you won't be expected to spell it. Anyway,
just as Vector is a synchronized counterpart to the sleeker, more modern ArrayList,
Hashtable is the synchronized counterpart to HashMap. Remember that you don't
synchronize a class, so when we say that Vector and Hashtable are synchronized, we
just mean that the key methods of the class are synchronized. Another difference,
though, is that while HashMap lets you have null values as well as one null key, a
Hashtable doesn't let you have anything that's null.

LinkedHashMap Like its Set counterpart, LinkedHashSet, the LinkedHash-
Map collection maintains insertion order (or, optionally, access order). Although it
will be somewhat slower than HashMap for adding and removing elements, you can
expect faster iteration with a LinkedHashMap.

TreeMap You can probably guess by now that a TreeMap is a sorted Map.
And you already know that by default, this means "sorted by the natural order of
the elements." Like TreeSet, TreeMap lets you define a custom sort order (via a
Comparable or Comparator) when you construct a TreeMap, that specifies how the
elements should be compared to one another when they're being ordered. As of
Java 6, TreeMap implements NavigableMap.

Queue Interface
A Queue is designed to hold a list of "to-dos," or things to be processed in some way.
Although other orders are possible, queues are typically thought of as FIFO (first-in,
first-out). Queues support all of the standard Collection methods and they also add
methods to add and subtract elements and review queue elements.

PriorityQueue This class is new with Java 5. Since the LinkedList class has
been enhanced to implement the Queue interface, basic queues can be handled with
a LinkedList. The purpose of a PriorityQueue is to create a "priority-in, priority out"
queue as opposed to a typical FIFO queue. A PriorityQueue's elements are ordered
either by natural ordering (in which case the elements that are sorted first will be
accessed first) or according to a Comparator. In either case, the elements' ordering
represents their relative priority.

564 Chapter 7: Generics and Collections

Table 7-2 summarizes the 11 of the 13 concrete collection-oriented classes you'll
need to understand for the exam. (Arrays and Collections are coming right up!)

 You can easily eliminate some answers right away if you recognize
that, for example, a Map can’t be the class to choose when you need a name/value
pair collection, since Map is an interface and not a concrete implementation class.
The wording on the exam is explicit when it matters, so if you’re asked to choose an
interface, choose an interface rather than a class that implements that interface. The
reverse is also true—if you’re asked to choose a class, don’t choose an interface type.

Class Map Set List Ordered Sorted

HashMap x No No

Hashtable x No No

TreeMap x Sorted By natural order or
custom comparison rules

LinkedHashMap x By insertion order
or last access order

No

HashSet x No No

TreeSet x Sorted By natural order or
custom comparison rules

LinkedHashSet x By insertion order No

ArrayList x By index No

Vector x By index No

LinkedList x By index No

PriorityQueue Sorted By to-do order

 TABLE 7-2 Collection Interface Concrete Implementation Classes

Queue Interface (Exam Objective 6.1) 565

CERTIFICATION OBJECTIVE

Using the Collections Framework
(Objectives 6.3 and 6.5)

6.3 Write code that uses the NavigableSet and NavigableMap interfaces.

6.5 Use capabilities in the java.util package to write code to manipulate a list by sorting,
performing a binary search, or converting the list to an array. Use capabilities in the
java.util package to write code to manipulate an array by sorting, performing a binary
search, or converting the array to a list. Use the java.util.Comparator and java.lang.
Comparable interfaces to affect the sorting of lists and arrays. Furthermore, recognize the
effect of the "natural ordering" of primitive wrapper classes and java.lang.String on sorting.

We've taken a high-level, theoretical look at the key interfaces and classes in the
Collections Framework, now let's see how they work in practice.

566 Chapter 7: Generics and Collections

Be sure you know how to interpret Table 7-2 in a practical way. For the
exam, you might be expected to choose a collection based on a particular requirement,
where that need is expressed as a scenario. For example, which collection would you
use if you needed to maintain and search on a list of parts, identifi ed by their unique
alphanumeric serial number where the part would be of type Part? Would you change
your answer at all if we modifi ed the requirement such that you also need to be able to
print out the parts in order, by their serial number? For the fi rst question, you can see
that since you have a Part class, but need to search for the objects based on a serial
number, you need a Map. The key will be the serial number as a String, and the value
will be the Part instance. The default choice should be HashMap, the quickest Map for
access. But now when we amend the requirement to include getting the parts in order
of their serial number, then we need a TreeMap—which maintains the natural order
of the keys. Since the key is a String, the natural order for a String will be a standard
alphabetical sort. If the requirement had been to keep track of which part was last
accessed, then we’d probably need a LinkedHashMap. But since a LinkedHashMap loses
the natural order (replacing it with last-accessed order), if we need to list the parts by
serial number, we’ll have to explicitly sort the collection, using a utility method.

ArrayList Basics
The java.util.ArrayList class is one of the most commonly used of all the
classes in the Collections Framework. It's like an array on vitamins. Some of the
advantages ArrayList has over arrays are

■ It can grow dynamically.

■ It provides more powerful insertion and search mechanisms than arrays.

Let's take a look at using an ArrayList that contains Strings. A key design goal
of the Collections Framework was to provide rich functionality at the level of the
main interfaces: List, Set, and Map. In practice, you'll typically want to instantiate
an ArrayList polymorphically like this:

List myList = new ArrayList();

As of Java 5 you'll want to say

List<String> myList = new ArrayList<String>();

This kind of declaration follows the object oriented programming principle of
"coding to an interface", and it makes use of generics. We'll say lots more about
generics later in this chapter, but for now just know that, as of Java 5, the <String>
syntax is the way that you declare a collection's type. (Prior to Java 5 there was no
way to specify the type of a collection, and when we cover generics, we'll talk about
the implications of mixing Java 5 (typed) and pre-Java 5 (untyped) collections.)
 In many ways, ArrayList<String> is similar to a String[] in that it declares a
container that can hold only Strings, but it's more powerful than a String[]. Let's
look at some of the capabilities that an ArrayList has

 List<String> test = new ArrayList<String>();
 String s = "hi";
 test.add("string");
 test.add(s);
 test.add(s+s);
 System.out.println(test.size());
 System.out.println(test.contains(42));

ArrayList Basics (Exam Objectives 6.3 and 6.5) 567

 System.out.println(test.contains("hihi"));
 test.remove("hi");
 System.out.println(test.size());

which produces

3
false
true
2

There's lots going on in this small program. Notice that when we declared the
ArrayList we didn't give it a size. Then we were able to ask the ArrayList for
its size, we were able to ask it whether it contained specific objects, we removed an
object right out from the middle of it, and then we rechecked its size.

Autoboxing with Collections
In general, collections can hold Objects but not primitives. Prior to Java 5, a very
common use for the wrapper classes was to provide a way to get a primitive into a
collection. Prior to Java 5, you had to wrap a primitive by hand before you could put
it into a collection. With Java 5, primitives still have to be wrapped, but autoboxing
takes care of it for you.

List myInts = new ArrayList(); // pre Java 5 declaration
myInts.add(new Integer(42)); // had to wrap an int

As of Java 5 we can say

myInts.add(42); // autoboxing handles it!

In this last example, we are still adding an Integer object to myInts (not an int
primitive); it's just that autoboxing handles the wrapping for us.

Sorting Collections and Arrays
Sorting and searching topics have been added to the exam for Java 5. Both
collections and arrays can be sorted and searched using methods in the API.

568 Chapter 7: Generics and Collections

Sorting Collections
Let's start with something simple like sorting an ArrayList of Strings alphabetically.
What could be easier? Okay, we'll wait while you go find ArrayList's sort()
method…got it? Of course, ArrayList doesn't give you any way to sort its contents,
but the java.util.Collections class does

import java.util.*;
class TestSort1 {
 public static void main(String[] args) {
 ArrayList<String> stuff = new ArrayList<String>(); // #1
 stuff.add("Denver");
 stuff.add("Boulder");
 stuff.add("Vail");
 stuff.add("Aspen");
 stuff.add("Telluride");
 System.out.println("unsorted " + stuff);
 Collections.sort(stuff); // #2
 System.out.println("sorted " + stuff);
 }
}

This produces something like this:

unsorted [Denver, Boulder, Vail, Aspen, Telluride]

sorted [Aspen, Boulder, Denver, Telluride, Vail]

Line 1 is declaring an ArrayList of Strings, and line 2 is sorting the ArrayList
alphabetically. We'll talk more about the Collections class, along with the Arrays
class in a later section, for now let's keep sorting stuff.

Let's imagine we're building the ultimate home-automation application. Today
we're focused on the home entertainment center, and more specifically the DVD
control center. We've already got the file I/O software in place to read and write
data between the dvdInfo.txt file and instances of class DVDInfo. Here are the key
aspects of the class:

class DVDInfo {
 String title;
 String genre;
 String leadActor;
 DVDInfo(String t, String g, String a) {

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 569

 title = t; genre = g; leadActor = a;
 }
 public String toString() {
 return title + " " + genre + " " + leadActor + "\n";
 }
 // getters and setter go here
}

Here's the DVD data that's in the dvdinfo.txt file:

Donnie Darko/sci-fi/Gyllenhall, Jake
Raiders of the Lost Ark/action/Ford, Harrison
2001/sci-fi/??
Caddy Shack/comedy/Murray, Bill
Star Wars/sci-fi/Ford, Harrison
Lost in Translation/comedy/Murray, Bill
Patriot Games/action/Ford, Harrison

In our home-automation application, we want to create an instance of DVDInfo
for each line of data we read in from the dvdInfo.txt file. For each instance, we
will parse the line of data (remember String.split()?) and populate DVDInfo's
three instance variables. Finally, we want to put all of the DVDInfo instances into an
ArrayList. Imagine that the populateList() method (below) does all of this. Here
is a small piece of code from our application:

ArrayList<DVDInfo> dvdList = new ArrayList<DVDInfo>();
populateList(); // adds the file data to the ArrayList
System.out.println(dvdList);

You might get output like this:

[Donnie Darko sci-fi Gyllenhall, Jake
, Raiders of the Lost Ark action Ford, Harrison
, 2001 sci-fi ??
, Caddy Shack comedy Murray, Bill
, Star Wars sci-fi Ford, Harrison
, Lost in Translation comedy Murray, Bill
, Patriot Games action Ford, Harrison
]

(Note: We overrode DVDInfo's toString() method, so when we invoked
println() on the ArrayList it invoked toString() for each instance.)

570 Chapter 7: Generics and Collections

Now that we've got a populated ArrayList, let's sort it:

Collections.sort(dvdlist);

Oops!, you get something like this:

TestDVD.java:13: cannot find symbol
symbol : method sort(java.util.ArrayList<DVDInfo>)
location: class java.util.Collections
 Collections.sort(dvdlist);

What's going on here? We know that the Collections class has a sort() method,
yet this error implies that Collections does NOT have a sort() method that can
take a dvdlist. That means there must be something wrong with the argument
we're passing (dvdlist).

If you've already figured out the problem, our guess is that you did it without
the help of the obscure error message shown above…How the heck do you sort
instances of DVDInfo? Why were we able to sort instances of String? When you
look up Collections.sort() in the API your first reaction might be to panic.
Hang tight, once again the generics section will help you read that weird looking
method signature. If you read the description of the one-arg sort() method,
you'll see that the sort() method takes a List argument, and that the objects in
the List must implement an interface called Comparable. It turns out that String
implements Comparable, and that's why we were able to sort a list of Strings using
the Collections.sort() method.

The Comparable Interface
The Comparable interface is used by the Collections.sort() method and
the java.util.Arrays.sort() method to sort Lists and arrays of objects,
respectively. To implement Comparable, a class must implement a single method,
compareTo(). Here's an invocation of compareTo():

int x = thisObject.compareTo(anotherObject);

The compareTo() method returns an int with the following characteristics:

■ negative If thisObject < anotherObject

■ zero If thisObject == anotherObject

■ positive If thisObject > anotherObject

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 571

572 Chapter 7: Generics and Collections

The sort() method uses compareTo() to determine how the List or object array
should be sorted. Since you get to implement compareTo() for your own classes,
you can use whatever weird criteria you prefer, to sort instances of your classes.
Returning to our earlier example for class DVDInfo, we can take the easy way out
and use the String class's implementation of compareTo():

class DVDInfo implements Comparable<DVDInfo> { // #1
 // existing code
 public int compareTo(DVDInfo d) {
 return title.compareTo(d.getTitle()); // #2
} }

In line 1 we declare that class DVDInfo implements Comparable in such a way
that DVDInfo objects can be compared to other DVDInfo objects. In line 2 we
implement compareTo() by comparing the two DVDInfo object's titles. Since we
know that the titles are Strings, and that String implements Comparable, this is an
easy way to sort our DVDInfo objects, by title. Before generics came along in Java 5,
you would have had to implement Comparable something like this:

class DVDInfo implements Comparable {
 // existing code
 public int compareTo(Object o) { // takes an Object rather
 // than a specific type
 DVDInfo d = (DVDInfo)o;
 return title.compareTo(d.getTitle());
} }

This is still legal, but you can see that it's both painful and risky, because you
have to do a cast, and you need to verify that the cast will not fail before you try it.

It’s important to remember that when you override equals() you MUST
take an argument of type Object, but that when you override compareTo() you
should take an argument of the type you’re sorting.

Putting it all together, our DVDInfo class should now look like this:

class DVDInfo implements Comparable<DVDInfo> {
 String title;
 String genre;
 String leadActor;
 DVDInfo(String t, String g, String a) {
 title = t; genre = g; leadActor = a;
 }
 public String toString() {
 return title + " " + genre + " " + leadActor + "\n";
 }
 public int compareTo(DVDInfo d) {
 return title.compareTo(d.getTitle());
 }
 public String getTitle() {
 return title;
 }
 // other getters and setters
}

Now, when we invoke Collections.sort(dvdList); we get

[2001 sci-fi ??
, Caddy Shack comedy Murray, Bill
, Donnie Darko sci-fi Gyllenhall, Jake
, Lost in Translation comedy Murray, Bill
, Patriot Games action Ford, Harrison
, Raiders of the Lost Ark action Ford, Harrison
, Star Wars sci-fi Ford, Harrison
]

Hooray! Our ArrayList has been sorted by title. Of course, if we want our home
automation system to really rock, we'll probably want to sort DVD collections in lots
of different ways. Since we sorted our ArrayList by implementing the compareTo()
method, we seem to be stuck. We can only implement compareTo() once in a class,
so how do we go about sorting our classes in an order different than what we specify
in our compareTo() method? Good question. As luck would have it, the answer is
coming up next.

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 573

574 Chapter 7: Generics and Collections

Sorting with Comparator
While you were looking up the Collections.sort() method you might have
noticed that there is an overloaded version of sort() that takes both a List AND
something called a Comparator. The Comparator interface gives you the capability
to sort a given collection any number of different ways. The other handy thing about
the Comparator interface is that you can use it to sort instances of any class—even
classes you can't modify —unlike the Comparable interface, which forces you to
change the class whose instances you want to sort. The Comparator interface is also
very easy to implement, having only one method, compare(). Here's a small class
that can be used to sort a List of DVDInfo instances, by genre.

import java.util.*;
class GenreSort implements Comparator<DVDInfo> {
 public int compare(DVDInfo one, DVDInfo two) {
 return one.getGenre().compareTo(two.getGenre());
 }
}

The Comparator.compare() method returns an int whose meaning is the same
as the Comparable.compareTo() method's return value. In this case we're taking
advantage of that by asking compareTo() to do the actual comparison work for
us. Here's a test program that lets us test both our Comparable code and our new
Comparator code:

import java.util.*;
import java.io.*; // populateList() needs this
public class TestDVD {
 ArrayList<DVDInfo> dvdlist = new ArrayList<DVDInfo>();
 public static void main(String[] args) {
 new TestDVD().go();
 }
 public void go() {
 populateList();
 System.out.println(dvdlist); // output as read from file
 Collections.sort(dvdlist);
 System.out.println(dvdlist); // output sorted by title

 GenreSort gs = new GenreSort();
 Collections.sort(dvdlist, gs);
 System.out.println(dvdlist); // output sorted by genre
 }

 public void populateList() {
 // read the file, create DVDInfo instances, and
 // populate the ArrayList dvdlist with these instances
 }
}

You've already seen the first two output lists, here's the third:

[Patriot Games action Ford, Harrison
, Raiders of the Lost Ark action Ford, Harrison
, Caddy Shack comedy Murray, Bill
, Lost in Translation comedy Murray, Bill
, 2001 sci-fi ??
, Donnie Darko sci-fi Gyllenhall, Jake
, Star Wars sci-fi Ford, Harrison
]

Because the Comparable and Comparator interfaces are so similar, expect the
exam to try to confuse you. For instance you might be asked to implement the
compareTo() method in the Comparator interface. Study Table 7-3 to burn in the
differences between these two interfaces.

java.lang.Comparable java.util.Comparator

int objOne.compareTo(objTwo) int compare(objOne, objTwo)

Returns
 negative if objOne < objTwo
 zero if objOne == objTwo
 positive if objOne > objTwo

Same as Comparable

You must modify the class whose
instances you want to sort.

You build a class separate from the class whose instances you
want to sort.

Only one sort sequence can be created Many sort sequences can be created

Implemented frequently in the API by:
String, Wrapper classes, Date, Calendar...

Meant to be implemented to sort instances of third-party
classes.

 TABLE 7-3 Comparing Comparable to Comparator

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 575

576 Chapter 7: Generics and Collections

Sorting with the Arrays Class
We've been using the java.util.Collections class to sort collections; now let's look
at using the java.util.Arrays class to sort arrays. The good news is that sorting arrays
of objects is just like sorting collections of objects. The Arrays.sort() method is
overridden in the same way the Collections.sort() method is.

■ Arrays.sort(arrayToSort)

■ Arrays.sort(arrayToSort, Comparator)

In addition, the Arrays.sort() method is overloaded about a million times to
provide a couple of sort methods for every type of primitive. The Arrays.sort()
methods that sort primitives always sort based on natural order. Don't be fooled by
an exam question that tries to sort a primitive array using a Comparator.

Finally, remember that the sort() methods for both the Collections class and
the Arrays class are static methods, and that they alter the objects they are sorting,
instead of returning a different sorted object.

Searching Arrays and Collections
The Collections class and the Arrays class both provide methods that allow you
to search for a specific element. When searching through collections or arrays, the
following rules apply:

■ Searches are performed using the binarySearch() method.

■ Successful searches return the int index of the element being searched.

■ Unsuccessful searches return an int index that represents the insertion point.
The insertion point is the place in the collection/array where the element
would be inserted to keep the collection/array properly sorted. Because posi-

We’ve talked a lot about sorting by natural order and using Comparators
to sort. The last rule you’ll need to burn in is that, whenever you want to sort an array
or a collection, the elements inside must all be mutually comparable. In other words, if you
have an Object[] and you put Cat and Dog objects into it, you won’t be able to sort
it. In general, objects of different types should be considered NOT mutually comparable,
unless specifi cally stated otherwise.

tive return values and 0 indicate successful searches, the binarySearch()
method uses negative numbers to indicate insertion points. Since 0 is a valid
result for a successful search, the first available insertion point is -1. There-
fore, the actual insertion point is represented as (-(insertion point) -1). For
instance, if the insertion point of a search is at element 2, the actual insertion
point returned will be -3.

■ The collection/array being searched must be sorted before you can search it.

■ If you attempt to search an array or collection that has not already been
sorted, the results of the search will not be predictable.

■ If the collection/array you want to search was sorted in natural order, it must
be searched in natural order. (Usually this is accomplished by NOT sending
a Comparator as an argument to the binarySearch() method.)

■ If the collection/array you want to search was sorted using a Comparator, it
must be searched using the same Comparator, which is passed as the second
argument to the binarySearch() method. Remember that Comparators
cannot be used when searching arrays of primitives.

Let's take a look at a code sample that exercises the binarySearch() method:

import java.util.*;
class SearchObjArray {
 public static void main(String [] args) {
 String [] sa = {"one", "two", "three", "four"};

 Arrays.sort(sa); // #1
 for(String s : sa)
 System.out.print(s + " ");
 System.out.println("\none = "
 + Arrays.binarySearch(sa,"one")); // #2

 System.out.println("now reverse sort");
 ReSortComparator rs = new ReSortComparator(); // #3
 Arrays.sort(sa,rs);
 for(String s : sa)
 System.out.print(s + " ");
 System.out.println("\none = "
 + Arrays.binarySearch(sa,"one")); // #4
 System.out.println("one = "
 + Arrays.binarySearch(sa,"one",rs)); // #5
 }

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 577

578 Chapter 7: Generics and Collections

 static class ReSortComparator
 implements Comparator<String> { // #6
 public int compare(String a, String b) {
 return b.compareTo(a); // #7
 }
 }
}

which produces something like this:

four one three two
one = 1
now reverse sort
two three one four
one = -1
one = 2

Here's what happened:
Line 1 Sort the sa array, alphabetically (the natural order).
Line 2 Search for the location of element "one", which is 1.
Line 3 Make a Comparator instance. On the next line we re-sort the array using

the Comparator.
Line 4 Attempt to search the array. We didn't pass the binarySearch()

method the Comparator we used to sort the array, so we got an incorrect
(undefined) answer.

Line 5 Search again, passing the Comparator to binarySearch(). This time
we get the correct answer, 2

Line 6 We define the Comparator; it's okay for this to be an inner class.
Line 7 By switching the use of the arguments in the invocation of

compareTo(), we get an inverted sort.

When solving searching and sorting questions, two big gotchas are
 1. Searching an array or collection that hasn’t been sorted.
 2. Using a Comparator in either the sort or the search,

 but not both.

Converting Arrays to Lists to Arrays
There are a couple of methods that allow you to convert arrays to Lists, and Lists to
arrays. The List and Set classes have toArray() methods, and the Arrays class has a
method called asList().

The Arrays.asList() method copies an array into a List. The API says,
"Returns a fixed-size list backed by the specified array. (Changes to the returned list
'write through' to the array.)" When you use the asList() method, the array and
the List become joined at the hip. When you update one of them, the other gets
updated automatically. Let's take a look:

String[] sa = {"one", "two", "three", "four"};
List sList = Arrays.asList(sa); // make a List
System.out.println("size " + sList.size());
System.out.println("idx2 " + sList.get(2));

sList.set(3,"six"); // change List
sa[1] = "five"; // change array
for(String s : sa)
 System.out.print(s + " ");
System.out.println("\nsl[1] " + sList.get(1));

This produces

size 4
idx2 three
one five three six
sl[1] five

Notice that when we print the final state of the array and the List, they have both
been updated with each other's changes. Wouldn't something like this behavior
make a great exam question?

Now let's take a look at the toArray() method. There's nothing too fancy going
on with the toArray() method; it comes in two flavors: one that returns a new
Object array, and one that uses the array you send it as the destination array:

List<Integer> iL = new ArrayList<Integer>();
for(int x=0; x<3; x++)
 iL.add(x);
Object[] oa = iL.toArray(); // create an Object array
Integer[] ia2 = new Integer[3];

ia2 = iL.toArray(ia2); // create an Integer array

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 579

580 Chapter 7: Generics and Collections

Using Lists
Remember that Lists are usually used to keep things in some kind of order. You can
use a LinkedList to create a first-in, first-out queue. You can use an ArrayList to
keep track of what locations were visited, and in what order. Notice that in both of
these examples it's perfectly reasonable to assume that duplicates might occur. In
addition, Lists allow you to manually override the ordering of elements by adding or
removing elements via the element's index. Before Java 5, and the enhanced for
loop, the most common way to examine a List "element by element" was by the use
of an Iterator. You'll still find Iterators in use in the Java code you encounter, and
you might just find an Iterator or two on the exam. An Iterator is an object that's
associated with a specific collection. It lets you loop through the collection step by
step. The two Iterator methods you need to understand for the exam are

■ boolean hasNext() Returns true if there is at least one more element in
the collection being traversed. Invoking hasNext() does NOT move you to
the next element of the collection.

■ Object next() This method returns the next object in the collection,
AND moves you forward to the element after the element just returned.

Let's look at a little code that uses a List and an Iterator:

import java.util.*;
class Dog {
 public String name;
 Dog(String n) { name = n; }
}
class ItTest {
 public static void main(String[] args) {
 List<Dog> d = new ArrayList<Dog>();
 Dog dog = new Dog("aiko");
 d.add(dog);
 d.add(new Dog("clover"));
 d.add(new Dog("magnolia"));
 Iterator<Dog> i3 = d.iterator(); // make an iterator
 while (i3.hasNext()) {
 Dog d2 = i3.next(); // cast not required
 System.out.println(d2.name);
 }
 System.out.println("size " + d.size());
 System.out.println("get1 " + d.get(1).name);
 System.out.println("aiko " + d.indexOf(dog));

 d.remove(2);
 Object[] oa = d.toArray();
 for(Object o : oa) {
 Dog d2 = (Dog)o;
 System.out.println("oa " + d2.name);
 }
 }
}

This produces

aiko
clover
magnolia
size 3
get1 clover
aiko 0
oa aiko
oa clover

First off, we used generics syntax to create the Iterator (an Iterator of type Dog).
Because of this, when we used the next() method, we didn't have to cast the
Object returned by next() to a Dog. We could have declared the Iterator like this:

Iterator i3 = d.iterator(); // make an iterator

But then we would have had to cast the returned value:

Dog d2 = (Dog)i3.next();

The rest of the code demonstrates using the size(), get(), indexOf(), and
toArray() methods. There shouldn't be any surprises with these methods. In a few
pages Table 7-5 will list all of the List, Set, and Map methods you should be familiar
with for the exam. As a last warning, remember that List is an interface!

Using Sets
Remember that Sets are used when you don't want any duplicates in your collection.
If you attempt to add an element to a set that already exists in the set, the duplicate
element will not be added, and the add() method will return false. Remember,
HashSets tend to be very fast because, as we discussed earlier, they use hashcodes.

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 581

You can also create a TreeSet, which is a Set whose elements are sorted. You must
use caution when using a TreeSet (we're about to explain why):

import java.util.*;
class SetTest {
 public static void main(String[] args) {
 boolean[] ba = new boolean[5];
 // insert code here

 ba[0] = s.add("a");
 ba[1] = s.add(new Integer(42));
 ba[2] = s.add("b");
 ba[3] = s.add("a");
 ba[4] = s.add(new Object());
 for(int x=0; x<ba.length; x++)
 System.out.print(ba[x] + " ");
 System.out.println("\n");
 for(Object o : s)
 System.out.print(o + " ");
 }
}

If you insert the following line of code you'll get output something like this:

Set s = new HashSet(); // insert this code

true true true false true
a java.lang.Object@e09713 42 b

It's important to know that the order of objects printed in the second for loop
is not predictable: HashSets do not guarantee any ordering. Also, notice that the
fourth invocation of add() failed, because it attempted to insert a duplicate entry
(a String with the value a) into the Set.

If you insert this line of code you'll get something like this:

Set s = new TreeSet(); // insert this code

Exception in thread "main" java.lang.ClassCastException: java.
lang.String
 at java.lang.Integer.compareTo(Integer.java:35)
 at java.util.TreeMap.compare(TreeMap.java:1093)

582 Chapter 7: Generics and Collections

 at java.util.TreeMap.put(TreeMap.java:465)
 at java.util.TreeSet.add(TreeSet.java:210)

The issue is that whenever you want a collection to be sorted, its elements must
be mutually comparable. Remember that unless otherwise specified, objects of
different types are not mutually comparable.

Using Maps
Remember that when you use a class that implements Map, any classes that you
use as a part of the keys for that map must override the hashCode() and equals()
methods. (Well, you only have to override them if you're interested in retrieving
stuff from your Map. Seriously, it's legal to use a class that doesn't override equals()
and hashCode() as a key in a Map; your code will compile and run, you just won't
find your stuff.) Here's some crude code demonstrating the use of a HashMap:

import java.util.*;
class Dog {
 public Dog(String n) { name = n; }
 public String name;
 public boolean equals(Object o) {
 if((o instanceof Dog) &&
 (((Dog)o).name == name)) {
 return true;
 } else {
 return false;
 }
 }
 public int hashCode() {return name.length(); }
}
class Cat { }

enum Pets {DOG, CAT, HORSE }

class MapTest {
 public static void main(String[] args) {
 Map<Object, Object> m = new HashMap<Object, Object>();

 m.put("k1", new Dog("aiko")); // add some key/value pairs
 m.put("k2", Pets.DOG);
 m.put(Pets.CAT, "CAT key");
 Dog d1 = new Dog("clover"); // let's keep this reference

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 583

584 Chapter 7: Generics and Collections

 m.put(d1, "Dog key");
 m.put(new Cat(), "Cat key");

 System.out.println(m.get("k1")); // #1
 String k2 = "k2";
 System.out.println(m.get(k2)); // #2
 Pets p = Pets.CAT;
 System.out.println(m.get(p)); // #3
 System.out.println(m.get(d1)); // #4
 System.out.println(m.get(new Cat())); // #5
 System.out.println(m.size()); // #6
 }
}

which produces something like this:

Dog@1c
DOG
CAT key
Dog key
null
5

Let's review the output. The first value retrieved is a Dog object (your value
will vary). The second value retrieved is an enum value (DOG). The third value
retrieved is a String; note that the key was an enum value. Pop quiz: What's the
implication of the fact that we were able to successfully use an enum as a key?

The implication of this is that enums override equals() and hashCode(). And,
if you look at the java.lang.Enum class in the API, you will see that, in fact, these
methods have been overridden.

The fourth output is a String. The important point about this output is that the
key used to retrieve the String was made of a Dog object. The fifth output is null.
The important point here is that the get() method failed to find the Cat object
that was inserted earlier. (The last line of output confirms that indeed, 5 key/value
pairs exist in the Map.) Why didn't we find the Cat key String? Why did it work to
use an instance of Dog as a key, when using an instance of Cat as a key failed?

It's easy to see that Dog overrode equals() and hashCode() while Cat didn't.
Let's take a quick look at hashcodes. We used an incredibly simplistic hashcode

formula in the Dog class—the hashcode of a Dog object is the length of the
instance's name. So in this example the hashcode = 6. Let's compare the following
two hashCode() methods:

public int hashCode() {return name.length(); } // #1
public int hashCode() {return 4; } // #2

Time for another pop quiz: Are the preceding two hashcodes legal? Will they
successfully retrieve objects from a Map? Which will be faster?

The answer to the first two questions is Yes and Yes. Neither of these hashcodes
will be very efficient (in fact they would both be incredibly inefficient), but they
are both legal, and they will both work. The answer to the last question is that the
first hashcode will be a little bit faster than the second hashcode. In general, the
more unique hashcodes a formula creates, the faster the retrieval will be. The first
hashcode formula will generate a different code for each name length (for instance
the name Robert will generate one hashcode and the name Benchley will generate
a different hashcode). The second hashcode formula will always produce the same
result, 4, so it will be slower than the first.

Our last Map topic is what happens when an object used as a key has its values
changed? If we add two lines of code to the end of the earlier MapTest.main(),

d1.name = "magnolia";
System.out.println(m.get(d1));

we get something like this:

Dog@4
DOG
CAT key
Dog key
null
5
null

The Dog that was previously found now cannot be found. Because the Dog.name
variable is used to create the hashcode, changing the name changed the value of the
hashcode. As a final quiz for hashcodes, determine the output for the following lines
of code if they're added to the end of MapTest.main():

 d1.name = "magnolia";
 System.out.println(m.get(d1)); // #1
 d1.name = "clover";
 System.out.println(m.get(new Dog("clover"))); // #2
 d1.name = "arthur";
 System.out.println(m.get(new Dog("clover"))); // #3

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 585

586 Chapter 7: Generics and Collections

Remember that the hashcode is equal to the length of the name variable. When
you study a problem like this, it can be useful to think of the two stages of retrieval:

1. Use the hashCode() method to find the correct bucket

2. Use the equals() method to find the object in the bucket

In the first call to get(), the hashcode is 8 (magnolia) and it should be 6
(clover), so the retrieval fails at step 1 and we get null. In the second call to
get(), the hashcodes are both 6, so step 1 succeeds. Once in the correct bucket (the
"length of name = 6" bucket), the equals() method is invoked, and since Dog's
equals() method compares names, equals() succeeds, and the output is Dog key.
In the third invocation of get(), the hashcode test succeeds, but the equals() test
fails because arthur is NOT equal to clover.

Navigating (Searching) TreeSets and TreeMaps
We've talked about searching lists and arrays. Let's turn our attention to searching
TreeSets and TreeMaps. Java 6 introduced (among others) two new interfaces:
java.util.NavigableSet and java.util.NavigableMap. For the purposes
of the exam, you’re interested in how TreeSet and TreeMap implement these
interfaces.

Imagine that the Santa Cruz–Monterey ferry has an irregular schedule. Let's
say that we have the daily Santa Cruz departure times stored, in military time, in a
TreeSet. Let's look at some code that determines two things:

 1. The last ferry that leaves before 4 (1600 hours)

 2. The first ferry that leaves after 8 (2000 hours)

import java.util.*;
public class Ferry {
 public static void main(String[] args) {
 TreeSet<Integer> times = new TreeSet<Integer>();
 times.add(1205); // add some departure times
 times.add(1505);
 times.add(1545);
 times.add(1830);
 times.add(2010);
 times.add(2100);

 // Java 5 version

 TreeSet<Integer> subset = new TreeSet<Integer>();
 subset = (TreeSet)times.headSet(1600);
 System.out.println("J5 - last before 4pm is: " + subset.last());

 TreeSet<Integer> sub2 = new TreeSet<Integer>();
 sub2 = (TreeSet)times.tailSet(2000);
 System.out.println("J5 - first after 8pm is: " + sub2.first());

 // Java 6 version using the new lower() and higher() methods

 System.out.println("J6 - last before 4pm is: " + times.lower(1600));
 System.out.println("J6 - first after 8pm is: " + times.higher(2000));
 }
}

This should produce the following:

J5 - last before 4pm is: 1545
J5 - first after 8pm is: 2010
J6 - last before 4pm is: 1545
J6 - first after 8pm is: 2010

As you can see in the preceding code, before the addition of the NavigableSet
interface, zeroing in on an arbitrary spot in a Set—using the methods available in
Java 5—was a compute-expensive and clunky proposition. On the other hand, using
the new Java 6 methods lower() and higher(), the code becomes a lot cleaner.

For the purpose of the exam, the NavigableSet methods related to this type of
navigation are lower(), floor(), higher(), ceiling(), and the mostly parallel
NavigableMap methods are lowerKey(), floorKey(), ceilingKey(), and
higherKey(). The difference between lower() and floor() is that lower()
returns the element less than the given element, and floor() returns the element
less than or equal to the given element. Similarly, higher() returns the element
greater than the given element, and ceiling() returns the element greater than or
equal to the given element. Table 7-4 summarizes the methods you should know for
the exam.

Other Navigation Methods
In addition to the methods we just discussed there are a few more new Java 6
methods that could be considered "navigation" methods. (Okay, it's a little stretch
to call these "navigation" methods, but just play along.)

Other Navigation Methods 587

588 Chapter 7: Generics and Collections

Polling
Although the idea of polling isn't new to Java 6 (as you'll see in a minute,
PriorityQueue had a poll() method before Java 6), it is new to TreeSet and
TreeMap. The idea of polling is that we want both to retrieve and remove an
element from either the beginning or the end of a collection. In the case of TreeSet,
pollFirst() returns and removes the first entry in the set, and pollLast()
returns and removes the last. Similarly, TreeMap now provides pollFirstEntry()
and pollLastEntry() to retrieve and remove key-value pairs.

Descending Order
Also new to Java 6 for TreeSet and TreeMap are methods that return a collection
in the reverse order of the collection on which the method was invoked. The
important methods for the exam are TreeSet.descendingSet() and TreeMap
.descendingMap().

Table 7-4 summarizes the "navigation" methods you'll need to know for the exam.

 TABLE 7-4 Important "Navigation" Related Methods

Method Description

TreeSet.ceiling(e) Returns the lowest element >= e

TreeMap.ceilingKey(key) Returns the lowest key >= key

TreeSet.higher(e) Returns the lowest element > e

TreeMap.higherKey(key) Returns the lowest key > key

TreeSet.floor(e) Returns the highest element <= e

TreeMap.floorKey(key) Returns the highest key <= key

TreeSet.lower(e) Returns the highest element < e

TreeMap.lowerKey(key) Returns the highest key < key

TreeSet.pollFirst() Returns and removes the first entry

TreeMap.pollFirstEntry() Returns and removes the first key-value pair

TreeSet.pollLast() Returns and removes the last entry

TreeMap.pollLastEntry() Returns and removes the last key-value pair

TreeSet.descendingSet() Returns a NavigableSet in reverse order

TreeMap.descendingMap() Returns a NavigableMap in reverse order

Backed Collections
Some of the classes in the java.util package support the concept of "backed collections".
We'll use a little code to help explain the idea:

 TreeMap<String, String> map = new TreeMap<String, String>();
 map.put("a", "ant"); map.put("d", "dog"); map.put("h", "horse");

 SortedMap<String, String> submap;
 submap = map.subMap("b", "g"); // #1 create a backed collection

 System.out.println(map + " " + submap); // #2 show contents

 map.put("b", "bat"); // #3 add to original
 submap.put("f", "fish"); // #4 add to copy

 map.put("r", "raccoon"); // #5 add to original - out of range
 // submap.put("p", "pig"); // #6 add to copy - out of range

 System.out.println(map + " " + submap); // #7 show final contents

This should produce something like this:

 {a=ant, d=dog, h=horse} {d=dog}
 {a=ant, b=bat, d=dog, f=fish, h=horse, r=raccoon} {b=bat, d=dog, f=fish}

The important method in this code is the TreeMap.subMap() method. It's easy
to guess (and it's correct), that the subMap() method is making a copy of a portion
of the TreeMap named map. The first line of output verifies the conclusions we've
just drawn.

What happens next is powerful and a little bit unexpected (now we're getting to
why they're called backed collections). When we add key-value pairs to either the
original TreeMap or the partial-copy SortedMap, the new entries were automatically
added to the other collection—sometimes. When submap was created, we provided
a value range for the new collection. This range defines not only what should be
included when the partial copy is created, but also defines the range of values that
can be added to the copy. As we can verify by looking at the second line of output,
we can add new entries to either collection within the range of the copy, and the
new entries will show up in both collections. In addition, we can add a new entry
to the original collection, even if it's outside the range of the copy. In this case, the
new entry will show up only in the original—it won't be added to the copy because
it's outside the copy's range. Notice that we commented out line #6. If you attempt
to add an out-of-range entry to the copied collection an exception will be thrown.

Backed Collections 589

590 Chapter 7: Generics and Collections

For the exam, you'll need to understand the basics just explained, plus a few
more details about three methods from TreeSet—(headSet(), subSet(), and
tailSet()), and three methods from TreeMap (headMap(), subMap(), and
tailMap()). As with the navigation-oriented methods we just discussed, we
can see a lot of parallels between the TreeSet and the TreeMap methods. The
headSet() / headMap() methods create a subset that starts at the beginning of the
original collection and ends at the point specified by the method's argument. The
tailSet() / tailMap() methods create a subset that starts at the point specified
by the method's argument and goes to the end of the original collection. Finally, the
subSet() / subMap() methods allow you to specify both the start and end points for
the subset collection you're creating.

As you might expect, the question of whether the subsetted collection's end
points are inclusive or exclusive is a little tricky. The good news is that for the exam
you have to remember only that when these methods are invoked with endpoint
and boolean arguments, the boolean always means "is inclusive?". A little more good
news is that all you have to know for the exam is that unless specifically indicated by
a boolean argument, a subset's starting point will always be inclusive. Finally, you'll
notice when you study the API that all of the methods we've been discussing here
have an overloaded version that's new to Java 6. The older methods return either a
SortedSet or a SortedMap, the new Java 6 methods return either a NavigableSet or a
NavigableMap. Table 7-5 summarizes these methods.

 * NOTE: These boolean arguments are optional. If they exist it’s a Java 6 method that lets you specify whether the endpoint
is exclusive, and these methods return a NavigableXxx. If the boolean argument(s) don’t exist, the method returns either
a SortedSet or a SortedMap.

 TABLE 7-5 Important "Backed Collection" Methods for TreeSet and TreeMap

Method Description

headSet(e, b*) Returns a subset ending at element e and exclusive of e

headMap(k, b*) Returns a submap ending at key k and exclusive of key k

tailSet(e, b*) Returns a subset starting at and inclusive of element e

tailMap(k, b*) Returns a submap starting at and inclusive of key k

subSet(s, b*, e, b*) Returns a subset starting at element s and ending just before element e

subMap(s, b*, e, b*) Returns a submap starting at key s and ending just before key s

Using the PriorityQueue Class
The last collection class you'll need to understand for the exam is the PriorityQueue.
Unlike basic queue structures that are first-in, first-out by default, a PriorityQueue
orders its elements using a user-defined priority. The priority can be as simple as
natural ordering (in which, for instance, an entry of 1 would be a higher priority
than an entry of 2). In addition, a PriorityQueue can be ordered using a Comparator,
which lets you define any ordering you want. Queues have a few methods not found
in other collection interfaces: peek(), poll(), and offer().

import java.util.*;
class PQ {
 static class PQsort
 implements Comparator<Integer> { // inverse sort
 public int compare(Integer one, Integer two) {
 return two - one; // unboxing
 }
 }
 public static void main(String[] args) {
 int[] ia = {1,5,3,7,6,9,8 }; // unordered data
 PriorityQueue<Integer> pq1 =
 new PriorityQueue<Integer>(); // use natural order

 for(int x : ia) // load queue

Backed Collections 591

Let’s say that you’ve created a backed collection using either a tailXxx()
or subXxx() method. Typically in these cases the original and copy collections have
different “fi rst” elements. For the exam it’s important that you remember that the
pollFirstXxx() methods will always remove the fi rst entry from the collection on which
they’re invoked, but they will remove an element from the other collection only if it has
same value. So it’s most likely that invoking pollFirstXxx() on the copy will remove an
entry from both collections, but invoking pollFirstXxx() on the original will remove only
the entry from the original.

592 Chapter 7: Generics and Collections

 pq1.offer(x);
 for(int x : ia) // review queue
 System.out.print(pq1.poll() + " ");
 System.out.println("");

 PQsort pqs = new PQsort(); // get a Comparator
 PriorityQueue<Integer> pq2 =
 new PriorityQueue<Integer>(10,pqs); // use Comparator

 for(int x : ia) // load queue
 pq2.offer(x);
 System.out.println("size " + pq2.size());
 System.out.println("peek " + pq2.peek());
 System.out.println("size " + pq2.size());
 System.out.println("poll " + pq2.poll());
 System.out.println("size " + pq2.size());
 for(int x : ia) // review queue
 System.out.print(pq2.poll() + " ");
 }
}

This code produces something like this:

1 3 5 6 7 8 9
size 7
peek 9
size 7
poll 9
size 6
8 7 6 5 3 1 null

Let's look at this in detail. The first for loop iterates through the ia array, and
uses the offer() method to add elements to the PriorityQueue named pq1. The
second for loop iterates through pq1 using the poll() method, which returns
the highest priority entry in pq1 AND removes the entry from the queue. Notice
that the elements are returned in priority order (in this case, natural order). Next,
we create a Comparator—in this case, a Comparator that orders elements in the
opposite of natural order. We use this Comparator to build a second PriorityQueue,
pq2, and we load it with the same array we used earlier. Finally, we check the size of
pq2 before and after calls to peek() and poll(). This confirms that peek() returns
the highest priority element in the queue without removing it, and poll() returns
the highest priority element, AND removes it from the queue. Finally, we review the
remaining elements in the queue.

Method Overview for Arrays and Collections
For these two classes, we've already covered the trickier methods you might
encounter on the exam. Table 7-6 lists a summary of the methods you should be
aware of. (Note: The T[] syntax will be explained later in this chapter; for now,
think of it as meaning "any array that's NOT an array of primitives.")

Backed Collections 593

Key Methods in java.util.Arrays Descriptions

static List asList(T[]) Convert an array to a List (and bind them).

static int binarySearch(Object[], key)
static int binarySearch(primitive[], key)

Search a sorted array for a given value, return
an index or insertion point.

static int binarySearch(T[], key, Comparator) Search a Comparator-sorted array for a value.

static boolean equals(Object[], Object[])
static boolean equals(primitive[], primitive[])

Compare two arrays to determine if their
contents are equal.

public static void sort(Object[])
public static void sort(primitive[])

Sort the elements of an array by natural
order.

public static void sort(T[], Comparator) Sort the elements of an array using a
Comparator.

public static String toString(Object[])
public static String toString(primitive[])

Create a String containing the contents of
an array.

Key Methods in java.util.Collections Descriptions

static int binarySearch(List, key)
static int binarySearch(List, key, Comparator)

Search a "sorted" List for a given value,
return an index or insertion point.

static void reverse(List) Reverse the order of elements in a List.

static Comparator reverseOrder()
static Comparator reverseOrder(Comparator)

Return a Comparator that sorts the reverse of
the collection’s current sort sequence.

static void sort(List)
static void sort(List, Comparator)

Sort a List either by natural order or by a
Comparator.

 TABLE 7-6 Key Methods in Arrays and Collections

594 Chapter 7: Generics and Collections

Method Overview for List, Set, Map, and Queue
For these four interfaces, we've already covered the trickier methods you might
encounter on the exam. Table 7-7 lists a summary of the List, Set, and Map methods
you should be aware of, but don't forget the new "Navigable" methods floor, lower,
ceiling, and higher that we discussed a few pages back.

For the exam, the PriorityQueue methods that are important to understand are
offer() (which is similar to add()), peek() (which retrieves the element at the
head of the queue, but doesn't delete it), and poll() (which retrieves the head
element and removes it from the queue).

 TABLE 7-7 Key Methods in List, Set, and Map
Key Interface Methods List Set Map Descriptions

boolean add(element)
boolean add(index, element)

X
X

X Add an element. For Lists, optionally
add the element at an index point.

boolean contains(object)
boolean containsKey(object key)
boolean containsValue(object value)

X X
X
X

Search a collection for an object (or,
optionally for Maps a key), return the
result as a boolean.

object get(index)
object get(key)

X
X

Get an object from a collection, via an
index or a key.

int indexOf(object) X Get the location of an object in a List.

Iterator iterator() X X Get an Iterator for a List or a Set.

Set keySet() X Return a Set containing a Map’s keys.

put(key, value) X Add a key/value pair to a Map.

remove(index)
remove(object)
remove(key)

X
X X

X

Remove an element via an index, or
via the element’s value, or via a key.

int size() X X X Return the number of elements in a
collection.

Object[] toArray()
T[] toArray(T[])

X X Return an array containing the
elements of the collection.

CERTIFICATION OBJECTIVE

Generic Types (Objectives 6.3 and 6.4)
6.3 Write code that uses the generic versions of the Collections API, in particular the Set,
List, and Map interfaces and implementation classes. Recognize the limitations of the non-
generic Collections API and how to refactor code to use the generic versions.

6.4 Develop code that makes proper use of type parameters in class/interface declarations,
instance variables, method arguments, and return types; and write generic methods or
methods that make use of wildcard types and understand the similarities and differences
between these two approaches. Write code that uses the NavigableSet and NavigableMap
interfaces.

Generics Type (Exam Objectives 6.3 and 6.4) 595

It’s important to know some of the details of natural ordering. The
following code will help you understand the relative positions of uppercase characters,
lowercase characters, and spaces in a natural ordering:

String[] sa = {">ff<", "> f<", ">f <", ">FF<" }; // ordered?
PriorityQueue<String> pq3 = new PriorityQueue<String>();
for(String s : sa)
 pq3.offer(s);
for(String s : sa)
 System.out.print(pq3.poll() + " ");

This produces

> f< >FF< >f < >ff<

If you remember that spaces sort before characters and that uppercase
letters sort before lowercase characters, you should be good to go for the exam.

596 Chapter 7: Generics and Collections

Arrays in Java have always been type safe—an array declared as type String (String
[]) can't accept Integers (or ints), Dogs, or anything other than Strings. But
remember that before Java 5 there was no syntax for declaring a type safe collection.
To make an ArrayList of Strings, you said,

ArrayList myList = new ArrayList();

or, the polymorphic equivalent

List myList = new ArrayList();

There was no syntax that let you specify that myList will take Strings and only
Strings. And with no way to specify a type for the ArrayList, the compiler couldn't
enforce that you put only things of the specified type into the list. As of Java 5,
we can use generics, and while they aren't only for making type safe collections,
that's just about all most developers use generics for. So, while generics aren't just
for collections, think of collections as the overwhelming reason and motivation for
adding generics to the language.

And it was not an easy decision, nor has it been an entirely welcome addition.
Because along with all the nice happy type safety, generics come with a lot of
baggage—most of which you'll never see or care about, but there are some gotchas
that come up surprisingly quickly. We'll cover the ones most likely to show up in
your own code, and those are also the issues that you'll need to know for the exam.

The biggest challenge for Sun in adding generics to the language (and the
main reason it took them so long) was how to deal with legacy code built without
generics. Sun's Java engineers obviously didn't want to break everyone's existing
Java code, so they had to find a way for Java classes with both type safe (generic)
and non-type safe (non-generic/pre-Java 5) collections to still work together. Their
solution isn't the friendliest, but it does let you use older non-generic code, as well
as use generic code that plays with non-generic code. But notice we said "plays," and
not "plays WELL."

While you can integrate Java 5 and Java 6 generic code with legacy non-generic
code, the consequences can be disastrous, and unfortunately, most of the disasters
happen at runtime, not compile time. Fortunately, though, most compilers will
generate warnings to tell you when you're using unsafe (meaning non-generic)
collections.

The Java 5 exam covers both pre-Java 5 (non-generic) and Java 5 style
collections, and you'll see questions that expect you to understand the tricky

problems that can come from mixing non-generic and generic code together. And
like some of the other topics in this book, you could fill an entire book if you really
wanted to cover every detail about generics, but the exam (and this book) covers
more than most developers will ever need to use.

The Legacy Way to Do Collections
Here's a review of a pre-Java 5 ArrayList intended to hold Strings. (We say
"intended" because that's about all you had—good intentions—to make sure that
the ArrayList would hold only Strings).

List myList = new ArrayList(); // can't declare a type

myList.add("Fred"); // OK, it will hold Strings

myList.add(new Dog()); // and it will hold Dogs too

myList.add(new Integer(42)); // and Integers...

A non-generic collection can hold any kind of object! A non-generic collection
is quite happy to hold anything that is NOT a primitive.

This meant it was entirely up to the programmer to be…careful. Having no way
to guarantee collection type wasn't very programmer-friendly for such a strongly
typed language. We're so used to the compiler stopping us from, say, assigning an int
to a boolean reference or a String to a Dog reference, but with collections, it was,
"Come on in! The door is always open! All objects are welcome here any time!"

And since a collection could hold anything, the methods that get objects out
of the collection could have only one kind of return type—java.lang.Object. That
meant that getting a String back out of our only-Strings-intended list required a cast:

String s = (String) myList.get(0);

And since you couldn't guarantee that what was coming out really was a String
(since you were allowed to put anything in the list), the cast could fail at runtime.

So, generics takes care of both ends (the putting in and getting out) by enforcing
the type of your collections. Let's update the String list:

List<String> myList = new ArrayList<String>();
myList.add("Fred"); // OK, it will hold Strings
myList.add(new Dog()); // compiler error!!

Generics Type (Exam Objectives 6.3 and 6.4) 597

598 Chapter 7: Generics and Collections

Perfect. That's exactly what we want. By using generics syntax—which means
putting the type in angle brackets <String>, we're telling the compiler that this
collection can hold only String objects. The type in angle brackets is referred to as
either the "parameterized type," "type parameter," or of course just old-fashioned
"type." In this chapter, we'll refer to it both new ways.

So, now that what you put IN is guaranteed, you can also guarantee what comes
OUT, and that means you can get rid of the cast when you get something from the
collection. Instead of

String s = (String)myList.get(0); // pre-generics, when a
 // String wasn't guaranteed

we can now just say

String s = myList.get(0);

The compiler already knows that myList contains only things that can be
assigned to a String reference, so now there's no need for a cast. So far, it seems
pretty simple. And with the new for loop, you can of course iterate over the
guaranteed-to-be-String list:

for (String s : myList) {
 int x = s.length();
 // no need for a cast before calling a String method! The
 // compiler already knew "s" was a String coming from MyList
}

And of course you can declare a type parameter for a method argument, which
then makes the argument a type safe reference:

void takeListOfStrings(List<String> strings) {
 strings.add("foo"); // no problem adding a String
}

The method above would NOT compile if we changed it to

void takeListOfStrings(List<String> strings) {
 strings.add(new Integer(42)); // NO!! strings is type safe
}

Return types can obviously be declared type safe as well:

public List<Dog> getDogList() {
 List<Dog> dogs = new ArrayList<Dog>();
 // more code to insert dogs
 return dogs;
}

The compiler will stop you from returning anything not compatible with a
List<Dog> (although what is and is not compatible is going to get very interesting
in a minute). And since the compiler guarantees that only a type safe Dog List is
returned, those calling the method won't need a cast to take Dogs from the List:

Dog d = getDogList().get(0); // we KNOW a Dog is coming out

With pre-Java 5, non-generic code, the getDogList() method would be

public List getDogList() {
 List dogs = new ArrayList();
 // code to add only Dogs... fingers crossed...
 return dogs; // a List of ANYTHING will work here
}

and the caller would need a cast:

Dog d = (Dog) getDogList().get(0);

(The cast in this example applies to what comes from the List's get() method; we
aren't casting what is returned from the getDogList() method, which is a List.)

But what about the benefit of a completely heterogeneous collection? In other
words, what if you liked the fact that before generics you could make an ArrayList
that could hold any kind of object?

List myList = new ArrayList(); // old-style, non-generic

is almost identical to

List<Object> myList = new
 ArrayList<Object>(); // holds ANY object type

Generics Type (Exam Objectives 6.3 and 6.4) 599

600 Chapter 7: Generics and Collections

Declaring a List with a type parameter of <Object> makes a collection that works
in almost the same way as the original pre-Java 5, non-generic collection—you can
put ANY Object type into the collection. You'll see a little later that non-generic
collections and collections of type <Object> aren't entirely the same, but most of
the time the differences do not matter.

Oh, if only this were the end of the story...but there are still a few tricky issues
with methods arguments, polymorphism, and integrating generic and non-generic
code, so we're just getting warmed up here.

Generics and Legacy Code
The easiest generics thing you'll need to know for the exam is how to update
non-generic code to make it generic. You just add a type in angle brackets (<>)
immediately following the collection type in BOTH the variable declaration and the
constructor call, including any place you declare a variable (so that means arguments
and return types too). A pre-Java 5 List meant to hold only Integers:

List myList = new ArrayList();

becomes

List<Integer> myList = new ArrayList<Integer>();

and a list meant to hold only Strings goes from

public List changeStrings(ArrayList s) { }

to this:

public List<String> changeStrings(ArrayList<String> s) { }

Easy. And if there's code that used the earlier non-generic version and performed
a cast to get things out, that won't break anyone's code:

Integer i = (Integer) list.get(0); // cast no longer needed,
 // but it won't hurt

Mixing Generic and Non-generic Collections
Now here's where it starts to get interesting…imagine we have an ArrayList, of type
Integer, and we're passing it into a method from a class whose source code we don't
have access to. Will this work?

// a Java 5 class using a generic collection
import java.util.*;
public class TestLegacy {
 public static void main(String[] args) {
 List<Integer> myList = new ArrayList<Integer>();
 // type safe collection
 myList.add(4);
 myList.add(6);
 Adder adder = new Adder();
 int total = adder.addAll(myList);
 // pass it to an untyped argument
 System.out.println(total);
 }
}

The older, non-generics class we want to use:

import java.util.*;
class Adder {
 int addAll(List list) {
 // method with a non-generic List argument,
 // but assumes (with no guarantee) that it will be Integers
 Iterator it = list.iterator();
 int total = 0;
 while (it.hasNext()) {
 int i = ((Integer)it.next()).intValue();
 total += i;
 }
 return total;
 }
}

Yes, this works just fine. You can mix correct generic code with older non-generic
code, and everyone is happy.

In the previous example, the addAll() legacy method assumed (trusted? hoped?)
that the list passed in was indeed restricted to Integers, even though when the code
was written, there was no guarantee. It was up to the programmers to be careful.

Mixing Generic and Non-generic Collections (Exam Objectives 6.3 and 6.4) 601

602 Chapter 7: Generics and Collections

Since the addAll() method wasn't doing anything except getting the Integer
(using a cast) from the list and accessing its value, there were no problems. In that
example, there was no risk to the caller's code, but the legacy method might have
blown up if the list passed in contained anything but Integers (which would cause a
ClassCastException).

But now imagine that you call a legacy method that doesn't just read a value but
adds something to the ArrayList? Will this work?

import java.util.*;
public class TestBadLegacy {
 public static void main(String[] args) {
 List<Integer> myList = new ArrayList<Integer>();
 myList.add(4);
 myList.add(6);
 Inserter in = new Inserter();
 in.insert(myList); // pass List<Integer> to legacy code
 }
}
class Inserter {
 // method with a non-generic List argument
 void insert(List list) {
 list.add(new Integer(42)); // adds to the incoming list
 }
}

Sure, this code works. It compiles, and it runs. The insert() method puts an
Integer into the list that was originally typed as <Integer>, so no problem.

But…what if we modify the insert() method like this:

void insert(List list) {
 list.add(new String("42")); // put a String in the list
 // passed in
}

Will that work? Yes, sadly, it does! It both compiles and runs. No runtime
exception. Yet, someone just stuffed a String into a supposedly type safe ArrayList of
type <Integer>. How can that be?

Remember, the older legacy code was allowed to put anything at all (except
primitives) into a collection. And in order to support legacy code, Java 5 and Java 6
allows your newer type safe code to make use of older code (the last thing Sun wanted
to do was ask several million Java developers to modify all their existing code).

So, the Java 5 or Java 6 compiler is forced into letting you compile your new type
safe code even though your code invokes a method of an older class that takes a
non-type safe argument and does who knows what with it.

However, just because the Java 5 compiler allows this code to compile doesn't
mean it has to be HAPPY about it. In fact the compiler will warn you that you're
taking a big, big risk sending your nice protected ArrayList<Integer> into a
dangerous method that can have its way with your list and put in Floats, Strings, or
even Dogs.

When you called the addAll() method in the earlier example, it didn't insert
anything to the list (it simply added up the values within the collection), so there
was no risk to the caller that his list would be modified in some horrible way. It
compiled and ran just fine. But in the second version, with the legacy insert()
method that adds a String, the compiler generated a warning:

javac TestBadLegacy.java
Note: TestBadLegacy.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Remember that compiler warnings are NOT considered a compiler failure. The
compiler generated a perfectly valid class file from the compilation, but it was
kind enough to tell you by saying, in so many words, "I seriously hope you know
what you are doing because this old code has NO respect (or even knowledge) of
your <Integer> typing, and can do whatever the heck it wants to your precious
ArrayList<Integer>."

Back to our example with the legacy code that does an insert, keep in mind that
for BOTH versions of the insert() method (one that adds an Integer and one that
adds a String) the compiler issues warnings. The compiler does NOT know whether

Mixing Generic and Non-generic Collections (Exam Objectives 6.3 and 6.4) 603

Be sure you know the difference between "compilation fails"
and "compiles without error" and "compiles without warnings" and "compiles
with warnings." In most questions on the exam, you care only about compiles vs.
compilation fails—compiler warnings don’t matter for most of the exam. But when
you are using generics, and mixing both typed and untyped code, warnings matter.

604 Chapter 7: Generics and Collections

the insert() method is adding the right thing (Integer) or wrong thing (String).
The reason the compiler produces a warning is because the method is ADDING
something to the collection! In other words, the compiler knows there's a chance
the method might add the wrong thing to a collection the caller thinks is type safe.

So far, we've looked at how the compiler will generate warnings if it sees that
there's a chance your type safe collection could be harmed by older, non-type-safe
code. But one of the questions developers often ask is, "Okay, sure, it compiles, but
why does it RUN? Why does the code that inserts the wrong thing into my list
work at runtime?" In other words, why does the JVM let old code stuff a String into
your ArrayList<Integer>, without any problems at all? No exceptions, nothing. Just
a quiet, behind-the-scenes, total violation of your type safety that you might not
discover until the worst possible moment.

There's one Big Truth you need to know to understand why it runs without
problems—the JVM has no idea that your ArrayList was supposed to hold only
Integers. The typing information does not exist at runtime! All your generic code
is strictly for the compiler. Through a process called "type erasure," the compiler
does all of its verifications on your generic code and then strips the type information
out of the class bytecode. At runtime, ALL collection code—both legacy and new
Java 5 code you write using generics—looks exactly like the pre-generic version of
collections. None of your typing information exists at runtime. In other words, even
though you WROTE

List<Integer> myList = new ArrayList<Integer>();

For the purposes of the exam, unless the question includes an answer that
mentions warnings, then even if you know compilation will produce warnings, that is still a
successful compile! Compiling with warnings is NEVER considered a compilation failure.

 One more time—if you see code that you know will compile with
warnings, you must NOT choose "Compilation fails." as an answer. The bottom line is
this: code that compiles with warnings is still a successful compile. If the exam question
wants to test your knowledge of whether code will produce a warning (or what you can
do to the code to ELIMINATE warnings), the question (or answer) will explicitly include
the word "warnings."

By the time the compiler is done with it, the JVM sees what it always saw before
Java 5 and generics:

List myList = new ArrayList();

The compiler even inserts the casts for you—the casts you had to do to get things
out of a pre-Java 5 collection.

Think of generics as strictly a compile-time protection. The compiler uses generic
type information (the <type> in the angle brackets) to make sure that your code
doesn't put the wrong things into a collection, and that you do not assign what you
get from a collection to the wrong reference type. But NONE of this protection
exists at runtime.

This is a little different from arrays, which give you BOTH compile-time
protection and runtime protection. Why did they do generics this way? Why is there
no type information at runtime? To support legacy code. At runtime, collections
are collections just like the old days. What you gain from using generics is compile-
time protection that guarantees that you won't put the wrong thing into a typed
collection, and it also eliminates the need for a cast when you get something out,
since the compiler already knows that only an Integer is coming out of an Integer list.

The fact is, you don't NEED runtime protection…until you start mixing up
generic and non-generic code, as we did in the previous example. Then you can
have disasters at runtime. The only advice we have is to pay very close attention to
those compiler warnings:

javac TestBadLegacy.java
Note: TestBadLegacy.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

This compiler warning isn't very descriptive, but the second note suggests that
you recompile with -Xlint:unchecked. If you do, you'll get something like this:

javac -Xlint:unchecked TestBadLegacy.java
TestBadLegacy.java:17: warning: [unchecked] unchecked call to
add(E) as a member of the raw type java.util.List
 list.add(new String("42"));
 ^
1 warning

When you compile with the -Xlint:unchecked flag, the compiler shows you
exactly which method(s) might be doing something dangerous. In this example,

Mixing Generic and Non-generic Collections (Exam Objectives 6.3 and 6.4) 605

606 Chapter 7: Generics and Collections

since the list argument was not declared with a type, the compiler treats it as legacy
code and assumes no risk for what the method puts into the "raw" list.

On the exam, you must be able to recognize when you are compiling code that
will produce warnings but still compile. And any code that compiles (even with
warnings) will run! No type violations will be caught at runtime by the JVM, until
those type violations mess with your code in some other way. In other words, the act
of adding a String to an <Integer> list won't fail at runtime until you try to treat that
String-you-think-is-an-Integer as an Integer.

For example, imagine you want your code to pull something out of your supposedly
type safe ArrayList<Integer> that older code put a String into. It compiles (with
warnings). It runs...or at least the code that actually adds the String to the list runs.
But when you take the String-that-wasn't-supposed-to-be-there out of the list, and
try to assign it to an Integer reference or invoke an Integer method, you're dead.

Keep in mind, then, that the problem of putting the wrong thing into a typed
(generic) collection does not show up at the time you actually do the add() to the
collection. It only shows up later, when you try to use something in the list and it
doesn't match what you were expecting. In the old (pre-Java 5) days, you always
assumed that you might get the wrong thing out of a collection (since they were all
non-type safe), so you took appropriate defensive steps in your code. The problem
with mixing generic with non-generic code is that you won't be expecting those
problems if you have been lulled into a false sense of security by having written type
safe code. Just remember that the moment you turn that type safe collection over to
older, non-type safe code, your protection vanishes.

Again, pay very close attention to compiler warnings, and be prepared to see
issues like this come up on the exam.

When using legacy (non-type safe) collections—watch out for unboxing
problems! If you declare a non-generic collection, the get() method ALWAYS returns a
reference of type java.lang.Object. Remember that unboxing can’t convert a plain old
Object to a primitive, even if that Object reference refers to an Integer (or some other
wrapped primitive) on the heap. Unboxing converts only from a wrapper class reference
(like an Integer or a Long) to a primitive.

Polymorphism and Generics
Generic collections give you the same benefits of type safety that you've always had
with arrays, but there are some crucial differences that can bite you if you aren't
prepared. Most of these have to do with polymorphism.

You've already seen that polymorphism applies to the "base" type of the
collection:

List<Integer> myList = new ArrayList<Integer>();

In other words, we were able to assign an ArrayList to a List reference, because
List is a supertype of ArrayList. Nothing special there—this polymorphic assignment
works the way it always works in Java, regardless of the generic typing.

But what about this?

class Parent { }
class Child extends Parent { }
List<Parent> myList = new ArrayList<Child>();

Think about it for a minute.
Keep thinking...

Polymorphism and Generics (Exam Objectives 6.3 and 6.4) 607

Unboxing gotcha, continued:

List test = new ArrayList();
test.add(43);
int x = (Integer)test.get(0); // you must cast !!

List<Integer> test2 = new ArrayList<Integer>();
test2.add(343);
int x2 = test2.get(0); // cast not necessary

Watch out for missing casts associated with pre-Java 5,
non-generic collections.

608 Chapter 7: Generics and Collections

No, it doesn't work. There's a very simple rule here—the type of the variable
declaration must match the type you pass to the actual object type. If you declare
List<Foo> foo then whatever you assign to the foo reference MUST be of the
generic type <Foo>. Not a subtype of <Foo>. Not a supertype of <Foo>. Just <Foo>.

These are wrong:

List<Object> myList = new ArrayList<JButton>(); // NO!
List<Number> numbers = new ArrayList<Integer>(); // NO!
// remember that Integer is a subtype of Number

But these are fine:

List<JButton> myList = new ArrayList<JButton>(); // yes
List<Object> myList = new ArrayList<Object>(); // yes
List<Integer> myList = new ArrayList<Integer>(); // yes

So far so good. Just keep the generic type of the reference and the generic type
of the object to which it refers identical. In other words, polymorphism applies here
to only the "base" type. And by "base," we mean the type of the collection class
itself—the class that can be customized with a type. In this code,

List<JButton> myList = new ArrayList<JButton>();

List and ArrayList are the base type and JButton is the generic type. So an ArrayList
can be assigned to a List, but a collection of <JButton> cannot be assigned to a
reference of <Object>, even though JButton is a subtype of Object.

The part that feels wrong for most developers is that this is NOT how it works
with arrays, where you are allowed to do this,

import java.util.*;
class Parent { }
class Child extends Parent { }
public class TestPoly {
 public static void main(String[] args) {
 Parent[] myArray = new Child[3]; // yes
 }
}

which means you're also allowed to do this

Object[] myArray = new JButton[3]; // yes

but not this:

List<Object> list = new ArrayList<JButton>(); // NO!

Why are the rules for typing of arrays different from the rules for generic
typing? We'll get to that in a minute. For now, just burn it into your brain that
polymorphism does not work the same way for generics as it does with arrays.

Generic Methods
If you weren't already familiar with generics, you might be feeling very
uncomfortable with the implications of the previous no-polymorphic-assignment-
for-generic-types thing. And why shouldn't you be uncomfortable? One of the
biggest benefits of polymorphism is that you can declare, say, a method argument of a
particular type and at runtime be able to have that argument refer to any subtype—
including those you'd never known about at the time you wrote the method with the
supertype argument.

For example, imagine a classic (simplified) polymorphism example of a
veterinarian (AnimalDoctor) class with a method checkup(). And right now,
you have three Animal subtypes—Dog, Cat, and Bird—each implementing the
abstract checkup() method from Animal:

abstract class Animal {
 public abstract void checkup();
}
class Dog extends Animal {
 public void checkup() { // implement Dog-specific code
 System.out.println("Dog checkup");
 }
}
class Cat extends Animal {
 public void checkup() { // implement Cat-specific code
 System.out.println("Cat checkup");
 }
}
class Bird extends Animal {
 public void checkup() { // implement Bird-specific code
 System.out.println("Bird checkup");
} }

Generic Methods (Exam Objectives 6.3 and 6.4) 609

610 Chapter 7: Generics and Collections

Forgetting collections/arrays for a moment, just imagine what the AnimalDoctor
class needs to look like in order to have code that takes any kind of Animal and
invokes the Animal checkup() method. Trying to overload the AnimalDoctor
class with checkup() methods for every possible kind of animal is ridiculous, and
obviously not extensible. You'd have to change the AnimalDoctor class every time
someone added a new subtype of Animal.

So in the AnimalDoctor class, you'd probably have a polymorphic method:

public void checkAnimal(Animal a) {
 a.checkup(); // does not matter which animal subtype each
 // Animal's overridden checkup() method runs
}

And of course we do want the AnimalDoctor to also have code that can take
arrays of Dogs, Cats, or Birds, for when the vet comes to the dog, cat, or bird kennel.
Again, we don't want overloaded methods with arrays for each potential Animal
subtype, so we use polymorphism in the AnimalDoctor class:

 public void checkAnimals(Animal[] animals) {
 for(Animal a : animals) {
 a.checkup();
 }
 }

Here is the entire example, complete with a test of the array polymorphism that
takes any type of animal array (Dog[], Cat[], Bird[]).

import java.util.*;
abstract class Animal {
 public abstract void checkup();
}
class Dog extends Animal {
 public void checkup() { // implement Dog-specific code
 System.out.println("Dog checkup");
 }
}
class Cat extends Animal {
 public void checkup() { // implement Cat-specific code
 System.out.println("Cat checkup");
 }
}

class Bird extends Animal {
 public void checkup() { // implement Bird-specific code
 System.out.println("Bird checkup");
 }
}
public class AnimalDoctor {
 // method takes an array of any animal subtype
 public void checkAnimals(Animal[] animals) {
 for(Animal a : animals) {
 a.checkup();
 }
 }
 public static void main(String[] args) {
 // test it
 Dog[] dogs = {new Dog(), new Dog()};
 Cat[] cats = {new Cat(), new Cat(), new Cat()};
 Bird[] birds = {new Bird()};

 AnimalDoctor doc = new AnimalDoctor();
 doc.checkAnimals(dogs); // pass the Dog[]
 doc.checkAnimals(cats); // pass the Cat[]
 doc.checkAnimals(birds); // pass the Bird[]
 }
}

This works fine, of course (we know, we know, this is old news). But here's why
we brought this up as refresher—this approach does NOT work the same way with
type safe collections!

In other words, a method that takes, say, an ArrayList<Animal> will NOT be
able to accept a collection of any Animal subtype! That means ArrayList<Dog>
cannot be passed into a method with an argument of ArrayList<Animal>, even
though we already know that this works just fine with plain old arrays.

Obviously this difference between arrays and ArrayList is consistent with the
polymorphism assignment rules we already looked at—the fact that you cannot
assign an object of type ArrayList<JButton> to a List<Object>. But this is where
you really start to feel the pain of the distinction between typed arrays and typed
collections.

We know it won't work correctly, but let's try changing the AnimalDoctor code
to use generics instead of arrays:

public class AnimalDoctorGeneric {

Generic Methods (Exam Objectives 6.3 and 6.4) 611

612 Chapter 7: Generics and Collections

 // change the argument from Animal[] to ArrayList<Animal>
 public void checkAnimals(ArrayList<Animal> animals) {
 for(Animal a : animals) {
 a.checkup();
 }
 }
 public static void main(String[] args) {
 // make ArrayLists instead of arrays for Dog, Cat, Bird
 List<Dog> dogs = new ArrayList<Dog>();
 dogs.add(new Dog());
 dogs.add(new Dog());
 List<Cat> cats = new ArrayList<Cat>();
 cats.add(new Cat());
 cats.add(new Cat());
 List<Bird> birds = new ArrayList<Bird>();
 birds.add(new Bird());
 // this code is the same as the Array version
 AnimalDoctorGeneric doc = new AnimalDoctorGeneric();
 // this worked when we used arrays instead of ArrayLists
 doc.checkAnimals(dogs); // send a List<Dog>
 doc.checkAnimals(cats); // send a List<Cat>
 doc.checkAnimals(birds); // send a List<Bird>
 }
}

So what does happen?

javac AnimalDoctorGeneric.java
AnimalDoctorGeneric.java:51: checkAnimals(java.util.
ArrayList<Animal>) in AnimalDoctorGeneric cannot be applied to
(java.util.List<Dog>)
 doc.checkAnimals(dogs);
 ^
AnimalDoctorGeneric.java:52: checkAnimals(java.util.
ArrayList<Animal>) in AnimalDoctorGeneric cannot be applied to
(java.util.List<Cat>)
 doc.checkAnimals(cats);
 ^
AnimalDoctorGeneric.java:53: checkAnimals(java.util.
ArrayList<Animal>) in AnimalDoctorGeneric cannot be applied to
(java.util.List<Bird>)
 doc.checkAnimals(birds);
 ^
3 errors

The compiler stops us with errors, not warnings. You simply CANNOT assign
the individual ArrayLists of Animal subtypes (<Dog>, <Cat>, or <Bird>) to an
ArrayList of the supertype <Animal>, which is the declared type of the argument.

This is one of the biggest gotchas for Java programmers who are so familiar with
using polymorphism with arrays, where the same scenario (Animal[] can refer to
Dog[], Cat[], or Bird[]) works as you would expect. So we have two real issues:

1. Why doesn't this work?

2. How do you get around it?

You'd hate us and all of the Sun engineers if we told you that there wasn't a way
around it—that you had to accept it and write horribly inflexible code that tried to
anticipate and code overloaded methods for each specific <type>. Fortunately, there
is a way around it.

But first, why can't you do it if it works for arrays? Why can't you pass an
ArrayList<Dog> into a method with an argument of ArrayList<Animal>?

We'll get there, but first let's step way back for a minute and consider this
perfectly legal scenario:

Animal[] animals = new Animal[3];
animals[0] = new Cat();
animals[1] = new Dog();

Part of the benefit of declaring an array using a more abstract supertype is that the
array itself can hold objects of multiple subtypes of the supertype, and then you can
manipulate the array assuming everything in it can respond to the Animal interface
(in other words, everything in the array can respond to method calls defined in the
Animal class). So here, we're using polymorphism not for the object that the array
reference points to, but rather what the array can actually HOLD—in this case, any
subtype of Animal. You can do the same thing with generics:

List<Animal> animals = new ArrayList<Animal>();
animals.add(new Cat()); // OK
animals.add(new Dog()); // OK

So this part works with both arrays and generic collections—we can add an
instance of a subtype into an array or collection declared with a supertype. You
can add Dogs and Cats to an Animal array (Animal[]) or an Animal collection
(ArrayList<Animal>).

Generic Methods (Exam Objectives 6.3 and 6.4) 613

614 Chapter 7: Generics and Collections

And with arrays, this applies to what happens within a method:

public void addAnimal(Animal[] animals) {
 animals[0] = new Dog(); // no problem, any Animal works
 // in Animal[]
}

So if this is true, and if you can put Dogs into an ArrayList<Animal>, then why
can't you use that same kind of method scenario? Why can't you do this?

public void addAnimal(ArrayList<Animal> animals) {
 animals.add(new Dog()); // sometimes allowed...
}

Actually, you CAN do this under certain conditions. The code above WILL
compile just fine IF what you pass into the method is also an ArrayList<Animal>.
This is the part where it differs from arrays, because in the array version, you
COULD pass a Dog[] into the method that takes an Animal[].

The ONLY thing you can pass to a method argument of ArrayList<Animal> is
an ArrayList<Animal>! (Assuming you aren't trying to pass a subtype of ArrayList,
since remember—the "base" type can be polymorphic.)

The question is still out there—why is this bad? And why is it bad for ArrayList
but not arrays? Why can't you pass an ArrayList<Dog> to an argument of
ArrayList<Animal>? Actually, the problem IS just as dangerous whether you're
using arrays or a generic collection. It's just that the compiler and JVM behave
differently for arrays vs. generic collections.

The reason it is dangerous to pass a collection (array or ArrayList) of a subtype
into a method that takes a collection of a supertype, is because you might add
something. And that means you might add the WRONG thing! This is probably
really obvious, but just in case (and to reinforce), let's walk through some scenarios.
The first one is simple:

public void foo() {
 Dog[] dogs = {new Dog(), new Dog()};
 addAnimal(dogs); // no problem, send the Dog[] to the method
}
public void addAnimal(Animal[] animals) {
 animals[0] = new Dog(); // ok, any Animal subtype works
}

This is no problem. We passed a Dog[] into the method, and added a Dog to the
array (which was allowed since the method parameter was type Animal[], which
can hold any Animal subtype). But what if we changed the calling code to

public void foo() {
 Cat[] cats = {new Cat(), new Cat()};
 addAnimal(cats); // no problem, send the Cat[] to the method
}

and the original method stays the same:

public void addAnimal(Animal[] animals) {
 animals[0] = new Dog(); // Eeek! We just put a Dog
 // in a Cat array!
}

The compiler thinks it is perfectly fine to add a Dog to an Animal[] array, since
a Dog can be assigned to an Animal reference. The problem is, if you passed in an
array of an Animal subtype (Cat, Dog, or Bird), the compiler does not know. The
compiler does not realize that out on the heap somewhere is an array of type Cat[],
not Animal[], and you're about to try to add a Dog to it. To the compiler, you have
passed in an array of type Animal, so it has no way to recognize the problem.

THIS is the scenario we're trying to prevent, regardless of whether it's an array or
an ArrayList. The difference is, the compiler lets you get away with it for arrays, but
not for generic collections.

The reason the compiler won't let you pass an ArrayList<Dog> into a method
that takes an ArrayList<Animal>, is because within the method, that parameter is
of type ArrayList<Animal>, and that means you could put any kind of Animal into
it. There would be no way for the compiler to stop you from putting a Dog into a
List that was originally declared as <Cat>, but is now referenced from the <Animal>
parameter.

We still have two questions…how do you get around it and why the heck does
the compiler allow you to take that risk for arrays but not for ArrayList (or any other
generic collection)?

The reason you can get away with compiling this for arrays is because there is a
runtime exception (ArrayStoreException) that will prevent you from putting the
wrong type of object into an array. If you send a Dog array into the method that takes
an Animal array, and you add only Dogs (including Dog subtypes, of course) into the
array now referenced by Animal, no problem. But if you DO try to add a Cat to the
object that is actually a Dog array, you'll get the exception.

Generic Methods (Exam Objectives 6.3 and 6.4) 615

616 Chapter 7: Generics and Collections

But there IS no equivalent exception for generics, because of type erasure!
In other words, at runtime the JVM KNOWS the type of arrays, but does NOT
know the type of a collection. All the generic type information is removed during
compilation, so by the time it gets to the JVM, there is simply no way to recognize
the disaster of putting a Cat into an ArrayList<Dog> and vice versa (and it becomes
exactly like the problems you have when you use legacy, non-type safe code).

So this actually IS legal code:

 public void addAnimal(List<Animal> animals) {
 animals.add(new Dog()); // this is always legal,
 // since Dog can
 // be assigned to an Animal
 // reference
 }
 public static void main(String[] args) {
 List<Animal> animals = new ArrayList<Animal>();
 animals.add(new Dog());
 animals.add(new Dog());
 AnimalDoctorGeneric doc = new AnimalDoctorGeneric();
 doc.addAnimal(animals); // OK, since animals matches
 // the method arg
 }

As long as the only thing you pass to the addAnimals(List<Animal>) is an
ArrayList<Animal>, the compiler is pleased—knowing that any Animal subtype
you add will be valid (you can always add a Dog to an Animal collection, yada, yada,
yada). But if you try to invoke addAnimal() with an argument of any OTHER
ArrayList type, the compiler will stop you, since at runtime the JVM would have no
way to stop you from adding a Dog to what was created as a Cat collection.

For example, this code that changes the generic type to <Dog>, but without
changing the addAnimal() method, will NOT compile:

public void addAnimal(List<Animal> animals) {
 animals.add(new Dog()); // still OK as always
}
public static void main(String[] args) {
 List<Dog> animals = new ArrayList<Dog>();
 animals.add(new Dog());
 animals.add(new Dog());
 AnimalDoctorGeneric doc = new AnimalDoctorGeneric();
 doc.addAnimal(animals); // THIS is where it breaks!
}

The compiler says something like:

javac AnimalDoctorGeneric.java
AnimalDoctorGeneric.java:49: addAnimal(java.util.List<Animal>)
in AnimalDoctorGeneric cannot be applied to (java.util.
List<Dog>)
 doc.addAnimal(animals);
 ^
1 error

Notice that this message is virtually the same one you'd get trying to invoke
any method with the wrong argument. It's saying that you simply cannot invoke
addAnimal(List<Animal>) using something whose reference was declared as
List<Dog>. (It's the reference type, not the actual object type that matters—but
remember—the generic type of an object is ALWAYS the same as the generic
type declared on the reference. List<Dog> can refer ONLY to collections that are
subtypes of List, but which were instantiated as generic type <Dog>.)

Once again, remember that once inside the addAnimals() method, all that
matters is the type of the parameter—in this case, List<Animal>. (We changed it
from ArrayList to List to keep our "base" type polymorphism cleaner.)

Back to the key question—how do we get around this? If the problem is related
only to the danger of adding the wrong thing to the collection, what about the
checkup() method that used the collection passed in as read-only? In other words,
what about methods that invoke Animal methods on each thing in the collection,
which will work regardless of which kind of ArrayList subtype is passed in?

And that's a clue! It's the add() method that is the problem, so what we need
is a way to tell the compiler, "Hey, I'm using the collection passed in just to invoke
methods on the elements—and I promise not to ADD anything into the collection."
And there IS a mechanism to tell the compiler that you can take any generic
subtype of the declared argument type because you won't be putting anything in the
collection. And that mechanism is the wildcard <?>.

The method signature would change from

public void addAnimal(List<Animal> animals)

to

public void addAnimal(List<? extends Animal> animals)

Generic Methods (Exam Objectives 6.3 and 6.4) 617

618 Chapter 7: Generics and Collections

By saying <? extends Animal>, we're saying, "I can be assigned a collection
that is a subtype of List and typed for <Animal> or anything that extends Animal.
And oh yes, I SWEAR that I will not ADD anything into the collection." (There's
a little more to the story, but we'll get there.)

So of course the addAnimal() method above won't actually compile even with
the wildcard notation, because that method DOES add something.

public void addAnimal(List<? extends Animal> animals) {
 animals.add(new Dog()); // NO! Can't add if we
 // use <? extends Animal>
}

You'll get a very strange error that might look something like this:

javac AnimalDoctorGeneric.java
AnimalDoctorGeneric.java:38: cannot find symbol
symbol : method add(Dog)
location: interface java.util.List<capture of ? extends Animal>
 animals.add(new Dog());
 ^
1 error

which basically says, "you can't add a Dog here." If we change the method so that it
doesn't add anything, it works.

But wait—there's more. (And by the way, everything we've covered in this
generics section is likely to be tested for on the exam, with the exception of "type
erasure," for which you aren't required to know any details.)

First, the <? extends Animal> means that you can take any subtype of Animal;
however, that subtype can be EITHER a subclass of a class (abstract or concrete)
OR a type that implements the interface after the word extends. In other words,
the keyword extends in the context of a wildcard represents BOTH subclasses and
interface implementations. There is no <? implements Serializable> syntax. If
you want to declare a method that takes anything that is of a type that implements
Serializable, you'd still use extends like this:

void foo(List<? extends Serializable> list) // odd, but correct
 // to use "extends"

 This looks strange since you would never say this in a class declaration because
Serializable is an interface, not a class. But that's the syntax, so burn it in!

One more time—there is only ONE wildcard keyword that represents both
interface implementations and subclasses. And that keyword is extends. But when
you see it, think "Is-a", as in something that passes the instanceof test.

However, there is another scenario where you can use a wildcard AND still add to
the collection, but in a safe way—the keyword super.

Imagine, for example, that you declared the method this way:

public void addAnimal(List<? super Dog> animals) {
 animals.add(new Dog()); // adding is sometimes OK with super
}
public static void main(String[] args) {
 List<Animal> animals = new ArrayList<Animal>();
 animals.add(new Dog());
 animals.add(new Dog());
 AnimalDoctorGeneric doc = new AnimalDoctorGeneric();
 doc.addAnimal(animals); // passing an Animal List
}

Now what you've said in this line

public void addAnimal(List<? super Dog> animals)

is essentially, "Hey compiler, please accept any List with a generic type that is of type
Dog, or a supertype of Dog. Nothing lower in the inheritance tree can come in, but
anything higher than Dog is OK."

You probably already recognize why this works. If you pass in a list of type
Animal, then it's perfectly fine to add a Dog to it. If you pass in a list of type Dog, it's
perfectly fine to add a Dog to it. And if you pass in a list of type Object, it's STILL
fine to add a Dog to it. When you use the <? super ...> syntax, you are telling
the compiler that you can accept the type on the right-hand side of super or any
of its supertypes, since—and this is the key part that makes it work—a collection
declared as any supertype of Dog will be able to accept a Dog as an element.
List<Object> can take a Dog. List<Animal> can take a Dog. And List<Dog> can
take a Dog. So passing any of those in will work. So the super keyword in wildcard
notation lets you have a restricted, but still possible way to add to a collection.

So, the wildcard gives you polymorphic assignments, but with certain restrictions
that you don't have for arrays. Quick question: are these two identical?

public void foo(List<?> list) { }
public void foo(List<Object> list) { }

Generic Methods (Exam Objectives 6.3 and 6.4) 619

620 Chapter 7: Generics and Collections

If there IS a difference (and we're not yet saying there is), what is it?
There IS a huge difference. List<?>, which is the wildcard <?> without the

keywords extends or super, simply means "any type." So that means any type of
List can be assigned to the argument. That could be a List of <Dog>, <Integer>,
<JButton>, <Socket>, whatever. And using the wildcard alone, without the
keyword super (followed by a type), means that you cannot ADD anything to the
list referred to as List<?>.

List<Object> is completely different from List<?>. List<Object> means that
the method can take ONLY a List<Object>. Not a List<Dog>, or a List<Cat>.
It does, however, mean that you can add to the list, since the compiler has already
made certain that you're passing only a valid List<Object> into the method.

Based on the previous explanations, figure out if the following will work:

import java.util.*;
public class TestWildcards {
 public static void main(String[] args) {
 List<Integer> myList = new ArrayList<Integer>();
 Bar bar = new Bar();
 bar.doInsert(myList);
 }
}
class Bar {
 void doInsert(List<?> list) {
 list.add(new Dog());
 }
}

If not, where is the problem?
The problem is in the list.add() method within doInsert(). The <?>

wildcard allows a list of ANY type to be passed to the method, but the add()
method is not valid, for the reasons we explored earlier (that you could put the
wrong kind of thing into the collection). So this time, the TestWildcards class is
fine, but the Bar class won't compile because it does an add() in a method that uses
a wildcard (without super). What if we change the doInsert() method to this:

public class TestWildcards {
 public static void main(String[] args) {
 List<Integer> myList = new ArrayList<Integer>();
 Bar bar = new Bar();
 bar.doInsert(myList);
 }
}

class Bar {
 void doInsert(List<Object> list) {
 list.add(new Dog());
 }
}

Now will it work? If not, why not?
This time, class Bar, with the doInsert() method, compiles just fine. The

problem is that the TestWildcards code is trying to pass a List<Integer> into a
method that can take ONLY a List<Object>. And nothing else can be substituted for
<Object>.

By the way, List<? extends Object> and List<?> are absolutely identical!
They both say, "I can refer to any type of object." But as you can see, neither of
them are the same as List<Object>. One way to remember this is that if you see
the wildcard notation (a question mark ?), this means "many possibilities". If you
do NOT see the question mark, then it means the <type> in the brackets, and
absolutely NOTHING ELSE. List<Dog> means List<Dog> and not List<Beagle>,
List<Poodle>, or any other subtype of Dog. But List<? extends Dog> could mean
List<Beagle>, List<Poodle>, and so on. Of course List<?> could be... anything at all.

Keep in mind that the wildcards can be used only for reference declarations
(including arguments, variables, return types, and so on). They can't be used as the
type parameter when you create a new typed collection. Think about that—while
a reference can be abstract and polymorphic, the actual object created must be of a
specific type. You have to lock down the type when you make the object using new.

As a little review before we move on with generics, look at the following
statements and figure out which will compile:

1) List<?> list = new ArrayList<Dog>();
2) List<? extends Animal> aList = new ArrayList<Dog>();
3) List<?> foo = new ArrayList<? extends Animal>();
4) List<? extends Dog> cList = new ArrayList<Integer>();
5) List<? super Dog> bList = new ArrayList<Animal>();

6) List<? super Animal> dList = new ArrayList<Dog>();

The correct answers (the statements that compile) are 1, 2, and 5.
The three that won't compile are

■ Statement: List<?> foo = new ArrayList<? extends Animal>();

 Problem: you cannot use wildcard notation in the object creation. So the
new ArrayList<? extends Animal>() will not compile.

Generic Methods (Exam Objectives 6.3 and 6.4) 621

622 Chapter 7: Generics and Collections

■ Statement: List<? extends Dog> cList =
 new ArrayList<Integer>();

 Problem: You cannot assign an Integer list to a reference that takes only a
Dog (including any subtypes of Dog, of course).

■ Statement: List<? super Animal> dList = new ArrayList<Dog>();

 Problem: You cannot assign a Dog to <? super Animal>. The Dog is too "low"
in the class hierarchy. Only <Animal> or <Object> would have been legal.

Generic Declarations
Until now, we've talked about how to create type safe collections, and how to
declare reference variables including arguments and return types using generic
syntax. But here are a few questions: How do we even know that we're allowed/
supposed to specify a type for these collection classes? And does generic typing work
with any other classes in the API? And finally, can we declare our own classes as
generic types? In other words, can we make a class that requires that someone pass a
type in when they declare it and instantiate it?

First, the one you obviously know the answer to—the API tells you when a
parameterized type is expected. For example, this is the API declaration for the
java.util.List interface:

public interface List<E>

The <E> is a placeholder for the type you pass in. The List interface is behaving
as a generic "template" (sort of like C++ templates), and when you write your code,
you change it from a generic List to a List<Dog> or List<Integer>, and so on.

The E, by the way, is only a convention. Any valid Java identifier would work
here, but E stands for "Element," and it's used when the template is a collection. The
other main convention is T (stands for "type"), used for, well, things that are NOT
collections.

Now that you've seen the interface declaration for List, what do you think the
add() method looks like?

boolean add(E o)

In other words, whatever E is when you declare the List, that's what you can add to
it. So imagine this code:

List<Animal> list = new ArrayList<Animal>();

The E in the List API suddenly has its waveform collapsed, and goes from the
abstract <your type goes here>, to a List of Animals. And if it's a List of Animals,
then the add() method of List must obviously behave like this:

boolean add(Animal a)

When you look at an API for a generics class or interface, pick a type parameter
(Dog, JButton, even Object) and do a mental find and replace on each instance of E
(or whatever identifier is used as the placeholder for the type parameter).

Making Your Own Generic Class
Let's try making our own generic class, to get a feel for how it works, and then we'll
look at a few remaining generics syntax details. Imagine someone created a class
Rental, that manages a pool of rentable items.

public class Rental {
 private List rentalPool;
 private int maxNum;
 public Rental(int maxNum, List rentalPool) {
 this.maxNum = maxNum;
 this.rentalPool = rentalPool;
 }
 public Object getRental() {
 // blocks until there's something available
 return rentalPool.get(0);
 }
 public void returnRental(Object o) {
 rentalPool.add(o);
 }
}

Now imagine you wanted to make a subclass of Rental that was just for renting
cars. You might start with something like this:

import java.util.*;
public class CarRental extends Rental {
 public CarRental(int maxNum, List<Car> rentalPool) {
 super(maxNum, rentalPool);
 }
 public Car getRental() {
 return (Car) super.getRental();
 }

Generic Declarations (Exam Objectives 6.3 and 6.4) 623

624 Chapter 7: Generics and Collections

 public void returnRental(Car c) {
 super.returnRental(c);
 }
 public void returnRental(Object o) {
 if (o instanceof Car) {
 super.returnRental(o);
 } else {
 System.out.println("Cannot add a non-Car");
 // probably throw an exception
} } }

But then the more you look at it, the more you realize:

 1. You are doing your own type checking in the returnRental() method.
You can't change the argument type of returnRental() to take a Car,
 since it's an override (not an overload) of the method from class Rental.
(Overloading would take away your polymorphic flexibility with Rental).

 2. You really don't want to make separate subclasses for every possible kind of
 rentable thing (cars, computers, bowling shoes, children, and so on).

But given your natural brilliance (heightened by this contrived scenario), you
quickly realize that you can make the Rental class a generic type—a template for any
kind of Rentable thing—and you're good to go.

(We did say contrived…since in reality, you might very well want to have
different behaviors for different kinds of rentable things, but even that could be
solved cleanly through some kind of behavior composition as opposed to inheritance
(using the Strategy design pattern, for example). And no, design patterns aren't on
the exam, but we still think you should read our design patterns book. Think of the
kittens.) So here's your new and improved generic Rental class:

import java.util.*;
public class RentalGeneric<T> { // "T" is for the type
 // parameter
 private List<T> rentalPool; // Use the class type for the
 // List type
 private int maxNum;
 public RentalGeneric(
 int maxNum, List<T> rentalPool) { // constructor takes a
 // List of the class type
 this.maxNum = maxNum;
 this.rentalPool = rentalPool;
 }

 public T getRental() { // we rent out a T
 // blocks until there's something available
 return rentalPool.get(0);
 }
 public void returnRental(T returnedThing) { // and the renter
 // returns a T
 rentalPool.add(returnedThing);
 }
}

Let's put it to the test:

class TestRental {
 public static void main (String[] args) {
 //make some Cars for the pool
 Car c1 = new Car();
 Car c2 = new Car();
 List<Car> carList = new ArrayList<Car>();
 carList.add(c1);
 carList.add(c2);
 RentalGeneric<Car> carRental = new
 RentalGeneric<Car>(2, carList);
 // now get a car out, and it won't need a cast
 Car carToRent = carRental.getRental();
 carRental.returnRental(carToRent);
 // can we stick something else in the original carList?
 carList.add(new Cat("Fluffy"));
 }
}

We get one error:

kathy% javac1.5 RentalGeneric.java
RentalGeneric.java:38: cannot find symbol
symbol : method add(Cat)
location: interface java.util.List<Car>
 carList.add(new Cat("Fluffy"));
 ^
1 error

Now we have a Rental class that can be typed to whatever the programmer
chooses, and the compiler will enforce it. In other words, it works just as the

Generic Declarations (Exam Objectives 6.3 and 6.4) 625

626 Chapter 7: Generics and Collections

Collections classes do. Let's look at more examples of generic syntax you might find
in the API or source code. Here's another simple class that uses the parameterized
type of the class in several ways:

public class TestGenerics<T> { // as the class type
 T anInstance; // as an instance variable type
 T [] anArrayOfTs; // as an array type

 TestGenerics(T anInstance) { // as an argument type
 this.anInstance = anInstance;
 }
 T getT() { // as a return type
 return anInstance;
 }
}

Obviously this is a ridiculous use of generics, and in fact you'll see generics only
rarely outside of collections. But, you do need to understand the different kinds of
generic syntax you might encounter, so we'll continue with these examples until
we've covered them all.

You can use more than one parameterized type in a single class definition:

public class UseTwo<T, X> {
 T one;
 X two;
 UseTwo(T one, X two) {
 this.one = one;
 this.two = two;
 }
 T getT() { return one; }
 X getX() { return two; }

// test it by creating it with <String, Integer>

 public static void main (String[] args) {
 UseTwo<String, Integer> twos =
 new UseTwo<String, Integer>("foo", 42);

 String theT = twos.getT(); // returns a String
 int theX = twos.getX(); // returns Integer, unboxes to int
 }
}

And you can use a form of wildcard notation in a class definition, to specify a
range (called "bounds") for the type that can be used for the type parameter:

public class AnimalHolder<T extends Animal> { // use "T" instead
 // of "?"
 T animal;
 public static void main(String[] args) {
 AnimalHolder<Dog> dogHolder = new AnimalHolder<Dog>(); // OK
 AnimalHolder<Integer> x = new AnimalHolder<Integer>(); // NO!
 }
}

Creating Generic Methods
Until now, every example we've seen uses the class parameter type—the type
declared with the class name. For example, in the UseTwo<T,X> declaration, we
used the T and X placeholders throughout the code. But it's possible to define a
parameterized type at a more granular level—a method.

Imagine you want to create a method that takes an instance of any type,
instantiates an ArrayList of that type, and adds the instance to the ArrayList. The class
itself doesn't need to be generic; basically we just want a utility method that we can
pass a type to and that can use that type to construct a type safe collection. Using a
generic method, we can declare the method without a specific type and then get the
type information based on the type of the object passed to the method. For example:

import java.util.*;
public class CreateAnArrayList {
 public <T> void makeArrayList(T t) { // take an object of an
 // unknown type and use a
 // "T" to represent the type
 List<T> list = new ArrayList<T>(); // now we can create the
 // list using "T"
 list.add(t);
 }
}

In the preceding code, if you invoke the makeArrayList() method with a Dog
instance, the method will behave as though it looked like this all along:

 public void makeArrayList(Dog t) {
 List<Dog> list = new ArrayList<Dog>();
 list.add(t);
 }

Generic Declarations (Exam Objectives 6.3 and 6.4) 627

628 Chapter 7: Generics and Collections

And of course if you invoke the method with an Integer, then the T is replaced by
Integer (not in the bytecode, remember—we're describing how it appears to behave,
not how it actually gets it done).

The strangest thing about generic methods is that you must declare the type
variable BEFORE the return type of the method:

public <T> void makeArrayList(T t)

The <T> before void simply defines what T is before you use it as a type in the
argument. You MUST declare the type like that unless the type is specified for the
class. In CreateAnArrayList, the class is not generic, so there's no type parameter
placeholder we can use.

You're also free to put boundaries on the type you declare, for example, if you
want to restrict the makeArrayList() method to only Number or its subtypes
(Integer, Float, and so on) you would say

public <T extends Number> void makeArrayList(T t)

It’s tempting to forget that the method argument is NOT where you
declare the type parameter variable T. In order to use a type variable like T, you must
have declared it either as the class parameter type or in the method, before the return
type. The following might look right,

public void makeList(T t) { }

But the only way for this to be legal is if there is actually a class
named T, in which case the argument is like any other type declaration for a variable.
And what about constructor arguments? They, too, can be declared with a generic type,
but then it looks even stranger since constructors have no return type at all:

public class Radio {
 public <T> Radio(T t) { } // legal constructor
}

98% of what you're likely to do with generics is simply declare and use type safe
collections, including using (and passing) them as arguments. But now you know
much more (but by no means everything) about the way generics works.

Generic Declarations (Exam Objectives 6.3 and 6.4) 629

If you REALLY want to get ridiculous (or fi red), you can declare a class
with a name that is the same as the type parameter placeholder:

class X { public <X> X(X x) { } }

Yes, this works. The X that is the constructor name has no relationship
to the <X> type declaration, which has no relationship to the constructor
argument identifi er, which is also, of course, X. The compiler is able to parse this
and treat each of the different uses of X independently. So there is no naming confl ict
between class names, type parameter placeholders, and variable identifi ers.

One of the most common mistakes programmers make when creating
generic classes or methods is to use a <?> in the wildcard syntax rather than a type
variable <T>, <E>, and so on. This code might look right, but isn’t:

public class NumberHolder<? extends Number> { }

While the question mark works when declaring a reference for a variable,
it does NOT work for generic class and method declarations. This code is not legal:

public class NumberHolder<?> { ? aNum; } // NO!

But if you replace the <?> with a legal identifi er, you’re good:

public class NumberHolder<T> { T aNum; } // Yes

630 Chapter 7: Generics and Collections

If this was clear and easy for you, that's excellent. If it was…painful…just know
that adding generics to the Java language very nearly caused a revolt among some
of the most experienced Java developers. Most of the outspoken critics are simply
unhappy with the complexity, or aren't convinced that gaining type safe collections
is worth the ten million little rules you have to learn now. It's true that with Java 5,
learning Java just got harder. But trust us…we've never seen it take more than two
days to "get" generics. That's 48 consecutive hours.

CERTIFICATION SUMMARY
We began with a quick review of the toString() method. The toString()
method is automatically called when you ask System.out.println() to print an
object—you override it to return a String of meaningful data about your objects.

Next we reviewed the purpose of == (to see if two reference variables refer to
the same object) and the equals() method (to see if two objects are meaningfully
equivalent). You learned the downside of not overriding equals()—you may not be
able to find the object in a collection. We discussed a little bit about how to write a good
equals() method—don't forget to use instanceof and refer to the object's significant
attributes. We reviewed the contracts for overriding equals() and hashCode().
We learned about the theory behind hashcodes, the difference between legal,
appropriate, and efficient hashcoding. We also saw that even though wildly
inefficient, it's legal for a hashCode() method to always return the same value.

Next we turned to collections, where we learned about Lists, Sets, and Maps, and
the difference between ordered and sorted collections. We learned the key attributes
of the common collection classes, and when to use which.

We covered the ins and outs of the Collections and Arrays classes: how to sort,
and how to search. We learned about converting arrays to Lists and back again.

Finally we tackled generics. Generics let you enforce compile-time type-safety
on collections or other classes. Generics help assure you that when you get an item
from a collection it will be of the type you expect, with no casting required. You
can mix legacy code with generics code, but this can cause exceptions. The rules for
polymorphism change when you use generics, although by using wildcards you can
still create polymorphic collections. Some generics declarations allow reading of a
collection, but allow very limited updating of the collection.

All in all, one fascinating chapter.

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Overriding hashCode() and equals() (Objective 6.2)

❑ equals(), hashCode(), and toString() are public.

❑ Override toString() so that System.out.println() or other
methods can see something useful, like your object's state.

❑ Use == to determine if two reference variables refer to the same object.

❑ Use equals() to determine if two objects are meaningfully equivalent.

❑ If you don't override equals(), your objects won't be useful hashing keys.

❑ If you don't override equals(), different objects can't be considered equal.

❑ Strings and wrappers override equals() and make good hashing keys.

❑ When overriding equals(), use the instanceof operator to be sure you're
evaluating an appropriate class.

❑ When overriding equals(), compare the objects' significant attributes.

❑ Highlights of the equals() contract:

 ❑ Reflexive: x.equals(x) is true.

 ❑ Symmetric: If x.equals(y) is true, then y.equals(x) must be true.

 ❑ Transitive: If x.equals(y) is true, and y.equals(z) is true,
then z.equals(x) is true.

 ❑ Consistent: Multiple calls to x.equals(y) will return the same result.

 ❑ Null: If x is not null, then x.equals(null) is false.

❑ If x.equals(y) is true, then x.hashCode() == y.hashCode() is true.

❑ If you override equals(), override hashCode().

❑ HashMap, HashSet, Hashtable, LinkedHashMap, & LinkedHashSet use hashing.

❑ An appropriate hashCode() override sticks to the hashCode() contract.

❑ An efficient hashCode() override distributes keys evenly across its buckets.

❑ An overridden equals() must be at least as precise as its hashCode() mate.

❑ To reiterate: if two objects are equal, their hashcodes must be equal.

❑ It's legal for a hashCode() method to return the same value for all instances
(although in practice it's very inefficient).

Two-Minute Drill 631

✓

632 Chapter 7: Generics and Collections

❑ Highlights of the hashCode() contract:

 ❑ Consistent: multiple calls to x.hashCode() return the same integer.

 ❑ If x.equals(y) is true, x.hashCode() == y.hashCode() is true.

 ❑ If x.equals(y) is false, then x.hashCode() == y.hashCode() can
be either true or false, but false will tend to create better efficiency.

❑ transient variables aren't appropriate for equals() and hashCode().

Collections (Objective 6.1)

❑ Common collection activities include adding objects, removing objects, veri-
fying object inclusion, retrieving objects, and iterating.

❑ Three meanings for "collection":

 ❑ collection Represents the data structure in which objects are stored

 ❑ Collection java.util interface from which Set and List extend

 ❑ Collections A class that holds static collection utility methods

❑ Four basic flavors of collections include Lists, Sets, Maps, Queues:

 ❑ Lists of things Ordered, duplicates allowed, with an index.

 ❑ Sets of things May or may not be ordered and/or sorted; duplicates
 not allowed.

 ❑ Maps of things with keys May or may not be ordered and/or sorted;
 duplicate keys are not allowed.

 ❑ Queues of things to process Ordered by FIFO or by priority.

❑ Four basic sub-flavors of collections Sorted, Unsorted, Ordered, Unordered.

 ❑ Ordered Iterating through a collection in a specific, non-random order.

 ❑ Sorted Iterating through a collection in a sorted order.

❑ Sorting can be alphabetic, numeric, or programmer-defined.

Key Attributes of Common Collection Classes (Objective 6.1)

❑ ArrayList: Fast iteration and fast random access.

❑ Vector: It's like a slower ArrayList, but it has synchronized methods.

❑ LinkedList: Good for adding elements to the ends, i.e., stacks and queues.

❑ HashSet: Fast access, assures no duplicates, provides no ordering.

❑ LinkedHashSet: No duplicates; iterates by insertion order.

❑ TreeSet: No duplicates; iterates in sorted order.

❑ HashMap: Fastest updates (key/values); allows one null key, many
null values.

❑ Hashtable: Like a slower HashMap (as with Vector, due to its synchronized
methods). No null values or null keys allowed.

❑ LinkedHashMap: Faster iterations; iterates by insertion order or last accessed;
allows one null key, many null values.

❑ TreeMap: A sorted map.

❑ PriorityQueue: A to-do list ordered by the elements' priority.

Using Collection Classes (Objective 6.3)

❑ Collections hold only Objects, but primitives can be autoboxed.

❑ Iterate with the enhanced for, or with an Iterator via hasNext() & next().

❑ hasNext() determines if more elements exist; the Iterator does NOT move.

❑ next() returns the next element AND moves the Iterator forward.

❑ To work correctly, a Map's keys must override equals() and hashCode().

❑ Queues use offer() to add an element, poll() to remove the head of the
queue, and peek() to look at the head of a queue.

❑ As of Java 6 TreeSets and TreeMaps have new navigation methods like
floor() and higher().

❑ You can create/extend "backed" sub-copies of TreeSets and TreeMaps.

Sorting and Searching Arrays and Lists (Objective 6.5)

❑ Sorting can be in natural order, or via a Comparable or many Comparators.

❑ Implement Comparable using compareTo(); provides only one sort order.

❑ Create many Comparators to sort a class many ways; implement compare().

❑ To be sorted and searched, a List's elements must be comparable.

❑ To be searched, an array or List must first be sorted.

Utility Classes: Collections and Arrays (Objective 6.5)

❑ Both of these java.util classes provide

 ❑ A sort() method. Sort using a Comparator or sort using natural order.

 ❑ A binarySearch() method. Search a pre-sorted array or List.

Two-Minute Drill 633

634 Chapter 7: Generics and Collections

❑ Arrays.asList() creates a List from an array and links them together.

❑ Collections.reverse() reverses the order of elements in a List.

❑ Collections.reverseOrder() returns a Comparator that sorts in reverse.

❑ Lists and Sets have a toArray() method to create arrays.

Generics (Objective 6.4)

❑ Generics let you enforce compile-time type safety on Collections (or other
classes and methods declared using generic type parameters).

❑ An ArrayList<Animal> can accept references of type Dog, Cat, or any other
subtype of Animal (subclass, or if Animal is an interface, implementation).

❑ When using generic collections, a cast is not needed to get (declared type) el-
ements out of the collection. With non-generic collections, a cast is required:

 List<String> gList = new ArrayList<String>();
 List list = new ArrayList();
 // more code
 String s = gList.get(0); // no cast needed
 String s = (String)list.get(0); // cast required

❑ You can pass a generic collection into a method that takes a non-generic col-
lection, but the results may be disastrous. The compiler can't stop the method
from inserting the wrong type into the previously type safe collection.

❑ If the compiler can recognize that non-type-safe code is potentially endanger-
ing something you originally declared as type-safe, you will get a compiler
warning. For instance, if you pass a List<String> into a method declared as

 void foo(List aList) { aList.add(anInteger); }

You'll get a warning because add() is potentially "unsafe".

❑ "Compiles without error" is not the same as "compiles without warnings."
A compilation warning is not considered a compilation error or failure.

❑ Generic type information does not exist at runtime—it is for compile-time
safety only. Mixing generics with legacy code can create compiled code that
may throw an exception at runtime.

❑ Polymorphic assignments applies only to the base type, not the generic type
parameter. You can say

 List<Animal> aList = new ArrayList<Animal>(); // yes

 You can't say

 List<Animal> aList = new ArrayList<Dog>(); // no

❑ The polymorphic assignment rule applies everywhere an assignment can be
made. The following are NOT allowed:

 void foo(List<Animal> aList) { } // cannot take a List<Dog>

List<Animal> bar() { } // cannot return a List<Dog>

❑ Wildcard syntax allows a generic method, accept subtypes (or supertypes) of
the declared type of the method argument:

 void addD(List<Dog> d) {} // can take only <Dog>

void addD(List<? extends Dog>) {} // take a <Dog> or <Beagle>

❑ The wildcard keyword extends is used to mean either "extends" or "imple-
ments." So in <? extends Dog>, Dog can be a class or an interface.

❑ When using a wildcard, List<? extends Dog>, the collection can be
accessed but not modified.

❑ When using a wildcard, List<?>, any generic type can be assigned to the
reference, but for access only, no modifications.

❑ List<Object> refers only to a List<Object>, while List<?> or
List<? extends Object> can hold any type of object, but for access only.

❑ Declaration conventions for generics use T for type and E for element:

 public interface List<E> // API declaration for List

boolean add(E o) // List.add() declaration

❑ The generics type identifier can be used in class, method, and variable
declarations:

 class Foo<t> { } // a class
 T anInstance; // an instance variable
 Foo(T aRef) {} // a constructor argument
 void bar(T aRef) {} // a method argument
 T baz() {} // a return type

 The compiler will substitute the actual type.

❑ You can use more than one parameterized type in a declaration:

 public class UseTwo<T, X> { }

❑ You can declare a generic method using a type not defined in the class:

 public <T> void makeList(T t) { }

 is NOT using T as the return type. This method has a void return type, but
to use T within the method's argument you must declare the <T>, which
happens before the return type.

Two-Minute Drill 635

SELF TEST
 1. Given:

public static void main(String[] args) {

 // INSERT DECLARATION HERE
 for (int i = 0; i <= 10; i++) {
 List<Integer> row = new ArrayList<Integer>();
 for (int j = 0; j <= 10; j++)
 row.add(i * j);
 table.add(row);
 }
 for (List<Integer> row : table)
 System.out.println(row);
 }

 Which statements could be inserted at // INSERT DECLARATION HERE to allow this code to
compile and run? (Choose all that apply.)

 A. List<List<Integer>> table = new List<List<Integer>>();

 B. List<List<Integer>> table = new ArrayList<List<Integer>>();

 C. List<List<Integer>> table = new ArrayList<ArrayList<Integer>>();

 D. List<List, Integer> table = new List<List, Integer>();

 E. List<List, Integer> table = new ArrayList<List, Integer>();

 F. List<List, Integer> table = new ArrayList<ArrayList, Integer>();

 G. None of the above

 2. Which statements are true about comparing two instances of the same class, given that the
equals() and hashCode() methods have been properly overridden? (Choose all that apply.)

 A. If the equals() method returns true, the hashCode() comparison == might return false

 B. If the equals() method returns false, the hashCode() comparison == might return true

 C. If the hashCode() comparison == returns true, the equals() method must return true

 D. If the hashCode() comparison == returns true, the equals() method might return true

 E. If the hashCode() comparison != returns true, the equals() method might return true

636 Chapter 7: Generics and Collections

 3. Given:

public static void before() {
 Set set = new TreeSet();
 set.add("2");
 set.add(3);
 set.add("1");
 Iterator it = set.iterator();
 while (it.hasNext())
 System.out.print(it.next() + " ");
}

 Which statements are true?

 A. The before() method will print 1 2

 B. The before() method will print 1 2 3

 C. The before() method will print three numbers, but the order cannot be determined

 D. The before() method will not compile

 E. The before() method will throw an exception at runtime

 4. Given:

import java.util.*;
class MapEQ {
 public static void main(String[] args) {
 Map<ToDos, String> m = new HashMap<ToDos, String>();
 ToDos t1 = new ToDos("Monday");
 ToDos t2 = new ToDos("Monday");
 ToDos t3 = new ToDos("Tuesday");
 m.put(t1, "doLaundry");
 m.put(t2, "payBills");
 m.put(t3, "cleanAttic");
 System.out.println(m.size());
 }
}
class ToDos{
 String day;
 ToDos(String d) { day = d; }
 public boolean equals(Object o) {
 return ((ToDos)o).day == this.day;
 }
 // public int hashCode() { return 9; }
}

Self Test 637

638 Chapter 7: Generics and Collections

 Which is correct? (Choose all that apply.)

 A. As the code stands it will not compile

 B. As the code stands the output will be 2

 C. As the code stands the output will be 3

 D. If the hashCode() method is uncommented the output will be 2

 E. If the hashCode() method is uncommented the output will be 3

 F. If the hashCode() method is uncommented the code will not compile

 5. Given:

12. public class AccountManager {
13. private Map accountTotals = new HashMap();
14. private int retirementFund;
15.
16. public int getBalance(String accountName) {
17. Integer total = (Integer) accountTotals.get(accountName);
18. if (total == null)
19. total = Integer.valueOf(0);
20. return total.intValue();
21. }
23. public void setBalance(String accountName, int amount) {
24. accountTotals.put(accountName, Integer.valueOf(amount));
25. }

26. }

 This class is to be updated to make use of appropriate generic types, with no changes in behavior
(for better or worse). Which of these steps could be performed? (Choose three.)

 A. Replace line 13 with
 private Map<String, int> accountTotals = new HashMap<String, int>();

 B. Replace line 13 with
 private Map<String, Integer> accountTotals = new HashMap<String, Integer>();

 C. Replace line 13 with
 private Map<String<Integer>> accountTotals = new HashMap<String<Integer>>();

 D. Replace lines 17–20 with
 int total = accountTotals.get(accountName);
 if (total == null)
 total = 0;

 return total;

 E. Replace lines 17–20 with
 Integer total = accountTotals.get(accountName);
 if (total == null)
 total = 0;
 return total;

 F. Replace lines 17–20 with
 return accountTotals.get(accountName);

 G. Replace line 24 with
 accountTotals.put(accountName, amount);

 H. Replace line 24 with
 accountTotals.put(accountName, amount.intValue());

 6. Given:

interface Hungry<E> { void munch(E x); }
interface Carnivore<E extends Animal> extends Hungry<E> {}
interface Herbivore<E extends Plant> extends Hungry<E> {}
abstract class Plant {}
class Grass extends Plant {}
abstract class Animal {}
class Sheep extends Animal implements Herbivore<Sheep> {
 public void munch(Sheep x) {}
}
class Wolf extends Animal implements Carnivore<Sheep> {
 public void munch(Sheep x) {}
}

 Which of the following changes (taken separately) would allow this code to compile?
(Choose all that apply.)

 A. Change the Carnivore interface to
 interface Carnivore<E extends Plant> extends Hungry<E> {}

 B. Change the Herbivore interface to
 interface Herbivore<E extends Animal> extends Hungry<E> {}

 C. Change the Sheep class to
 class Sheep extends Animal implements Herbivore<Plant> {
 public void munch(Grass x) {}
 }

 D. Change the Sheep class to
 class Sheep extends Plant implements Carnivore<Wolf> {
 public void munch(Wolf x) {}

 }

Self Test 639

640 Chapter 7: Generics and Collections

 E. Change the Wolf class to
 class Wolf extends Animal implements Herbivore<Grass> {
 public void munch(Grass x) {}
 }

 F. No changes are necessary

 7. Which collection class(es) allows you to grow or shrink its size and provides indexed access to
its elements, but whose methods are not synchronized? (Choose all that apply.)

 A. java.util.HashSet

 B. java.util.LinkedHashSet

 C. java.util.List

 D. java.util.ArrayList

 E. java.util.Vector

 F. java.util.PriorityQueue

 8. Given a method declared as

 public static <E extends Number> List<E> process(List<E> nums)

 A programmer wants to use this method like this

 // INSERT DECLARATIONS HERE

 output = process(input);

 Which pairs of declarations could be placed at // INSERT DECLARATIONS HERE to allow the
code to compile? (Choose all that apply.)

 A. ArrayList<Integer> input = null;
ArrayList<Integer> output = null;

 B. ArrayList<Integer> input = null;
List<Integer> output = null;

 C. ArrayList<Integer> input = null;
List<Number> output = null;

 D. List<Number> input = null;
ArrayList<Integer> output = null;

 E. List<Number> input = null;
List<Number> output = null;

 F. List<Integer> input = null;
List<Integer> output = null;

 G. None of the above

 9. Given the proper import statement(s), and

13. PriorityQueue<String> pq = new PriorityQueue<String>();
14. pq.add("2");
15. pq.add("4");
16. System.out.print(pq.peek() + " ");
17. pq.offer("1");
18. pq.add("3");
19. pq.remove("1");
20. System.out.print(pq.poll() + " ");
21. if(pq.remove("2")) System.out.print(pq.poll() + " ");
22. System.out.println(pq.poll() + " " + pq.peek());

 What is the result?

 A. 2 2 3 3

 B. 2 2 3 4

 C. 4 3 3 4

 D. 2 2 3 3 3

 E. 4 3 3 3 3

 F. 2 2 3 3 4

 G. Compilation fails

 H. An exception is thrown at runtime

 10. Given:

 3. import java.util.*;
 4. public class Mixup {
 5. public static void main(String[] args) {

Self Test 641

 6. Object o = new Object();
 7. // insert code here
 8. s.add("o");
 9. s.add(o);
10. }
11. }

 And these three fragments:

I. Set s = new HashSet();
II. TreeSet s = new TreeSet();
III. LinkedHashSet s = new LinkedHashSet();

 When fragments I, II, or III are inserted, independently, at line 7, which are true?
(Choose all that apply.)

 A. Fragment I compiles

 B. Fragment II compiles

 C. Fragment III compiles

 D. Fragment I executes without exception

 E. Fragment II executes without exception

 F. Fragment III executes without exception

 11. Given:

 3. import java.util.*;
 4. class Turtle {
 5. int size;
 6. public Turtle(int s) { size = s; }
 7. public boolean equals(Object o) { return (this.size == ((Turtle)o).size); }
 8. // insert code here
 9. }
10. public class TurtleTest {
11. public static void main(String[] args) {
12. LinkedHashSet<Turtle> t = new LinkedHashSet<Turtle>();
13. t.add(new Turtle(1)); t.add(new Turtle(2)); t.add(new Turtle(1));
14. System.out.println(t.size());
15. }
16. }

642 Chapter 7: Generics and Collections

 And these two fragments:

I. public int hashCode() { return size/5; }
II. // no hashCode method declared

 If fragment I or II is inserted, independently, at line 8, which are true? (Choose all that apply.)

 A. If fragment I is inserted, the output is 2

 B. If fragment I is inserted, the output is 3

 C. If fragment II is inserted, the output is 2

 D. If fragment II is inserted, the output is 3

 E. If fragment I is inserted, compilation fails

 F. If fragment II is inserted, compilation fails

 12. Given the proper import statement(s), and:

13. TreeSet<String> s = new TreeSet<String>();
14. TreeSet<String> subs = new TreeSet<String>();
15. s.add("a"); s.add("b"); s.add("c"); s.add("d"); s.add("e");
16.
17. subs = (TreeSet)s.subSet("b", true, "d", true);
18. s.add("g");
19. s.pollFirst();
20. s.pollFirst();
21. s.add("c2");
22. System.out.println(s.size() +" "+ subs.size());

 Which are true? (Choose all that apply.)

 A. The size of s is 4

 B. The size of s is 5

 C. The size of s is 7

 D. The size of subs is 1

 E. The size of subs is 2

 F. The size of subs is 3

 G. The size of subs is 4

 H. An exception is thrown at runtime

Self Test 643

644 Chapter 7: Generics and Collections

 13. Given:

 3. import java.util.*;
 4. public class Magellan {
 5. public static void main(String[] args) {
 6. TreeMap<String, String> myMap = new TreeMap<String, String>();
 7. myMap.put("a", "apple"); myMap.put("d", "date");
 8. myMap.put("f", "fig"); myMap.put("p", "pear");
 9. System.out.println("1st after mango: " + // sop 1
10. myMap.higherKey("f"));
11. System.out.println("1st after mango: " + // sop 2
12. myMap.ceilingKey("f"));
13. System.out.println("1st after mango: " + // sop 3
14. myMap.floorKey("f"));
15. SortedMap<String, String> sub = new TreeMap<String, String>();
16. sub = myMap.tailMap("f");
17. System.out.println("1st after mango: " + // sop 4
18. sub.firstKey());
19. }
20. }

 Which of the System.out.println statements will produce the output 1st after mango: p?
(Choose all that apply.)

 A. sop 1

 B. sop 2

 C. sop 3

 D. sop 4

 E. None; compilation fails

 F. None; an exception is thrown at runtime

 14. Given:

 3. import java.util.*;
 4. class Business { }
 5. class Hotel extends Business { }
 6. class Inn extends Hotel { }
 7. public class Travel {
 8. ArrayList<Hotel> go() {
 9. // insert code here
10. }
11. }

Self Test 645

 Which, inserted independently at line 9, will compile? (Choose all that apply.)

 A. return new ArrayList<Inn>();

 B. return new ArrayList<Hotel>();

 C. return new ArrayList<Object>();

 D. return new ArrayList<Business>();

 15. Given:

 3. import java.util.*;
 4. class Dog { int size; Dog(int s) { size = s; } }
 5. public class FirstGrade {
 6. public static void main(String[] args) {
 7. TreeSet<Integer> i = new TreeSet<Integer>();
 8. TreeSet<Dog> d = new TreeSet<Dog>();
 9.
10. d.add(new Dog(1)); d.add(new Dog(2)); d.add(new Dog(1));
11. i.add(1); i.add(2); i.add(1);
12. System.out.println(d.size() + " " + i.size());
13. }
14. }

 What is the result?

 A. 1 2

 B. 2 2

 C. 2 3

 D. 3 2

 E. 3 3

 F. Compilation fails

 G. An exception is thrown at runtime

 16. Given:

 3. import java.util.*;
 4. public class GeoCache {
 5. public static void main(String[] args) {
 6. String[] s = {"map", "pen", "marble", "key"};
 7. Othello o = new Othello();

646 Chapter 7: Generics and Collections

 8. Arrays.sort(s,o);
 9. for(String s2: s) System.out.print(s2 + " ");
10. System.out.println(Arrays.binarySearch(s, "map"));
11. }
12. static class Othello implements Comparator<String> {
13. public int compare(String a, String b) { return b.compareTo(a); }
14. }
15. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output will contain a 1

 C. The output will contain a 2

 D. The output will contain a –1

 E. An exception is thrown at runtime

 F. The output will contain "key map marble pen"

 G. The output will contain "pen marble map key"

SELF TEST ANSWERS
 1. Given:

public static void main(String[] args) {
 // INSERT DECLARATION HERE
 for (int i = 0; i <= 10; i++) {
 List<Integer> row = new ArrayList<Integer>();
 for (int j = 0; j <= 10; j++)
 row.add(i * j);
 table.add(row);
 }
 for (List<Integer> row : table)
 System.out.println(row);
 }

 Which statements could be inserted at // INSERT DECLARATION HERE to allow this code to
compile and run? (Choose all that apply.)

 A. List<List<Integer>> table = new List<List<Integer>>();

 B. List<List<Integer>> table = new ArrayList<List<Integer>>();

 C. List<List<Integer>> table = new ArrayList<ArrayList<Integer>>();

 D. List<List, Integer> table = new List<List, Integer>();

 E. List<List, Integer> table = new ArrayList<List, Integer>();

 F. List<List, Integer> table = new ArrayList<ArrayList, Integer>();

 G. None of the above

Answer:

 ✓ B is correct.
 A is incorrect because List is an interface, so you can't say new List() regardless of

any generic types. D, E, and F are incorrect because List only takes one type parameter
(a Map would take two, not a List). C is tempting, but incorrect. The type argument
<List<Integer>> must be the same for both sides of the assignment, even though the
constructor new ArrayList() on the right side is a subtype of the declared type List on
the left. (Objective 6.4)

Self Test Answers 647

648 Chapter 7: Generics and Collections

 2. Which statements are true about comparing two instances of the same class, given that the
equals() and hashCode() methods have been properly overridden? (Choose all that apply.)

 A. If the equals() method returns true, the hashCode() comparison == might return false

 B. If the equals() method returns false, the hashCode() comparison == might return true

 C. If the hashCode() comparison == returns true, the equals() method must return true

 D. If the hashCode() comparison == returns true, the equals() method might return true

 E. If the hashCode() comparison != returns true, the equals() method might return true

Answer:

 ✓ B and D. B is true because often two dissimilar objects can return the same hashcode
value. D is true because if the hashCode() comparison returns ==, the two objects might
or might not be equal.

 A, C, and E are incorrect. C is incorrect because the hashCode() method is very flexible
in its return values, and often two dissimilar objects can return the same hash code value.
A and E are a negation of the hashCode() and equals() contract. (Objective 6.2)

 3. Given:
public static void before() {
 Set set = new TreeSet();
 set.add("2");
 set.add(3);
 set.add("1");
 Iterator it = set.iterator();
 while (it.hasNext())
 System.out.print(it.next() + " ");
}

 Which statements are true?
 A. The before() method will print 1 2
 B. The before() method will print 1 2 3
 C. The before() method will print three numbers, but the order cannot be determined
 D. The before() method will not compile
 E. The before() method will throw an exception at runtime

Answer:

 ✓ E is correct. You can't put both Strings and ints into the same TreeSet. Without generics,
the compiler has no way of knowing what type is appropriate for this TreeSet, so it allows
everything to compile. At runtime, the TreeSet will try to sort the elements as they're
added, and when it tries to compare an Integer with a String it will throw a
ClassCastException. Note that although the before() method does not use generics,
it does use autoboxing. Watch out for code that uses some new features and some old
features mixed together.

 A, B, C, and D are incorrect based on the above. (Objective 6.5)

 4. Given:
import java.util.*;
class MapEQ {
 public static void main(String[] args) {
 Map<ToDos, String> m = new HashMap<ToDos, String>();
 ToDos t1 = new ToDos("Monday");
 ToDos t2 = new ToDos("Monday");
 ToDos t3 = new ToDos("Tuesday");
 m.put(t1, "doLaundry");
 m.put(t2, "payBills");
 m.put(t3, "cleanAttic");
 System.out.println(m.size());
} }
class ToDos{
 String day;
 ToDos(String d) { day = d; }
 public boolean equals(Object o) {
 return ((ToDos)o).day == this.day;
 }
 // public int hashCode() { return 9; }
}

 Which is correct? (Choose all that apply.)

 A. As the code stands it will not compile

 B. As the code stands the output will be 2

 C. As the code stands the output will be 3

 D. If the hashCode() method is uncommented the output will be 2

 E. If the hashCode() method is uncommented the output will be 3

 F. If the hashCode() method is uncommented the code will not compile

Self Test Answers 649

650 Chapter 7: Generics and Collections

Answer:

 ✓ C and D are correct. If hashCode() is not overridden then every entry will go into its own
bucket, and the overridden equals() method will have no effect on determining equivalency.
If hashCode() is overridden, then the overridden equals() method will view t1 and
t2 as duplicates.

 A, B, E, and F are incorrect based on the above. (Objective 6.2)

 5. Given:
12. public class AccountManager {
13. private Map accountTotals = new HashMap();
14. private int retirementFund;
15.
16. public int getBalance(String accountName) {
17. Integer total = (Integer) accountTotals.get(accountName);
18. if (total == null)
19. total = Integer.valueOf(0);
20. return total.intValue();
21. }
23. public void setBalance(String accountName, int amount) {
24. accountTotals.put(accountName, Integer.valueOf(amount));
25. } }

 This class is to be updated to make use of appropriate generic types, with no changes in behavior
(for better or worse). Which of these steps could be performed? (Choose three.)

 A. Replace line 13 with
 private Map<String, int> accountTotals = new HashMap<String, int>();

 B. Replace line 13 with
 private Map<String, Integer> accountTotals = new HashMap<String, Integer>();

 C. Replace line 13 with
 private Map<String<Integer>> accountTotals = new HashMap<String<Integer>>();

 D. Replace lines 17–20 with
 int total = accountTotals.get(accountName);
 if (total == null) total = 0;
 return total;

 E. Replace lines 17–20 with
 Integer total = accountTotals.get(accountName);
 if (total == null) total = 0;
 return total;

 F. Replace lines 17–20 with
 return accountTotals.get(accountName);

 G. Replace line 24 with
 accountTotals.put(accountName, amount);

 H. Replace line 24 with
 accountTotals.put(accountName, amount.intValue());

Answer:

 ✓ B, E, and G are correct.
 A is wrong because you can't use a primitive type as a type parameter. C is wrong because

a Map takes two type parameters separated by a comma. D is wrong because an int can't
autobox to a null, and F is wrong because a null can't unbox to 0. H is wrong because you
can't autobox a primitive just by trying to invoke a method with it. (Objective 6.4)

 6. Given:
interface Hungry<E> { void munch(E x); }
interface Carnivore<E extends Animal> extends Hungry<E> {}
interface Herbivore<E extends Plant> extends Hungry<E> {}
abstract class Plant {}
class Grass extends Plant {}
abstract class Animal {}
class Sheep extends Animal implements Herbivore<Sheep> {
 public void munch(Sheep x) {}
}
class Wolf extends Animal implements Carnivore<Sheep> {
 public void munch(Sheep x) {}
}

 Which of the following changes (taken separately) would allow this code to compile?
(Choose all that apply.)

 A. Change the Carnivore interface to
 interface Carnivore<E extends Plant> extends Hungry<E> {}

 B. Change the Herbivore interface to
 interface Herbivore<E extends Animal> extends Hungry<E> {}

 C. Change the Sheep class to
 class Sheep extends Animal implements Herbivore<Plant> {
 public void munch(Grass x) {}
 }

Self Test Answers 651

652 Chapter 7: Generics and Collections

 D. Change the Sheep class to
 class Sheep extends Plant implements Carnivore<Wolf> {
 public void munch(Wolf x) {}
 }

 E. Change the Wolf class to
 class Wolf extends Animal implements Herbivore<Grass> {
 public void munch(Grass x) {}
 }

 F. No changes are necessary

Answer:

 ✓ B is correct. The problem with the original code is that Sheep tries to implement
Herbivore<Sheep> and Herbivore declares that its type parameter E can be any type that
extends Plant. Since a Sheep is not a Plant, Herbivore<Sheep> makes no sense—
the type Sheep is outside the allowed range of Herbivore's parameter E. Only solutions
that either alter the definition of a Sheep or alter the definition of Herbivore will be able
to fix this. So A, E, and F are eliminated. B works, changing the definition of an Herbivore
to allow it to eat Sheep solves the problem. C doesn't work because an Herbivore<Plant>
must have a munch(Plant) method, not munch(Grass). And D doesn't work, because
in D we made Sheep extend Plant, now the Wolf class breaks because its munch(Sheep)
method no longer fulfills the contract of Carnivore. (Objective 6.4)

 7. Which collection class(es) allows you to grow or shrink its size and provides indexed access to
its elements, but whose methods are not synchronized? (Choose all that apply.)

 A. java.util.HashSet

 B. java.util.LinkedHashSet

 C. java.util.List

 D. java.util.ArrayList

 E. java.util.Vector

 F. java.util.PriorityQueue

Answer:

 ✓ D is correct. All of the collection classes allow you to grow or shrink the size of your
collection. ArrayList provides an index to its elements. The newer collection classes
tend not to have synchronized methods. Vector is an older implementation of ArrayList
functionality and has synchronized methods; it is slower than ArrayList.

 A, B, C, E, and F are incorrect based on the logic described above; Notes: C, List is an
interface, and F, PriorityQueue does not offer access by index. (Objective 6.1)

 8. Given a method declared as

 public static <E extends Number> List<E> process(List<E> nums)

 A programmer wants to use this method like this

 // INSERT DECLARATIONS HERE
 output = process(input);

 Which pairs of declarations could be placed at // INSERT DECLARATIONS HERE to allow
the code to compile? (Choose all that apply.)

 A. ArrayList<Integer> input = null;
ArrayList<Integer> output = null;

 B. ArrayList<Integer> input = null;
List<Integer> output = null;

 C. ArrayList<Integer> input = null;
List<Number> output = null;

 D. List<Number> input = null;
ArrayList<Integer> output = null;

 E. List<Number> input = null;
List<Number> output = null;

 F. List<Integer> input = null;
List<Integer> output = null;

 G. None of the above

Answer:

 ✓ B, E, and F are correct.
 The return type of process is definitely declared as a List, not an ArrayList, so A and D

are wrong. C is wrong because the return type evaluates to List<Integer>, and that can't
be assigned to a variable of type List<Number>. Of course all these would probably cause a
NullPointerException since the variables are still null—but the question only asked us
to get the code to compile. (Objective 6.4)

 9. Given the proper import statement(s), and

13. PriorityQueue<String> pq = new PriorityQueue<String>();
14. pq.add("2");
15. pq.add("4");

Self Test Answers 653

654 Chapter 7: Generics and Collections

16. System.out.print(pq.peek() + " ");
17. pq.offer("1");
18. pq.add("3");
19. pq.remove("1");
20. System.out.print(pq.poll() + " ");
21. if(pq.remove("2")) System.out.print(pq.poll() + " ");
22. System.out.println(pq.poll() + " " + pq.peek());

 What is the result?

 A. 2 2 3 3

 B. 2 2 3 4

 C. 4 3 3 4

 D. 2 2 3 3 3

 E. 4 3 3 3 3

 F. 2 2 3 3 4

 G. Compilation fails

 H. An exception is thrown at runtime

Answer:

 ✓ B is correct. For the sake of the exam, add() and offer() both add to (in this case),
naturally sorted queues. The calls to poll() both return and then remove the first item
from the queue, so the if test fails.

 A, C, D, E, F, G, and H are incorrect based on the above. (Objective 6.1)

 10. Given:

 3. import java.util.*;
 4. public class Mixup {
 5. public static void main(String[] args) {
 6. Object o = new Object();
 7. // insert code here
 8. s.add("o");
 9. s.add(o);
10. }
11. }

 And these three fragments:

I. Set s = new HashSet();
II. TreeSet s = new TreeSet();
III. LinkedHashSet s = new LinkedHashSet();

 When fragments I, II, or III are inserted, independently, at line 7, which are true?
(Choose all that apply.)

 A. Fragment I compiles

 B. Fragment II compiles

 C. Fragment III compiles

 D. Fragment I executes without exception

 E. Fragment II executes without exception

 F. Fragment III executes without exception

Answer:

 ✓ A, B, C, D, and F are all correct.
 Only E is incorrect. Elements of a TreeSet must in some way implement Comparable.

(Objective 6.1)

 11. Given:

 3. import java.util.*;
 4. class Turtle {
 5. int size;
 6. public Turtle(int s) { size = s; }
 7. public boolean equals(Object o) { return (this.size == ((Turtle)o).size); }
 8. // insert code here
 9. }
10. public class TurtleTest {
11. public static void main(String[] args) {
12. LinkedHashSet<Turtle> t = new LinkedHashSet<Turtle>();
13. t.add(new Turtle(1)); t.add(new Turtle(2)); t.add(new Turtle(1));
14. System.out.println(t.size());
15. }
16. }

 Self Test Answers 655

656 Chapter 7: Generics and Collections

 And these two fragments:

I. public int hashCode() { return size/5; }
II. // no hashCode method declared

 If fragment I or II is inserted, independently, at line 8, which are true? (Choose all that apply.)

 A. If fragment I is inserted, the output is 2

 B. If fragment I is inserted, the output is 3

 C. If fragment II is inserted, the output is 2

 D. If fragment II is inserted, the output is 3

 E. If fragment I is inserted, compilation fails

 F. If fragment II is inserted, compilation fails

Answer:

 ✓ A and D are correct. While fragment II wouldn’t fulfill the hashCode() contract (as you
can see by the results), it is legal Java. For the purpose of the exam, if you don’t override
hashCode(), every object will have a unique hashcode.

 B, C, E, and F are incorrect based on the above. (Objective 6.2)

 12. Given the proper import statement(s), and:

13. TreeSet<String> s = new TreeSet<String>();
14. TreeSet<String> subs = new TreeSet<String>();
15. s.add("a"); s.add("b"); s.add("c"); s.add("d"); s.add("e");
16.
17. subs = (TreeSet)s.subSet("b", true, "d", true);
18. s.add("g");
19. s.pollFirst();
20. s.pollFirst();
21. s.add("c2");
22. System.out.println(s.size() +" "+ subs.size());

 Which are true? (Choose all that apply.)

 A. The size of s is 4

 B. The size of s is 5

 C. The size of s is 7

 D. The size of subs is 1

 E. The size of subs is 2

 F. The size of subs is 3

 G. The size of subs is 4

 H. An exception is thrown at runtime

Answer:

 ✓ B and F are correct. After "g" is added, TreeSet s contains six elements and TreeSet subs
contains three (b, c, d), because "g" is out of the range of subs. The first pollFirst()
finds and removes only the "a". The second pollFirst() finds and removes the "b" from
both TreeSets (remember they are backed). The final add() is in range of both TreeSets.
The final contents are [c,c2,d,e,g] and [c,c2,d].

 A, C, D, E, G, and H are incorrect based on the above. (Objective 6.3)

 13. Given:

 3. import java.util.*;
 4. public class Magellan {
 5. public static void main(String[] args) {
 6. TreeMap<String, String> myMap = new TreeMap<String, String>();
 7. myMap.put("a", "apple"); myMap.put("d", "date");
 8. myMap.put("f", "fig"); myMap.put("p", "pear");
 9. System.out.println("1st after mango: " + // sop 1
10. myMap.higherKey("f"));
11. System.out.println("1st after mango: " + // sop 2
12. myMap.ceilingKey("f"));
13. System.out.println("1st after mango: " + // sop 3
14. myMap.floorKey("f"));
15. SortedMap<String, String> sub = new TreeMap<String, String>();
16. sub = myMap.tailMap("f");
17. System.out.println("1st after mango: " + // sop 4
18. sub.firstKey());
19. }
20. }

 Which of the System.out.println statements will produce the output 1st after mango: p?
(Choose all that apply.)

 A. sop 1

 B. sop 2

 C. sop 3

 Self Test Answers 657

658 Chapter 7: Generics and Collections

 D. sop 4

 E. None; compilation fails

 F. None; an exception is thrown at runtime

Answer:

 ✓ A is correct. The ceilingKey() method's argument is inclusive. The floorKey() method
would be used to find keys before the specified key. The firstKey() method's argument is
also inclusive.

 B, C, D, E, and F are incorrect based on the above. (Objective 6.3)

 14. Given:

 3. import java.util.*;
 4. class Business { }
 5. class Hotel extends Business { }
 6. class Inn extends Hotel { }
 7. public class Travel {
 8. ArrayList<Hotel> go() {
 9. // insert code here
10. }
11. }

 Which, inserted independently at line 9, will compile? (Choose all that apply.)

 A. return new ArrayList<Inn>();

 B. return new ArrayList<Hotel>();

 C. return new ArrayList<Object>();

 D. return new ArrayList<Business>();

Answer:

 ✓ B is correct.
 A is incorrect because polymorphic assignments don't apply to generic type parameters. C

and D are incorrect because they don't follow basic polymorphism rules. (Objective 6.4)

 15. Given:

 3. import java.util.*;
 4. class Dog { int size; Dog(int s) { size = s; } }
 5. public class FirstGrade {
 6. public static void main(String[] args) {
 7. TreeSet<Integer> i = new TreeSet<Integer>();
 8. TreeSet<Dog> d = new TreeSet<Dog>();
 9.
10. d.add(new Dog(1)); d.add(new Dog(2)); d.add(new Dog(1));
11. i.add(1); i.add(2); i.add(1);
12. System.out.println(d.size() + " " + i.size());
13. }
14. }

 What is the result?

 A. 1 2

 B. 2 2

 C. 2 3

 D. 3 2

 E. 3 3

 F. Compilation fails

 G. An exception is thrown at runtime

Answer:

 ✓ G is correct. Class Dog needs to implement Comparable in order for a TreeSet (which
keeps its elements sorted) to be able to contain Dog objects.

 A, B, C, D, E, and F are incorrect based on the above. (Objective 6.5)

 16. Given:

 3. import java.util.*;
 4. public class GeoCache {
 5. public static void main(String[] args) {
 6. String[] s = {"map", "pen", "marble", "key"};
 7. Othello o = new Othello();
 8. Arrays.sort(s,o);

 Self Test Answers 659

660 Chapter 7: Generics and Collections

 9. for(String s2: s) System.out.print(s2 + " ");
10. System.out.println(Arrays.binarySearch(s, "map"));
11. }
12. static class Othello implements Comparator<String> {
13. public int compare(String a, String b) { return b.compareTo(a); }
14. }
15. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output will contain a 1

 C. The output will contain a 2

 D. The output will contain a –1

 E. An exception is thrown at runtime

 F. The output will contain "key map marble pen"

 G. The output will contain "pen marble map key"

Answer:

 ✓ D and G are correct. First, the compareTo() method will reverse the normal sort.
Second, the sort() is valid. Third, the binarySearch() gives –1 because it needs to be
invoked using the same Comparator (o), as was used to sort the array. Note that when the
binarySearch() returns an "undefined result" it doesn’t officially have to be a -1, but it
usually is, so if you selected only G, you get full credit!

 A, B, C, E, and F are incorrect based on the above. (Objective 6.5)

8
Inner Classes

CERTIFICATION OBJECTIVES

Inner Classes

Method-Local Inner Classes

Anonymous Inner Classes

Static Nested Classes
✓ Two-Minute Drill

 Q&A Self Test

662 Chapter 8: Inner Classes

Inner classes (including static nested classes) appear throughout the exam. Although there
are no official exam objectives specifically about inner classes, Objective 1.1 includes inner
(a.k.a. nested) classes. More important, the code used to represent questions on virtually any

topic on the exam can involve inner classes. Unless you deeply understand the rules and syntax
for inner classes, you're likely to miss questions you'd otherwise be able to answer. As if the exam
weren't already tough enough.

This chapter looks at the ins and outs (inners and outers?) of inner classes,
and exposes you to the kinds of (often strange-looking) syntax examples you'll
see scattered throughout the entire exam. So you've really got two goals for this
chapter—to learn what you'll need to answer questions testing your inner class
knowledge, and to learn how to read and understand inner class code so that you
can correctly process questions testing your knowledge of other topics.

So what's all the hoopla about inner classes? Before we get into it, we have to
warn you (if you don't already know) that inner classes have inspired passionate love
‘em or hate ‘em debates since first introduced in version 1.1 of the language. For
once, we're going to try to keep our opinions to ourselves here and just present the
facts as you'll need to know them for the exam. It's up to you to decide how—and
to what extent—you should use inner classes in your own development. We mean
it. We believe they have some powerful, efficient uses in very specific situations,
including code that's easier to read and maintain, but they can also be abused and
lead to code that's as clear as a cornfield maze, and to the syndrome known as
"reuseless": code that's useless over and over again.

Inner classes let you define one class within another. They provide a type of
scoping for your classes since you can make one class a member of another class. Just
as classes have member variables and methods, a class can also have member classes.
They come in several flavors, depending on how and where you define the inner
class, including a special kind of inner class known as a "top-level nested class" (an
inner class marked static), which technically isn't really an inner class. Because a
static nested class is still a class defined within the scope of another class, we're still
going to cover them in this chapter on inner classes.

Unlike the other chapters in this book, the certification objectives for inner
classes don't have official exam objective numbers since they're part of other
objectives covered elsewhere. So for this chapter, the Certification Objective
headings in the following list represent the four inner class topics discussed in this
chapter, rather than four official exam objectives:

Inner Classes 663

■ Inner classes

■ Method-local inner classes

■ Anonymous inner classes

■ Static nested classes

CERTIFICATION OBJECTIVE

Inner Classes
You're an OO programmer, so you know that for reuse and flexibility/extensibility
you need to keep your classes specialized. In other words, a class should have code
only for the things an object of that particular type needs to do; any other behavior
should be part of another class better suited for that job. Sometimes, though, you
find yourself designing a class where you discover you need behavior that belongs
in a separate, specialized class, but also needs to be intimately tied to the class
you're designing.

Event handlers are perhaps the best example of this (and are, in fact, one of the
main reasons inner classes were added to the language in the first place). If you have
a GUI class that performs some job like, say, a chat client, you might want the
chat-client–specific methods (accept input, read new messages from server, send user
input back to server, and so on) to be in the class. But how do those methods get
invoked in the first place? A user clicks a button. Or types some text in the input
field. Or a separate thread doing the I/O work of getting messages from the server
has messages that need to be displayed in the GUI. So you have chat-client–specific
methods, but you also need methods for handling the "events" (button presses,
keyboard typing, I/O available, and so on) that drive the calls on those chat-
client methods. The ideal scenario—from an OO perspective—is to keep the chat-
client–specific methods in the ChatClient class, and put the event-handling code in a
separate event-handling class.

Nothing unusual about that so far; after all, that's how you're supposed to design
OO classes. As specialists. But here's the problem with the chat-client scenario: the
event-handling code is intimately tied to the chat-client–specific code! Think about
it: when the user presses a Send button (indicating that they want their typed-in
message to be sent to the chat server), the chat-client code that sends the message
needs to read from a particular text field. In other words, if the user clicks Button A,
the program is supposed to extract the text from the TextField B, of a particular

ChatClient instance. Not from some other text field from some other object, but
specifically the text field that a specific instance of the ChatClient class has a
reference to. So the event-handling code needs access to the members of the
ChatClient object, to be useful as a "helper" to a particular ChatClient instance.

And what if the ChatClient class needs to inherit from one class, but the event
handling code is better off inheriting from some other class? You can't make a
class extend more than one class, so putting all the code (the chat-client– specific
code and the event-handling code) in one class won't work in that case. So what
you'd really like to have is the benefit of putting your event code in a separate class
(better OO, encapsulation, and the ability to extend a class other than the class the
ChatClient extends) but still allow the event-handling code to have easy access
to the members of the ChatClient (so the event-handling code can, for example,
update the ChatClient's private instance variables). You could manage it by making
the members of the ChatClient accessible to the event-handling class by, for
example, marking them public. But that's not a good solution either.

You already know where this is going—one of the key benefits of an inner class
is the "special relationship" an inner class instance shares with an instance of
the outer class. That "special relationship" gives code in the inner class access to
members of the enclosing (outer) class, as if the inner class were part of the outer
class. In fact, that's exactly what it means: the inner class is a part of the outer class.
Not just a "part" but a full-fledged, card-carrying member of the outer class. Yes, an
inner class instance has access to all members of the outer class, even those marked
private. (Relax, that's the whole point, remember? We want this separate inner
class instance to have an intimate relationship with the outer class instance, but we
still want to keep everyone else out. And besides, if you wrote the outer class, then
you also wrote the inner class! So you're not violating encapsulation; you
designed it this way.)

Coding a "Regular" Inner Class
We use the term regular here to represent inner classes that are not

■ Static

■ Method-local

■ Anonymous

For the rest of this section, though, we'll just use the term "inner class" and drop
the "regular". (When we switch to one of the other three types in the preceding list,
you'll know it.) You define an inner class within the curly braces of the outer class:

664 Chapter 8: Inner Classes

class MyOuter {
 class MyInner { }
}

Piece of cake. And if you compile it,

%javac MyOuter.java

you'll end up with two class files:

MyOuter.class
MyOuter$MyInner.class

The inner class is still, in the end, a separate class, so a separate class file is generated
for it. But the inner class file isn't accessible to you in the usual way. You can't say

%java MyOuter$MyInner

in hopes of running the main() method of the inner class, because a regular inner class
can't have static declarations of any kind. The only way you can access the inner class
is through a live instance of the outer class! In other words, only at runtime when
there's already an instance of the outer class to tie the inner class instance to. You'll see
all this in a moment. First, let's beef up the classes a little:

class MyOuter {
 private int x = 7;

 // inner class definition
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 }
 } // close inner class definition

} // close outer class

The preceding code is perfectly legal. Notice that the inner class is indeed
accessing a private member of the outer class. That's fine, because the inner
class is also a member of the outer class. So just as any member of the outer class
(say, an instance method) can access any other member of the outer class, private
or not, the inner class—also a member—can do the same.

OK, so now that we know how to write the code giving an inner class access to
members of the outer class, how do you actually use it?

Coding a "Regular" Inner Class 665

Instantiating an Inner Class
To create an instance of an inner class, you must have an instance of the outer class
to tie to the inner class. There are no exceptions to this rule: an inner class instance
can never stand alone without a direct relationship to an instance of the outer class.

Instantiating an Inner Class from Within the Outer Class Most often, it
is the outer class that creates instances of the inner class, since it is usually the outer
class wanting to use the inner instance as a helper for its own personal use. We'll
modify the MyOuter class to create an instance of MyInner:

class MyOuter {
 private int x = 7;
 public void makeInner() {
 MyInner in = new MyInner(); // make an inner instance
 in.seeOuter();
 }

 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 }
 }
}

You can see in the preceding code that the MyOuter code treats MyInner just as
though MyInner were any other accessible class—it instantiates it using the class
name (new MyInner()), and then invokes a method on the reference variable
(in.seeOuter()). But the only reason this syntax works is because the outer class
instance method code is doing the instantiating. In other words, there's already an
instance of the outer class—the instance running the makeInner() method. So how
do you instantiate a MyInner object from somewhere outside the MyOuter class? Is
it even possible? (Well, since we're going to all the trouble of making a whole new
subhead for it, as you'll see next, there's no big mystery here.)

Creating an Inner Class Object from Outside the Outer Class
Instance Code Whew. Long subhead there, but it does explain what we're
trying to do. If we want to create an instance of the inner class, we must have
an instance of the outer class. You already know that, but think about the

666 Chapter 8: Inner Classes

implications…it means that, without a reference to an instance of the outer class,
you can't instantiate the inner class from a static method of the outer class (be-
cause, don't forget, in static code there is no this reference), or from any other
code in any other class. Inner class instances are always handed an implicit reference
to the outer class. The compiler takes care of it, so you'll never see anything but the
end result—the ability of the inner class to access members of the outer class. The
code to make an instance from anywhere outside nonstatic code of the outer class
is simple, but you must memorize this for the exam!

public static void main(String[] args) {
 MyOuter mo = new MyOuter(); // gotta get an instance!
 MyOuter.MyInner inner = mo.new MyInner();
 inner.seeOuter();
}

The preceding code is the same regardless of whether the main() method is within
the MyOuter class or some other class (assuming the other class has access to
MyOuter, and since MyOuter has default access, that means the code must be in a
class within the same package as MyOuter).

If you're into one-liners, you can do it like this:

public static void main(String[] args) {
 MyOuter.MyInner inner = new MyOuter().new MyInner();
 inner.seeOuter();
}

You can think of this as though you're invoking a method on the outer instance,
but the method happens to be a special inner class instantiation method, and it's
invoked using the keyword new. Instantiating an inner class is the only scenario
in which you'll invoke new on an instance as opposed to invoking new to
construct an instance.

Here's a quick summary of the differences between inner class instantiation code
that's within the outer class (but not static), and inner class instantiation code
that's outside the outer class:

■ From inside the outer class instance code, use the inner class name in the
 normal way:

 MyInner mi = new MyInner();

Coding a "Regular" Inner Class 667

■ From outside the outer class instance code (including static method code
within the outer class), the inner class name must now include the outer
class's name:

 MyOuter.MyInner

 To instantiate it, you must use a reference to the outer class:

 new MyOuter().new MyInner(); or outerObjRef.new MyInner();

 if you already have an instance of the outer class.

Referencing the Inner or Outer Instance
from Within the Inner Class

How does an object refer to itself normally? By using the this reference. Here is a
quick review of this:

■ The keyword this can be used only from within instance code.
In other words, not within static code.

■ The this reference is a reference to the currently executing object. In other
words, the object whose reference was used to invoke the currently running
method.

■ The this reference is the way an object can pass a reference to itself to some
other code, as a method argument:

 public void myMethod() {
 MyClass mc = new MyClass();
 mc.doStuff(this); // pass a ref to object running myMethod
 }

Within an inner class code, the this reference refers to the instance of the inner
class, as you'd probably expect, since this always refers to the currently executing
object. But what if the inner class code wants an explicit reference to the outer class
instance that the inner instance is tied to? In other words, how do you reference the
"outer this"? Although normally the inner class code doesn't need a reference to
the outer class, since it already has an implicit one it's using to access the members
of the outer class, it would need a reference to the outer class if it needed to pass that
reference to some other code as follows:

668 Chapter 8: Inner Classes

class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Inner class ref is " + this);
 System.out.println("Outer class ref is " + MyOuter.this);
 }
}

If we run the complete code as follows:

class MyOuter {
 private int x = 7;
 public void makeInner() {
 MyInner in = new MyInner();
 in.seeOuter();
 }
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Inner class ref is " + this);
 System.out.println("Outer class ref is " + MyOuter.this);
 }
 }
 public static void main (String[] args) {
 MyOuter.MyInner inner = new MyOuter().new MyInner();
 inner.seeOuter();
 }
}

the output is something like this:

Outer x is 7
Inner class ref is MyOuter$MyInner@113708
Outer class ref is MyOuter@33f1d7

So the rules for an inner class referencing itself or the outer instance are as follows:

■ To reference the inner class instance itself, from within the inner class code,
use this.

■ To reference the "outer this" (the outer class instance) from within the inner
class code, use NameOfOuterClass.this (example, MyOuter.this).

Referencing the Inner or Outer Instance from Within the Inner Class 669

Member Modifiers Applied to Inner Classes A regular inner class is a
member of the outer class just as instance variables and methods are, so the
following modifiers can be applied to an inner class:

■ final

■ abstract

■ public

■ private

■ protected

■ static—but static turns it into a static nested class not an inner class

■ strictfp

CERTIFICATION OBJECTIVE

Method-Local Inner Classes
A regular inner class is scoped inside another class's curly braces, but outside
any method code (in other words, at the same level that an instance variable is
declared). But you can also define an inner class within a method:

class MyOuter2 {
 private String x = "Outer2";

 void doStuff() {
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 } // close inner class method
 } // close inner class definition
 } // close outer class method doStuff()

} // close outer class

The preceding code declares a class, MyOuter2, with one method, doStuff().
But inside doStuff(), another class, MyInner, is declared, and it has a method of
its own, seeOuter(). The code above is completely useless, however, because it

670 Chapter 8: Inner Classes

never instantiates the inner class! Just because you declared the class doesn't mean
you created an instance of it. So to use the inner class you must make an instance
of it somewhere within the method but below the inner class definition (or the
compiler won't be able to find the inner class). The following legal code shows
how to instantiate and use a method-local inner class:

class MyOuter2 {
 private String x = "Outer2";
 void doStuff() {
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 } // close inner class method
 } // close inner class definition

 MyInner mi = new MyInner(); // This line must come
 // after the class
 mi.seeOuter();
 } // close outer class method doStuff()
} // close outer class

What a Method-Local Inner Object Can and Can't Do
A method-local inner class can be instantiated only within the method where the inner
class is defined. In other words, no other code running in any other method—inside
or outside the outer class—can ever instantiate the method-local inner class. Like
regular inner class objects, the method-local inner class object shares a special
relationship with the enclosing (outer) class object, and can access its private (or
any other) members. However, the inner class object cannot use the local variables
of the method the inner class is in. Why not?

Think about it. The local variables of the method live on the stack, and exist only for
the lifetime of the method. You already know that the scope of a local variable is
limited to the method the variable is declared in. When the method ends, the stack
frame is blown away and the variable is history. But even after the method
completes, the inner class object created within it might still be alive on the heap if,
for example, a reference to it was passed into some other code and then stored in an
instance variable. Because the local variables aren't guaranteed to be alive as long
as the method-local inner class object, the inner class object can't use them. Unless
the local variables are marked final! The following code attempts to access a local
variable from within a method-local inner class.

What a Method-Local Inner Object Can and Can't Do 671

class MyOuter2 {
 private String x = "Outer2";
 void doStuff() {
 String z = "local variable";
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Local variable z is " + z); // Won't Compile!
 } // close inner class method
 } // close inner class definition
 } // close outer class method doStuff()
} // close outer class

Compiling the preceding code really upsets the compiler:

MyOuter2.java:8: local variable z is accessed from within inner class;
needs to be declared final

 System.out.println("Local variable z is " + z);
 ^

Marking the local variable z as final fixes the problem:

final String z = "local variable"; // Now inner object can use it

And just a reminder about modifiers within a method: the same rules apply to
method-local inner classes as to local variable declarations. You can't, for example,
mark a method-local inner class public, private, protected, static, transient,
and the like. For the purpose of the exam, the only modifiers you can apply to a
method-local inner class are abstract and final, but as always, never both at the
same time.

Remember that a local class declared in a static method has access
to only static members of the enclosing class, since there is no associated instance of the
enclosing class. If you're in a static method there is no this, so an inner class in a static
method is subject to the same restrictions as the static method. In other words, no access
to instance variables.

672 Chapter 8: Inner Classes

CERTIFICATION OBJECTIVE

Anonymous Inner Classes
So far we've looked at defining a class within an enclosing class (a regular inner
class) and within a method (a method-local inner class). Finally, we're going to look
at the most unusual syntax you might ever see in Java; inner classes declared without
any class name at all (hence the word anonymous). And if that's not weird enough,
you can define these classes not just within a method, but even within an argument
to a method. We'll look first at the plain-old (as if there is such a thing as a plain-old
anonymous inner class) version (actually, even the plain-old version comes in two
flavors), and then at the argument-declared anonymous inner class.

Perhaps your most important job here is to learn to not be thrown when you see
the syntax. The exam is littered with anonymous inner class code: you might
see it on questions about threads, wrappers, overriding, garbage collection, and...
well, you get the idea.

Plain-Old Anonymous Inner Classes, Flavor One

Check out the following legal-but-strange-the-first-time-you-see-it code:

class Popcorn {
 public void pop() {
 System.out.println("popcorn");
 }

}
class Food {
 Popcorn p = new Popcorn() {
 public void pop() {
 System.out.println("anonymous popcorn");
 }
 };

}

Let's look at what's in the preceding code:

■ We define two classes, Popcorn and Food.

■ Popcorn has one method, pop().

■ Food has one instance variable, declared as type Popcorn. That's it for Food.
Food has no methods.

Plain-Old Anonymous Inner Classes, Flavor One 673

And here's the big thing to get

The Popcorn reference variable refers not to an instance of Popcorn, but to an
instance of an anonymous (unnamed) subclass of Popcorn.

Let's look at just the anonymous class code:

2. Popcorn p = new Popcorn() {
3. public void pop() {
4. System.out.println("anonymous popcorn");
5. }
6. };

Line 2 Line 2 starts out as an instance variable declaration of type Popcorn. But
instead of looking like this:

Popcorn p = new Popcorn(); // notice the semicolon at the end

there's a curly brace at the end of line 2, where a semicolon would normally be.

Popcorn p = new Popcorn() { // a curly brace, not a semicolon

You can read line 2 as saying,

Declare a reference variable, p, of type Popcorn. Then declare a new class that
has no name, but that is a subclass of Popcorn. And here's the curly brace that
opens the class definition…

Line 3 Line 3, then, is actually the first statement within the new class
definition. And what is it doing? Overriding the pop() method of the superclass
Popcorn. This is the whole point of making an anonymous inner class—to override
one or more methods of the superclass! (Or to implement methods of an interface,
but we'll save that for a little later.)

Line 4 Line 4 is the first (and in this case only) statement within the overriding
pop() method. Nothing special there.

Line 5 Line 5 is the closing curly brace of the pop() method. Nothing special.

Line 6 Here's where you have to pay attention: line 6 includes a curly brace
closing off the anonymous class definition (it's the companion brace to the one

674 Chapter 8: Inner Classes

on line 2), but there's more! Line 6 also has the semicolon that ends the statement
started on line 2—the statement where it all began—the statement declaring and
initializing the Popcorn reference variable. And what you're left with is a Popcorn
reference to a brand-new instance of a brand-new, just-in-time, anonymous (no
name) subclass of Popcorn.

Polymorphism is in play when anonymous inner classes are involved. Remember
that, as in the preceding Popcorn example, we're using a superclass reference
variable type to refer to a subclass object. What are the implications? You can
only call methods on an anonymous inner class reference that are defined in the
reference variable type! This is no different from any other polymorphic references,
for example,

class Horse extends Animal{
 void buck() { }
}
class Animal {
 void eat() { }
}

Plain-Old Anonymous Inner Classes, Flavor One 675

The closing semicolon is hard to spot. Watch for code like this:

2. Popcorn p = new Popcorn() {
3. public void pop() {
4. System.out.println("anonymous popcorn");
5. }
6. } // Missing the semicolon needed to end
 // the statement started on 2!
7. Foo f = new Foo();

You'll need to be especially careful about the syntax when inner
classes are involved, because the code on line 6 looks perfectly natural. It's rare to see
semicolons following curly braces.

class Test {
 public static void main (String[] args) {
 Animal h = new Horse();
 h.eat(); // Legal, class Animal has an eat() method
 h.buck(); // Not legal! Class Animal doesn't have buck()
 }
}

So on the exam, you must be able to spot an anonymous inner class that—
rather than overriding a method of the superclass—defines its own new method. The
method definition isn't the problem, though; the real issue is how do you invoke
that new method? The reference variable type (the superclass) won't know anything
about that new method (defined in the anonymous subclass), so the compiler will
complain if you try to invoke any method on an anonymous inner class reference that
is not in the superclass class definition.

Check out the following, illegal code:

class Popcorn {
 public void pop() {
 System.out.println("popcorn");
 }
}

class Food {
 Popcorn p = new Popcorn() {
 public void sizzle() {
 System.out.println("anonymous sizzling popcorn");
 }
 public void pop() {
 System.out.println("anonymous popcorn");
 }
 };

 public void popIt() {
 p.pop(); // OK, Popcorn has a pop() method
 p.sizzle(); // Not Legal! Popcorn does not have sizzle()
 }
}

Compiling the preceding code gives us something like,

Anon.java:19: cannot resolve symbol
symbol : method sizzle ()

676 Chapter 8: Inner Classes

location: class Popcorn
 p.sizzle();
 ^

which is the compiler's way of saying, "I can't find method sizzle() in class
Popcorn," followed by, "Get a clue."

Plain-Old Anonymous Inner Classes, Flavor Two
The only difference between flavor one and flavor two is that flavor one creates
an anonymous subclass of the specified class type, whereas flavor two creates an
anonymous implementer of the specified interface type. In the previous examples,
we defined a new anonymous subclass of type Popcorn as follows:

Popcorn p = new Popcorn() {

But if Popcorn were an interface type instead of a class type, then the new
anonymous class would be an implementer of the interface rather than a subclass of
the class. Look at the following example:

interface Cookable {
 public void cook();
}
class Food {
 Cookable c = new Cookable() {
 public void cook() {
 System.out.println("anonymous cookable implementer");
 }
 };
}

The preceding code, like the Popcorn example, still creates an instance of an
anonymous inner class, but this time the new just-in-time class is an implementer of the
Cookable interface. And note that this is the only time you will ever see the syntax

new Cookable()

where Cookable is an interface rather than a nonabstract class type. Because
think about it, you can't instantiate an interface, yet that's what the code looks
like it's doing. But of course it's not instantiating a Cookable object, it's creating an
instance of a new, anonymous, implementer of Cookable. You can read this line:

Plain-Old Anonymous Inner Classes, Flavor Two 677

Cookable c = new Cookable() {

as, "Declare a reference variable of type Cookable that, obviously, will refer to an
object from a class that implements the Cookable interface. But, oh yes, we don't
yet have a class that implements Cookable, so we're going to make one right here,
right now. We don't need a name for the class, but it will be a class that implements
Cookable, and this curly brace starts the definition of the new implementing class."

One more thing to keep in mind about anonymous interface implementers—they
can implement only one interface. There simply isn't any mechanism to say that
your anonymous inner class is going to implement multiple interfaces. In fact, an
anonymous inner class can't even extend a class and implement an interface at the
same time. The inner class has to choose either to be a subclass of a named class—
and not directly implement any interfaces at all—or to implement a single interface.
By directly, we mean actually using the keyword implements as part of the class
declaration. If the anonymous inner class is a subclass of a class type, it automatically
becomes an implementer of any interfaces implemented by the superclass.

Argument-Defi ned Anonymous Inner Classes
If you understood what we've covered so far in this chapter, then this last part will
be simple. If you are still a little fuzzy on anonymous classes, however, then you
should reread the previous sections. If they're not completely clear, we'd like to take
full responsibility for the confusion. But we'll be happy to share.

678 Chapter 8: Inner Classes

Don't be fooled by any attempts to instantiate an interface except in the
case of an anonymous inner class. The following is not legal,

 Runnable r = new Runnable(); // can't instantiate interface

whereas the following is legal, because it's instantiating an implementer of the
Runnable interface (an anonymous implementation class):

 Runnable r = new Runnable() { // curly brace, not semicolon
 public void run() { }
 };

Okay, if you've made it to this sentence, then we're all going to assume you
understood the preceding section, and now we're just going to add one new twist.
Imagine the following scenario. You're typing along, creating the Perfect Class, when
you write code calling a method on a Bar object, and that method takes an object of
type Foo (an interface).

class MyWonderfulClass {

 void go() {

 Bar b = new Bar();

 b.doStuff(ackWeDoNotHaveAFoo!); // Don't try to compile this at home

 }

}

interface Foo {

 void foof();

}

class Bar {

 void doStuff(Foo f) { }

}

No problemo, except that you don't have an object from a class that implements
Foo, and you can't instantiate one, either, because you don't even have a class that
implements Foo, let alone an instance of one. So you first need a class that
implements Foo, and then you need an instance of that class to pass to the Bar class's
doStuff() method. Savvy Java programmer that you are, you simply define an
anonymous inner class, right inside the argument. That's right, just where you least
expect to find a class. And here's what it looks like:

 1. class MyWonderfulClass {
 2. void go() {
 3. Bar b = new Bar();
 4. b.doStuff(new Foo() {
 5. public void foof() {
 6. System.out.println("foofy");
 7. } // end foof method
 8. }); // end inner class def, arg, and b.doStuff stmt.
 9. } // end go()
10. } // end class
11.
12. interface Foo {
13. void foof();
14. }
15. class Bar {
16. void doStuff(Foo f) { }
17. }

Argument-Defi ned Anonymous Inner Classes 679

All the action starts on line 4. We're calling doStuff() on a Bar object, but
the method takes an instance that IS-A Foo, where Foo is an interface. So we must
make both an implementation class and an instance of that class, all right here in the
argument to doStuff(). So that's what we do. We write

 new Foo() {

to start the new class definition for the anonymous class that implements the Foo
interface. Foo has a single method to implement, foof(), so on lines 5, 6, and 7
we implement the foof() method. Then on line 8—whoa!—more strange syntax
appears. The first curly brace closes off the new anonymous class definition. But
don't forget that this all happened as part of a method argument, so the close
parenthesis,), finishes off the method invocation, and then we must still end the
statement that began on line 4, so we end with a semicolon. Study this syntax! You
will see anonymous inner classes on the exam, and you'll have to be very, very picky
about the way they're closed. If they're argument local, they end like this:

});

but if they're just plain-old anonymous classes, then they end like this:

};

Regardless, the syntax is not what you use in virtually any other part of Java, so
be careful. Any question from any part of the exam might involve anonymous inner
classes as part of the code.

CERTIFICATION OBJECTIVE

Static Nested Classes
We saved the easiest for last, as a kind of treat :)

You'll sometimes hear static nested classes referred to as static inner classes, but
they really aren't inner classes at all, by the standard definition of an inner class.
While an inner class (regardless of the flavor) enjoys that special relationship with
the outer class (or rather the instances of the two classes share a relationship), a
static nested class does not. It is simply a non-inner (also called "top-level") class
scoped within another. So with static classes it's really more about name-space
resolution than about an implicit relationship between the two classes.

680 Chapter 8: Inner Classes

A static nested class is simply a class that's a static member of the enclosing class:

class BigOuter {
 static class Nested { }
}

The class itself isn't really "static"; there's no such thing as a static class. The
static modifier in this case says that the nested class is a static member of the outer
class. That means it can be accessed, as with other static members, without having
an instance of the outer class.

Instantiating and Using Static Nested Classes
You use standard syntax to access a static nested class from its enclosing class. The
syntax for instantiating a static nested class from a non-enclosing class is a little
different from a normal inner class, and looks like this:

class BigOuter {
 static class Nest {void go() { System.out.println("hi"); } }
}
class Broom {
 static class B2 {void goB2() { System.out.println("hi 2"); } }
 public static void main(String[] args) {
 BigOuter.Nest n = new BigOuter.Nest(); // both class names
 n.go();
 B2 b2 = new B2(); // access the enclosed class
 b2.goB2();
 }
}

Which produces

hi
hi 2

Instantiating and Using Static Nested Classes 681

Just as a static method does not have access to the instance variables and
nonstatic methods of the class, a static nested class does not have access to the instance
variables and nonstatic methods of the outer class. Look for static nested classes with
code that behaves like a nonstatic (regular inner) class.

CERTIFICATION SUMMARY
Inner classes will show up throughout the exam, in any topic, and these are some of
the exam's hardest questions. You should be comfortable with the sometimes bizarre
syntax, and know how to spot legal and illegal inner class definitions.

We looked first at "regular" inner classes, where one class is a member of another.
You learned that coding an inner class means putting the class definition of the
inner class inside the curly braces of the enclosing (outer) class, but outside of
any method or other code block. You learned that an inner class instance shares a
special relationship with a specific instance of the outer class, and that this special
relationship lets the inner class access all members of the outer class, including those
marked private. You learned that to instantiate an inner class, you must have a
reference to an instance of the outer class.

Next we looked at method-local inner classes—classes defined inside a method.
The code for a method-local inner class looks virtually the same as the code for any
other class definition, except that you can't apply an access modifier the way you
can with a regular inner class. You learned why method-local inner classes cannot
use non-final local variables declared within the method—the inner class instance
may outlive the stack frame, so the local variable might vanish while the inner class
object is still alive. You saw that to use the inner class you need to instantiate it, and
that the instantiation must come after the class declaration in the method.

We also explored the strangest inner class type of all—the anonymous inner class.
You learned that they come in two forms, normal and argument-defined. Normal,
ho-hum, anonymous inner classes are created as part of a variable assignment, while
argument-defined inner classes are actually declared, defined, and automatically
instantiated all within the argument to a method! We covered the way anonymous
inner classes can be either a subclass of the named class type, or an implementer of
the named interface. Finally, we looked at how polymorphism applies to anonymous
inner classes: you can invoke on the new instance only those methods defined in
the named class or interface type. In other words, even if the anonymous inner class
defines its own new method, no code from anywhere outside the inner class will be
able to invoke that method.

As if we weren't already having enough fun for one day, we pushed on to static
nested classes, which really aren't inner classes at all. Known as static nested classes,
a nested class marked with the static modifier is quite similar to any other non-
inner class, except that to access it, code must have access to both the nested
and enclosing class. We saw that because the class is static, no instance of the
enclosing class is needed, and thus the static nested class does not share a special
relationship with any instance of the enclosing class. Remember, static inner classes
can't access instance methods or variables.

682 Chapter 8: Inner Classes

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Inner Classes

❑ A "regular" inner class is declared inside the curly braces of another class, but
outside any method or other code block.

❑ An inner class is a full-fledged member of the enclosing (outer) class, so it
can be marked with an access modifier as well as the abstract or final
modifiers. (Never both abstract and final together— remember that
abstract must be subclassed, whereas final cannot be subclassed).

❑ An inner class instance shares a special relationship with an instance of the
enclosing class. This relationship gives the inner class access to all of the
outer class's members, including those marked private.

❑ To instantiate an inner class, you must have a reference to an instance of the
outer class.

❑ From code within the enclosing class, you can instantiate the inner class
using only the name of the inner class, as follows:
MyInner mi = new MyInner();

❑ From code outside the enclosing class's instance methods, you can
instantiate the inner class only by using both the inner and outer class names,
and a reference to the outer class as follows:
MyOuter mo = new MyOuter();

MyOuter.MyInner inner = mo.new MyInner();

❑ From code within the inner class, the keyword this holds a reference to
the inner class instance. To reference the outer this (in other words, the
instance of the outer class that this inner instance is tied to) precede the
keyword this with the outer class name as follows: MyOuter.this;

Method-Local Inner Classes

❑ A method-local inner class is defined within a method of the enclosing class.

❑ For the inner class to be used, you must instantiate it, and that instantiation
must happen within the same method, but after the class definition code.

❑ A method-local inner class cannot use variables declared within the method
(including parameters) unless those variables are marked final.

Two-Minute Drill 683

✓

❑ The only modifiers you can apply to a method-local inner class are abstract
and final. (Never both at the same time, though.)

Anonymous Inner Classes

❑ Anonymous inner classes have no name, and their type must be either a
subclass of the named type or an implementer of the named interface.

❑ An anonymous inner class is always created as part of a statement; don't
forget to close the statement after the class definition with a curly brace. This
is a rare case in Java, a curly brace followed by a semicolon.

❑ Because of polymorphism, the only methods you can call on an anonymous
inner class reference are those defined in the reference variable class (or
interface), even though the anonymous class is really a subclass or imple-
menter of the reference variable type.

❑ An anonymous inner class can extend one subclass or implement one
interface. Unlike non-anonymous classes (inner or otherwise), an anonymous
inner class cannot do both. In other words, it cannot both extend a class and
implement an interface, nor can it implement more than one interface.

❑ An argument-defined inner class is declared, defined, and automatically
instantiated as part of a method invocation. The key to remember is that the
class is being defined within a method argument, so the syntax will end the
class definition with a curly brace, followed by a closing parenthesis to end
the method call, followed by a semicolon to end the statement: });

Static Nested Classes

❑ Static nested classes are inner classes marked with the static modifier.

❑ A static nested class is not an inner class, it's a top-level nested class.

❑ Because the nested class is static, it does not share any special relationship
with an instance of the outer class. In fact, you don't need an instance of the
outer class to instantiate a static nested class.

❑ Instantiating a static nested class requires using both the outer and nested
class names as follows:
BigOuter.Nested n = new BigOuter.Nested();

❑ A static nested class cannot access non-static members of the outer class,
since it does not have an implicit reference to any outer instance (in other
words, the nested class instance does not get an outer this reference).

684 Chapter 8: Inner Classes

SELF TEST

The following questions will help you measure your understanding of the dynamic and life-altering
material presented in this chapter. Read all of the choices carefully. Take your time. Breathe.

 1. Which are true about a static nested class? (Choose all that apply.)
 A. You must have a reference to an instance of the enclosing class in order to instantiate it
 B. It does not have access to non-static members of the enclosing class
 C. Its variables and methods must be static
 D. If the outer class is named MyOuter, and the nested class is named MyInner, it can be

 instantiated using new MyOuter.MyInner();
 E. It must extend the enclosing class

 2. Given:

class Boo {
 Boo(String s) { }
 Boo() { }
}
class Bar extends Boo {
 Bar() { }
 Bar(String s) {super(s);}
 void zoo() {
 // insert code here
 }
}

 Which create an anonymous inner class from within class Bar? (Choose all that apply.)
 A. Boo f = new Boo(24) { };

 B. Boo f = new Bar() { };

 C. Boo f = new Boo() {String s; };

 D. Bar f = new Boo(String s) { };

 E. Boo f = new Boo.Bar(String s) { };

 3. Which are true about a method-local inner class? (Choose all that apply.)

 A. It must be marked final
 B. It can be marked abstract

Self Test 685

 C. It can be marked public
 D. It can be marked static
 E. It can access private members of the enclosing class

 4. Given:

 1. public class TestObj {
 2. public static void main(String[] args) {
 3. Object o = new Object() {
 4. public boolean equals(Object obj) {
 5. return true;
 6. }
 7. }
 8. System.out.println(o.equals("Fred"));
 9. }

10. }

 What is the result?
 A. An exception occurs at runtime
 B. true

 C. Fred

 D. Compilation fails because of an error on line 3
 E. Compilation fails because of an error on line 4
 F. Compilation fails because of an error on line 8
 G. Compilation fails because of an error on a line other than 3, 4, or 8

 5. Given:

 1. public class HorseTest {
 2. public static void main(String[] args) {
 3. class Horse {
 4. public String name;
 5. public Horse(String s) {
 6. name = s;
 7. }
 8. }
 9. Object obj = new Horse("Zippo");
10. System.out.println(obj.name);
11. }
12. }

686 Chapter 8: Inner Classes

 What is the result?
 A. An exception occurs at runtime at line 10
 B. Zippo

 C. Compilation fails because of an error on line 3
 D. Compilation fails because of an error on line 9
 E. Compilation fails because of an error on line 10

 6. Given:

public abstract class AbstractTest {
 public int getNum() {
 return 45;
 }
 public abstract class Bar {
 public int getNum() {
 return 38;
 }
 }
 public static void main(String[] args) {
 AbstractTest t = new AbstractTest() {
 public int getNum() {
 return 22;
 }
 };
 AbstractTest.Bar f = t.new Bar() {
 public int getNum() {
 return 57;
 }
 };
 System.out.println(f.getNum() + " " + t.getNum());
 }
}

 What is the result?
 A. 57 22

 B. 45 38

 C. 45 57

 D. An exception occurs at runtime
 E. Compilation fails

Self Test 687

 7. Given:

 3. public class Tour {
 4. public static void main(String[] args) {
 5. Cathedral c = new Cathedral();
 6. // insert code here
 7. s.go();
 8. }
 9. }
10. class Cathedral {
11. class Sanctum {
12. void go() { System.out.println("spooky"); }
13. }
14. }

 Which, inserted independently at line 6, compile and produce the output "spooky"? (Choose all
that apply.)

 A. Sanctum s = c.new Sanctum();

 B. c.Sanctum s = c.new Sanctum();

 C. c.Sanctum s = Cathedral.new Sanctum();

 D. Cathedral.Sanctum s = c.new Sanctum();

 E. Cathedral.Sanctum s = Cathedral.new Sanctum();

 8. Given:

 5. class A { void m() { System.out.println("outer"); } }
 6.
 7. public class TestInners {
 8. public static void main(String[] args) {
 9. new TestInners().go();
10. }
11. void go() {
12. new A().m();
13. class A { void m() { System.out.println("inner"); } }
14. }
15. class A { void m() { System.out.println("middle"); } }
16. }

 What is the result?
 A. inner

 B. outer

688 Chapter 8: Inner Classes

 C. middle

 D. Compilation fails
 E. An exception is thrown at runtime

 9. Given:

 3. public class Car {
 4. class Engine {
 5. // insert code here
 6. }
 7. public static void main(String[] args) {
 8. new Car().go();
 9. }
10. void go() {
11. new Engine();
12. }
13. void drive() { System.out.println("hi"); }
14. }

 Which, inserted independently at line 5, produce the output "hi"? (Choose all that apply.)
 A. { Car.drive(); }

 B. { this.drive(); }

 C. { Car.this.drive(); }

 D. { this.Car.this.drive(); }

 E. Engine() { Car.drive(); }

 F. Engine() { this.drive(); }

 G. Engine() { Car.this.drive(); }

10. Given:

 3. public class City {
 4. class Manhattan {
 5. void doStuff() throws Exception { System.out.print("x "); }
 6. }
 7. class TimesSquare extends Manhattan {
 8. void doStuff() throws Exception { }
 9. }
10. public static void main(String[] args) throws Exception {
11. new City().go();
12. }
13. void go() throws Exception { new TimesSquare().doStuff(); }
14. }

Self Test 689

 What is the result?
 A. x

 B. x x

 C. No output is produced
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 7
 G. Compilation fails due only to an error on line 10
 H. Compilation fails due only to an error on line 13

 11. Given:

 3. public class Navel {
 4. private int size = 7;
 5. private static int length = 3;
 6. public static void main(String[] args) {
 7. new Navel().go();
 8. }
 9. void go() {
10. int size = 5;
11. System.out.println(new Gazer().adder());
12. }
13. class Gazer {
14. int adder() { return size * length; }
15. }
16. }

 What is the result?
 A. 15

 B. 21

 C. An exception is thrown at runtime
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 5

690 Chapter 8: Inner Classes

 12. Given:

 3. import java.util.*;
 4. public class Pockets {
 5. public static void main(String[] args) {
 6. String[] sa = {"nickel", "button", "key", "lint"};
 7. Sorter s = new Sorter();
 8. for(String s2: sa) System.out.print(s2 + " ");
 9. Arrays.sort(sa,s);
10. System.out.println();
11. for(String s2: sa) System.out.print(s2 + " ");
12. }
13. class Sorter implements Comparator<String> {
14. public int compare(String a, String b) {
15. return b.compareTo(a);
16. }
17. }
18. }

 What is the result?
 A. Compilation fails
 B. button key lint nickel

 nickel lint key button

 C. nickel button key lint

 button key lint nickel

 D. nickel button key lint

 nickel button key lint

 E. nickel button key lint

 nickel lint key button

 F. An exception is thrown at runtime

Self Test 691

SELF TEST ANSWERS

 1. Which are true about a static nested class? (Choose all that apply.)
 A. You must have a reference to an instance of the enclosing class in order to instantiate it
 B. It does not have access to non-static members of the enclosing class
 C. Its variables and methods must be static
 D. If the outer class is named MyOuter, and the nested class is named MyInner, it can be

 instantiated using new MyOuter.MyInner();
 E. It must extend the enclosing class

 Answer:

 ✓ B and D. B is correct because a static nested class is not tied to an instance of the
enclosing class, and thus can't access the non-static members of the class (just as a
static method can't access non-static members of a class). D uses the correct syntax
for instantiating a static nested class.

 A is incorrect because static nested classes do not need (and can't use) a reference to an
instance of the enclosing class. C is incorrect because static nested classes can declare and
define non-static members. E is wrong because…it just is. There's no rule that says an
inner or nested class has to extend anything.

 2. Given:

class Boo {
 Boo(String s) { }
 Boo() { }
}
class Bar extends Boo {
 Bar() { }
 Bar(String s) {super(s);}
 void zoo() {
 // insert code here
 }
}

 Which create an anonymous inner class from within class Bar? (Choose all that apply.)
 A. Boo f = new Boo(24) { };

 B. Boo f = new Bar() { };

692 Chapter 8: Inner Classes

 C. Boo f = new Boo() {String s; };

 D. Bar f = new Boo(String s) { };

 E. Boo f = new Boo.Bar(String s) { };

 Answer:

 ✓ B and C. B is correct because anonymous inner classes are no different from any other
class when it comes to polymorphism. That means you are always allowed to declare a
reference variable of the superclass type and have that reference variable refer to an
instance of a subclass type, which in this case is an anonymous subclass of Bar. Since Bar
is a subclass of Boo, it all works. C uses correct syntax for creating an instance of Boo.

 A is incorrect because it passes an int to the Boo constructor, and there is no matching
constructor in the Boo class. D is incorrect because it violates the rules of polymorphism;
you cannot refer to a superclass type using a reference variable declared as the subclass
type. The superclass doesn't have everything the subclass has. E uses incorrect syntax.

 3. Which are true about a method-local inner class? (Choose all that apply.)
 A. It must be marked final
 B. It can be marked abstract
 C. It can be marked public
 D. It can be marked static
 E. It can access private members of the enclosing class

 Answer:

 ✓ B and E. B is correct because a method-local inner class can be abstract, although it
means a subclass of the inner class must be created if the abstract class is to be used (so
an abstract method-local inner class is probably not useful). E is correct because a
method-local inner class works like any other inner class—it has a special relationship to
an instance of the enclosing class, thus it can access all members of the enclosing class.

 A is incorrect because a method-local inner class does not have to be declared final
(although it is legal to do so). C and D are incorrect because a method-local inner class
cannot be made public (remember—local variables can't be public) or static.

 4. Given:

 1. public class TestObj {
 2. public static void main(String[] args) {
 3. Object o = new Object() {

Self Test Answers 693

 4. public boolean equals(Object obj) {
 5. return true;
 6. }
 7. }
 8. System.out.println(o.equals("Fred"));
 9. }

10. }

 What is the result?
 A. An exception occurs at runtime
 B. true

 C. fred

 D. Compilation fails because of an error on line 3
 E. Compilation fails because of an error on line 4
 F. Compilation fails because of an error on line 8
 G. Compilation fails because of an error on a line other than 3, 4, or 8

 Answer:

 ✓ G. This code would be legal if line 7 ended with a semicolon. Remember that line 3 is a
statement that doesn't end until line 7, and a statement needs a closing semicolon!

 A, B, C, D, E, and F are incorrect based on the program logic described above. If the
semicolon were added at line 7, then answer B would be correct—the program would
print true, the return from the equals() method overridden by the anonymous
subclass of Object.

 5. Given:

 1. public class HorseTest {
 2. public static void main(String[] args) {
 3. class Horse {
 4. public String name;
 5. public Horse(String s) {
 6. name = s;
 7. }
 8. }
 9. Object obj = new Horse("Zippo");
10. System.out.println(obj.name);
11. }
12. }

694 Chapter 8: Inner Classes

 What is the result?
 A. An exception occurs at runtime at line 10
 B. Zippo

 C. Compilation fails because of an error on line 3
 D. Compilation fails because of an error on line 9
 E. Compilation fails because of an error on line 10

 Answer:

 ✓ E. If you use a reference variable of type Object, you can access only those members
defined in class Object.

 A, B, C, and D are incorrect based on the program logic described above.

 6. Given:
public abstract class AbstractTest {
 public int getNum() {
 return 45;
 }
 public abstract class Bar {
 public int getNum() {
 return 38;
 }
 }
 public static void main(String[] args) {
 AbstractTest t = new AbstractTest() {
 public int getNum() {
 return 22;
 }
 };
 AbstractTest.Bar f = t.new Bar() {
 public int getNum() {
 return 57;
 }
 };
 System.out.println(f.getNum() + " " + t.getNum());
} }

 What is the result?
 A. 57 22

 B. 45 38

 C. 45 57

 D. An exception occurs at runtime
 E. Compilation fails

Self Test Answers 695

 Answer:

 ✓ A. You can define an inner class as abstract, which means you can instantiate only
concrete subclasses of the abstract inner class. The object referenced by the variable t
is an instance of an anonymous subclass of AbstractTest, and the anonymous class
overrides the getNum() method to return 22. The variable referenced by f is an instance
of an anonymous subclass of Bar, and the anonymous Bar subclass also overrides the
getNum() method (to return 57). Remember that to create a Bar instance, we need an
instance of the enclosing AbstractTest class to tie to the new Bar inner class instance.
AbstractTest can't be instantiated because it's abstract, so we created an anonymous
subclass (non-abstract) and then used the instance of that anonymous subclass to tie
to the new Bar subclass instance.

 B, C, D, and E are incorrect based on the program logic described above.

 7. Given:

 3. public class Tour {
 4. public static void main(String[] args) {
 5. Cathedral c = new Cathedral();
 6. // insert code here
 7. s.go();
 8. }
 9. }
10. class Cathedral {
11. class Sanctum {
12. void go() { System.out.println("spooky"); }
13. }
14. }

 Which, inserted independently at line 6, compile and produce the output "spooky"? (Choose all
that apply.)

 A. Sanctum s = c.new Sanctum();

 B. c.Sanctum s = c.new Sanctum();

 C. c.Sanctum s = Cathedral.new Sanctum();

 D. Cathedral.Sanctum s = c.new Sanctum();

 E. Cathedral.Sanctum s = Cathedral.new Sanctum();

 Answer:

 ✓ D is correct. It is the only code that uses the correct inner class instantiation syntax.

 A, B, C, and E are incorrect based on the above. (Objective 1.1)

696 Chapter 8: Inner Classes

 8. Given:

 5. class A { void m() { System.out.println("outer"); } }
 6.
 7. public class TestInners {
 8. public static void main(String[] args) {
 9. new TestInners().go();
10. }
11. void go() {
12. new A().m();
13. class A { void m() { System.out.println("inner"); } }
14. }
15. class A { void m() { System.out.println("middle"); } }
16. }

 What is the result?
 A. inner

 B. outer

 C. middle

 D. Compilation fails
 E. An exception is thrown at runtime

 Answer:

 ✓ C is correct. The "inner" version of class A isn't used because its declaration comes
after the instance of class A is created in the go() method.

 A, B, D, and E are incorrect based on the above. (Objective 1.1)

 9. Given:

 3. public class Car {
 4. class Engine {
 5. // insert code here
 6. }
 7. public static void main(String[] args) {
 8. new Car().go();
 9. }
10. void go() {
11. new Engine();
12. }
13. void drive() { System.out.println("hi"); }
14. }

Self Test Answers 697

 Which, inserted independently at line 5, produce the output "hi"? (Choose all that apply.)
 A. { Car.drive(); }

 B. { this.drive(); }

 C. { Car.this.drive(); }

 D. { this.Car.this.drive(); }

 E. Engine() { Car.drive(); }

 F. Engine() { this.drive(); }

 G. Engine() { Car.this.drive(); }

 Answer:

 ✓ C and G are correct. C is the correct syntax to access an inner class’s outer instance
method from an initialization block, and G is the correct syntax to access it from
a constructor.

 A, B, D, E, and F are incorrect based on the above. (Objectives 1.1, 1.4)

10. Given:

 3. public class City {
 4. class Manhattan {
 5. void doStuff() throws Exception { System.out.print("x "); }
 6. }
 7. class TimesSquare extends Manhattan {
 8. void doStuff() throws Exception { }
 9. }
10. public static void main(String[] args) throws Exception {
11. new City().go();
12. }
13. void go() throws Exception { new TimesSquare().doStuff(); }
14. }

 What is the result?
 A. x

 B. x x

 C. No output is produced
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 7
 G. Compilation fails due only to an error on line 10
 H. Compilation fails due only to an error on line 13

698 Chapter 8: Inner Classes

Self Test Answers 699

 Answer:

 ✓ C is correct. The inner classes are valid, and all the methods (including main()), correctly
throw an Exception, given that doStuff() throws an Exception. The doStuff() in class
TimesSquare overrides class Manhattan's doStuff() and produces no output.

 A, B, D, E, F, G, and H are incorrect based on the above. (Objectives 1.1, 2.4)

 11. Given:

 3. public class Navel {
 4. private int size = 7;
 5. private static int length = 3;
 6. public static void main(String[] args) {
 7. new Navel().go();
 8. }
 9. void go() {
10. int size = 5;
11. System.out.println(new Gazer().adder());
12. }
13. class Gazer {
14. int adder() { return size * length; }
15. }
16. }

 What is the result?
 A. 15

 B. 21

 C. An exception is thrown at runtime
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 5

 Answer:

 ✓ B is correct. The inner class Gazer has access to Navel's private static and private
instance variables.

 A, C, D, E, and F are incorrect based on the above. (Objectives 1.1, 1.4)

 12. Given:

 3. import java.util.*;
 4. public class Pockets {
 5. public static void main(String[] args) {
 6. String[] sa = {"nickel", "button", "key", "lint"};
 7. Sorter s = new Sorter();
 8. for(String s2: sa) System.out.print(s2 + " ");
 9. Arrays.sort(sa,s);
10. System.out.println();
11. for(String s2: sa) System.out.print(s2 + " ");
12. }
13. class Sorter implements Comparator<String> {
14. public int compare(String a, String b) {
15. return b.compareTo(a);
16. }
17. }
18. }

 What is the result?
 A. Compilation fails
 B. button key lint nickel

 nickel lint key button

 C. nickel button key lint

 button key lint nickel

 D. nickel button key lint

 nickel button key lint

 E. nickel button key lint

 nickel lint key button

 F. An exception is thrown at runtime

 Answer:

 ✓ A is correct, the inner class Sorter must be declared static to be called from the static
method main(). If Sorter had been static, answer E would be correct.

 B, C, D, E, and F are incorrect based on the above. (Objectives 1.1, 1.4, 6.5)

700 Chapter 8: Inner Classes

9
Threads

CERTIFICATION OBJECTIVES

Start New Threads

Recognize Thread States and
 Transitions

Use Object Locking to Avoid
 Concurrent Access

Write Code That Uses wait(),
 notify(), or notifyAll()

✓ Two-Minute Drill

 Q&A Self Test

702 Chapter 9: Threads

CERTIFICATION OBJECTIVE

Defining, Instantiating, and Starting Threads
(Objective 4.1)

4.1 Write code to define, instantiate, and start new threads using both java.lang.Thread
and java.lang.Runnable.

Imagine a stockbroker application with a lot of complex capabilities. One of
its functions is "download last stock option prices," another is "check prices for
warnings," and a third time-consuming operation is "analyze historical data for
company XYZ."

In a single-threaded runtime environment, these actions execute one after
another. The next action can happen only when the previous one is finished. If a
historical analysis takes half an hour, and the user selects to perform a download and
check afterward, the warning may come too late to, say, buy or sell stock as a result.

We just imagined the sort of application that cries out for multithreading. Ideally,
the download should happen in the background (that is, in another thread). That
way, other processes could happen at the same time so that, for example, a warning
could be communicated instantly. All the while, the user is interacting with other
parts of the application. The analysis, too, could happen in a separate thread, so the
user can work in the rest of the application while the results are being calculated.

So what exactly is a thread? In Java, "thread" means two different things:

■ An instance of class java.lang.Thread

■ A thread of execution

An instance of Thread is just…an object. Like any other object in Java, it has
variables and methods, and lives and dies on the heap. But a thread of execution is
an individual process (a "lightweight" process) that has its own call stack. In Java,
there is one thread per call stack—or, to think of it in reverse, one call stack per
thread. Even if you don't create any new threads in your program, threads are back
there running.

The main() method, that starts the whole ball rolling, runs in one thread, called
(surprisingly) the main thread. If you looked at the main call stack (and you can, any
time you get a stack trace from something that happens after main begins, but not
within another thread), you'd see that main() is the first method on the stack—

Defi ning, Instantiating, and Starting Threads (Exam Objective 4.1) 703

the method at the bottom. But as soon as you create a new thread, a new stack
materializes and methods called from that thread run in a call stack that's separate
from the main() call stack. That second new call stack is said to run concurrently
with the main thread, but we'll refine that notion as we go through this chapter.

You might find it confusing that we're talking about code running concurrently—
as if in parallel—given that there's only one CPU on most of the machines running
Java. What gives? The JVM, which gets its turn at the CPU by whatever scheduling
mechanism the underlying OS uses, operates like a mini-OS and schedules its own
threads regardless of the underlying operating system. In some JVMs, the Java
threads are actually mapped to native OS threads, but we won't discuss that here;
native threads are not on the exam. Nor is it required to understand how threads
behave in different JVM environments. In fact, the most important concept to
understand from this entire chapter is this:

When it comes to threads, very little is guaranteed.

So be very cautious about interpreting the behavior you see on one machine
as "the way threads work." The exam expects you to know what is and is not
guaranteed behavior, so that you can design your program in such a way that it will
work regardless of the underlying JVM. That's part of the whole point of Java.

Don't make the mistake of designing your program to be dependent on a
particular implementation of the JVM. As you'll learn a little later, different
JVMs can run threads in profoundly different ways. For example, one JVM
might be sure that all threads get their turn, with a fairly even amount of time
allocated for each thread in a nice, happy, round-robin fashion. But in other
JVMs, a thread might start running and then just hog the whole show, never
stepping out so others can have a turn. If you test your application on the
"nice turn-taking" JVM, and you don't know what is and is not guaranteed in
Java, then you might be in for a big shock when you run it under a JVM with a
different thread scheduling mechanism.

The thread questions are among the most difficult questions on the exam.
In fact, for most people they are the toughest questions on the exam, and with
four objectives for threads you'll be answering a lot of thread questions. If you're
not already familiar with threads, you'll probably need to spend some time
experimenting. Also, one final disclaimer: This chapter makes almost no attempt to
teach you how to design a good, safe, multithreaded application. We only scratch

the surface of that huge topic in this chapter! You're here to learn the basics of
threading, and what you need to get through the thread questions on the exam.
Before you can write decent multithreaded code, however, you really need to study
more on the complexities and subtleties of multithreaded code.

(Note: The topic of daemon threads is NOT on the exam. All of the threads
discussed in this chapter are "user" threads. You and the operating system can create
a second kind of thread called a daemon thread. The difference between these two
types of threads (user and daemon) is that the JVM exits an application only when
all user threads are complete—the JVM doesn't care about letting daemon threads
complete, so once all user threads are complete, the JVM will shut down, regardless
of the state of any daemon threads. Once again, this topic is NOT on the exam.)

Making a Thread
A thread in Java begins as an instance of java.lang.Thread. You'll find methods
in the Thread class for managing threads including creating, starting, and pausing
them. For the exam, you'll need to know, at a minimum, the following methods:

start()
yield()
sleep()
run()

The action happens in the run() method. Think of the code you want to execute
in a separate thread as the job to do. In other words, you have some work that needs
to be done, say, downloading stock prices in the background while other things
are happening in the program, so what you really want is that job to be executed
in its own thread. So if the work you want done is the job, the one doing the work
(actually executing the job code) is the thread. And the job always starts from a
run() method as follows:

public void run() {
 // your job code goes here
}

You always write the code that needs to be run in a separate thread in a run()
method. The run() method will call other methods, of course, but the thread of
execution—the new call stack—always begins by invoking run(). So where does
the run() method go? In one of the two classes you can use to define your thread job.

You can define and instantiate a thread in one of two ways:

704 Chapter 9: Threads

■ Extend the java.lang.Thread class.

■ Implement the Runnable interface.

You need to know about both for the exam, although in the real world you're
much more likely to implement Runnable than extend Thread. Extending the
Thread class is the easiest, but it's usually not a good OO practice. Why? Because
subclassing should be reserved for specialized versions of more general superclasses.
So the only time it really makes sense (from an OO perspective) to extend Thread is
when you have a more specialized version of a Thread class. In other words, because
you have more specialized thread-specific behavior. Chances are, though, that the
thread work you want is really just a job to be done by a thread. In that case, you
should design a class that implements the Runnable interface, which also leaves your
class free to extend some other class.

Defi ning a Thread
To define a thread, you need a place to put your run() method, and as we just
discussed, you can do that by extending the Thread class or by implementing the
Runnable interface. We'll look at both in this section.

Extending java.lang.Thread
The simplest way to define code to run in a separate thread is to

■ Extend the java.lang.Thread class.

■ Override the run() method.

It looks like this:

class MyThread extends Thread {
 public void run() {
 System.out.println("Important job running in MyThread");
 }
 }

The limitation with this approach (besides being a poor design choice in most
cases) is that if you extend Thread, you can't extend anything else. And it's not as if
you really need that inherited Thread class behavior, because in order to use a thread
you'll need to instantiate one anyway.

Defi ning a Thread (Exam Objective 4.1) 705

Keep in mind that you're free to overload the run() method in your Thread
subclass:

class MyThread extends Thread {
 public void run() {
 System.out.println("Important job running in MyThread");
 }
 public void run(String s) {
 System.out.println("String in run is " + s);
 }
}

But know this: The overloaded run(String s) method will be ignored by the
Thread class unless you call it yourself. The Thread class expects a run() method
with no arguments, and it will execute this method for you in a separate call stack
after the thread has been started. With a run(String s) method, the Thread
class won't call the method for you, and even if you call the method directly
yourself, execution won't happen in a new thread of execution with a separate
call stack. It will just happen in the same call stack as the code that you made the
call from, just like any other normal method call.

Implementing java.lang.Runnable
Implementing the Runnable interface gives you a way to extend any class you like,
but still define behavior that will be run by a separate thread. It looks like this:

class MyRunnable implements Runnable {
 public void run() {
 System.out.println("Important job running in MyRunnable");
 }
}

Regardless of which mechanism you choose, you've now got yourself some code
that can be run by a thread of execution. So now let's take a look at instantiating your
thread-capable class, and then we'll figure out how to actually get the thing running.

Instantiating a Thread
Remember, every thread of execution begins as an instance of class Thread.
Regardless of whether your run() method is in a Thread subclass or a Runnable
implementation class, you still need a Thread object to do the work.

706 Chapter 9: Threads

If you extended the Thread class, instantiation is dead simple (we'll look at some
additional overloaded constructors in a moment):

MyThread t = new MyThread()

If you implement Runnable, instantiation is only slightly less simple. To have
code run by a separate thread, you still need a Thread instance. But rather than
combining both the thread and the job (the code in the run()method) into one
class, you've split it into two classes—the Thread class for the thread-specific code
and your Runnable implementation class for your job-that-should-be-run-by-a-
thread code. (Another common way to think about this is that the Thread is the
"worker," and the Runnable is the "job" to be done.)

First, you instantiate your Runnable class:

MyRunnable r = new MyRunnable();

Next, you get yourself an instance of java.lang.Thread (somebody has to run your
job…), and you give it your job!

Thread t = new Thread(r); // Pass your Runnable to the Thread

If you create a thread using the no-arg constructor, the thread will call its own
run() method when it's time to start working. That's exactly what you want when
you extend Thread, but when you use Runnable, you need to tell the new thread to
use your run()method rather than its own. The Runnable you pass to the Thread
constructor is called the target or the target Runnable.

You can pass a single Runnable instance to multiple Thread objects, so that the
same Runnable becomes the target of multiple threads, as follows:

public class TestThreads {
 public static void main (String [] args) {
 MyRunnable r = new MyRunnable();
 Thread foo = new Thread(r);
 Thread bar = new Thread(r);
 Thread bat = new Thread(r);
 }
}

Giving the same target to multiple threads means that several threads of
execution will be running the very same job (and that the same job will be done
multiple times).

Instantiating a Thread (Exam Objective 4.1) 707

Besides the no-arg constructor and the constructor that takes a Runnable (the
target, i.e., the instance with the job to do), there are other overloaded constructors
in class Thread. The constructors we care about are

■ Thread()

■ Thread(Runnable target)

■ Thread(Runnable target, String name)

■ Thread(String name)

You need to recognize all of them for the exam! A little later, we'll discuss some of
the other constructors in the preceding list.

So now you've made yourself a Thread instance, and it knows which run()
method to call. But nothing is happening yet. At this point, all we've got is a plain
old Java object of type Thread. It is not yet a thread of execution. To get an actual
thread—a new call stack—we still have to start the thread.

When a thread has been instantiated but not started (in other words, the
start() method has not been invoked on the Thread instance), the thread is
said to be in the new state. At this stage, the thread is not yet considered to be
alive. Once the start() method is called, the thread is considered to be alive
(even though the run() method may not have actually started executing yet). A
thread is considered dead (no longer alive) after the run() method completes. The
isAlive() method is the best way to determine if a thread has been started but has
not yet completed its run() method. (Note: The getState() method is very useful
for debugging, but you won't have to know it for the exam.)

708 Chapter 9: Threads

The Thread class itself implements Runnable. (After all, it has a run()
method that we were overriding.) This means that you could pass a Thread to another
Thread’s constructor:

Thread t = new Thread(new MyThread());

This is a bit silly, but it’s legal. In this case, you really just need a
Runnnable, and creating a whole other Thread is overkill.

Starting a Thread
You've created a Thread object and it knows its target (either the passed-in
Runnable or itself if you extended class Thread). Now it's time to get the whole
thread thing happening—to launch a new call stack. It's so simple it hardly deserves
its own subheading:

t.start();

Prior to calling start() on a Thread instance, the thread (when we use
lowercase t, we're referring to the thread of execution rather than the Thread class)
is said to be in the new state as we said. The new state means you have a Thread
object but you don't yet have a true thread. So what happens after you call start()?
The good stuff:

■ A new thread of execution starts (with a new call stack).

■ The thread moves from the new state to the runnable state.

■ When the thread gets a chance to execute, its target run() method will run.

Be sure you remember the following: You start a Thread, not a Runnable. You call
start() on a Thread instance, not on a Runnable instance. The following example
demonstrates what we've covered so far—defining, instantiating, and starting a
thread:

class FooRunnable implements Runnable {
 public void run() {
 for(int x = 1; x < 6; x++) {
 System.out.println("Runnable running");
 }
 }
}

public class TestThreads {
 public static void main (String [] args) {
 FooRunnable r = new FooRunnable();
 Thread t = new Thread(r);
 t.start();

 }
}

Starting a Thread (Exam Objective 4.1) 709

Running the preceding code prints out exactly what you'd expect:

% java TestThreads
Runnable running
Runnable running
Runnable running
Runnable running
Runnable running

(If this isn't what you expected, go back and re-read everything in this objective.)

So what happens if we start multiple threads? We'll run a simple example in a
moment, but first we need to know how to print out which thread is executing.
We can use the getName() method of class Thread, and have each Runnable print
out the name of the thread executing that Runnable object's run() method. The
following example instantiates a thread and gives it a name, and then the name is
printed out from the run() method:

class NameRunnable implements Runnable {
 public void run() {
 System.out.println("NameRunnable running");
 System.out.println("Run by "
 + Thread.currentThread().getName());

710 Chapter 9: Threads

There’s nothing special about the run() method as far as Java is
concerned. Like main(), it just happens to be the name (and signature) of the method
that the new thread knows to invoke. So if you see code that calls the run() method on
a Runnable (or even on a Thread instance), that’s perfectly legal. But it doesn’t mean the
run() method will run in a separate thread! Calling a run() method directly just means
you’re invoking a method from whatever thread is currently executing, and the run()
method goes onto the current call stack rather than at the beginning of a new call stack.
The following code does not start a new thread of execution:

 Thread t = new Thread();
 t.run(); // Legal, but does not start a new thread

 }
}
public class NameThread {
 public static void main (String [] args) {
 NameRunnable nr = new NameRunnable();
 Thread t = new Thread(nr);
 t.setName("Fred");
 t.start();
 }
}

Running this code produces the following, extra special, output:

% java NameThread
NameRunnable running
Run by Fred

To get the name of a thread you call—who would have guessed—getName() on
the Thread instance. But the target Runnable instance doesn't even have a reference
to the Thread instance, so we first invoked the static Thread.currentThread()
method, which returns a reference to the currently executing thread, and then we
invoked getName() on that returned reference.

Even if you don't explicitly name a thread, it still has a name. Let's look at the
previous code, commenting out the statement that sets the thread's name:

public class NameThread {
 public static void main (String [] args) {
 NameRunnable nr = new NameRunnable();
 Thread t = new Thread(nr);
 // t.setName("Fred");
 t.start();
 }
}

Running the preceding code now gives us

% java NameThread
NameRunnable running
Run by Thread-0

And since we're getting the name of the current thread by using the static
Thread.currentThread() method, we can even get the name of the thread
running our main code,

Starting a Thread (Exam Objective 4.1) 711

public class NameThreadTwo {
 public static void main (String [] args) {
 System.out.println("thread is "
 + Thread.currentThread().getName());
 }
}

which prints out

% java NameThreadTwo
thread is main

That's right, the main thread already has a name—main. (Once again, what are
the odds?) Figure 9-1 shows the process of starting a thread.

712 Chapter 9: Threads

 FIGURE 9-1

Starting a thread
public static void main(String [] args) {

// running

// some code

// in main()

// running

//

//

more code

static void method2() {
Runnable r = new MyRunnable();

Thread t = new Thread(r);

t.start();

do more stuff

}

}

method2();

1) main() begins

main

main

run

method2

stack A

stack A

main

method2

stack Astack B
(thread t) (main thread)

3) method2() starts a new thread

2) main() invokes method2()

Starting and Running Multiple Threads
Enough playing around here; let's actually get multiple threads going (more than
two, that is). We already had two threads, because the main() method starts in a
thread of its own, and then t.start() started a second thread. Now we'll do more.
The following code creates a single Runnable instance and three Thread instances.
All three Thread instances get the same Runnable instance, and each thread is
given a unique name. Finally, all three threads are started by invoking start() on
the Thread instances.

class NameRunnable implements Runnable {
 public void run() {
 for (int x = 1; x <= 3; x++) {
 System.out.println("Run by "
 + Thread.currentThread().getName()
 + ", x is " + x);
 }
 }
}
public class ManyNames {
 public static void main(String [] args) {
 // Make one Runnable
 NameRunnable nr = new NameRunnable();
 Thread one = new Thread(nr);
 Thread two = new Thread(nr);
 Thread three = new Thread(nr);

 one.setName("Fred");
 two.setName("Lucy");
 three.setName("Ricky");
 one.start();
 two.start();
 three.start();
 }
}

Running this code might produce the following:

% java ManyNames
Run by Fred, x is 1
Run by Fred, x is 2
Run by Fred, x is 3

Starting a Thread (Exam Objective 4.1) 713

Run by Lucy, x is 1
Run by Lucy, x is 2
Run by Lucy, x is 3
Run by Ricky, x is 1
Run by Ricky, x is 2
Run by Ricky, x is 3

Well, at least that's what it printed when we ran it—this time, on our machine.
But the behavior you see above is not guaranteed. This is so crucial that you need
to stop right now, take a deep breath, and repeat after me, "The behavior is not
guaranteed." You need to know, for your future as a Java programmer as well as for
the exam, that there is nothing in the Java specification that says threads will start
running in the order in which they were started (in other words, the order in which
start() was invoked on each thread). And there is no guarantee that once a thread
starts executing, it will keep executing until it's done. Or that a loop will complete
before another thread begins. No siree Bob. Nothing is guaranteed in the preceding
code except this:

Each thread will start, and each thread will run to completion.

Within each thread, things will happen in a predictable order. But the actions
of different threads can mix together in unpredictable ways. If you run the program
multiple times, or on multiple machines, you may see different output. Even if
you don't see different output, you need to realize that the behavior you see is not
guaranteed. Sometimes a little change in the way the program is run will cause a
difference to emerge. Just for fun we bumped up the loop code so that each run()
method ran the for loop 400 times rather than 3, and eventually we did start to see
some wobbling:

public void run() {
 for (int x = 1; x <= 400; x++) {
 System.out.println("Run by "
 + Thread.currentThread().getName()
 + ", x is " + x);
 }
}

Running the preceding code, with each thread executing its run loop 400 times,
started out fine but then became nonlinear. Here's just a snip from the command-

714 Chapter 9: Threads

Starting a Thread (Exam Objective 4.1) 715

line output of running that code. To make it easier to distinguish each thread, we
put Fred's output in italics and Lucy's in bold, and left Ricky's alone:

Run by Fred, x is 345
Run by Ricky, x is 313
Run by Lucy, x is 341
Run by Ricky, x is 314
Run by Lucy, x is 342
Run by Ricky, x is 315
Run by Fred, x is 346
Run by Lucy, x is 343
Run by Fred, x is 347
Run by Lucy, x is 344
... it continues on ...
Notice that there's not really any clear pattern here. If we look at only the output

from Fred, we see the numbers increasing one at a time, as expected:

Run by Fred, x is 345
Run by Fred, x is 346
Run by Fred, x is 347

And similarly if we look only at the output from Lucy, or Ricky. Each one
individually is behaving in a nice orderly manner. But together—chaos! In the
fragment above we see Fred, then Lucy, then Ricky (in the same order we originally
started the threads), but then Lucy butts in when it was Fred's turn. What nerve!
And then Ricky and Lucy trade back and forth for a while until finally Fred gets
another chance. They jump around like this for a while after this. Eventually
(after the part shown above) Fred finishes, then Ricky, and finally Lucy finishes
with a long sequence of output. So even though Ricky was started third, he actually

completed second. And if we run it again, we'll get a different result. Why? Because
it's up to the scheduler, and we don't control the scheduler! Which brings up
another key point to remember: Just because a series of threads are started in a
particular order doesn't mean they'll run in that order. For any group of started
threads, order is not guaranteed by the scheduler. And duration is not guaranteed.
You don't know, for example, if one thread will run to completion before the others
have a chance to get in or whether they'll all take turns nicely, or whether they'll do
a combination of both. There is a way, however, to start a thread but tell it not to
run until some other thread has finished. You can do this with the join() method,
which we'll look at a little later.

A thread is done being a thread when its target run() method completes.

When a thread completes its run() method, the thread ceases to be a thread of
execution. The stack for that thread dissolves, and the thread is considered dead.
(Technically the API calls a dead thread "terminated", but we'll use "dead" in this
chapter.) Not dead and gone, however, just dead. It's still a Thread object, just not a
thread of execution. So if you've got a reference to a Thread instance, then even when
that Thread instance is no longer a thread of execution, you can still call methods
on the Thread instance, just like any other Java object. What you can't do, though,
is call start() again.

Once a thread has been started, it can never be started again.

If you have a reference to a Thread, and you call start(), it's started. If you call
start() a second time, it will cause an exception (an IllegalThreadStateException,
which is a kind of RuntimeException, but you don't need to worry about the exact
type). This happens whether or not the run() method has completed from the first
start() call. Only a new thread can be started, and then only once. A runnable
thread or a dead thread cannot be restarted.

So far, we've seen three thread states: new, runnable, and dead. We'll look at more
thread states before we're done with this chapter.

716 Chapter 9: Threads

In addition to using setName() and getName to identify threads, you
might see getld(). The getld() method returns a positive, unique, long number, and that
number will be that thread's only ID number for the thread's entire life.

Starting a Thread (Exam Objective 4.1) 717

The Thread Scheduler
The thread scheduler is the part of the JVM (although most JVMs map Java threads
directly to native threads on the underlying OS) that decides which thread should
run at any given moment, and also takes threads out of the run state. Assuming a
single processor machine, only one thread can actually run at a time. Only one stack
can ever be executing at one time. And it's the thread scheduler that decides which
thread—of all that are eligible—will actually run. When we say eligible, we really
mean in the runnable state.

Any thread in the runnable state can be chosen by the scheduler to be the one and
only running thread. If a thread is not in a runnable state, then it cannot be chosen to be
the currently running thread. And just so we're clear about how little is guaranteed here:

The order in which runnable threads are chosen to run is not guaranteed.

Although queue behavior is typical, it isn't guaranteed. Queue behavior means
that when a thread has finished with its "turn," it moves to the end of the line of the
runnable pool and waits until it eventually gets to the front of the line, where it can
be chosen again. In fact, we call it a runnable pool, rather than a runnable queue, to
help reinforce the fact that threads aren't all lined up in some guaranteed order.

Although we don't control the thread scheduler (we can't, for example, tell a
specific thread to run), we can sometimes influence it. The following methods give us
some tools for influencing the scheduler. Just don't ever mistake influence for control.

Methods from the java.lang.Thread Class Some of the methods that can
help us influence thread scheduling are as follows:

public static void sleep(long millis) throws InterruptedException
public static void yield()
public final void join() throws InterruptedException

public final void setPriority(int newPriority)

Note that both sleep() and join() have overloaded versions not shown here.

Expect to see exam questions that look for your understanding of
what is and is not guaranteed! You must be able to look at thread code and determine
whether the output is guaranteed to run in a particular way or is indeterminate.

Methods from the java.lang.Object Class Every class in Java inherits the
following three thread-related methods:

 public final void wait() throws InterruptedException
public final void notify()
public final void notifyAll()

The wait() method has three overloaded versions (including the one listed here).
We'll look at the behavior of each of these methods in this chapter. First, though,

we're going to look at the different states a thread can be in.

CERTIFICATION OBJECTIVE

Thread States and Transitions (Objective 4.2)
4.2 Recognize the states in which a thread can exist, and identify ways in which a thread
can transition from one state to another.

We've already seen three thread states— new, runnable, and dead—but wait!
There's more! The thread scheduler's job is to move threads in and out of the
running state. While the thread scheduler can move a thread from the running state
back to runnable, other factors can cause a thread to move out of running, but not
back to runnable. One of these is when the thread's run()method completes, in
which case the thread moves from the running state directly to the dead state. Next
we'll look at some of the other ways in which a thread can leave the running state,
and where the thread goes.

Thread States
A thread can be only in one of five states (see Figure 9-2):

■ New This is the state the thread is in after the Thread instance has been
created, but the start() method has not been invoked on the thread. It is
a live Thread object, but not yet a thread of execution. At this point, the
thread is considered not alive.

718 Chapter 9: Threads

■ Runnable This is the state a thread is in when it's eligible to run, but the
scheduler has not selected it to be the running thread. A thread first enters
the runnable state when the start() method is invoked, but a thread can
also return to the runnable state after either running or coming back from a
blocked, waiting, or sleeping state. When the thread is in the runnable state,
it is considered alive.

■ Running This is it. The "big time." Where the action is. This is the state a
thread is in when the thread scheduler selects it (from the runnable pool) to
be the currently executing process. A thread can transition out of a running
state for several reasons, including because "the thread scheduler felt like it."
We'll look at those other reasons shortly. Note that in Figure 9-2, there are
several ways to get to the runnable state, but only one way to get to the running
state: the scheduler chooses a thread from the runnable pool.

■ Waiting/blocked/sleeping This is the state a thread is in when it's not
eligible to run. Okay, so this is really three states combined into one,
but they all have one thing in common: the thread is still alive, but is
currently not eligible to run. In other words, it is not runnable, but it might
return to a runnable state later if a particular event occurs. A thread may be
blocked waiting for a resource (like I/O or an object's lock), in which case the
event that sends it back to runnable is the availability of the resource—for
example, if data comes in through the input stream the thread code is reading
from, or if the object's lock suddenly becomes available. A thread may be
sleeping because the thread's run code tells it to sleep for some period of time,
in which case the event that sends it back to runnable is that it wakes up
because its sleep time has expired. Or the thread may be waiting, because the
thread's run code causes it to wait, in which case the event that sends it back
to runnable is that another thread sends a notification that it may no longer
be necessary for the thread to wait. The important point is that one thread

Thread States (Exam Objective 4.2) 719

 FIGURE 9-2

Transitioning
between
thread states

Waiting/
blocking

New Runnable Running Dead

does not tell another thread to block. Some methods may look like they tell
another thread to block, but they don't. If you have a reference t to another
thread, you can write something like this:

 t.sleep(); or t.yield()

But those are actually static methods of the Thread class—they don't affect the
instance t; instead they are defined to always affect the thread that's currently
executing. (This is a good example of why it's a bad idea to use an instance
variable to access a static method—it's misleading. There is a method,
suspend(), in the Thread class, that lets one thread tell another to suspend,
but the suspend() method has been deprecated and won't be on the exam
(nor will its counterpart resume()). There is also a stop() method, but
it too has been deprecated and we won't even go there. Both suspend()
and stop() turned out to be very dangerous, so you shouldn't use them and
again, because they're deprecated, they won't appear on the exam. Don't
study 'em, don't use 'em. Note also that a thread in a blocked state is still
considered to be alive.

■ Dead A thread is considered dead when its run() method completes. It
may still be a viable Thread object, but it is no longer a separate thread of
execution. Once a thread is dead, it can never be brought back to life! (The
whole "I see dead threads" thing.) If you invoke start() on a dead Thread
instance, you'll get a runtime (not compiler) exception. And it probably
doesn't take a rocket scientist to tell you that if a thread is dead, it is no
longer considered to be alive.

Preventing Thread Execution
A thread that's been stopped usually means a thread that's moved to the dead state.
But Objective 4.2 is also looking for your ability to recognize when a thread will get
kicked out of running but not be sent back to either runnable or dead.

For the purpose of the exam, we aren't concerned with a thread blocking on I/O
(say, waiting for something to arrive from an input stream from the server). We are
concerned with the following:

720 Chapter 9: Threads

■ Sleeping

■ Waiting

■ Blocked because it needs an object's lock

Sleeping
The sleep() method is a static method of class Thread. You use it in your code
to "slow a thread down" by forcing it to go into a sleep mode before coming back to
runnable (where it still has to beg to be the currently running thread). When a thread
sleeps, it drifts off somewhere and doesn't return to runnable until it wakes up.

So why would you want a thread to sleep? Well, you might think the thread is
moving too quickly through its code. Or you might need to force your threads to
take turns, since reasonable turn-taking isn't guaranteed in the Java specification.
Or imagine a thread that runs in a loop, downloading the latest stock prices and
analyzing them. Downloading prices one after another would be a waste of time, as
most would be quite similar—and even more important, it would be an incredible
waste of precious bandwidth. The simplest way to solve this is to cause a thread to
pause (sleep) for five minutes after each download.

You do this by invoking the static Thread.sleep() method, giving it a time in
milliseconds as follows:

try {
 Thread.sleep(5*60*1000); // Sleep for 5 minutes
} catch (InterruptedException ex) { }

Notice that the sleep() method can throw a checked InterruptedException
(you'll usually know if that is a possibility, since another thread has to explicitly do
the interrupting), so you must acknowledge the exception with a handle or declare.
Typically, you wrap calls to sleep() in a try/catch, as in the preceding code.

Let's modify our Fred, Lucy, Ricky code by using sleep() to try to force the
threads to alternate rather than letting one thread dominate for any period of time.
Where do you think the sleep() method should go?

class NameRunnable implements Runnable {
 public void run() {

 for (int x = 1; x < 4; x++) {

 System.out.println("Run by "
 + Thread.currentThread().getName());

Sleeping (Exam Objective 4.2) 721

 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) { }
 }
 }
}

public class ManyNames {
 public static void main (String [] args) {

 // Make one Runnable
 NameRunnable nr = new NameRunnable();

 Thread one = new Thread(nr);
 one.setName("Fred");
 Thread two = new Thread(nr);
 two.setName("Lucy");
 Thread three = new Thread(nr);
 three.setName("Ricky");

 one.start();
 two.start();

 three.start();
 }
}

Running this code shows Fred, Lucy, and Ricky alternating nicely:

% java ManyNames
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky

Just keep in mind that the behavior in the preceding output is still not guaranteed.
You can't be certain how long a thread will actually run before it gets put to sleep,
so you can't know with certainty that only one of the three threads will be in the
runnable state when the running thread goes to sleep. In other words, if there are

722 Chapter 9: Threads

two threads awake and in the runnable pool, you can't know with certainty that
the least recently used thread will be the one selected to run. Still, using sleep()
is the best way to help all threads get a chance to run! Or at least to guarantee that
one thread doesn't get in and stay until it's done. When a thread encounters a sleep
call, it must go to sleep for at least the specified number of milliseconds (unless
it is interrupted before its wake-up time, in which case it immediately throws the
InterruptedException).

Remember that sleep() is a static method, so don't be fooled into thinking that
one thread can put another thread to sleep. You can put sleep() code anywhere,
since all code is being run by some thread. When the executing code (meaning the
currently running thread's code) hits a sleep() call, it puts the currently running
thread to sleep.

EXERCISE 9-1

 Creating a Thread and Putting It to Sleep
In this exercise we will create a simple counting thread. It will count to 100, pausing
one second between each number. Also, in keeping with the counting theme, it will
output a string every ten numbers.

Sleeping (Exam Objective 4.2) 723

Just because a thread’s sleep() expires, and it wakes up, does not mean
it will return to running! Remember, when a thread wakes up, it simply goes back to
the runnable state. So the time specifi ed in sleep() is the minimum duration in which
the thread won’t run, but it is not the exact duration in which the thread won’t run. So
you can’t, for example, rely on the sleep() method to give you a perfectly accurate
timer. Although in many applications using sleep() as a timer is certainly good enough,
you must know that a sleep() time is not a guarantee that the thread will start running
again as soon as the time expires and the thread wakes.

1. Create a class and extend the Thread class. As an option, you can implement
 the Runnable interface.

2. Override the run() method of Thread. This is where the code will go that will
 output the numbers.

3. Create a for loop that will loop 100 times. Use the modulo operation to
 check whether there are any remainder numbers when divided by 10.

4. Use the static method Thread.sleep() to pause. (Remember, the one-arg
version of sleep() specifies the amount of time of sleep in milliseconds.)

Thread Priorities and yield()
To understand yield(), you must understand the concept of thread priorities.
Threads always run with some priority, usually represented as a number between 1
and 10 (although in some cases the range is less than 10). The scheduler in most
JVMs uses preemptive, priority-based scheduling (which implies some sort
of time slicing). This does not mean that all JVMs use time slicing. The JVM
specification does not require a VM to implement a time-slicing scheduler, where
each thread is allocated a fair amount of time and then sent back to runnable to give
another thread a chance. Although many JVMs do use time slicing, some may use
a scheduler that lets one thread stay running until the thread completes its run()
method.

In most JVMs, however, the scheduler does use thread priorities in one important
way: If a thread enters the runnable state, and it has a higher priority than any of
the threads in the pool and a higher priority than the currently running thread,
the lower-priority running thread usually will be bumped back to runnable and the
highest-priority thread will be chosen to run. In other words, at any given time the
currently running thread usually will not have a priority that is lower than any of
the threads in the pool. In most cases, the running thread will be of equal or greater
priority than the highest priority threads in the pool. This is as close to a guarantee
about scheduling as you'll get from the JVM specification, so you must never rely on
thread priorities to guarantee the correct behavior of your program.

Don't rely on thread priorities when designing your multithreaded application.
Because thread-scheduling priority behavior is not guaranteed, use thread
priorities as a way to improve the effi ciency of your program, but just be sure
your program doesn't depend on that behavior for correctness.

724 Chapter 9: Threads

What is also not guaranteed is the behavior when threads in the pool are of equal
priority, or when the currently running thread has the same priority as threads in the
pool. All priorities being equal, a JVM implementation of the scheduler is free to do
just about anything it likes. That means a scheduler might do one of the following
(among other things):

■ Pick a thread to run, and run it there until it blocks or completes.

■ Time slice the threads in the pool to give everyone an equal opportunity to run.

Setting a Thread's Priority A thread gets a default priority that is the priority
of the thread of execution that creates it. For example, in the code

public class TestThreads {
 public static void main (String [] args) {
 MyThread t = new MyThread();
 }
}

the thread referenced by t will have the same priority as the main thread, since the
main thread is executing the code that creates the MyThread instance.

You can also set a thread's priority directly by calling the setPriority() method
on a Thread instance as follows:

FooRunnable r = new FooRunnable();
Thread t = new Thread(r);
t.setPriority(8);

t.start();

Priorities are set using a positive integer, usually between 1 and 10, and the JVM
will never change a thread's priority. However, the values 1 through 10 are not
guaranteed. Some JVM's might not recognize ten distinct values. Such a JVM might
merge values from 1 to 10 down to maybe values from 1 to 5, so if you have, say, ten
threads each with a different priority, and the current application is running in a
JVM that allocates a range of only five priorities, then two or more threads might be
mapped to one priority.

Although the default priority is 5, the Thread class has the three following
constants (static final variables) that define the range of thread priorities:

Thread Priorities and yield() (Exam Objective 4.2) 725

Thread.MIN_PRIORITY (1)
Thread.NORM_PRIORITY (5)
Thread.MAX_PRIORITY (10)

The yield() Method So what does the static Thread.yield() have to
do with all this? Not that much, in practice. What yield() is supposed to do is
make the currently running thread head back to runnable to allow other threads of
the same priority to get their turn. So the intention is to use yield() to promote
graceful turn-taking among equal-priority threads. In reality, though, the yield()
method isn't guaranteed to do what it claims, and even if yield() does cause a
thread to step out of running and back to runnable, there's no guarantee the yielding
thread won't just be chosen again over all the others! So while yield() might—and
often does—make a running thread give up its slot to another runnable thread of the
same priority, there's no guarantee.
 A yield() won't ever cause a thread to go to the waiting/sleeping/ blocking
state. At most, a yield() will cause a thread to go from running to runnable, but
again, it might have no effect at all.

The join() Method
The non-static join() method of class Thread lets one thread "join onto the end"
of another thread. If you have a thread B that can't do its work until another thread
A has completed its work, then you want thread B to "join" thread A. This means that
thread B will not become runnable until A has finished (and entered the dead state).

Thread t = new Thread();
t.start();
t.join();

The preceding code takes the currently running thread (if this were in the
main() method, then that would be the main thread) and joins it to the end of the
thread referenced by t. This blocks the current thread from becoming runnable
until after the thread referenced by t is no longer alive. In other words, the
code t.join() means "Join me (the current thread) to the end of t, so that t
must finish before I (the current thread) can run again." You can also call one
of the overloaded versions of join() that takes a timeout duration, so that
you're saying, "wait until thread t is done, but if it takes longer than 5,000
milliseconds, then stop waiting and become runnable anyway." Figure 9-3 shows
the effect of the join() method.

726 Chapter 9: Threads

So far we've looked at three ways a running thread could leave the running state:

■ A call to sleep() Guaranteed to cause the current thread to stop execut-
ing for at least the specified sleep duration (although it might be interrupted
before its specified time).

■ A call to yield() Not guaranteed to do much of anything, although
typically it will cause the currently running thread to move back to runnable
so that a thread of the same priority can have a chance.

■ A call to join() Guaranteed to cause the current thread to stop execut-
ing until the thread it joins with (in other words, the thread it calls join()

Thread Priorities and yield() (Exam Objective 4.2) 727

 FIGURE 9-3 The join() method

Key Events in the Threads’ Code

doStuff()

doStuff() doOther()

Stack A is
running

Stack B is
running

Stack A is
running

Stack B
doOther()

doStuff()

Stack A joined
to Stack B

Stack A

Output

A is running

Thread b = new Thread(aRunnable);
b.start();

b.join(); // A joins to the end
// of B

// Thread B completes !!
// Thread A starts again !

// Threads bounce back and forth

A is running
A is running
A is running
A is running
A is running
A is running

A is running
A is running

A is running

A is running

B is running

B is running

B is running
B is running

B is running

B is running
B is running
B is running
B is running
B is running
B is running
B is running
B is running

A is running

A is running
A is running
A is running
A is running
A is running
A is running

B is running

on) completes, or if the thread it's trying to join with is not alive, however,
the current thread won't need to back out.

Besides those three, we also have the following scenarios in which a thread might
leave the running state:

■ The thread's run() method completes. Duh.

■ A call to wait() on an object (we don't call wait() on a thread, as we'll
 see in a moment).

■ A thread can't acquire the lock on the object whose method code it's
 attempting to run.

■ The thread scheduler can decide to move the current thread from running
 to runnable in order to give another thread a chance to run. No reason is
 needed—the thread scheduler can trade threads in and out whenever it likes.

CERTIFICATION OBJECTIVE

Synchronizing Code (Objective 4.3)
4.3 Given a scenario, write code that makes appropriate use of object locking to
protect static or instance variables from concurrent access problems.

Can you imagine the havoc that can occur when two different threads have access
to a single instance of a class, and both threads invoke methods on that object…and
those methods modify the state of the object? In other words, what might happen
if two different threads call, say, a setter method on a single object? A scenario
like that might corrupt an object's state (by changing its instance variable values in
an inconsistent way), and if that object's state is data shared by other parts of the
program, well, it's too scary to even visualize.

But just because we enjoy horror, let's look at an example of what might happen.
The following code demonstrates what happens when two different threads are
accessing the same account data. Imagine that two people each have a checkbook
for a single checking account (or two people each have ATM cards, but both cards
are linked to only one account).

728 Chapter 9: Threads

In this example, we have a class called Account that represents a bank account.
To keep the code short, this account starts with a balance of 50, and can be used
only for withdrawals. The withdrawal will be accepted even if there isn't enough
money in the account to cover it. The account simply reduces the balance by the
amount you want to withdraw:

class Account {
 private int balance = 50;
 public int getBalance() {
 return balance;
 }
 public void withdraw(int amount) {
 balance = balance - amount;
 }
}

Now here's where it starts to get fun. Imagine a couple, Fred and Lucy, who both
have access to the account and want to make withdrawals. But they don't want the
account to ever be overdrawn, so just before one of them makes a withdrawal, he or
she will first check the balance to be certain there's enough to cover the withdrawal.
Also, withdrawals are always limited to an amount of 10, so there must be at least 10
in the account balance in order to make a withdrawal. Sounds reasonable. But that's
a two-step process:

1. Check the balance.

2. If there's enough in the account (in this example, at least 10), make the
withdrawal.

What happens if something separates step 1 from step 2? For example, imagine
what would happen if Lucy checks the balance and sees that there's just exactly
enough in the account, 10. But before she makes the withdrawal, Fred checks the
balance and also sees that there's enough for his withdrawal. Since Lucy has verified
the balance, but not yet made her withdrawal, Fred is seeing "bad data." He is seeing
the account balance before Lucy actually debits the account, but at this point that
debit is certain to occur. Now both Lucy and Fred believe there's enough to make
their withdrawals. So now imagine that Lucy makes her withdrawal, and now there
isn't enough in the account for Fred's withdrawal, but he thinks there is since when
he checked, there was enough! Yikes. In a minute we'll see the actual banking code,
with Fred and Lucy, represented by two threads, each acting on the same Runnable,
and that Runnable holds a reference to the one and only account instance—so, two
threads, one account.

Synchronizing Code (Exam Objective 4.3) 729

The logic in our code example is as follows:

1. The Runnable object holds a reference to a single account.

2. Two threads are started, representing Lucy and Fred, and each thread is
given a reference to the same Runnable (which holds a reference to the
actual account)

3. The initial balance on the account is 50, and each withdrawal is exactly 10.

4. In the run() method, we loop 5 times, and in each loop we

■ Make a withdrawal (if there's enough in the account).

■ Print a statement if the account is overdrawn (which it should never be,
 since we check the balance before making a withdrawal).

5. The makeWithdrawal() method in the test class (representing the behavior
of Fred or Lucy) will do the following:

■ Check the balance to see if there's enough for the withdrawal.

■ If there is enough, print out the name of the one making the withdrawal.

■ Go to sleep for 500 milliseconds—just long enough to give the other
partner a chance to get in before you actually make the withdrawal.

■ Upon waking up, complete the withdrawal and print that fact.

■ If there wasn't enough in the first place, print a statement showing who you
are and the fact that there wasn't enough.

So what we're really trying to discover is if the following is possible: for one partner
to check the account and see that there's enough, but before making the actual
withdrawal, the other partner checks the account and also sees that there's enough.
When the account balance gets to 10, if both partners check it before making the
withdrawal, both will think it's OK to withdraw, and the account will overdraw by 10!

Here's the code:

public class AccountDanger implements Runnable {
 private Account acct = new Account();
 public static void main (String [] args) {
 AccountDanger r = new AccountDanger();
 Thread one = new Thread(r);
 Thread two = new Thread(r);
 one.setName("Fred");
 two.setName("Lucy");

730 Chapter 9: Threads

 one.start();
 two.start();
 }
 public void run() {
 for (int x = 0; x < 5; x++) {
 makeWithdrawal(10);
 if (acct.getBalance() < 0) {
 System.out.println("account is overdrawn!");
 }
 }
 }
 private void makeWithdrawal(int amt) {
 if (acct.getBalance() >= amt) {
 System.out.println(Thread.currentThread().getName()

 + " is going to withdraw");
 try {
 Thread.sleep(500);
 } catch(InterruptedException ex) { }
 acct.withdraw(amt);
 System.out.println(Thread.currentThread().getName()

 + " completes the withdrawal");
 } else {
 System.out.println("Not enough in account for "

 + Thread.currentThread().getName()
 + " to withdraw " + acct.getBalance());

 }
 }
}

So what happened? Is it possible that, say, Lucy checked the balance, fell asleep,
Fred checked the balance, Lucy woke up and completed her withdrawal, then Fred
completes his withdrawal, and in the end they overdraw the account? Look at the
(numbered) output:

% java AccountDanger
 1. Fred is going to withdraw
 2. Lucy is going to withdraw
 3. Fred completes the withdrawal
 4. Fred is going to withdraw
 5. Lucy completes the withdrawal
 6. Lucy is going to withdraw
 7. Fred completes the withdrawal
 8. Fred is going to withdraw
 9. Lucy completes the withdrawal

Synchronizing Code (Exam Objective 4.3) 731

732 Chapter 9: Threads

10. Lucy is going to withdraw
11. Fred completes the withdrawal
12. Not enough in account for Fred to withdraw 0
13. Not enough in account for Fred to withdraw 0
14. Lucy completes the withdrawal
15. account is overdrawn!
16. Not enough in account for Lucy to withdraw -10
17. account is overdrawn!
18. Not enough in account for Lucy to withdraw -10
19. account is overdrawn!

Although each time you run this code the output might be a little different, let's
walk through this particular example using the numbered lines of output. For the
first four attempts, everything is fine. Fred checks the balance on line 1, and finds
it's OK. At line 2, Lucy checks the balance and finds it OK. At line 3, Fred makes
his withdrawal. At this point, the balance Lucy checked for (and believes is still
accurate) has actually changed since she last checked. And now Fred checks the
balance again, before Lucy even completes her first withdrawal. By this point, even
Fred is seeing a potentially inaccurate balance, because we know Lucy is going to
complete her withdrawal. It is possible, of course, that Fred will complete his before
Lucy does, but that's not what happens here.

On line 5, Lucy completes her withdrawal and then before Fred completes his,
Lucy does another check on the account on line 6. And so it continues until we
get to line 8, where Fred checks the balance and sees that it's 20. On line 9, Lucy
completes a withdrawal (that she had checked for earlier), and this takes the balance
to 10. On line 10, Lucy checks again, sees that the balance is 10, so she knows
she can do a withdrawal. But she didn't know that Fred, too, has already checked
the balance on line 8 so he thinks it's safe to do the withdrawal! On line 11, Fred
completes the withdrawal he approved on line 8. This takes the balance to zero. But
Lucy still has a pending withdrawal that she got approval for on line 10! You know
what's coming.

On lines 12 and 13, Fred checks the balance and finds that there's not enough
in the account. But on line 14, Lucy completes her withdrawal and BOOM! The
account is now overdrawn by 10—something we thought we were preventing by
doing a balance check prior to a withdrawal.

Figure 9-4 shows the timeline of what can happen when two threads concurrently
access the same object.

This problem is known as a "race condition," where multiple threads can access
the same resource (typically an object's instance variables), and can produce
corrupted data if one thread "races in" too quickly before an operation that should be
"atomic" has completed.

Preventing the Account Overdraw So what can be done? The solution
is actually quite simple. We must guarantee that the two steps of the withdrawal—
checking the balance and making the withdrawal—are never split apart. We need
them to always be performed as one operation, even when the thread falls asleep in
between step 1 and step 2! We call this an "atomic operation" (although the physics
is a little outdated, in this case "atomic" means "indivisible") because the operation,
regardless of the number of actual statements (or underlying byte code instructions),
is completed before any other thread code that acts on the same data.

You can't guarantee that a single thread will stay running throughout the entire
atomic operation. But you can guarantee that even if the thread running the atomic
operation moves in and out of the running state, no other running thread will be
able to act on the same data. In other words, If Lucy falls asleep after checking the
balance, we can stop Fred from checking the balance until after Lucy wakes up and
completes her withdrawal.

So how do you protect the data? You must do two things:

■ Mark the variables private.

■ Synchronize the code that modifies the variables.

 FIGURE 9-4

Problems with
concurrent access

Synchronizing Code (Exam Objective 4.3) 733

Object 1

Time

Thread A will access Object 2 only

Thread B will access Object 1, and then Object 2

A A AB B B

Object 2

734 Chapter 9: Threads

Remember, you protect the variables in the normal way—using an access control
modifier. It's the method code that you must protect, so that only one thread at a
time can be executing that code. You do this with the synchronized keyword.

We can solve all of Fred and Lucy's problems by adding one word to the code. We
mark the makeWithdrawal() method synchronized as follows:

private synchronized void makeWithdrawal(int amt) {
 if (acct.getBalance() >= amt) {
 System.out.println(Thread.currentThread().getName() +
 " is going to withdraw");
 try {
 Thread.sleep(500);
 } catch(InterruptedException ex) { }
 acct.withdraw(amt);
 System.out.println(Thread.currentThread().getName() +
 " completes the withdrawal");
 } else {
 System.out.println("Not enough in account for "

 + Thread.currentThread().getName()
 + " to withdraw " + acct.getBalance());

 }
}

Now we've guaranteed that once a thread (Lucy or Fred) starts the withdrawal
process (by invoking makeWithdrawal()), the other thread cannot enter that
method until the first one completes the process by exiting the method. The new
output shows the benefit of synchronizing the makeWithdrawal() method:

% java AccountDanger
Fred is going to withdraw
Fred completes the withdrawal
Lucy is going to withdraw
Lucy completes the withdrawal
Fred is going to withdraw
Fred completes the withdrawal
Lucy is going to withdraw
Lucy completes the withdrawal
Fred is going to withdraw
Fred completes the withdrawal
Not enough in account for Lucy to withdraw 0
Not enough in account for Fred to withdraw 0
Not enough in account for Lucy to withdraw 0
Not enough in account for Fred to withdraw 0
Not enough in account for Lucy to withdraw 0

Notice that now both threads, Lucy and Fred, always check the account balance
and complete the withdrawal before the other thread can check the balance.

Synchronization and Locks
How does synchronization work? With locks. Every object in Java has a built-in lock
that only comes into play when the object has synchronized method code. When
we enter a synchronized non-static method, we automatically acquire the lock
associated with the current instance of the class whose code we're executing (the
this instance). Acquiring a lock for an object is also known as getting the lock,
or locking the object, locking on the object, or synchronizing on the object. We
may also use the term monitor to refer to the object whose lock we're acquiring.
Technically the lock and the monitor are two different things, but most people talk
about the two interchangeably, and we will too.

Since there is only one lock per object, if one thread has picked up the lock, no
other thread can pick up the lock until the first thread releases (or returns) the lock.
This means no other thread can enter the synchronized code (which means it can't
enter any synchronized method of that object) until the lock has been released.
Typically, releasing a lock means the thread holding the lock (in other words, the
thread currently in the synchronized method) exits the synchronized method.
At that point, the lock is free until some other thread enters a synchronized
method on that object. Remember the following key points about locking and
synchronization:

■ Only methods (or blocks) can be synchronized, not variables or classes.

■ Each object has just one lock.

■ Not all methods in a class need to be synchronized. A class can have both
synchronized and non-synchronized methods.

■ If two threads are about to execute a synchronized method in a class, and
both threads are using the same instance of the class to invoke the method,
only one thread at a time will be able to execute the method. The other
thread will need to wait until the first one finishes its method call. In other
words, once a thread acquires the lock on an object, no other thread can
enter any of the synchronized methods in that class (for that object).

Synchronization and Locks (Exam Objective 4.3) 735

736 Chapter 9: Threads

■ If a class has both synchronized and non-synchronized methods, multiple
threads can still access the class's non-synchronized methods! If you have
methods that don't access the data you're trying to protect, then you don't
need to synchronize them. Synchronization can cause a hit in some cases (or
even deadlock if used incorrectly), so you should be careful not to overuse it.

■ If a thread goes to sleep, it holds any locks it has—it doesn't release them.

■ A thread can acquire more than one lock. For example, a thread can enter a
synchronized method, thus acquiring a lock, and then immediately invoke
a synchronized method on a different object, thus acquiring that lock as
well. As the stack unwinds, locks are released again. Also, if a thread acquires
a lock and then attempts to call a synchronized method on that same
object, no problem. The JVM knows that this thread already has the lock for
this object, so the thread is free to call other synchronized methods on the
same object, using the lock the thread already has.

■ You can synchronize a block of code rather than a method.

Because synchronization does hurt concurrency, you don't want to synchronize
any more code than is necessary to protect your data. So if the scope of a method is
more than needed, you can reduce the scope of the synchronized part to something
less than a full method—to just a block. We call this, strangely, a synchronized block,
and it looks like this:

class SyncTest {
 public void doStuff() {
 System.out.println("not synchronized");
 synchronized(this) {
 System.out.println("synchronized");
 }
 }
}

When a thread is executing code from within a synchronized block, including
any method code invoked from that synchronized block, the code is said to be
executing in a synchronized context. The real question is, synchronized on what? Or,
synchronized on which object's lock?

When you synchronize a method, the object used to invoke the method is the
object whose lock must be acquired. But when you synchronize a block of code, you

specify which object's lock you want to use as the lock, so you could, for example,
use some third-party object as the lock for this piece of code. That gives you the
ability to have more than one lock for code synchronization within a single object.

Or you can synchronize on the current instance (this) as in the code above.
Since that's the same instance that synchronized methods lock on, it means that
you could always replace a synchronized method with a non-synchronized
method containing a synchronized block. In other words, this:

public synchronized void doStuff() {
 System.out.println("synchronized");
}

is equivalent to this:

public void doStuff() {
 synchronized(this) {
 System.out.println("synchronized");
 }
}

These methods both have the exact same effect, in practical terms. The compiled
bytecodes may not be exactly the same for the two methods, but they could be—and
any differences are not really important. The first form is shorter and more familiar
to most people, but the second can be more flexible.

So What About Static Methods? Can They Be Synchronized?
static methods can be synchronized. There is only one copy of the static data
you're trying to protect, so you only need one lock per class to synchronize static
methods—a lock for the whole class. There is such a lock; every class loaded in Java
has a corresponding instance of java.lang.Class representing that class. It's that
java.lang.Class instance whose lock is used to protect the static methods of
the class (if they're synchronized). There's nothing special you have to do to
synchronize a static method:

public static synchronized int getCount() {
 return count;
}

Synchronization and Locks (Exam Objective 4.3) 737

738 Chapter 9: Threads

Again, this could be replaced with code that uses a synchronized block. If the
method is defined in a class called MyClass, the equivalent code is as follows:

public static int getCount() {
 synchronized(MyClass.class) {
 return count;
 }
}

Wait—what's that MyClass.class thing? That's called a class literal. It's a
special feature in the Java language that tells the compiler (who tells the JVM): go
and find me the instance of Class that represents the class called MyClass. You can
also do this with the following code:

public static void classMethod() {
 Class cl = Class.forName("MyClass");
 synchronized (cl) {
 // do stuff
 }
}

However that's longer, ickier, and most important, not on the SCJP exam. But
it's quick and easy to use a class literal—just write the name of the class, and add
.class at the end. No quotation marks needed. Now you've got an expression for
the Class object you need to synchronize on.

EXERCISE 9-2

Synchronizing a Block of Code
In this exercise we will attempt to synchronize a block of code. Within that block of
code we will get the lock on an object, so that other threads cannot modify it while
the block of code is executing. We will be creating three threads that will all attempt
to manipulate the same object. Each thread will output a single letter 100 times, and
then increment that letter by one. The object we will be using is StringBuffer.

We could synchronize on a String object, but strings cannot be modified once
they are created, so we would not be able to increment the letter without generating
a new String object. The final output should have 100 As, 100 Bs, and 100 Cs all in
unbroken lines.

 1. Create a class and extend the Thread class.

 2. Override the run() method of Thread. This is where the synchronized
 block of code will go.

 3. For our three thread objects to share the same object, we will need to create
 a constructor that accepts a StringBuffer object in the argument.

 4. The synchronized block of code will obtain a lock on the StringBuffer
 object from step 3.

 5. Within the block, output the StringBuffer 100 times and then increment
 the letter in the StringBuffer. You can check Chapter 6 for StringBuffer
 methods that will help with this.

 6. Finally, in the main() method, create a single StringBuffer object using the
 letter A, then create three instances of our class and start all three of them.

What Happens If a Thread Can't Get the Lock?
If a thread tries to enter a synchronized method and the lock is already taken, the
thread is said to be blocked on the object's lock. Essentially, the thread goes into a
kind of pool for that particular object and has to sit there until the lock is released
and the thread can again become runnable/running. Just because a lock is released
doesn't mean any particular thread will get it. There might be three threads waiting
for a single lock, for example, and there's no guarantee that the thread that has
waited the longest will get the lock first.

When thinking about blocking, it's important to pay attention to which objects
are being used for locking.

■ Threads calling non-static synchronized methods in the same class will
only block each other if they're invoked using the same instance. That's
because they each lock on this instance, and if they're called using two dif-
ferent instances, they get two locks, which do not interfere with each other.

■ Threads calling static synchronized methods in the same class will always
block each other—they all lock on the same Class instance.

■ A static synchronized method and a non-static synchronized method
will not block each other, ever. The static method locks on a Class
instance while the non-static method locks on the this instance—these
actions do not interfere with each other at all.

Synchronization and Locks (Exam Objective 4.3) 739

740 Chapter 9: Threads

■ For synchronized blocks, you have to look at exactly what object has been
used for locking. (What's inside the parentheses after the word synchro-
nized?) Threads that synchronize on the same object will block each other.
Threads that synchronize on different objects will not.

Table 9-1 lists the thread-related methods and whether the thread gives up its
lock as a result of the call.

So When Do I Need to Synchronize?
Synchronization can get pretty complicated, and you may be wondering why you
would want to do this at all if you can help it. But remember the earlier "race
conditions" example with Lucy and Fred making withdrawals from their account.
When we use threads, we usually need to use some synchronization somewhere to
make sure our methods don't interrupt each other at the wrong time and mess up our
data. Generally, any time more than one thread is accessing mutable (changeable)
data, you synchronize to protect that data, to make sure two threads aren't changing
it at the same time (or that one isn't changing it at the same time the other is
reading it, which is also confusing). You don't need to worry about local variables—
each thread gets its own copy of a local variable. Two threads executing the same
method at the same time will use different copies of the local variables, and they
won't bother each other. However, you do need to worry about static and non-
static fields, if they contain data that can be changed.

For changeable data in a non-static field, you usually use a non-static method
to access it. By synchronizing that method, you will ensure that any threads trying

Give Up Locks Keep Locks
Class Defining
the Method

wait () notify() (Although the thread will probably
exit the synchronized code shortly after this call,
and thus give up its locks.)

java.lang.Object

 join() java.lang.Thread

 sleep() java.lang.Thread

yield() java.lang.Thread

 TABLE 9-1 Methods and Lock Status

to run that method using the same instance will be prevented from simultaneous
access. But a thread working with a different instance will not be affected, because
it's acquiring a lock on the other instance. That's what we want—threads working
with the same data need to go one at a time, but threads working with different data
can just ignore each other and run whenever they want to; it doesn't matter.

For changeable data in a static field, you usually use a static method to access it.
And again, by synchronizing the method you ensure that any two threads trying to
access the data will be prevented from simultaneous access, because both threads will
have to acquire locks on the Class object for the class the static method's defined
in. Again, that's what we want.

However—what if you have a non-static method that accesses a static field?
Or a static method that accesses a non-static field (using an instance)? In
these cases things start to get messy quickly, and there's a very good chance that
things will not work the way you want. If you've got a static method accessing a
non-static field, and you synchronize the method, you acquire a lock on the Class
object. But what if there's another method that also accesses the non-static field,
this time using a non-static method? It probably synchronizes on the current
instance (this) instead. Remember that a static synchronized method and a
non-static synchronized method will not block each other—they can run at
the same time. Similarly, if you access a static field using a non-static method,
two threads might invoke that method using two different this instances. Which
means they won't block each other, because they use different locks. Which means
two threads are simultaneously accessing the same static field—exactly the sort of
thing we're trying to prevent.

It gets very confusing trying to imagine all the weird things that can happen here.
To keep things simple: in order to make a class thread-safe, methods that access
changeable fields need to be synchronized.

Access to static fields should be done from static synchronized methods. Access
to non-static fields should be done from non-static synchronized methods. For
example:

public class Thing {
 private static int staticField;
 private int nonstaticField;
 public static synchronized int getStaticField() {
 return staticField;
 }
 public static synchronized void setStaticField(
 int staticField) {

Synchronization and Locks (Exam Objective 4.3) 741

742 Chapter 9: Threads

 Thing.staticField = staticField;
 }
 public synchronized int getNonstaticField() {
 return nonstaticField;
 }
 public synchronized void setNonstaticField(
 int nonstaticField) {
 this.nonstaticField = nonstaticField;
 }
}

What if you need to access both static and non-static fields in a method?
Well, there are ways to do that, but it's beyond what you need for the exam. You
will live a longer, happier life if you JUST DON'T DO IT. Really. Would we lie?

Thread-Safe Classes
When a class has been carefully synchronized to protect its data (using the rules
just given, or using more complicated alternatives), we say the class is "thread-safe."
Many classes in the Java APIs already use synchronization internally in order to
make the class "thread-safe." For example, StringBuffer and StringBuilder are nearly
identical classes, except that all the methods in StringBuffer are synchronized
when necessary, while those in StringBuilder are not. Generally, this makes
StringBuffer safe to use in a multithreaded environment, while StringBuilder is not.
(In return, StringBuilder is a little bit faster because it doesn't bother synchronizing.)
However, even when a class is "thread-safe," it is often dangerous to rely on these
classes to provide the thread protection you need. (C'mon, the repeated quotes
used around "thread-safe" had to be a clue, right?) You still need to think carefully
about how you use these classes, As an example, consider the following class.

import java.util.*;
public class NameList {
 private List names = Collections.synchronizedList(
 new LinkedList());
 public void add(String name) {
 names.add(name);
 }
 public String removeFirst() {
 if (names.size() > 0)
 return (String) names.remove(0);
 else
 return null;

 }
}

The method Collections.synchronizedList() returns a List whose methods
are all synchronized and "thread-safe" according to the documentation (like a
Vector—but since this is the 21st century, we're not going to use a Vector here).
The question is, can the NameList class be used safely from multiple threads? It's
tempting to think that yes, since the data in names is in a synchronized collection,
the NameList class is "safe" too. However that's not the case—the removeFirst()
may sometimes throw a NoSuchElementException. What's the problem? Doesn't it
correctly check the size() of names before removing anything, to make sure there's
something there? How could this code fail? Let's try to use NameList like this:

public static void main(String[] args) {
 final NameList nl = new NameList();
 nl.add("Ozymandias");
 class NameDropper extends Thread {
 public void run() {
 String name = nl.removeFirst();
 System.out.println(name);
 }
 }
 Thread t1 = new NameDropper();
 Thread t2 = new NameDropper();
 t1.start();
 t2.start();
}

What might happen here is that one of the threads will remove the one name
and print it, then the other will try to remove a name and get null. If we think just
about the calls to names.size() and names.get(0), they occur in this order:

Thread t1 executes names.size(), which returns 1.
Thread t1 executes names.remove(0), which returns Ozymandias.
Thread t2 executes names.size(), which returns 0.
Thread t2 does not call remove(0).

The output here is

Ozymandias

null

Synchronization and Locks (Exam Objective 4.3) 743

744 Chapter 9: Threads

However, if we run the program again something different might happen:

Thread t1 executes names.size(), which returns 1.
Thread t2 executes names.size(), which returns 1.
Thread t1 executes names.remove(0), which returns Ozymandias.
Thread t2 executes names.remove(0), which throws an exception because the

 list is now empty.

The thing to realize here is that in a "thread-safe" class like the one returned by
synchronizedList(), each individual method is synchronized. So names.size()
is synchronized, and names.remove(0) is synchronized. But nothing prevents
another thread from doing something else to the list in between those two calls. And
that's where problems can happen.

There's a solution here: don't rely on Collections.synchronizedList().
Instead, synchronize the code yourself:

import java.util.*;
public class NameList {
 private List names = new LinkedList();
 public synchronized void add(String name) {
 names.add(name);
 }
 public synchronized String removeFirst() {
 if (names.size() > 0)
 return (String) names.remove(0);
 else
 return null;
 }
}

Now the entire removeFirst() method is synchronized, and once one thread
starts it and calls names.size(), there's no way the other thread can cut in and
steal the last name. The other thread will just have to wait until the first thread
completes the removeFirst() method.

The moral here is that just because a class is described as "thread-safe" doesn't
mean it is always thread-safe. If individual methods are synchronized, that may not
be enough—you may be better off putting in synchronization at a higher level (i.e.,
put it in the block or method that calls the other methods). Once you do that, the
original synchronization (in this case, the synchronization inside the object returned
by Collections.synchronizedList()) may well become redundant.

Thread Deadlock
Perhaps the scariest thing that can happen to a Java program is deadlock. Deadlock
occurs when two threads are blocked, with each waiting for the other's lock. Neither
can run until the other gives up its lock, so they'll sit there forever.

This can happen, for example, when thread A hits synchronized code, acquires
a lock B, and then enters another method (still within the synchronized code it
has the lock on) that's also synchronized. But thread A can't get the lock to enter
this synchronized code—block C—because another thread D has the lock already.
So thread A goes off to the waiting-for-the-C-lock pool, hoping that thread D will
hurry up and release the lock (by completing the synchronized method). But
thread A will wait a very long time indeed, because while thread D picked up lock
C, it then entered a method synchronized on lock B. Obviously, thread D can't
get the lock B because thread A has it. And thread A won't release it until thread D
releases lock C. But thread D won't release lock C until after it can get lock B and
continue. And there they sit. The following example demonstrates deadlock:

 1. public class DeadlockRisk {
 2. private static class Resource {
 3. public int value;
 4. }
 5. private Resource resourceA = new Resource();
 6. private Resource resourceB = new Resource();
 7. public int read() {
 8. synchronized(resourceA) { // May deadlock here
 9. synchronized(resourceB) {
10. return resourceB.value + resourceA.value;
11. }
12. }
13. }
14.
15. public void write(int a, int b) {
16. synchronized(resourceB) { // May deadlock here
17. synchronized(resourceA) {
18. resourceA.value = a;
19. resourceB.value = b;
20. }
21. }
22. }
23. }

Thread Deadlock (Exam Objective 4.3) 745

746 Chapter 9: Threads

Assume that read() is started by one thread and write() is started by another.
If there are two different threads that may read and write independently, there is a
risk of deadlock at line 8 or 16. The reader thread will have resourceA, the writer
thread will have resourceB, and both will get stuck waiting for the other.

Code like this almost never results in deadlock because the CPU has to switch
from the reader thread to the writer thread at a particular point in the code, and the
chances of deadlock occurring are very small. The application may work fine 99.9
percent of the time.

The preceding simple example is easy to fix; just swap the order of locking for
either the reader or the writer at lines 16 and 17 (or lines 8 and 9). More complex
deadlock situations can take a long time to figure out.

Regardless of how little chance there is for your code to deadlock, the bottom
line is, if you deadlock, you're dead. There are design approaches that can help avoid
deadlock, including strategies for always acquiring locks in a predetermined order.

But that's for you to study and is beyond the scope of this book. We're just trying
to get you through the exam. If you learn everything in this chapter, though, you'll
still know more about threads than most experienced Java programmers.

CERTIFICATION OBJECTIVE

Thread Interaction (Objective 4.4)
4.4 Given a scenario, write code that makes appropriate use of wait, notify. or notifyAll.

The last thing we need to look at is how threads can interact with one another
to communicate about—among other things—their locking status. The Object
class has three methods, wait(), notify(), and notifyAll() that help threads
communicate about the status of an event that the threads care about. For example,
if one thread is a mail-delivery thread and one thread is a mail-processor thread,
the mail-processor thread has to keep checking to see if there's any mail to process.
Using the wait and notify mechanism, the mail-processor thread could check for
mail, and if it doesn't find any it can say, "Hey, I'm not going to waste my time
checking for mail every two seconds. I'm going to go hang out, and when the mail
deliverer puts something in the mailbox, have him notify me so I can go back to
runnable and do some work." In other words, using wait() and notify() lets one

thread put itself into a "waiting room" until some other thread notifies it that there's
a reason to come back out.

One key point to remember (and keep in mind for the exam) about wait/notify
is this:

 wait(), notify(), and notifyAll() must be called from within a synchronized
context! A thread can't invoke a wait or notify method on an object unless it owns
that object's lock.

Here we'll present an example of two threads that depend on each other to
proceed with their execution, and we'll show how to use wait() and notify() to
make them interact safely and at the proper moment.

Think of a computer-controlled machine that cuts pieces of fabric into different
shapes and an application that allows users to specify the shape to cut. The current
version of the application has one thread, which loops, first asking the user for
instructions, and then directs the hardware to cut the requested shape:

public void run(){
 while(true){
 // Get shape from user
 // Calculate machine steps from shape
 // Send steps to hardware
 }
}

This design is not optimal because the user can't do anything while the machine
is busy and while there are other shapes to define. We need to improve the situation.

A simple solution is to separate the processes into two different threads, one of
them interacting with the user and another managing the hardware. The user thread
sends the instructions to the hardware thread and then goes back to interacting with
the user immediately. The hardware thread receives the instructions from the user
thread and starts directing the machine immediately. Both threads use a common
object to communicate, which holds the current design being processed.

The following pseudocode shows this design:

public void userLoop(){
 while(true){
 // Get shape from user
 // Calculate machine steps from shape
 // Modify common object with new machine steps

Thread Interaction (Exam Objective 4.4) 747

748 Chapter 9: Threads

 }
}

public void hardwareLoop(){
 while(true){
 // Get steps from common object
 // Send steps to hardware
 }
}

The problem now is to get the hardware thread to process the machine steps as
soon as they are available. Also, the user thread should not modify them until they
have all been sent to the hardware. The solution is to use wait() and notify(),
and also to synchronize some of the code.

The methods wait() and notify(), remember, are instance methods of Object.
In the same way that every object has a lock, every object can have a list of threads
that are waiting for a signal (a notification) from the object. A thread gets on
this waiting list by executing the wait() method of the target object. From that
moment, it doesn't execute any further instructions until the notify() method of
the target object is called. If many threads are waiting on the same object, only one
will be chosen (in no guaranteed order) to proceed with its execution. If there are
no threads waiting, then no particular action is taken. Let's take a look at some real
code that shows one object waiting for another object to notify it (take note, it is
somewhat complex):

 1. class ThreadA {
 2. public static void main(String [] args) {
 3. ThreadB b = new ThreadB();
 4. b.start();
 5.
 6. synchronized(b) {
 7. try {
 8. System.out.println("Waiting for b to complete...");
 9. b.wait();
10. } catch (InterruptedException e) {}
11. System.out.println("Total is: " + b.total);
12. }
13. }
14. }
15.
16. class ThreadB extends Thread {
17. int total;

18.
19. public void run() {
20. synchronized(this) {
21. for(int i=0;i<100;i++) {
22. total += i;
23. }
24. notify();
25. }
26. }
27. }

This program contains two objects with threads: ThreadA contains the main
thread and ThreadB has a thread that calculates the sum of all numbers from 0
through 99. As soon as line 4 calls the start() method, ThreadA will continue
with the next line of code in its own class, which means it could get to line 11
before ThreadB has finished the calculation. To prevent this, we use the wait()
method in line 9.

Notice in line 6 the code synchronizes itself with the object b—this is because in
order to call wait() on the object, ThreadA must own a lock on b. For a thread to
call wait() or notify(), the thread has to be the owner of the lock for that object.
When the thread waits, it temporarily releases the lock for other threads to use, but
it will need it again to continue execution. It's common to find code like this:

synchronized(anotherObject) { // this has the lock on anotherObject
 try {
 anotherObject.wait();
 // the thread releases the lock and waits
 // To continue, the thread needs the lock,
 // so it may be blocked until it gets it.
 } catch(InterruptedException e){}
}

The preceding code waits until notify() is called on anotherObject.

synchronized(this) { notify(); }

This code notifies a single thread currently waiting on the this object. The
lock can be acquired much earlier in the code, such as in the calling method.
Note that if the thread calling wait() does not own the lock, it will throw an
IllegalMonitorStateException. This exception is not a checked exception,

Thread Interaction (Exam Objective 4.4) 749

750 Chapter 9: Threads

so you don't have to catch it explicitly. You should always be clear whether a thread
has the lock of an object in any given block of code.

Notice in lines 7–10 there is a try/catch block around the wait() method.
A waiting thread can be interrupted in the same way as a sleeping thread, so you
have to take care of the exception:

try {
 wait();
} catch(InterruptedException e) {
 // Do something about it

}

In the fabric example, the way to use these methods is to have the hardware
thread wait on the shape to be available and the user thread to notify after it has
written the steps. The machine steps may comprise global steps, such as moving the
required fabric to the cutting area, and a number of substeps, such as the direction
and length of a cut. As an example they could be

int fabricRoll;
int cuttingSpeed;
Point startingPoint;
float[] directions;
float[] lengths;
etc..

It is important that the user thread does not modify the machine steps while the
hardware thread is using them, so this reading and writing should be synchronized.

The resulting code would look like this:

class Operator extends Thread {
 public void run(){
 while(true){
 // Get shape from user
 synchronized(this){
 // Calculate new machine steps from shape
 notify();
 }
 }
 }
}
class Machine extends Thread {
 Operator operator; // assume this gets initialized

 public void run(){
 while(true){
 synchronized(operator){
 try {
 operator.wait();
 } catch(InterruptedException ie) {}
 // Send machine steps to hardware
 }
 }
 }

}

The machine thread, once started, will immediately go into the waiting state and
will wait patiently until the operator sends the first notification. At that point it is
the operator thread that owns the lock for the object, so the hardware thread gets
stuck for a while. It's only after the operator thread abandons the synchronized
block that the hardware thread can really start processing the machine steps.

While one shape is being processed by the hardware, the user may interact
with the system and specify another shape to be cut. When the user is finished
with the shape and it is time to cut it, the operator thread attempts to enter the
synchronized block, maybe blocking until the machine thread has finished with
the previous machine steps. When the machine thread has finished, it repeats the
loop, going again to the waiting state (and therefore releasing the lock). Only then
can the operator thread enter the synchronized block and overwrite the machine
steps with the new ones.

Having two threads is definitely an improvement over having one, although in
this implementation there is still a possibility of making the user wait. A further
improvement would be to have many shapes in a queue, thereby reducing the
possibility of requiring the user to wait for the hardware.

There is also a second form of wait() that accepts a number of milliseconds
as a maximum time to wait. If the thread is not interrupted, it will continue
normally whenever it is notified or the specified timeout has elapsed. This normal
continuation consists of getting out of the waiting state, but to continue execution it
will have to get the lock for the object:

 synchronized(a){ // The thread gets the lock on 'a'
 a.wait(2000); // Thread releases the lock and waits for notify
 // only for a maximum of two seconds, then goes back to Runnable
 // The thread reacquires the lock

 // More instructions here
 }

Thread Interaction (Exam Objective 4.4) 751

752 Chapter 9: Threads

Using notifyAll() When Many Threads May Be Waiting
In most scenarios, it's preferable to notify all of the threads that are waiting on a
particular object. If so, you can use notifyAll() on the object to let all the threads
rush out of the waiting area and back to runnable. This is especially important if you
have several threads waiting on one object, but for different reasons, and you want
to be sure that the right thread (along with all of the others) gets notified.

notifyAll(); // Will notify all waiting threads

All of the threads will be notified and start competing to get the lock. As the lock
is used and released by each thread, all of them will get into action without a need
for further notification.

As we said earlier, an object can have many threads waiting on it, and using
notify() will affect only one of them. Which one, exactly, is not specified and
depends on the JVM implementation, so you should never rely on a particular
thread being notified in preference to another.

In cases in which there might be a lot more waiting, the best way to do this is by
using notifyAll(). Let's take a look at this in some code. In this example, there is
one class that performs a calculation and many readers that are waiting to receive
the completed calculation. At any given moment many readers may be waiting.

 1. class Reader extends Thread {
 2. Calculator c;
 3.
 4. public Reader(Calculator calc) {
 5. c = calc;

When the wait() method is invoked on an object, the thread executing
that code gives up its lock on the object immediately. However, when notify() is called,
that doesn’t mean the thread gives up its lock at that moment. If the thread is still
completing synchronized code, the lock is not released until the thread moves out of
synchronized code. So just because notify() is called doesn’t mean the lock becomes
available at that moment.

 6. }
 7.
 8. public void run() {
 9. synchronized(c) {
10. try {
11. System.out.println("Waiting for calculation...");
12. c.wait();
13. } catch (InterruptedException e) {}
14. System.out.println("Total is: " + c.total);
15. }
16. }
17.
18. public static void main(String [] args) {
19. Calculator calculator = new Calculator();
20. new Reader(calculator).start();
21. new Reader(calculator).start();
22. new Reader(calculator).start();
23. calculator.start();
24. }
25. }
26.
27. class Calculator extends Thread {
28. int total;
29.
30. public void run() {
31. synchronized(this) {
32. for(int i=0;i<100;i++) {
33. total += i;
34. }
35. notifyAll();
36. }
37. }
38. }

The program starts three threads that are all waiting to receive the finished
calculation (lines 18–24), and then starts the calculator with its calculation. Note
that if the run() method at line 30 used notify() instead of notifyAll(), only
one reader would be notified instead of all the readers.

Using wait() in a Loop
Actually both of the previous examples (Machine/Operator and Reader/Calculator)
had a common problem. In each one, there was at least one thread calling wait(),
and another thread calling notify() or notifyAll(). This works well enough

Using notifyAll() When Many Threads May Be Waiting (Exam Objective 4.4) 753

754 Chapter 9: Threads

as long as the waiting threads have actually started waiting before the other thread
executes the notify() or notifyAll(). But what happens if, for example, the
Calculator runs first and calls notify() before the Readers have started waiting?
This could happen, since we can't guarantee what order the different parts of the
thread will execute in. Unfortunately, when the Readers run, they just start waiting
right away. They don't do anything to see if the event they're waiting for has already
happened. So if the Calculator has already called notifyAll(), it's not going to
call notifyAll() again—and the waiting Readers will keep waiting forever. This
is probably not what the programmer wanted to happen. Almost always, when
you want to wait for something, you also need to be able to check if it has already
happened. Generally the best way to solve this is to put in some sort of loop that
checks on some sort of conditional expressions, and only waits if the thing you're
waiting for has not yet happened. Here's a modified, safer version of the earlier
fabric-cutting machine example:

class Operator extends Thread {
 Machine machine; // assume this gets initialized
 public void run() {
 while (true) {
 Shape shape = getShapeFromUser();
 MachineInstructions job =
 calculateNewInstructionsFor(shape);
 machine.addJob(job);
 }
 }
}

The operator will still keep on looping forever, getting more shapes from users,
calculating new instructions for those shapes, and sending them to the machine.
But now the logic for notify() has been moved into the addJob() method in the
Machine class:

class Machine extends Thread {
 List<MachineInstructions> jobs =
 new ArrayList<MachineInstructions>();

 public void addJob(MachineInstructions job) {
 synchronized (jobs) {
 jobs.add(job);
 jobs.notify();

 }
 }
 public void run() {
 while (true) {
 synchronized (jobs) {
 // wait until at least one job is available
 while (jobs.isEmpty()) {
 try {
 jobs.wait();
 } catch (InterruptedException ie) { }
 }
 // If we get here, we know that jobs is not empty
 MachineInstructions instructions = jobs.remove(0);
 // Send machine steps to hardware
 }
 }
 }
}

 A machine keeps a list of the jobs it's scheduled to do. Whenever an operator
adds a new job to the list, it calls the addJob() method and adds the new job to
the list. Meanwhile the run() method just keeps looping, looking for any jobs on
the list. If there are no jobs, it will start waiting. If it's notified, it will stop waiting
and then recheck the loop condition: is the list still empty? In practice this double-
check is probably not necessary, as the only time a notify() is ever sent is when a
new job has been added to the list. However, it's a good idea to require the thread to
recheck the isEmpty() condition whenever it's been woken up, because it's possible
that a thread has accidentally sent an extra notify() that was not intended.
There's also a possible situation called spontaneous wakeup that may exist in some
situations—a thread may wake up even though no code has called notify()
or notifyAll(). (At least, no code you know about has called these methods.
Sometimes the JVM may call notify() for reasons of its own, or code in some other
class calls it for reasons you just don't know.) What this means is, when your thread
wakes up from a wait(), you don't know for sure why it was awakened. By putting
the wait() method in a while loop and re-checking the condition that represents
what we were waiting for, we ensure that whatever the reason we woke up, we will
re-enter the wait() if (and only if) the thing we were waiting for has not happened
yet. In the Machine class, the thing we were waiting for is for the jobs list to not be
empty. If it's empty, we wait, and if it's not, we don't.

Using notifyAll() When Many Threads May Be Waiting (Exam Objective 4.4) 755

756 Chapter 9: Threads

 Note also that both the run() method and the addJob() method synchronize
on the same object—the jobs list. This is for two reasons. One is because we're
calling wait() and notify() on this instance, so we need to synchronize in order
to avoid an IllegalThreadState exception. The other reason is, the data in the jobs
list is changeable data stored in a field that is accessed by two different threads. We
need to synchronize in order to access that changeable data safely. Fortunately, the
same synchronized blocks that allow us to wait() and notify() also provide
the required thread safety for our other access to changeable data. In fact this is a
main reason why synchronization is required to use wait() and notify() in the
first place—you almost always need to share some mutable data between threads
at the same time, and that means you need synchronization. Notice that the
synchronized block in addJob() is big enough to also include the call to
jobs.add(job)—which modifies shared data. And the synchronized block in
run() is large enough to include the whole while loop—which includes the call to
jobs.isEmpty(), which accesses shared data.

 The moral here is that when you use wait() and notify() or notifyAll(),
you should almost always also have a while loop around the wait() that checks a
condition and forces continued waiting until the condition is met. And you should
also make use of the required synchronization for the wait() and notify() calls,
to also protect whatever other data you're sharing between threads. If you see code
which fails to do this, there's usually something wrong with the code—even if you
have a hard time seeing what exactly the problem is.

The methods wait() , notify(), and notifyAll() are methods of only
java.lang.Object, not of java.lang.Thread or java.lang.Runnable. Be sure you know which
methods are defi ned in Thread, which in Object, and which in Runnable (just run(), so
that’s an easy one). Of the key methods in Thread, be sure you know which are static—
sleep() and yield(), and which are not static—join() and start(). Table 9-2 lists the
key methods you’ll need to know for the exam, with the static methods shown in italics.

CERTIFICATION SUMMARY
This chapter covered the required thread knowledge you'll need to apply on the
certification exam. Threads can be created by either extending the Thread class or
implementing the Runnable interface. The only method that must be overridden in
the Runnable interface is the run() method, but the thread doesn't become a thread
of execution until somebody calls the Thread object's start() method. We also
looked at how the sleep() method can be used to pause a thread, and we saw that
when an object goes to sleep, it holds onto any locks it acquired prior to sleeping.

We looked at five thread states: new, runnable, running, blocked/waiting/sleeping,
and dead. You learned that when a thread is dead, it can never be restarted even if
it's still a valid object on the heap. We saw that there is only one way a thread can
transition to running, and that's from runnable. However, once running, a thread
can become dead, go to sleep, wait for another thread to finish, block on an object's
lock, wait for a notification, or return to runnable.

You saw how two threads acting on the same data can cause serious problems
(remember Lucy and Fred's bank account?). We saw that, to let one thread execute
a method, but prevent other threads from running the same object's method, we use
the synchronized keyword. To coordinate activity between different threads, use
the wait(), notify(), and notifyAll() methods.

Class Object Class Thread Interface Runnable

wait () start() run()

notify() yield()

notifyAll() sleep()

join()

 TABLE 9-2 Key Thread Methods

Certifi cation Summary 757

758 Chapter 9: Threads

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
Photocopy it and sleep with it under your pillow for complete absorption.

Defining, Instantiating, and Starting Threads (Objective 4.1)
❑ Threads can be created by extending Thread and overriding the

public void run() method.
❑ Thread objects can also be created by calling the Thread constructor that

takes a Runnable argument. The Runnable object is said to be the target of
the thread.

❑ You can call start() on a Thread object only once. If start() is called
more than once on a Thread object, it will throw a RuntimeException.

❑ It is legal to create many Thread objects using the same Runnable object as
 the target.

❑ When a Thread object is created, it does not become a thread of execution
until its start() method is invoked. When a Thread object exists but hasn't
been started, it is in the new state and is not considered alive.

Transitioning Between Thread States (Objective 4.2)
❑ Once a new thread is started, it will always enter the runnable state.
❑ The thread scheduler can move a thread back and forth between the

runnable state and the running state.
❑ For a typical single-processor machine, only one thread can be running at a

time, although many threads may be in the runnable state.
❑ There is no guarantee that the order in which threads were started

determines the order in which they'll run.
❑ There's no guarantee that threads will take turns in any fair way. It's up

to the thread scheduler, as determined by the particular virtual machine
implementation. If you want a guarantee that your threads will take turns
regardless of the underlying JVM, you can use the sleep() method. This
prevents one thread from hogging the running process while another thread
starves. (In most cases, though, yield() works well enough to encourage
your threads to play together nicely.)

❑ A running thread may enter a blocked/waiting state by a wait(), sleep(),
or join() call.

✓

❑ A running thread may enter a blocked/waiting state because it can't acquire
the lock for a synchronized block of code.

❑ When the sleep or wait is over, or an object's lock becomes available, the
thread can only reenter the runnable state. It will go directly from waiting to
running (well, for all practical purposes anyway).

❑ A dead thread cannot be started again.

Sleep, Yield, and Join (Objective 4.2)
❑ Sleeping is used to delay execution for a period of time, and no locks are

released when a thread goes to sleep.
❑ A sleeping thread is guaranteed to sleep for at least the time specified in

the argument to the sleep() method (unless it's interrupted), but there is
no guarantee as to when the newly awakened thread will actually return to
running.

❑ The sleep() method is a static method that sleeps the currently executing
thread's state. One thread cannot tell another thread to sleep.

❑ The setPriority() method is used on Thread objects to give threads
a priority of between 1 (low) and 10 (high), although priorities are not
guaranteed, and not all JVMs recognize 10 distinct priority levels—some
levels may be treated as effectively equal.

❑ If not explicitly set, a thread's priority will have the same priority as the
priority of the thread that created it.

❑ The yield() method may cause a running thread to back out if there are
runnable threads of the same priority. There is no guarantee that this will
happen, and there is no guarantee that when the thread backs out there
will be a different thread selected to run. A thread might yield and then
immediately reenter the running state.

❑ The closest thing to a guarantee is that at any given time, when a thread
is running it will usually not have a lower priority than any thread in the
runnable state. If a low-priority thread is running when a high-priority thread
enters runnable, the JVM will usually preempt the running low-priority
thread and put the high-priority thread in.

❑ When one thread calls the join() method of another thread, the currently
running thread will wait until the thread it joins with has completed. Think
of the join() method as saying, "Hey thread, I want to join on to the end
of you. Let me know when you're done, so I can enter the runnable state."

Two-Minute Drill 759

760 Chapter 9: Threads

Concurrent Access Problems and Synchronized Threads
(Objective 4.3)

❑ synchronized methods prevent more than one thread from accessing an
object's critical method code simultaneously.

❑ You can use the synchronized keyword as a method modifier, or to start a
synchronized block of code.

❑ To synchronize a block of code (in other words, a scope smaller than the
whole method), you must specify an argument that is the object whose lock
you want to synchronize on.

❑ While only one thread can be accessing synchronized code of a particular
instance, multiple threads can still access the same object's unsynchronized code.

❑ When a thread goes to sleep, its locks will be unavailable to other threads.
❑ static methods can be synchronized, using the lock from the

java.lang.Class instance representing that class.

Communicating with Objects by Waiting and Notifying
(Objective 4.4)

❑ The wait() method lets a thread say, "there's nothing for me to do now, so
put me in your waiting pool and notify me when something happens that I
care about." Basically, a wait() call means "wait me in your pool," or "add
me to your waiting list."

❑ The notify() method is used to send a signal to one and only one of the
threads that are waiting in that same object's waiting pool.

❑ The notify() method can NOT specify which waiting thread to notify.
❑ The method notifyAll() works in the same way as notify(), only it sends

the signal to all of the threads waiting on the object.
❑ All three methods—wait(), notify(), and notifyAll()—must be

called from within a synchronized context! A thread invokes wait() or
notify() on a particular object, and the thread must currently hold the lock
on that object.

Deadlocked Threads (Objective 4.3)
❑ Deadlocking is when thread execution grinds to a halt because the code is

waiting for locks to be removed from objects.
❑ Deadlocking can occur when a locked object attempts to access another

locked object that is trying to access the first locked object. In other words,
both threads are waiting for each other's locks to be released; therefore, the
locks will never be released!

❑ Deadlocking is bad. Don't do it.

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. If you have a rough time with some of these at first, don't beat yourself up. Some of these
questions are long and intricate, expect long and intricate questions on the real exam too!

 1. The following block of code creates a Thread using a Runnable target:

Runnable target = new MyRunnable();
Thread myThread = new Thread(target);

 Which of the following classes can be used to create the target, so that the preceding code
compiles correctly?

 A. public class MyRunnable extends Runnable{public void run(){}}

 B. public class MyRunnable extends Object{public void run(){}}

 C. public class MyRunnable implements Runnable{public void run(){}}

 D. public class MyRunnable implements Runnable{void run(){}}

 E. public class MyRunnable implements Runnable{public void start(){}}

 2. Given:

 3. class MyThread extends Thread {
 4. public static void main(String [] args) {
 5. MyThread t = new MyThread();
 6. Thread x = new Thread(t);
 7. x.start();
 8. }
 9. public void run() {
10. for(int i=0;i<3;++i) {
11. System.out.print(i + "..");
12. }
13. }
14. }

 What is the result of this code?
 A. Compilation fails
 B. 1..2..3..
 C. 0..1..2..3..
 D. 0..1..2..
 E. An exception occurs at runtime

Self Test 761

762 Chapter 9: Threads

 3. Given:

 3. class Test {
 4. public static void main(String [] args) {
 5. printAll(args);
 6. }
 7. public static void printAll(String[] lines) {
 8. for(int i=0;i<lines.length;i++){
 9. System.out.println(lines[i]);
10. Thread.currentThread().sleep(1000);
11. }
12. }
13. }

 The static method Thread.currentThread() returns a reference to the currently executing
Thread object. What is the result of this code?

 A. Each String in the array lines will output, with a 1-second pause between lines

 B. Each String in the array lines will output, with no pause in between because this method
is not executed in a Thread

 C. Each String in the array lines will output, and there is no guarantee there will be a pause
because currentThread() may not retrieve this thread

 D. This code will not compile

 E. Each String in the lines array will print, with at least a one-second pause between lines

 4. Assume you have a class that holds two private variables: a and b. Which of the following
pairs can prevent concurrent access problems in that class? (Choose all that apply.)

 A. public int read(){return a+b;}
public void set(int a, int b){this.a=a;this.b=b;}

 B. public synchronized int read(){return a+b;}
public synchronized void set(int a, int b){this.a=a;this.b=b;}

 C. public int read(){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(a){this.a=a;this.b=b;}}

 D. public int read(){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(b){this.a=a;this.b=b;}}

 E. public synchronized(this) int read(){return a+b;}
public synchronized(this) void set(int a, int b){this.a=a;this.b=b;}

 F. public int read(){synchronized(this){return a+b;}}
public void set(int a, int b){synchronized(this){this.a=a;this.b=b;}}

 5. Given:

 1. public class WaitTest {
 2. public static void main(String [] args) {
 3. System.out.print("1 ");
 4. synchronized(args){
 5. System.out.print("2 ");
 6. try {
 7. args.wait();
 8. }
 9. catch(InterruptedException e){}
10. }
11. System.out.print("3 ");
12. }
13. }

 What is the result of trying to compile and run this program?

 A. It fails to compile because the IllegalMonitorStateException of wait() is not dealt
with in line 7

 B. 1 2 3

 C. 1 3

 D. 1 2

 E. At runtime, it throws an IllegalMonitorStateException when trying to wait

 F. It will fail to compile because it has to be synchronized on the this object

 6. Assume the following method is properly synchronized and called from a thread A on an object B:

wait(2000);

 After calling this method, when will the thread A become a candidate to get another turn at
the CPU?

 A. After object B is notified, or after two seconds

 B. After the lock on B is released, or after two seconds

 C. Two seconds after object B is notified

 D. Two seconds after lock B is released

Self Test 763

764 Chapter 9: Threads

 7. Which are true? (Choose all that apply.)

 A. The notifyAll() method must be called from a synchronized context

 B. To call wait(), an object must own the lock on the thread

 C. The notify() method is defined in class java.lang.Thread

 D. When a thread is waiting as a result of wait(), it releases its lock

 E. The notify() method causes a thread to immediately release its lock

 F. The difference between notify() and notifyAll() is that notifyAll() notifies all
waiting threads, regardless of the object they're waiting on

 8. Given the scenario: This class is intended to allow users to write a series of messages, so that
each message is identified with a timestamp and the name of the thread that wrote the message:

public class Logger {
 private StringBuilder contents = new StringBuilder();
 public void log(String message) {
 contents.append(System.currentTimeMillis());
 contents.append(": ");
 contents.append(Thread.currentThread().getName());
 contents.append(message);
 contents.append("\n");
 }
 public String getContents() { return contents.toString(); }
}

 How can we ensure that instances of this class can be safely used by multiple threads?

 A. This class is already thread-safe

 B. Replacing StringBuilder with StringBuffer will make this class thread-safe

 C. Synchronize the log() method only

 D. Synchronize the getContents() method only

 E. Synchronize both log() and getContents()

 F. This class cannot be made thread-safe

 9. Given:

public static synchronized void main(String[] args) throws
InterruptedException {
 Thread t = new Thread();
 t.start();
 System.out.print("X");
 t.wait(10000);
 System.out.print("Y");
}

 What is the result of this code?

 A. It prints X and exits

 B. It prints X and never exits

 C. It prints XY and exits almost immeditately

 D. It prints XY with a 10-second delay between X and Y

 E. It prints XY with a 10000-second delay between X and Y

 F. The code does not compile

 G. An exception is thrown at runtime

 10. Given:

class MyThread extends Thread {
 MyThread() {
 System.out.print(" MyThread");
 }
 public void run() {
 System.out.print(" bar");
 }
 public void run(String s) {
 System.out.print(" baz");
 }
}
public class TestThreads {
 public static void main (String [] args) {
 Thread t = new MyThread() {
 public void run() {
 System.out.print(" foo");
 }
 };
 t.start();
} }

Self Test 765

766 Chapter 9: Threads

 What is the result?

 A. foo

 B. MyThread foo

 C. MyThread bar

 D. foo bar

 E. foo bar baz

 F. bar foo

 G. Compilation fails

 H. An exception is thrown at runtime

 11. Given:

public class ThreadDemo {
 synchronized void a() { actBusy(); }
 static synchronized void b() { actBusy(); }
 static void actBusy() {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 public static void main(String[] args) {
 final ThreadDemo x = new ThreadDemo();
 final ThreadDemo y = new ThreadDemo();
 Runnable runnable = new Runnable() {
 public void run() {
 int option = (int) (Math.random() * 4);
 switch (option) {
 case 0: x.a(); break;
 case 1: x.b(); break;
 case 2: y.a(); break;
 case 3: y.b(); break;
 }
 }
 };
 Thread thread1 = new Thread(runnable);
 Thread thread2 = new Thread(runnable);
 thread1.start();
 thread2.start();
 }
}

 Which of the following pairs of method invocations could NEVER be executing at the same time?
(Choose all that apply.)

 A. x.a() in thread1, and x.a() in thread2

 B. x.a() in thread1, and x.b() in thread2

 C. x.a() in thread1, and y.a() in thread2

 D. x.a() in thread1, and y.b() in thread2

 E. x.b() in thread1, and x.a() in thread2

 F. x.b() in thread1, and x.b() in thread2

 G. x.b() in thread1, and y.a() in thread2

 H. x.b() in thread1, and y.b() in thread2

 12. Given:

public class TwoThreads {
 static Thread laurel, hardy;
 public static void main(String[] args) {
 laurel = new Thread() {
 public void run() {
 System.out.println("A");
 try {
 hardy.sleep(1000);
 } catch (Exception e) {
 System.out.println("B");
 }
 System.out.println("C");
 }
 };
 hardy = new Thread() {
 public void run() {
 System.out.println("D");
 try {
 laurel.wait();
 } catch (Exception e) {
 System.out.println("E");
 }
 System.out.println("F");
 }
 };
 laurel.start();
 hardy.start();
 }
}

Self Test 767

768 Chapter 9: Threads

 Which letters will eventually appear somewhere in the output? (Choose all that apply.)

 A. A

 B. B

 C. C

 D. D

 E. E

 F. F

 G. The answer cannot be reliably determined

 H. The code does not compile

 13. Given:

 3. public class Starter implements Runnable {
 4. void go(long id) {
 5. System.out.println(id);
 6. }
 7. public static void main(String[] args) {
 8. System.out.print(Thread.currentThread().getId() + " ");
 9. // insert code here
10. }
11. public void run() { go(Thread.currentThread().getId()); }
12. }

 And given the following five fragments:

I. new Starter().run();
II. new Starter().start();
III. new Thread(new Starter());
IV. new Thread(new Starter()).run();
V. new Thread(new Starter()).start();

 When the five fragments are inserted, one at a time at line 9, which are true? (Choose all that apply.)

 A. All five will compile

 B. Only one might produce the output 4 4

 C. Only one might produce the output 4 2

 D. Exactly two might produce the output 4 4

 E. Exactly two might produce the output 4 2

 F. Exactly three might produce the output 4 4

 G. Exactly three might produce the output 4 2

 14. Given:

 3. public class Leader implements Runnable {
 4. public static void main(String[] args) {
 5. Thread t = new Thread(new Leader());
 6. t.start();
 7. System.out.print("m1 ");
 8. t.join();
 9. System.out.print("m2 ");
10. }
11. public void run() {
12. System.out.print("r1 ");
13. System.out.print("r2 ");
14. }
15. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output could be r1 r2 m1 m2

 C. The output could be m1 m2 r1 r2

 D. The output could be m1 r1 r2 m2

 E. The output could be m1 r1 m2 r2

 F. An exception is thrown at runtime

 15. Given:

 3. class Dudes {
 4. static long flag = 0;
 5. // insert code here
 6. if(flag == 0) flag = id;
 7. for(int x = 1; x < 3; x++) {
 8. if(flag == id) System.out.print("yo ");
 9. else System.out.print("dude ");
10. }
11. }
12. }
13. public class DudesChat implements Runnable {
14. static Dudes d;
15. public static void main(String[] args) {
16. new DudesChat().go();
17. }
18. void go() {
19. d = new Dudes();

Self Test 769

770 Chapter 9: Threads

20. new Thread(new DudesChat()).start();
21. new Thread(new DudesChat()).start();
22. }
23. public void run() {
24. d.chat(Thread.currentThread().getId());
25. }
26. }

 And given these two fragments:

I. synchronized void chat(long id) {
II. void chat(long id) {

 When fragment I or fragment II is inserted at line 5, which are true? (Choose all that apply.)

 A. An exception is thrown at runtime

 B. With fragment I, compilation fails

 C. With fragment II, compilation fails

 D. With fragment I, the output could be yo dude dude yo

 E. With fragment I, the output could be dude dude yo yo

 F. With fragment II, the output could be yo dude dude yo

 16. Given:

 3. class Chicks {
 4. synchronized void yack(long id) {
 5. for(int x = 1; x < 3; x++) {
 6. System.out.print(id + " ");
 7. Thread.yield();
 8. }
 9. }
10. }
11. public class ChicksYack implements Runnable {
12. Chicks c;
13. public static void main(String[] args) {
14. new ChicksYack().go();
15. }
16. void go() {
17. c = new Chicks();
18. new Thread(new ChicksYack()).start();
19. new Thread(new ChicksYack()).start();
20. }
21. public void run() {

22. c.yack(Thread.currentThread().getId());
23. }
24. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output could be 4 4 2 3

 C. The output could be 4 4 2 2

 D. The output could be 4 4 4 2

 E. The output could be 2 2 4 4

 F. An exception is thrown at runtime

 17. Given:

 3. public class Chess implements Runnable {
 4. public void run() {
 5. move(Thread.currentThread().getId());
 6. }
 7. // insert code here
 8. System.out.print(id + " ");
 9. System.out.print(id + " ");
10. }
11. public static void main(String[] args) {
12. Chess ch = new Chess();
13. new Thread(ch).start();
14. new Thread(new Chess()).start();
15. }
16. }

 And given these two fragments:

I. synchronized void move(long id) {
II. void move(long id) {

 When either fragment I or fragment II is inserted at line 7, which are true? (Choose all that apply.)

 A. Compilation fails

 B. With fragment I, an exception is thrown

 C. With fragment I, the output could be 4 2 4 2

 D. With fragment I, the output could be 4 4 2 3

 E. With fragment II, the output could be 2 4 2 4

Self Test 771

SELF TEST ANSWERS
 1. The following block of code creates a Thread using a Runnable target:

Runnable target = new MyRunnable();
Thread myThread = new Thread(target);

 Which of the following classes can be used to create the target, so that the preceding code
compiles correctly?

 A. public class MyRunnable extends Runnable{public void run(){}}

 B. public class MyRunnable extends Object{public void run(){}}

 C. public class MyRunnable implements Runnable{public void run(){}}

 D. public class MyRunnable implements Runnable{void run(){}}

 E. public class MyRunnable implements Runnable{public void start(){}}

Answer:

 ✓ C is correct. The class implements the Runnable interface with a legal run() method.

 A is incorrect because interfaces are implemented, not extended. B is incorrect because
even though the class has a valid public void run() method, it does not implement
the Runnable interface. D is incorrect because the run() method must be public. E is
incorrect because the method to implement is run(), not start(). (Objective 4.1)

 2. Given:

 3. class MyThread extends Thread {
 4. public static void main(String [] args) {
 5. MyThread t = new MyThread();
 6. Thread x = new Thread(t);
 7. x.start();
 8. }
 9. public void run() {
10. for(int i=0;i<3;++i) {
11. System.out.print(i + "..");
12. } } }

772 Chapter 9: Threads

 What is the result of this code?

 A. Compilation fails

 B. 1..2..3..

 C. 0..1..2..3..

 D. 0..1..2..

 E. An exception occurs at runtime

Answer:
 ✓ D is correct. The thread MyThread will start and loop three times (from 0 to 2).

 A is incorrect because the Thread class implements the Runnable interface; therefore,
in line 5, Thread can take an object of type Thread as an argument in the constructor
(this is NOT recommended). B and C are incorrect because the variable i in the for
loop starts with a value of 0 and ends with a value of 2. E is incorrect based on the above.
(Objective 4.1)

 3. Given:

 3. class Test {
 4. public static void main(String [] args) {
 5. printAll(args);
 6. }
 7. public static void printAll(String[] lines) {
 8. for(int i=0;i<lines.length;i++){
 9. System.out.println(lines[i]);
10. Thread.currentThread().sleep(1000);
11. } } }

 The static method Thread.currentThread() returns a reference to the currently executing
Thread object. What is the result of this code?

 A. Each String in the array lines will print, with exactly a 1-second pause between lines
 B. Each String in the array lines will print, with no pause in between because this method is

not executed in a Thread
 C. Each String in the array lines will print, and there is no guarantee there will be a pause

because currentThread() may not retrieve this thread
 D. This code will not compile

 E. Each String in the lines array will print, with at least a one-second pause between lines

Self Test Answers 773

774 Chapter 9: Threads

Answer:

 ✓ D is correct. The sleep() method must be enclosed in a try/catch block, or the method
printAll() must declare it throws the InterruptedException.

 E is incorrect, but it would be correct if the InterruptedException was dealt with (A is
too precise). B is incorrect (even if the InterruptedException was dealt with) because
all Java code, including the main() method, runs in threads. C is incorrect. The sleep()
method is static, it always affects the currently executing thread. (Objective 4.2)

 4. Assume you have a class that holds two private variables: a and b. Which of the following
pairs can prevent concurrent access problems in that class? (Choose all that apply.)

 A. public int read(){return a+b;}
public void set(int a, int b){this.a=a;this.b=b;}

 B. public synchronized int read(){return a+b;}
public synchronized void set(int a, int b){this.a=a;this.b=b;}

 C. public int read(){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(a){this.a=a;this.b=b;}}

 D. public int read(){synchronized(a){return a+b;}}
public void set(int a, int b){synchronized(b){this.a=a;this.b=b;}}

 E. public synchronized(this) int read(){return a+b;}
public synchronized(this) void set(int a, int b){this.a=a;this.b=b;}

 F. public int read(){synchronized(this){return a+b;}}
public void set(int a, int b){synchronized(this){this.a=a;this.b=b;}}

Answer:

 ✓ B and F are correct. By marking the methods as synchronized, the threads will get the
lock of the this object before proceeding. Only one thread will be setting or reading at any
given moment, thereby assuring that read() always returns the addition of a valid pair.

 A is incorrect because it is not synchronized; therefore, there is no guarantee that the values
added by the read() method belong to the same pair. C and D are incorrect; only objects
can be used to synchronize on. E fails —it is not possible to select other objects (even this)
to synchronize on when declaring a method as synchronized. (Objective 4.3)

 5. Given:

 1. public class WaitTest {
 2. public static void main(String [] args) {
 3. System.out.print("1 ");
 4. synchronized(args){

 5. System.out.print("2 ");
 6. try {
 7. args.wait();
 8. }
 9. catch(InterruptedException e){}
10. }
11. System.out.print("3 ");
12. } }

 What is the result of trying to compile and run this program?
 A. It fails to compile because the IllegalMonitorStateException of wait() is not dealt

with in line 7
 B. 1 2 3

 C. 1 3

 D. 1 2

 E. At runtime, it throws an IllegalMonitorStateException when trying to wait

 F. It will fail to compile because it has to be synchronized on the this object

Answer:

 ✓ D is correct. 1 and 2 will be printed, but there will be no return from the wait call because
no other thread will notify the main thread, so 3 will never be printed. It's frozen at line 7.

 A is incorrect; IllegalMonitorStateException is an unchecked exception. B and C
are incorrect; 3 will never be printed, since this program will wait forever. E is incorrect
because IllegalMonitorStateException will never be thrown because the wait()
is done on args within a block of code synchronized on args. F is incorrect because any
object can be used to synchronize on and this and static don't mix. (Objective 4.4)

 6. Assume the following method is properly synchronized and called from a thread A on an object B:

wait(2000);

 After calling this method, when will the thread A become a candidate to get another turn at
the CPU?

 A. After object B is notified, or after two seconds
 B. After the lock on B is released, or after two seconds
 C. Two seconds after object B is notified

 D. Two seconds after lock B is released

Self Test Answers 775

776 Chapter 9: Threads

Answer:

 ✓ A is correct. Either of the two events will make the thread a candidate for running again.

 B is incorrect because a waiting thread will not return to runnable when the lock is
released, unless a notification occurs. C is incorrect because the thread will become a
candidate immediately after notification. D is also incorrect because a thread will not come
out of a waiting pool just because a lock has been released. (Objective 4.4)

 7. Which are true? (Choose all that apply.)

 A. The notifyAll() method must be called from a synchronized context

 B. To call wait(), an object must own the lock on the thread

 C. The notify() method is defined in class java.lang.Thread

 D. When a thread is waiting as a result of wait(), it releases its lock

 E. The notify() method causes a thread to immediately release its lock

 F. The difference between notify() and notifyAll() is that notifyAll() notifies all
waiting threads, regardless of the object they're waiting on

Answer:

 ✓ A is correct because notifyAll() (and wait() and notify()) must be called from within
a synchronized context. D is a correct statement.

 B is incorrect because to call wait(), the thread must own the lock on the object that
wait() is being invoked on, not the other way around. C is wrong because notify() is
defined in java.lang.Object. E is wrong because notify() will not cause a thread to
release its locks. The thread can only release its locks by exiting the synchronized code. F is
wrong because notifyAll() notifies all the threads waiting on a particular locked object,
not all threads waiting on any object. (Objective 4.4)

 8. Given the scenario: This class is intended to allow users to write a series of messages, so that
each message is identified with a timestamp and the name of the thread that wrote the message:

public class Logger {
 private StringBuilder contents = new StringBuilder();
 public void log(String message) {
 contents.append(System.currentTimeMillis());
 contents.append(": ");
 contents.append(Thread.currentThread().getName());

 contents.append(message);
 contents.append("\n");
 }
 public String getContents() { return contents.toString(); }
}

 How can we ensure that instances of this class can be safely used by multiple threads?

 A. This class is already thread-safe

 B. Replacing StringBuilder with StringBuffer will make this class thread-safe

 C. Synchronize the log() method only

 D. Synchronize the getContents() method only

 E. Synchronize both log() and getContents()

 F. This class cannot be made thread-safe

Answer:
 ✓ E is correct. Synchronizing the public methods is sufficient to make this safe, so F is false.

This class is not thread-safe unless some sort of synchronization protects the changing data.
 B is not correct because although a StringBuffer is synchonized internally, we call

append() multiple times, and nothing would prevent two simultaneous log() calls from mix-
ing up their messages. C and D are not correct because if one method remains unsynchro-
nized, it can run while the other is executing, which could result in reading the contents
while one of the messages is incomplete, or worse. (You don't want to call getString() on
the StringBuffer as it's resizing its internal character array.) (Objective 4.3)

 9. Given:

public static synchronized void main(String[] args) throws
InterruptedException {
 Thread t = new Thread();
 t.start();
 System.out.print("X");
 t.wait(10000);
 System.out.print("Y");
}

 What is the result of this code?
 A. It prints X and exits
 B. It prints X and never exits
 C. It prints XY and exits almost immeditately

Self Test Answers 777

778 Chapter 9: Threads

 D. It prints XY with a 10-second delay between X and Y
 E. It prints XY with a 10000-second delay between X and Y
 F. The code does not compile
 G. An exception is thrown at runtime

Answer:
 ✓ G is correct. The code does not acquire a lock on t before calling t.wait(), so it throws an

IllegalMonitorStateException. The method is synchronized, but it's not synchronized
on t so the exception will be thrown. If the wait were placed inside a synchronized(t)
block, then the answer would have been D.

 A, B, C, D, E, and F are incorrect based the logic described above. (Objective 4.2)

 10. Given:

class MyThread extends Thread {
 MyThread() {
 System.out.print(" MyThread");
 }
 public void run() { System.out.print(" bar"); }
 public void run(String s) { System.out.print(" baz"); }
}
public class TestThreads {
 public static void main (String [] args) {
 Thread t = new MyThread() {
 public void run() { System.out.print(" foo"); }
 };
 t.start();
} }

 What is the result?
 A. foo

 B. MyThread foo

 C. MyThread bar

 D. foo bar

 E. foo bar baz

 F. bar foo

 G. Compilation fails
 H. An exception is thrown at runtime

Answer:

 ✓ B is correct. The first line of main we're constructing an instance of an anonymous inner
class extending from MyThread. So the MyThread constructor runs and prints MyThread.
Next, main() invokes start() on the new thread instance, which causes the overridden
run() method (the run() method in the anonymous inner class) to be invoked.

 A, C, D, E, F, G, and H are incorrect based on the logic described above. (Objective 4.1)

 11. Given:

public class ThreadDemo {
 synchronized void a() { actBusy(); }
 static synchronized void b() { actBusy(); }
 static void actBusy() {
 try { Thread.sleep(1000); }
 catch (InterruptedException e) {}
 }
 public static void main(String[] args) {
 final ThreadDemo x = new ThreadDemo();
 final ThreadDemo y = new ThreadDemo();
 Runnable runnable = new Runnable() {
 public void run() {
 int option = (int) (Math.random() * 4);
 switch (option) {
 case 0: x.a(); break;
 case 1: x.b(); break;
 case 2: y.a(); break;
 case 3: y.b(); break;
 } }
 };
 Thread thread1 = new Thread(runnable);
 Thread thread2 = new Thread(runnable);
 thread1.start();
 thread2.start();
} }

 Which of the following pairs of method invocations could NEVER be executing at the same time?
(Choose all that apply.)

 A. x.a() in thread1, and x.a() in thread2

 B. x.a() in thread1, and x.b() in thread2

 C. x.a() in thread1, and y.a() in thread2

Self Test Answers 779

780 Chapter 9: Threads

 D. x.a() in thread1, and y.b() in thread2

 E. x.b() in thread1, and x.a() in thread2

 F. x.b() in thread1, and x.b() in thread2

 G. x.b() in thread1, and y.a() in thread2

 H. x.b() in thread1, and y.b() in thread2

Answer:
 ✓ A, F, and H. A is a right answer because when synchronized instance methods are called

 on the same instance, they block each other. F and H can't happen because synchronized
 static methods in the same class block each other, regardless of which instance was used
 to call the methods. (An instance is not required to call static methods; only the class.)

 C could happen because synchronized instance methods called on different instances
do not block each other. B, D, E, and G could all happen because instance methods and
static methods lock on different objects, and do not block each other. (Objective 4.3)

 12. Given:

public class TwoThreads {
 static Thread laurel, hardy;
 public static void main(String[] args) {
 laurel = new Thread() {
 public void run() {
 System.out.println("A");
 try {
 hardy.sleep(1000);
 } catch (Exception e) {
 System.out.println("B");
 }
 System.out.println("C");
 }
 };
 hardy = new Thread() {
 public void run() {
 System.out.println("D");
 try {
 laurel.wait();
 } catch (Exception e) {
 System.out.println("E");
 }
 System.out.println("F");

 }
 };
 laurel.start();
 hardy.start();
 }
}

 Which letters will eventually appear somewhere in the output? (Choose all that apply.)
 A. A
 B. B

 C. C

 D. D

 E. E

 F. F

 G. The answer cannot be reliably determined

 H. The code does not compile

Answer:
 ✓ A, C, D, E, and F are correct. This may look like laurel and hardy are battling to cause

the other to sleep() or wait()—but that's not the case. Since sleep() is a static
method, it affects the current thread, which is laurel (even though the method is invoked
using a reference to hardy). That's misleading but perfectly legal, and the Thread laurel
is able to sleep with no exception, printing A and C (after at least a 1-second delay). Mean-
while hardy tries to call laurel.wait()—but hardy has not synchronized on laurel,
so calling laurel.wait() immediately causes an IllegalMonitorStateException, and
so hardy prints D, E, and F. Although the order of the output is somewhat indeterminate
(we have no way of knowing whether A is printed before D, for example) it is guaranteed
that A, C, D, E, and F will all be printed in some order, eventually—so G is incorrect.

 B, G, and H are incorrect based on the above. (Objective 4.4)

 13. Given:

 3. public class Starter implements Runnable {
 4. void go(long id) {
 5. System.out.println(id);
 6. }
 7. public static void main(String[] args) {
 8. System.out.print(Thread.currentThread().getId() + " ");
 9. // insert code here

Self Test Answers 781

782 Chapter 9: Threads

10. }
11. public void run() { go(Thread.currentThread().getId()); }
12. }

 And given the following five fragments:

I. new Starter().run();
II. new Starter().start();
III. new Thread(new Starter());
IV. new Thread(new Starter()).run();
V. new Thread(new Starter()).start();

 When the five fragments are inserted, one at a time at line 9, which are true? (Choose all that apply.)

 A. All five will compile

 B. Only one might produce the output 4 4

 C. Only one might produce the output 4 2

 D. Exactly two might produce the output 4 4

 E. Exactly two might produce the output 4 2

 F. Exactly three might produce the output 4 4

 G. Exactly three might produce the output 4 2

Answer:
 ✓ C and D are correct. Fragment I doesn't start a new thread. Fragment II doesn't compile.

Fragment III creates a new thread but doesn't start it. Fragment IV creates a new thread
and invokes run() directly, but it doesn’t start the new thread. Fragment V creates and
starts a new thread.

 A, B, E, F, and G are incorrect based on the above. (Objective 4.1)

 14. Given:

 3. public class Leader implements Runnable {
 4. public static void main(String[] args) {
 5. Thread t = new Thread(new Leader());
 6. t.start();
 7. System.out.print("m1 ");
 8. t.join();
 9. System.out.print("m2 ");
10. }

11. public void run() {
12. System.out.print("r1 ");
13. System.out.print("r2 ");
14. }
15. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output could be r1 r2 m1 m2

 C. The output could be m1 m2 r1 r2

 D. The output could be m1 r1 r2 m2

 E. The output could be m1 r1 m2 r2

 F. An exception is thrown at runtime

Answer:
 ✓ A is correct. The join() must be placed in a try/catch block. If it were, answers B and

D would be correct. The join() causes the main thread to pause and join the end of the
other thread, meaning "m2" must come last.

 B, C, D, E, and F are incorrect based on the above. (Objective 4.2)

 15. Given:

 3. class Dudes {
 4. static long flag = 0;
 5. // insert code here
 6. if(flag == 0) flag = id;
 7. for(int x = 1; x < 3; x++) {
 8. if(flag == id) System.out.print("yo ");
 9. else System.out.print("dude ");
10. }
11. }
12. }
13. public class DudesChat implements Runnable {
14. static Dudes d;
15. public static void main(String[] args) {
16. new DudesChat().go();
17. }
18. void go() {
19. d = new Dudes();

Self Test Answers 783

784 Chapter 9: Threads

20. new Thread(new DudesChat()).start();
21. new Thread(new DudesChat()).start();
22. }
23. public void run() {
24. d.chat(Thread.currentThread().getId());
25. }
26. }

 And given these two fragments:

I. synchronized void chat(long id) {
II. void chat(long id) {

 When fragment I or fragment II is inserted at line 5, which are true? (Choose all that apply.)

 A. An exception is thrown at runtime

 B. With fragment I, compilation fails

 C. With fragment II, compilation fails

 D. With fragment I, the output could be yo dude dude yo

 E. With fragment I, the output could be dude dude yo yo

 F. With fragment II, the output could be yo dude dude yo

Answer:
 ✓ F is correct. With fragment I, the chat method is synchronized, so the two threads can't

swap back and forth. With either fragment, the first output must be yo.

 A, B, C, D, and E are incorrect based on the above. (Objective 4.3)

 16. Given:

 3. class Chicks {
 4. synchronized void yack(long id) {
 5. for(int x = 1; x < 3; x++) {
 6. System.out.print(id + " ");
 7. Thread.yield();
 8. }
 9. }
10. }
11. public class ChicksYack implements Runnable {
12. Chicks c;
13. public static void main(String[] args) {
14. new ChicksYack().go();
15. }

16. void go() {
17. c = new Chicks();
18. new Thread(new ChicksYack()).start();
19. new Thread(new ChicksYack()).start();
20. }
21. public void run() {
22. c.yack(Thread.currentThread().getId());
23. }
24. }

 Which are true? (Choose all that apply.)

 A. Compilation fails

 B. The output could be 4 4 2 3

 C. The output could be 4 4 2 2

 D. The output could be 4 4 4 2

 E. The output could be 2 2 4 4

 F. An exception is thrown at runtime

Answer:
 ✓ F is correct. When run() is invoked, it is with a new instance of ChicksYack and c has

not been assigned to an object. If c were static, then because yack is synchronized, answers
C and E would have been correct.

 A, B, C, D, and E are incorrect based on the above. (Objective 4.3)

 17. Given:

 3. public class Chess implements Runnable {
 4. public void run() {
 5. move(Thread.currentThread().getId());
 6. }
 7. // insert code here
 8. System.out.print(id + " ");
 9. System.out.print(id + " ");
10. }
11. public static void main(String[] args) {
12. Chess ch = new Chess();
13. new Thread(ch).start();
14. new Thread(new Chess()).start();
15. }
16. }

Self Test Answers 785

786 Chapter 9: Threads

 And given these two fragments:

I. synchronized void move(long id) {
II. void move(long id) {

 When either fragment I or fragment II is inserted at line 7, which are true? (Choose all that apply.)

 A. Compilation fails

 B. With fragment I, an exception is thrown

 C. With fragment I, the output could be 4 2 4 2

 D. With fragment I, the output could be 4 4 2 3

 E. With fragment II, the output could be 2 4 2 4

Answer:
 ✓ C and E are correct. E should be obvious. C is correct because even though move() is

synchronized, it's being invoked on two different objects.

 A, B, and D are incorrect based on the above. (Objective 4.3)

EXERCISE ANSWERS
Exercise 9-1: Creating a Thread and Putting It to Sleep

The final code should look something like this:

class TheCount extends Thread {
 public void run() {
 for(int i = 1;i<=100;++i) {
 System.out.print(i + " ");
 if(i % 10 == 0) System.out.println("Hahaha");
 try { Thread.sleep(1000); }
 catch(InterruptedException e) {}
 }
 }
 public static void main(String [] args) {
 new TheCount().start();
 }

}

Exercise 9-2: Synchronizing a Block of Code

Your code might look something like this when completed:

class InSync extends Thread {
 StringBuffer letter;
 public InSync(StringBuffer letter) { this.letter = letter; }
 public void run() {
 synchronized(letter) { // #1
 for(int i = 1;i<=100;++i) System.out.print(letter);
 System.out.println();
 char temp = letter.charAt(0);
 ++temp; // Increment the letter in StringBuffer:
 letter.setCharAt(0, temp);
 } // #2
 }
 public static void main(String [] args) {
 StringBuffer sb = new StringBuffer("A");
 new InSync(sb).start(); new InSync(sb).start();
 new InSync(sb).start();
 }
}

Just for fun, try removing lines 1 and 2 then run the program again. It will be
unsynchronized —watch what happens.

Exercise Answers 787

10
Development

CERTIFICATION OBJECTIVES

Use Packages and Imports

Determine Runtime Behavior
 for Classes and Command-Lines

Use Classes in JAR Files

Use Classpaths to
 Compile Code
✓ Two-Minute Drill

 Q&A Self Test

790 Chapter 10: Development

You want to keep your classes organized. You need to have powerful ways for your classes
to find each other. You want to make sure that when you're looking for a particular class
you get the one you want, and not another class that happens to have the same name. In

this chapter we'll explore some of the advanced capabilities of the java and javac commands. We'll
revisit the use of packages in Java, and how to search for classes that live in packages.

CERTIFICATION OBJECTIVES

Using the javac and java Commands
(Exam Objectives 7.1, 7.2, and 7.5)

7.1 Given a code example and a scenario, write code that uses the appropriate access
modifiers, package declarations, and import statements to interact with (through access or
inheritance) the code in the example.

7.2 Given an example of a class and a command-line, determine the expected runtime
behavior.

7.5 Given the fully-qualified name of a class that is deployed inside and/or outside a JAR
file, construct the appropriate directory structure for that class. Given a code example and a
classpath, determine whether the classpath will allow the code to compile successfully.

So far in this book, we've probably talked about invoking the javac and java
commands about 1000 times; now we're going to take a closer look.

Compiling with javac
The javac command is used to invoke Java's compiler. In Chapter 5 we talked
about the assertion mechanism and when you might use the -source option when
compiling a file. There are many other options you can specify when running javac,
options to generate debugging information or compiler warnings for example. For
the exam, you'll need to understand the -classpath and -d options, which we'll
cover in the next few pages. Here's the structural overview for javac:

javac [options] [source files]

There are additional command-line options called @argfiles, but you won't
need to study them for the exam. Both the [options] and the [source files]
are optional parts of the command, and both allow multiple entries. The following
are both legal javac commands:

javac -help
javac -classpath com:. -g Foo.java Bar.java

The first invocation doesn't compile any files, but prints a summary of valid
options. The second invocation passes the compiler two options (-classpath,
which itself has an argument of com:. and -g), and passes the compiler two .java
files to compile (Foo.java and Bar.java). Whenever you specify multiple options
and/or files they should be separated by spaces.

Compiling with -d
By default, the compiler puts a .class file in the same directory as the .java source
file. This is fine for very small projects, but once you're working on a project of any
size at all, you'll want to keep your .java files separated from your .class files.
(This helps with version control, testing, deployment...) The -d option lets you tell
the compiler in which directory to put the .class file(s) it generates (d is for
destination). Let's say you have the following directory structure:

myProject
 |
 |--source
 | |
 | |-- MyClass.java
 |
 |-- classes
 |
 |--

The following command, issued from the myProject directory, will compile
MyClass.java and put the resulting MyClass.class file into the classes
directory. (Note: This assumes that MyClass does not have a package statement;
we'll talk about packages in a minute.)

cd myProject
javac -d classes source/MyClass.java

Compiling with javac (Exam Objective 7.2) 791

This command also demonstrates selecting a .java file from a subdirectory of the
directory from which the command was invoked. Now let's take a quick look at how
packages work in relationship to the -d option.

Suppose we have the following .java file in the following directory structure:

package com.wickedlysmart;
public class MyClass { }

myProject
 |
 |--source
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |--MyClass.java
 |
 |--classes
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |-- (MyClass.class goes here)

If you were in the source directory, you would compile MyClass.java and put
the resulting MyClass.class file into the classes/com/wickedlysmart directory
by invoking the following command:

javac -d ../classes com/wickedlysmart/MyClass.java

This command could be read: "To set the destination directory, cd back to
the myProject directory then cd into the classes directory, which will be your
destination. Then compile the file named MyClass.java. Finally, put the resulting
MyClass.class file into the directory structure that matches its package, in this
case, classes/com/wickedlysmart." Because MyClass.java is in a package,
the compiler knew to put the resulting .class file into the
classes/com/wickedlysmart directory.

792 Chapter 10: Development

Somewhat amazingly, the javac command can sometimes help you out by
building directories it needs! Suppose we have the following:

package com.wickedlysmart;
public class MyClass { }

myProject
 |
 |--source
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |--MyClass.java
 |
 |--classes
 | |

And the following command (the same as last time):

javac -d ../classes com/wickedlysmart/MyClass.java

In this case, the compiler will build two directories called com and
com/wickedlysmart in order to put the resulting MyClass.class file into the
correct package directory (com/wickedlysmart/) which it builds within the
existing .../classes directory.

The last thing about -d that you'll need to know for the exam is that if the
destination directory you specify doesn't exist, you'll get a compiler error. If, in the
previous example, the classes directory did NOT exist, the compiler would say
something like:

java:5: error while writing MyClass: classes/MyClass.class (No
such file or directory)

Launching Applications with java
The java command is used to invoke the Java virtual machine. In Chapter 5 we
talked about the assertion mechanism and when you might use flags such as -ea or
-da when launching an application. There are many other options you can specify

Launching Applications with java (Exam Objective 7.2) 793

when running the java command, but for the exam, you'll need to understand
the -classpath (and its twin -cp) and -D options, which we'll cover in the next
few pages. In addition, it's important to understand the structure of this command.
Here's the overview:

java [options] class [args]

The [options] and [args] parts of the java command are optional, and they
can both have multiple values. You must specify exactly one class file to execute, and
the java command assumes you're talking about a .class file, so you don't specify
the .class extension on the command line. Here's an example:

java -DmyProp=myValue MyClass x 1

Sparing the details for later, this command can be read as "Create a system
property called myProp and set its value to myValue. Then launch the file named
MyClass.class and send it two String arguments whose values are x and 1."

Let's look at system properties and command-line arguments more closely.

Using System Properties
Java has a class called java.util.Properties that can be used to access a
system's persistent information such as the current versions of the operating system,
the Java compiler, and the Java virtual machine. In addition to providing such
default information, you can also add and retrieve your own properties. Take a look
at the following:

import java.util.*;
public class TestProps {
 public static void main(String[] args) {
 Properties p = System.getProperties();
 p.setProperty("myProp", "myValue");
 p.list(System.out);
 }
}

If this file is compiled and invoked as follows:

java -DcmdProp=cmdVal TestProps

You'll get something like this:

794 Chapter 10: Development

...
os.name=Mac OS X
myProp=myValue
...
java.specification.vendor=Sun Microsystems Inc.
user.language=en
java.version=1.6.0_05
...
cmdProp=cmdVal
...

where the . . . represent lots of other name=value pairs. (The name and value are
sometimes called the key and the property.) Two name=value properties were added
to the system's properties: myProp=myValue was added via the setProperty
method, and cmdProp=cmdVal was added via the -D option at the command line.
When using the -D option, if your value contains white space the entire value
should be placed in quotes like this:

java -DcmdProp="cmdVal take 2" TestProps

Just in case you missed it, when you use -D, the name=value pair must follow
immediately, no spaces allowed.

The getProperty() method is used to retrieve a single property. It can be
invoked with a single argument (a String that represents the name (or key)), or it
can be invoked with two arguments, (a String that represents the name (or key),
and a default String value to be used as the property if the property does not already
exist). In both cases, getProperty() returns the property as a String.

Handling Command-Line Arguments
Let's return to an example of launching an application and passing in arguments
from the command line. If we have the following code:

public class CmdArgs {
 public static void main(String[] args) {
 int x = 0;
 for(String s : args)
 System.out.println(x++ + " element = " + s);
 }
}

Launching Applications with java (Exam Objective 7.2) 795

796 Chapter 10: Development

compiled and then invoked as follows

java CmdArgs x 1

the output will be

0 element = x
1 element = 1

Like all arrays, args index is zero based. Arguments on the command line
directly follow the class name. The first argument is assigned to args[0], the second
argument is assigned to args[1], and so on.

Finally, there is some flexibility in the declaration of the main() method that
is used to start a Java application. The order of main()'s modifiers can be altered
a little, the String array doesn't have to be named args, and as of Java 5 it can be
declared using var-args syntax. The following are all legal declarations for main():

static public void main(String[] args)
public static void main(String... x)
static public void main(String bang_a_gong[])

Searching for Other Classes
In most cases, when we use the java and javac commands, we want these
commands to search for other classes that will be necessary to complete the
operation. The most obvious case is when classes we create use classes that Sun
provides with J2SE (now sometimes called Java SE), for instance when we use classes
in java.lang or java.util. The next common case is when we want to compile a
file or run a class that uses other classes that have been created outside of what Sun
provides, for instance our own previously created classes. Remember that for any
given class, the java virtual machine will need to find exactly the same supporting
classes that the javac compiler needed to find at compilation time. In other words,
if javac needed access to java.util.HashMap then the java command will need
to find java.util.HashMap as well.

Both java and javac use the same basic search algorithm:

1. They both have the same list of places (directories) they search, to look
for classes.

2. They both search through this list of directories in the same order.

3. As soon as they find the class they're looking for, they stop searching for that
class. In the case that their search lists contain two or more files with the
same name, the first file found will be the file that is used.

4. The first place they look is in the directories that contain the classes that
come standard with J2SE.

5. The second place they look is in the directories defined by classpaths.

6. Classpaths should be thought of as "class search paths." They are lists of
directories in which classes might be found.

7. There are two places where classpaths can be declared:

A classpath can be declared as an operating system environment variable.
The classpath declared here is used by default, whenever java or javac are
invoked.

A classpath can be declared as a command-line option for either java or
javac. Classpaths declared as command-line options override the classpath declared
as an environment variable, but they persist only for the length of the invocation.

Declaring and Using Classpaths
Classpaths consist of a variable number of directory locations, separated by
delimiters. For Unix-based operating systems, forward slashes are used to
construct directory locations, and the separator is the colon (:). For example:

-classpath /com/foo/acct:/com/foo

specifies two directories in which classes can be found: /com/foo/acct and
/com/foo. In both cases, these directories are absolutely tied to the root of the file
system, which is specified by the leading forward slash. It's important to remember
that when you specify a subdirectory, you're NOT specifying the directories above it.
For instance, in the preceding example the directory /com will NOT be searched.

Searching for Other Classes (Exam Objective 7.5) 797

798 Chapter 10: Development

A very common situation occurs in which java or javac complains that it can't
find a class file, and yet you can see that the file is IN the current directory! When
searching for class files, the java and javac commands don't search the current
directory by default. You must tell them to search there. The way to tell java or
javac to search in the current directory is to add a dot (.) to the classpath:

-classpath /com/foo/acct:/com/foo:.

This classpath is identical to the previous one EXCEPT that the dot (.) at the end
of the declaration instructs java or javac to also search for class files in the current
directory. (Remember, we're talking about class files—when you're telling javac
which .java file to compile, javac looks in the current directory by default.)

It's also important to remember that classpaths are searched from left to right.
Therefore in a situation where classes with duplicate names are located in several
different directories in the following classpaths, different results will occur:

-classpath /com:/foo:.

is not the same as

-classpath .:/foo:/com

Finally, the java command allows you to abbreviate -classpath with -cp. The
Java documentation is inconsistent about whether the javac command allows the
-cp abbreviation. On most machines it does, but there are no guarantees.

Most of the path-related questions on the exam will use Unix conventions.
If you are a Windows user, your directories will be declared using backslashes (\) and the
separator character you use will be a semicolon (;). But again, you will NOT need any
shell-specifi c knowledge for the exam.

Packages and Searching
When you start to put classes into packages, and then start to use classpaths to find
these classes, things can get tricky. The exam creators knew this, and they tried
to create an especially devilish set of package/classpath questions with which to
confound you. Let's start off by reviewing packages. In the following code:

package com.foo;
public class MyClass { public void hi() { } }

We're saying that MyClass is a member of the com.foo package. This means that
the fully qualified name of the class is now com.foo.MyClass. Once a class is in
a package, the package part of its fully qualified name is atomic—it can never be
divided. You can't split it up on the command line, and you can't split it up in an
import statement.

Now let's see how we can use com.foo.MyClass in another class:

package com.foo;
public class MyClass { public void hi() { } }

And in another file:

import com.foo.MyClass; // either import will work
import com.foo.*;

public class Another {
 void go() {
 MyClass m1 = new MyClass(); // alias name
 com.foo.MyClass m2 = new com.foo.MyClass(); // full name
 m1.hi();
 m2.hi();
 }
}

It's easy to get confused when you use import statements. The preceding code
is perfectly legal. The import statement is like an alias for the class's fully qualified
name. You define the fully qualified name for the class with an import statement (or
with a wildcard in an import statement of the package). Once you've defined the
fully qualified name, you can use the "alias" in your code—but the alias is referring
back to the fully qualified name.

Searching for Other Classes (Exam Objective 7.5) 799

800 Chapter 10: Development

Now that we've reviewed packages, let's take a look at how they work in
conjunction with classpaths and command lines. First we'll start off with the idea
that when you're searching for a class using its fully qualified name, that fully
qualified name relates closely to a specific directory structure. For instance, relative
to your current directory, the class whose source code is

package com.foo;
public class MyClass { public void hi() { } }

would have to be located here:

com/foo/MyClass.class

In order to find a class in a package, you have to have a directory in your classpath
that has the package's leftmost entry (the package's "root") as a subdirectory.

This is an important concept, so let's look at another example:

import com.wickedlysmart.Utils;
class TestClass {
 void doStuff() {
 Utils u = new Utils(); // simple name
 u.doX("arg1", "arg2");
 com.wickedlysmart.Date d =
 new com.wickedlysmart.Date(); // full name
 d.getMonth("Oct");
 }
}

In this case we're using two classes from the package com.wickedlysmart. For
the sake of discussion we imported the fully qualified name for the Utils class,
and we didn't for the Date class. The only difference is that because we listed
Utils in an import statement, we didn't have to type its fully qualified name
inside the class. In both cases the package is com.wickedlysmart. When it's time
to compile or run TestClass, the classpath will have to include a directory with
the following attributes:

■ A subdirectory named com (we'll call this the "package root" directory)

■ A subdirectory in com named wickedlysmart

■ Two files in wickedlysmart named Utils.class and Date.class

Finally, the directory that has all of these attributes has to be accessible (via a
classpath) in one of two ways:

 1. The path to the directory must be absolute, in other words, from the root
 (the file system root, not the package root).

 or

 2. The path to the directory has to be correct relative to the current directory.

Relative and Absolute Paths
A classpath is a collection of one or more paths. Each path in a classpath is either
an absolute path or a relative path. An absolute path in Unix begins with a forward
slash (/) (on Windows it would be something like c:\). The leading slash indicates
that this path is starting from the root directory of the system. Because it's starting
from the root, it doesn't matter what the current directory is—a directory's absolute
path is always the same. A relative path is one that does NOT start with a slash. Here's
an example of a full directory structure, and a classpath:

/ (root)
 |
 |--dirA
 |
 |-- dirB
 |
 |--dirC

-cp dirB:dirB/dirC

In this example, dirB and dirB/dirC are relative paths (they don't start with a
slash /). Both of these relative paths are meaningful only when the current directory
is dirA. Pop Quiz! If the current directory is dirA, and you're searching for class
files, and you use the classpath described above, which directories will be searched?

dirA? dirB? dirC?

Too easy? How about the same question if the current directory is the root (/)?
When the current directory is dirA, then dirB and dirC will be searched, but not

Searching for Other Classes (Exam Objective 7.5) 801

802 Chapter 10: Development

dirA (remember, we didn't specify the current directory by adding a dot (.) to the
classpath). When the current directory is root, since dirB is not a direct subdirectory
of root, no directories will be searched. Okay, how about if the current directory
is dirB? Again, no directories will be searched! This is because dirB doesn't have
a subdirectory named dirB. In other words, Java will look in dirB for a directory
named dirB (which it won't find), without realizing that it's already in dirB.

Let's use the same directory structure and a different classpath:

/ (root)
 |
 |--dirA
 |
 |-- dirB
 |
 |--dirC

-cp /dirB:/dirA/dirB/dirC

In this case, what directories will be searched if the current directory is dirA?
How about if the current directory is root? How about if the current directory is
dirB? In this case, both paths in the classpath are absolute. It doesn't matter what
the current directory is; since absolute paths are specified the search results will
always be the same. Specifically, only dirC will be searched, regardless of the current
directory. The first path (/dirB) is invalid since dirB is not a direct subdirectory of
root, so dirB will never be searched. And, one more time, for emphasis, since dot (.)
is not in the classpath, the current directory will only be searched if it happens to be
described elsewhere in the classpath (in this case, dirC).

CERTIFICATION OBJECTIVE

JAR Files (Objective 7.5)
7.5 Given the fully-qualified name of a class that is deployed inside and/or outside a JAR
file, construct the appropriate directory structure for that class. Given a code example and
a classpath, determine whether the classpath will allow the code to compile successfully.

JAR Files and Searching
Once you've built and tested your application, you might want to bundle it up so
that it's easy to distribute and easy for other people to install. One mechanism that
Java provides for these purposes is a JAR file. JAR stands for Java Archive. JAR files
are used to compress data (similar to ZIP files) and to archive data.

Here's an application with classes in different packages:

test
 |--UseStuff.java
 |--ws
 |--(create MyJar.jar here)
 |--myApp
 |--utils
 | |--Dates.class (package myApp.utils;)
 |--engine
 |--rete.class (package myApp.engine;)
 |--minmax.class " "

You can create a single JAR file that contains all of the files in myApp, and also
maintains myApp's directory structure. Once this JAR file is created, it can be moved
from place to place, and from machine to machine, and all of the classes in the JAR
file can be accessed, via classpaths, by java and javac, without ever unJARing the
JAR file. Although you won't need to know how to make JAR files for the exam,
let's make the current directory ws, and then make a JAR file called MyJar.jar:

cd ws
jar -cf MyJar.jar myApp

The jar command will create a JAR file called MyJar.jar and it will contain the
myApp directory and myApp's entire subdirectory tree and files. You can look at the
contents of the JAR file with the next command (this isn't on the exam either):

jar -tf MyJar.jar

(which produces something like)

META-INF/
META-INF/MANIFEST.MF
myApp/
myApp/.DS_Store
myApp/utils/

JAR Files and Searching (Exam Objective 7.5) 803

804 Chapter 10: Development

myApp/utils/Dates.class
myApp/engine/
myApp/engine/rete.class
myApp/engine/minmax.class

Back to exam stuff. Finding a JAR file using a classpath is similar to finding a
package file in a classpath. The difference is that when you specify a path for a JAR
file, you must include the name of the JAR file at the end of the path. Let's say you want
to compile UseStuff.java in the test directory, and UseStuff.java needs access
to a class contained in myApp.jar. To compile UseStuff.java say

cd test

javac -classpath ws/myApp.jar UseStuff.java

Compare the use of the JAR file to using a class in a package. If UseStuff.java
needed to use classes in the myApp.utils package, and the class was not in a JAR,
you would say

cd test

javac -classpath ws UseStuff.java

Remember when using a classpath, the last directory in the path must be the
super-directory of the root directory for the package. (In the preceding example,
myApp is the root directory of the package myApp.utils.) Notice that myApp can be
the root directory for more than one package (myApp.utils and myApp.engine),
and the java and javac commands can find what they need across multiple peer
packages like this. So, if ws is on the classpath and ws is the super-directory of myApp,
then classes in both the myApp.utils and myApp.engine packages will be found.

Here are some rules concerning the structure of JAR fi les:

■ The jar command creates the META-INF directory automatically.
■ The jar command creates the MANIFEST.MF fi le automatically.
■ The jar command won’t place any of your fi les in META-INF/.
■ As you can see above, the exact tree structure is represented.
■ java and javac will use the JAR like a normal directory tree.

Using .../jre/lib/ext with JAR files
When you install Java, you end up with a huge directory tree of Java-related
stuff, including the JAR files that contain the classes that come standard with
J2SE. As we discussed earlier, java and javac have a list of places that they
access when searching for class files. Buried deep inside of your Java directory
tree is a subdirectory tree named jre/lib/ext. If you put JAR files into the ext
subdirectory, java and javac can find them, and use the class files they contain.
You don't have to mention these subdirectories in a classpath statement—searching
this directory is a function that's built right into Java. Sun recommends, however,
that you use this feature only for your own internal testing and development, and
not for software that you intend to distribute.

When you use an import statement you are declaring only one package.
When you say import java.util.*; you are saying "Use the short name for all of the
classes in the java.util package." You’re NOT getting the java.util.jar classes or
java.util.regex packages! Those packages are totally independent of each other; the
only thing they share is the same "root" directory, but they are not the same packages.
As a corollary, you can’t say import java.*; in the hopes of importing multiple
packages—just remember, an import statement can import only a single package.

It’s possible to create environment variables that provide an alias for long
classpaths. The classpath for some of the JAR fi les in J2SE can be quite long, and so it’s
common for such an alias to be used when defi ning a classpath. If you see something like
JAVA_HOME or $JAVA_HOME in an exam question it just means "That part of the absolute
classpath up to the directories we’re specifying explicitly." You can assume that the
JAVA_HOME literal means this, and is pre-pended to the partial classpath you see.

JAR Files and Searching (Exam Objective 7.5) 805

806 Chapter 10: Development

CERTIFICATION OBJECTIVE

Using Static Imports (Exam Objective 7.1)
7.1 Given a code example and a scenario, write code that uses the appropriate access
modifiers, package declarations, and import statements to interact with (through access or
inheritance) the code in the example.

Note: In Chapter 1 we covered most of what's defined in this objective, but we saved
static imports for this chapter.

Static Imports
We've been using import statements throughout the book. Ultimately, the only
value import statements have is that they save typing and they can make your code
easier to read. In Java 5, the import statement was enhanced to provide even greater
keystroke-reduction capabilities…although some would argue that this comes at the
expense of readability. This new feature is known as static imports. Static imports can
be used when you want to use a class's static members. (You can use this feature on
classes in the API and on your own classes.) Here's a "before and after" example:

Before static imports:

public class TestStatic {
 public static void main(String[] args) {
 System.out.println(Integer.MAX_VALUE);
 System.out.println(Integer.toHexString(42));
 }
}

After static imports:

import static java.lang.System.out; // 1
import static java.lang.Integer.*; // 2
public class TestStaticImport {
 public static void main(String[] args) {
 out.println(MAX_VALUE); // 3
 out.println(toHexString(42)); // 4
 }
}

Both classes produce the same output:

2147483647

2a

Let's look at what's happening in the code that's using the static import feature:

1. Even though the feature is commonly called "static import" the syntax MUST
be import static followed by the fully qualified name of the static member
you want to import, or a wildcard. In this case we're doing a static import on the
System class out object.

2. In this case we might want to use several of the static members of the
java.lang.Integer class. This static import statement uses the wildcard to say,
"I want to do static imports of ALL the static members in this class."

3. Now we're finally seeing the benefit of the static import feature! We didn't have to
type the System in System.out.println! Wow! Second, we didn't have to type
the Integer in Integer.MAX_VALUE. So in this line of code we were able to use
a shortcut for a static method AND a constant.

4. Finally, we do one more shortcut, this time for a method in the Integer class.

We've been a little sarcastic about this feature, but we're not the only ones. We're
not convinced that saving a few keystrokes is worth possibly making the code a little
harder to read, but enough developers requested it that it was added to the language.

Here are a couple of rules for using static imports:

■ You must say import static; you can't say static import.

■ Watch out for ambiguously named static members. For instance, if you do
a static import for both the Integer class and the Long class, referring to
MAX_VALUE will cause a compiler error, since both Integer and Long have
a MAX_VALUE constant, and Java won't know which MAX_VALUE you're refer-
ring to.

■ You can do a static import on static object references, constants (remember
they're static and final), and static methods.

Static Imports (Exam Objective 7.1) 807

808 Chapter 10: Development

CERTIFICATION SUMMARY
We started by exploring the javac command more deeply. The -d option allows you
to put class files generated by compilation into whatever directory you want to. The
-d option lets you specify the destination of newly created class files.

Next we talked about some of the options available through the java application
launcher. We discussed the ordering of the arguments java can take, including
[options] class [args]. We learned how to query and update system properties
in code and at the command line using the -D option.

The next topic was handling command-line arguments. The key concepts are that
these arguments are put into a String array, and that the first argument goes into
array element 0, the second argument into array element 1, and so on.

We turned to the important topic of how java and javac search for other
class files when they need them, and how they use the same algorithm to find
these classes. There are search locations predefined by Sun, and additional search
locations, called classpaths that are user defined. The syntax for Unix classpaths is
different than the syntax for Windows classpaths, and the exam will tend to use
Unix syntax.

The topic of packages came next. Remember that once you put a class into a
package, its name is atomic—in other words, it can't be split up. There is a tight
relationship between a class's fully qualified package name and the directory
structure in which the class resides.

JAR files were discussed next. JAR files are used to compress and archive data.
They can be used to archive entire directory tree structures into a single JAR file.
JAR files can be searched by java and javac.

We finished the chapter by discussing a new Java 5 feature, static imports. This is
a convenience-only feature that reduces keying long names for static members in
the classes you use in your programs.

TWO-MINUTE DRILL

Here are the key points from this chapter.

Using javac and java (Objective 7.2)

❑ Use -d to change the destination of a class file when it's first generated by the
javac command.

❑ The -d option can build package-dependent destination classes on-the-fly if
the root package directory already exists.

❑ Use the -D option in conjunction with the java command when you want to
set a system property.

❑ System properties consist of name=value pairs that must be appended directly
behind the -D, for example, java -Dmyproperty=myvalue.

❑ Command-line arguments are always treated as Strings.

❑ The java command-line argument 1 is put into array element 0, argument 2
is put into element 1, and so on.

Searching with java and javac (Objective 7.5)

❑ Both java and javac use the same algorithms to search for classes.

❑ Searching begins in the locations that contain the classes that come standard
with J2SE.

❑ Users can define secondary search locations using classpaths.

❑ Default classpaths can be defined by using OS environment variables.

❑ A classpath can be declared at the command line, and it overrides the default
classpath.

❑ A single classpath can define many different search locations.

❑ In Unix classpaths, forward slashes (/) are used to separate the directories
that make up a path. In Windows, backslashes (\) are used.

✓

Two-Minute Drill 809

810 Chapter 10: Development

❑ In Unix, colons (:) are used to separate the paths within a classpath. In Win-
dows, semicolons (;) are used.

❑ In a classpath, to specify the current directory as a search location, use a dot (.)

❑ In a classpath, once a class is found, searching stops, so the order of locations
to search is important.

Packages and Searching (Objective 7.5)

❑ When a class is put into a package, its fully qualified name must be used.

❑ An import statement provides an alias to a class's fully qualified name.

❑ In order for a class to be located, its fully qualified name must have a tight
relationship with the directory structure in which it resides.

❑ A classpath can contain both relative and absolute paths.

❑ An absolute path starts with a / or a \.

❑ Only the final directory in a given path will be searched.

JAR Files (Objective 7.5)

❑ An entire directory tree structure can be archived in a single JAR file.

❑ JAR files can be searched by java and javac.

❑ When you include a JAR file in a classpath, you must include not only the
directory in which the JAR file is located, but the name of the JAR file too.

❑ For testing purposes, you can put JAR files into .../jre/lib/ext, which is
somewhere inside the Java directory tree on your machine.

Static Imports (Objective 7.1)

❑ You must start a static import statement like this: import static

❑ You can use static imports to create shortcuts for static members (static
variables, constants, and methods) of any class.

SELF TEST
 1. Given:

1. // insert code here
2. class StatTest {
3. public static void main(String[] args) {
4. System.out.println(Integer.MAX_VALUE);
5. }
6. }

 Which, inserted independently at line 1, compiles? (Choose all that apply.)

 A. import static java.lang;

 B. import static java.lang.Integer;

 C. import static java.lang.Integer.*;

 D. import static java.lang.Integer.*_VALUE;

 E. import static java.lang.Integer.MAX_VALUE;

 F. None of the above statements are valid import syntax

 2. Given:

import static java.lang.System.*;
class _ {
 static public void main(String... __A_V_) {
 String $ = "";
 for(int x=0; ++x < __A_V_.length;)
 $ += __A_V_[x];
 out.println($);
 }
}

 And the command line:

java _ - A .

 What is the result?

 A. -A

 B. A.

 C. -A.

Self Test 811

812 Chapter 10: Development

 D. _A.

 E. _-A.

 F. Compilation fails

 G. An exception is thrown at runtime

 3. Given the default classpath:

/foo

 And this directory structure:

foo
 |
 test
 |
 xcom
 |--A.class
 |--B.java

 And these two files:

package xcom;
public class A { }

package xcom;
public class B extends A { }

 Which allows B.java to compile? (Choose all that apply.)

 A. Set the current directory to xcom then invoke
 javac B.java

 B. Set the current directory to xcom then invoke
 javac -classpath . B.java

 C. Set the current directory to test then invoke
 javac -classpath . xcom/B.java

 D. Set the current directory to test then invoke
 javac -classpath xcom B.java

 E. Set the current directory to test then invoke
 javac -classpath xcom:. B.java

 4. Given two files:

a=b.java
c_d.class

 Are in the current directory, which command-line invocation(s) could complete without error?
(Choose all that apply.)

 A. java -Da=b c_d

 B. java -D a=b c_d

 C. javac -Da=b c_d

 D. javac -D a=b c_d

 5. If three versions of MyClass.class exist on a file system:

Version 1 is in /foo/bar
Version 2 is in /foo/bar/baz
Version 3 is in /foo/bar/baz/bing

 And the system's classpath includes

/foo/bar/baz

 And this command line is invoked from /foo

java -classpath /foo/bar/baz/bing:/foo/bar MyClass

 Which version will be used by java?

 A. /foo/MyClass.class

 B. /foo/bar/MyClass.class

 C. /foo/bar/baz/MyClass.class

 D. /foo/bar/baz/bing/MyClass.class

 E. The result is not predictable

Self Test 813

814 Chapter 10: Development

 6. Given two files:

 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. }

 1. package pkgB;
 2. import pkgA.*;
 3. public class Fiz extends Foo {
 4. public static void main(String[] args) {
 5. Foo f = new Foo();
 6. System.out.print(" " + f.a);
 7. System.out.print(" " + f.b);
 8. System.out.print(" " + new Fiz().a);
 9. System.out.println(" " + new Fiz().b);
10. }
11. }

 What is the result? (Choose all that apply.)

 A. 5 6 5 6

 B. 5 6 followed by an exception
 C. Compilation fails with an error on line 6
 D. Compilation fails with an error on line 7
 E. Compilation fails with an error on line 8

 F. Compilation fails with an error on line 9

 7. Given:

 3. import java.util.*;
 4. public class Antique {
 5. public static void main(String[] args) {
 6. List<String> myList = new ArrayList<String>();
 7. assert (args.length > 0);
 8. System.out.println("still static");
 9. }
10. }

 Which sets of commands (javac followed by java) will compile and run without exception or
error? (Choose all that apply.)

 A. javac Antique.java
java Antique

 B. javac Antique.java
java -ea Antique

 C. javac -source 6 Antique.java
java Antique

 D. javac -source 1.4 Antique.java
java Antique

 E. javac -source 1.6 Antique.java
java -ea Antique

 8. Given:

 3. import java.util.*;
 4. public class Values {
 5. public static void main(String[] args) {
 6. Properties p = System.getProperties();
 7. p.setProperty("myProp", "myValue");
 8. System.out.print(p.getProperty("cmdProp") + " ");
 9. System.out.print(p.getProperty("myProp") + " ");
10. System.out.print(p.getProperty("noProp") + " ");
11. p.setProperty("cmdProp", "newValue");
12. System.out.println(p.getProperty("cmdProp"));
13. }
14. }

 And given the command line invocation:

java -DcmdProp=cmdValue Values

 What is the result?

 A. null myValue null null

 B. cmdValue null null cmdValue

 C. cmdValue null null newValue

 D. cmdValue myValue null cmdValue

 E. cmdValue myValue null newValue

 F. An exception is thrown at runtime

Self Test 815

816 Chapter 10: Development

 9. Given the following directory structure:

x-|
 |- FindBaz.class
 |
 |- test-|
 |- Baz.class
 |
 |- myApp-|
 |- Baz.class

 And given the contents of the related .java files:

 1. public class FindBaz {
 2. public static void main(String[] args) { new Baz(); }
 3. }

 In the test directory:

 1. public class Baz {
 2. static { System.out.println("test/Baz"); }
 3. }

 In the myApp directory:

 1. public class Baz {
 2. static { System.out.println("myApp/Baz"); }
 3. }

 If the current directory is x, which invocations will produce the output "test/Baz"?
(Choose all that apply.)

 A. java FindBaz

 B. java -classpath test FindBaz

 C. java -classpath .:test FindBaz

 D. java -classpath .:test/myApp FindBaz

 E. java -classpath test:test/myApp FindBaz

 F. java -classpath test:test/myApp:. FindBaz

 G. java -classpath test/myApp:test:. FindBaz

 10. Given the following directory structure:

test-|
 |- Test.java
 |
 |- myApp-|
 |- Foo.java
 |
 |- myAppSub-|
 |- Bar.java

 If the current directory is test, and you create a .jar file by invoking this,

jar -cf MyJar.jar myApp

 then which path names will find a file in the .jar file? (Choose all that apply.)

 A. Foo.java

 B. Test.java

 C. myApp/Foo.java

 D. myApp/Bar.java

 E. META-INF/Foo.java

 F. META-INF/myApp/Foo.java

 G. myApp/myAppSub/Bar.java

 11. Given the following directory structure:

test-|
 |- GetJar.java
 |
 |- myApp-|
 |-Foo.java

 And given the contents of GetJar.java and Foo.java:

 3. public class GetJar {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

Self Test 817

818 Chapter 10: Development

 3. package myApp;
 4. public class Foo { public static int d = 8; }

 If the current directory is "test", and myApp/Foo.class is placed in a JAR file called MyJar.jar
located in test, which set(s) of commands will compile GetJar.java and produce the output 8?
(Choose all that apply.)

 A. javac -classpath MyJar.jar GetJar.java
java GetJar

 B. javac MyJar.jar GetJar.java
java GetJar

 C. javac -classpath MyJar.jar GetJar.java
java -classpath MyJar.jar GetJar

 D. javac MyJar.jar GetJar.java
java -classpath MyJar.jar GetJar

 12. Given the following directory structure:

x-|
 |- GoDeep.class
 |
 |- test-|
 |- MyJar.jar
 |
 |- myApp-|
 |-Foo.java
 |-Foo.class

 And given the contents of GoDeep.java and Foo.java:

 3. public class GoDeep {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

 3. package myApp;
 4. public class Foo { public static int d = 8; }

 And MyJar.jar contains the following entry:

myApp/Foo.class

 If the current directory is x, which commands will successfully execute GoDeep.class and
produce the output 8? (Choose all that apply.)

 A. java GoDeep

 B. java -classpath . GoDeep

 C. java -classpath test/MyJar.jar GoDeep

 D. java GoDeep -classpath test/MyJar.jar

 E. java GoDeep -classpath test/MyJar.jar:.

 F. java -classpath .:test/MyJar.jar GoDeep

 G. java -classpath test/MyJar.jar:. GoDeep

Self Test 819

SELF TEST ANSWERS
 1. Given:

1. // insert code here
2. class StatTest {
3. public static void main(String[] args) {
4. System.out.println(Integer.MAX_VALUE);
5. }
6. }

 Which, inserted independently at line 1, compiles? (Choose all that apply.)

 A. import static java.lang;

 B. import static java.lang.Integer;

 C. import static java.lang.Integer.*;

 D. import static java.lang.Integer.*_VALUE;

 E. import static java.lang.Integer.MAX_VALUE;

 F. None of the above statements are valid import syntax

Answer:

 ✓ C and E are correct syntax for static imports. Line 4 isn't making use of static imports,
so the code will also compile with none of the imports.

 A, B, D, and F are incorrect based on the above. (Objective 7.1)

 2. Given:

import static java.lang.System.*;
class _ {
 static public void main(String... __A_V_) {
 String $ = "";
 for(int x=0; ++x < __A_V_.length;)
 $ += __A_V_[x];
 out.println($);
 }
}

820 Chapter 10: Development

 And the command line:

java _ - A .

 What is the result?

 A. -A

 B. A.

 C. -A.

 D. _A.

 E. _-A.

 F. Compilation fails

 G. An exception is thrown at runtime

Answer:
 ✓ B is correct. This question is using valid (but inappropriate and weird) identifiers, static

imports, var-args in main(), and pre-incrementing logic.
 A, C, D, E, F, and G are incorrect based on the above. (Objective 7.2)

 3. Given the default classpath:

/foo

 And this directory structure:

foo
 |
 test
 |
 xcom
 |--A.class
 |--B.java

 And these two files:

package xcom;
public class A { }

package xcom;

public class B extends A { }

Self Test Answers 821

822 Chapter 10: Development

 Which allows B.java to compile? (Choose all that apply.)

 A. Set the current directory to xcom then invoke
 javac B.java

 B. Set the current directory to xcom then invoke
 javac -classpath . B.java

 C. Set the current directory to test then invoke
 javac -classpath . xcom/B.java

 D. Set the current directory to test then invoke
 javac -classpath xcom B.java

 E. Set the current directory to test then invoke
 javac -classpath xcom:. B.java

Answer:

 ✓ C is correct. In order for B.java to compile, the compiler first needs to be able to find
B.java. Once it's found B.java it needs to find A.class. Because A.class is in the
xcom package the compiler won't find A.class if it's invoked from the xcom directory.
Remember that the -classpath isn't looking for B.java, it's looking for whatever classes
B.java needs (in this case A.class).

 A, B, and D are incorrect based on the above. E is incorrect because the compiler can't
find B.java. (Objective 7.2)

 4. Given two files:

a=b.java
c_d.class

 Are in the current directory, which command-line invocation(s) could complete without error?
(Choose all that apply.)

 A. java -Da=b c_d

 B. java -D a=b c_d

 C. javac -Da=b c_d

 D. javac -D a=b c_d

Answer:
 ✓ A is correct. The -D flag is NOT a compiler flag, and the name=value pair that is

associated with the -D must follow the -D with no spaces.
 B, C, and D are incorrect based on the above. (Objective 7.2)

 5. If three versions of MyClass.class exist on a file system:

Version 1 is in /foo/bar
Version 2 is in /foo/bar/baz
Version 3 is in /foo/bar/baz/bing

 And the system's classpath includes

/foo/bar/baz

 And this command line is invoked from /foo

java -classpath /foo/bar/baz/bing:/foo/bar MyClass

 Which version will be used by java?

 A. /foo/MyClass.class

 B. /foo/bar/MyClass.class

 C. /foo/bar/baz/MyClass.class

 D. /foo/bar/baz/bing/MyClass.class

 E. The result is not predictable.

Answer:
 D is correct. A -classpath included with a java invocation overrides a system classpath.

When java is using any classpath, it reads the classpath from left to right, and uses the
first match it finds.

 A, B, C, and E are incorrect based on the above. (Objective 7.5)

Self Test Answers 823

824 Chapter 10: Development

 6. Given two files:

 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. }

 1. package pkgB;
 2. import pkgA.*;
 3. public class Fiz extends Foo {
 4. public static void main(String[] args) {
 5. Foo f = new Foo();
 6. System.out.print(" " + f.a);
 7. System.out.print(" " + f.b);
 8. System.out.print(" " + new Fiz().a);
 9. System.out.println(" " + new Fiz().b);
10. }
11. }

 What is the result? (Choose all that apply.)

 A. 5 6 5 6

 B. 5 6 followed by an exception
 C. Compilation fails with an error on line 6
 D. Compilation fails with an error on line 7
 E. Compilation fails with an error on line 8

 F. Compilation fails with an error on line 9

Answer:
 ✓ C, D, and E are correct. Variable a (default access) cannot be accessed from outside the

package. Since variable b is protected, it can be accessed only through inheritance.

 A, B, and F are incorrect based on the above. (Objectives 1.1, 7.1)

 7. Given:

 3. import java.util.*;
 4. public class Antique {
 5. public static void main(String[] args) {
 6. List<String> myList = new ArrayList<String>();

 7. assert (args.length > 0);
 8. System.out.println("still static");
 9. }
10. }

 Which sets of commands (javac followed by java) will compile and run without exception or
error? (Choose all that apply.)

 A. javac Antique.java
java Antique

 B. javac Antique.java
java -ea Antique

 C. javac -source 6 Antique.java
java Antique

 D. javac -source 1.4 Antique.java
java Antique

 E. javac -source 1.6 Antique.java
java -ea Antique

Answer:
 ✓ A and C are correct. If assertions (which were first available in Java 1.4) are enabled, an

AssertionError will be thrown at line 7.

 D is incorrect because the code uses generics, and generics weren't introduced until Java 5.
B and E are incorrect based on the above. (Objective 7.2)

 8. Given:

 3. import java.util.*;
 4. public class Values {
 5. public static void main(String[] args) {
 6. Properties p = System.getProperties();
 7. p.setProperty("myProp", "myValue");
 8. System.out.print(p.getProperty("cmdProp") + " ");
 9. System.out.print(p.getProperty("myProp") + " ");
10. System.out.print(p.getProperty("noProp") + " ");
11. p.setProperty("cmdProp", "newValue");
12. System.out.println(p.getProperty("cmdProp"));
13. }
14. }

Self Test Answers 825

826 Chapter 10: Development

 And given the command line invocation:

java -DcmdProp=cmdValue Values

 What is the result?

 A. null myValue null null

 B. cmdValue null null cmdValue

 C. cmdValue null null newValue

 D. cmdValue myValue null cmdValue

 E. cmdValue myValue null newValue

 F. An exception is thrown at runtime

Answer:
 ✓ E is correct. System properties can be set at the command line, as indicated correctly in

the example. System properties can also be set and overridden programmatically.

 A, B, C, D, and F are incorrect based on the above. (Objective 7.2)

 9. Given the following directory structure:

x-|
 |- FindBaz.class
 |
 |- test-|
 |- Baz.class
 |
 |- myApp-|
 |- Baz.class

 And given the contents of the related .java files:

 1. public class FindBaz {
 2. public static void main(String[] args) { new Baz(); }
 3. }

 In the test directory:

 1. public class Baz {
 2. static { System.out.println("test/Baz"); }
 3. }

 In the myApp directory:

 1. public class Baz {
 2. static { System.out.println("myApp/Baz"); }
 3. }

 If the current directory is x, which invocations will produce the output "test/Baz"? (Choose
all that apply.)

 A. java FindBaz

 B. java -classpath test FindBaz

 C. java -classpath .:test FindBaz

 D. java -classpath .:test/myApp FindBaz

 E. java -classpath test:test/myApp FindBaz

 F. java -classpath test:test/myApp:. FindBaz

 G. java -classpath test/myApp:test:. FindBaz

Answer:
 ✓ C and F are correct. The java command must find both FindBaz and the version of

Baz located in the test directory. The "." finds FindBaz, and "test" must come before
"test/myApp" or java will find the other version of Baz. Remember the real exam will
default to using the Unix path separator.

 A, B, D, E, and G are incorrect based on the above. (Objective 7.2)

 10. Given the following directory structure:

test-|
 |- Test.java
 |
 |- myApp-|
 |- Foo.java
 |
 |- myAppSub-|
 |- Bar.java

 If the current directory is test, and you create a .jar file by invoking this,

jar -cf MyJar.jar myApp

Self Test Answers 827

828 Chapter 10: Development

 then which path names will find a file in the .jar file? (Choose all that apply.)

 A. Foo.java

 B. Test.java

 C. myApp/Foo.java

 D. myApp/Bar.java

 E. META-INF/Foo.java

 F. META-INF/myApp/Foo.java

 G. myApp/myAppSub/Bar.java

Answer:
 ✓ C and G are correct. The files in a .jar file will exist within the same exact directory tree

structure in which they existed when the .jar was created. Although a .jar file will contain
a META-INF directory, none of your files will be in it. Finally, if any files exist in the
directory from which the jar command was invoked, they won’t be included in the
.jar file by default.

 A, B, D, E, and F are incorrect based on the above. (Objective 7.5)

 11. Given the following directory structure:

test-|
 |- GetJar.java
 |
 |- myApp-|
 |-Foo.java

 And given the contents of GetJar.java and Foo.java:

 3. public class GetJar {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

 3. package myApp;
 4. public class Foo { public static int d = 8; }

 If the current directory is "test", and myApp/Foo.class is placed in a JAR file called MyJar.jar
located in test, which set(s) of commands will compile GetJar.java and produce the output 8?
(Choose all that apply.)

 A. javac -classpath MyJar.jar GetJar.java
java GetJar

 B. javac MyJar.jar GetJar.java
java GetJar

 C. javac -classpath MyJar.jar GetJar.java
java -classpath MyJar.jar GetJar

 D. javac MyJar.jar GetJar.java
java -classpath MyJar.jar GetJar

Answer:
 ✓ A is correct. Given the current directory and where the necessary files are located, these

are the correct command line statements.

 B and D are wrong because javac MyJar.jar GetJar.java is incorrect syntax. C is wrong
because the -classpath MyJar.java in the java invocation does not include the test directory.
(Objective 7.5)

 12. Given the following directory structure:

x-|
 |- GoDeep.class
 |
 |- test-|
 |- MyJar.jar
 |
 |- myApp-|
 |-Foo.java
 |-Foo.class

 And given the contents of GoDeep.java and Foo.java:

 3. public class GoDeep {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

 3. package myApp;
 4. public class Foo { public static int d = 8; }

Self Test Answers 829

830 Chapter 10: Development

 And MyJar.jar contains the following entry:

myApp/Foo.class

 If the current directory is x, which commands will successfully execute GoDeep.class and
produce the output 8? (Choose all that apply.)

 A. java GoDeep

 B. java -classpath . GoDeep

 C. java -classpath test/MyJar.jar GoDeep

 D. java GoDeep -classpath test/MyJar.jar

 E. java GoDeep -classpath test/MyJar.jar:.

 F. java -classpath .:test/MyJar.jar GoDeep

 G. java -classpath test/MyJar.jar:. GoDeep

Answer:
 ✓ F and G are correct. The java command must find both GoDeep and Foo, and the

-classpath option must come before the class name. Note, the current directory
(.), in the classpath can be searched first or last.

 A, B, C, D, and E are incorrect based on the above. (Objective 7.5)

A
About the CD

832 Appendix A: About the CD

The CD-ROM included with this book comes complete with MasterExam and the
electronic version of the book. The software is easy to install on any Windows 98/
NT/2000/XP/Vista computer and must be installed to access the MasterExam feature.

You may, however, browse the electronic book directly from the CD without installation.
To register for a second bonus MasterExam, simply click the Bonus Material link on the Main Page
and follow the directions to the free online registration.

System Requirements
Software requires Windows 98 or higher and Internet Explorer 5.0 or above and
20 MB of hard disk space for full installation. The Electronic book requires Adobe
Acrobat Reader.

Installing and Running MasterExam
If your computer CD-ROM drive is configured to auto run, the CD will
automatically start up upon inserting the disk. From the opening screen you
may install MasterExam by pressing the MasterExam buttons. This will begin
the installation process and create a program group named “LearnKey.” To run
MasterExam, choose Start | Programs | LearnKey. If the auto run feature did not
launch your CD, browse to the CD and click RunInstall.

MasterExam
MasterExam provides you with a simulation of the actual exam. The number of
questions, types of questions, and the time allowed are intended to be an accurate
representation of the exam environment. You have the option to take an open-book
exam, including hints, references, and answers; a closed-book exam; or the timed
MasterExam simulation.

When you launch MasterExam, a digital clock display will appear in the upper-
left corner of your screen. The clock will continue to count down to zero unless
you choose to end the exam before the time expires. To register for a second bonus
MasterExam, simply click the Bonus Material link on the Main Page and follow the
directions to the free online registration.

Removing Installation(s) 833

Electronic Book
The entire contents of the Study Guide are provided in PDF format. Adobe’s
Acrobat Reader has been included on the CD.

Help
A help file is provided through the Help button on the main page in the lower-
left corner. Individual help features are also available through MasterExam and
LearnKey’s Online Training.

Removing Installation(s)
MasterExam is installed on your hard drive. For best results for removal of programs
use the Start | Programs | LearnKey | Uninstall options to remove MasterExam.

If you want to remove the Real Player, use the Add/Remove Programs icon from
your Control Panel. You may also remove the LearnKey training program from this
location.

Technical Support
For questions regarding the technical content of the electronic book, or MasterExam,
please visit www.osborne.com or e-mail customer.service@mcgraw-hill.com. For
customers outside the 50 United States, e-mail international_cs@mcgraw-hill.com.

LearnKey Technical Support
For technical problems with the software (installation, operation, removing
installations), and for questions regarding any LearnKey Online Training content,
please visit www.learnkey.com or e-mail techsupport@learnkey.com.

-- (decrement) operator, 302–303
- (subtraction) operator, 306
! (boolean invert) logical operator,

309–310
!= (not equal to) operator, 292
% (remainder) operator, 299
& (non-short-circuit AND) operator,

288, 308
&& (short-circuit AND) operator,

306, 308, 548
* (multiplication) operator, 308
* quantifier, 495
. (dot) metacharacter, 497
. (dot operator), 25, 27
.java files, 791–792
/ (division) operator, 306
: (colons), 354
; (semicolons), 17, 41, 344–345, 675
? quantifier, 495
@argfiles command-line options, 791
\ (backslashes), 798
^ (exclusive-OR [XOR]) logical

operator, 288, 309–310, 553
^ (regex carat) operator, 494
{} (curly braces), 329, 332
| (non-short-circuit OR) operator,

288, 308
|| (short-circuit OR) operator,

306, 308
+ (addition) operator, 288, 299, 307
+ quantifier, 495
++ (increment) operator, 302–303
+= (compound additive operator), 301
<? extends Animal> syntax, 618
<? super ...> syntax, 619
<> (angle brackets), 600
<?> wildcard, 620
<E> placeholder, 622
<Integer> type, 602
<JButton> type, 608
<Object> type, 600

<X> type declaration, 629
= (assignment) operators

assigning one primitive variable
to another, 198

compound, 197, 289–290
floating-point numbers, 196
literals too large for variable,

196–197
overview, 190–191, 288–289
primitive casting, 193–195
primitive variables, 191–193
reference variable, 198–200
variable scope, 200–202

== (equals) operator, 245–246,
292–294, 544

A

absolute paths, 801–802
abstract classes, 16–19, 20
abstract keyword, 15
abstract methods, 41–45
access control

class access, 13
default access, 13–14, 32–34,

36–38
defined, 12
local variables, 38–39
modifiers, 24–26
private members, 29–32
protected members, 32–36
public access, 14–15, 26–29

access modifiers
declaring class members

default, 32–34, 36–38
local variables and, 38–39
overview, 24–26
private, 29–32
protected, 32–36
public, 26–29

defined, 12
method-local inner class, 682

add() method, 581, 620
addAll() method, 601, 603
addAnimals() method, 616–617
addition (+) operator, 288, 299, 307
addJob() method, 754–755
AND operators

& non-short-circuit, 288, 308
&& short-circuit, 306, 308, 548

angle brackets (<>), 600
animate() method, 102
anonymous arrays, 228–230
anonymous inner classes

argument-defined, 678–680
overview, 673–678

anotherObject object, 749
append() method, 440
applications, launching with java

command, 793–796
appropriate use of assertions, 392–394
arg_index format string element, 507
args index, 796
arguments. See also var-args

anonymous inner classes defined
by, 678–680

command-line, 393, 795–796
constructor, 238, 628
defined, 46
final, 41
just-in-time array, 229–230
using assertions to validate,

392–393
arithmetic operators

decrement, 302–303
increment, 302–303
overview, 298
remainder, 299
string concatenation, 299–301

ArrayIndexOutOfBoundsException
subclass, 224, 368, 382

INDEX

836 SCJP Sun Certifi ed Programmer for Java 6 Study Guide

ArrayList class
basics, 567–568
Collection Interface Concrete

Implementation, 565
List interface implementation, 562
mixing generic and non-generic

collections, 601–607
of Strings, 596

arrays
constructing

anonymous, 228–230
multidimensional, 223
on one line, 226–228
one-dimensional, 221–222
overview, 220–221

declarations, 55–57, 219–220,
226–228

enhanced for loop for, 350–352
initialization blocks, 234–237
initializing

and constructing anonymous,
228–230

declaring, and constructing on
one line, 226–228

elements in loop, 225–226
legal element assignments, 230
multidimensional, 233–234
of object references, 231–232
one-dimensional, 232–233
overview, 224–225
primitive, 230–231
reference assignments for one-

dimensional, 232–234
instance variables, 206
length attribute, 437
as objects, 297
primitive, 230–231
returning values, 128
shortcut syntax, 226–228
use of brackets, 56

Arrays class
asList () method, 579
collections, 576
converting to Lists, 579
key methods, 593
searching, 576–578
sort() method, 576

asList () method, 579
assert statements, 386–389, 394

AssertionError subtype, 375, 381–382,
385, 393

assertions
appropriate use of, 392–394
disabling

at runtime, 390
selective, 390–391

enabling
compiling assertion-aware

code, 388–389
identifiers versus keywords,

387–388
at runtime, 389
selective, 390–391

expression rules, 385–387
overview, 328, 383–385

assignment (=) operators
assigning one primitive variable

to another, 198
compound, 197, 289–290
floating-point numbers, 196
literals too large for variable,

196–197
overview, 190–191, 288–289
primitive casting, 193–195
primitive variables, 191–193
reference variable, 198–200
variable scope, 200–202

assignments. See also arrays; garbage
collection; wrappers

assignment operators
assigning one primitive

variable to another, 198
floating-point numbers, 196
literals too large for variable,

196–197
overview, 190–191
primitive casting, 193–195
primitive variables, 191–193
reference variable, 198–200
variable scope, 200–202

autoboxing
equals() method, 245–246
equals operator, 245–246
overview, 244–245
use of, 246–247

heap, 184–185
literal values for primitive types

boolean, 189

character, 189–190
floating-point, 188–189
integer, 186–188
overview, 186
string, 190

local variables
array references, 210
assigning one reference

variable to another, 210–213
object references, 209–210
overview, 207
primitives, 207–209

overloading
with boxing and var-args,

249–250
in combination with var-args,

253–254
overview, 247–249
when combining widening

and boxing, 251–253
widening reference variables,

250–251
passing variables into methods

object reference variables,
213–214

overview, 213
pass-by-value semantics,

214–215
primitive variables, 215–218

stack, 184–185
uninitialized variables

array, 206
object reference, 203–206
overview, 203
primitive, 203–204

atomic operations, 733–735
autoboxing

with collections, 568
equals() method, 245–246
equals operator, 245–246
overloading

with var-args and, 249–250
when combining widening

and, 252–253
overview, 244–245
in switch statements, 337
use of, 246–247

automatic variables, 207. See also
local variables

Index 837

B

backed collections
key methods, 593–595
overview, 589–591
using PriorityQueue class, 591–592

backslashes (\), 798
bar() method, 215
Bar object, 199, 679
behavior, 2. See also methods
binarySearch() method, 576
bitwise operators, 305
block variables, 201
blocked threads, 719–720
boolean add(element) interface

method, 594
boolean containsKey(object key)

interface method, 594
boolean contains(object) interface

method, 594
boolean containsValue(object value)

interface method, 594
boolean createNewFile() method, 446
boolean equals (Object obj) method, 543
boolean exists() method, 446
boolean hasNext() method, 580
boolean invert (!) logical operator,

309–310
Boolean wrapper, 239
booleans

arguments in backed collections,
590–591

assigning versus testing, 334
literals, 189
for loops, 346–347
and relational operators, 290–291

boxing
equals() method, 245–246
equals operator, 245–246
overloading

with var-args and, 249–250
when combining widening

and, 252–253
overview, 244–245
in switch statements, 337
use of, 246–247

brackets, array, 56
branching, if-else, 329–332
break statements

labeled, 354–356
in switch blocks, 338–340

switch statements, 335
unlabeled, 353–354
use of, 352–353

BufferedReader class, 443
BufferedWriter class, 444
byte variables, 192

C

Calculator class, 754
Calendar class, 477–479
call stack

constructors on, 133
overloaded constructors on, 141
propagating uncaught exceptions,

362–363
unwinding, 367

camelCase format, 7–8
can’t-be-overridden restriction, 40
carat (^) operator, 494
case constants

default, 341–342
evaluation of, 338
legal expressions for, 335–338

casting
primitive, 193–195
reference variables, 116–119

catch clauses, 357–359, 362
catch keyword, 357–359
ceiling() method, 587
ceilingKey() method, 587
chained methods, 442
chaining

combining I/O classes, 449–452
constructors, 132–133

changeNum() method, 470
changeSize() method, 110
character literals, 189–190
characters, Unicode, 51, 189, 426–427
charAt() method, 435
ChatClient class, 663–664
checked exceptions, 373–375
checkup() method, 608
class files, 791–794, 805
class literals, 738
ClassCastException class, 382, 547
classes. See also dates; exceptions;

individual classes by name; inner
classes; member declarations

cohesion, 3, 151–154
collections, 557–561

combining, 449–452
declaration

abstract classes, 16–19
class access, 13
default access, 13–14
final classes, 15–16
modifiers, 12–13, 15
overview, 10–11
public access, 13–15
source file rules, 11–12

defined, 2
File, 443, 445–447
finding other, 3–4
generic, 623–627
interfaces

implementing, 122
relationship with, 20

naming standards, 7
searching for

classpaths, 797–798
overview, 796–797
packages, 799–801
relative and absolute paths,

801–802
thread-safe, 742–744
wrapper, 237–238

classes directory, 791–793
-classpath option, javac command,

790–791, 794, 798
classpaths, 797–798, 808
close() method, 448–449
cmdProp=cmdVal property, 795
cohesion, 3, 151–154
Collection classes, 56
Collection interface, 557–559
collections. See also generics;

hashCode() method
ArrayList basics, 567–568
autoboxing with, 568
backed

key methods, 593–595
overview, 589–591
using PriorityQueue class,

591–592
classes, 557–561
converting arrays to Lists to

arrays, 579
interfaces

List, 561–562
Map, 563–564
overview, 557–561

838 SCJP Sun Certifi ed Programmer for Java 6 Study Guide

collections. See also generics;
hashCode() method (Cont.)

Queue, 564–566
Set, 562–563

legacy code, 597–600
Lists, 580–581
Maps, 583–586
mixing generic and non-generic,

601–607
overriding Object methods

equals(), 544–549
overview, 542
toString(), 542–544

overview, 556–557
searching

arrays and, 576–578
TreeSets and TreeMaps,

586–588
Sets, 581–583
sorting

Arrays class, 576
Comparable interface, 571–573
Comparator interface, 574–575
overview, 569–571

Collections class, 593
Collections Framework, 556
Collections.sort() method, 571,

573–574, 576
Collections.synchronizedList()

method, 743–744
colons (:), 354
combining I/O classes, 449–452
command-line arguments, 393, 795–796
commands

jar, 803–804
java command, 793–796
javac

assertion-aware code, 388–389
compiling with, 790–793
constructor code generated

by, 137
failures, 350
JAR files, 804
warnings, 603

searching for other classes with
classpaths, 797–798
overview, 796–797
packages, 799–801
relative and absolute paths,

801–802

Comparable interface, 561, 566,
571–573

Comparator interface, 561, 574–575, 592
compare() method, 574
compareTo() method, 571–574
compiler

assertion-aware code, 388–389
constructor code generated by, 137
failures, 350
JAR files, 804
javac command, 790–793
searching for other classes

classpaths, 797–798
overview, 796–797
packages, 799–801
relative and absolute paths,

801–802
warnings, 603

compound additive operator (+=), 301
compound assignment operators, 197,

289–290
concat() method, 435–436
concatenation operator, string,

299–301
concrete classes, 42–44
conditional expressions, 346–347
conditional operators, 304–305
consistency of equals() method, 549
constant pool, String, 434
constant specific class bodies, 63, 65
constants

case
default, 341–342
evaluation of, 338
legal expressions for, 335–338

declaring interface, 22–23
enums, 63
MAX_VALUE, 807
values, 23

constructing arrays, 220–223
constructor arguments, 238, 628
constructors

chaining, 132–133
code causing to run, 222
compiler-generated, 137
declarations

in enums, 63–65
overview, 47–48

default, 135–139
overloaded, 139–145

overview, 130–132
rules for, 133–134
super, 136–139
wrapper, 239

continue statements
labeled, 354–356
overview, 352–353
unlabeled, 353–354

contracts
equals() method, 549
hashCode() method, 554–556

conversion format string element, 508
conversion utilities, wrapper

parseXxx() methods, 241
toString() method, 242
toXxxString() method,

242–243
valueOf() method, 241
xxxValue() methods, 240–241

copying reference variables, 213
correct use of assertions, 392–394
coupling, 151–153
covariant returns, 127–128
-cp abbreviation, java command, 798
CreateAnArrayList class, 628
curly braces ({}), 329, 332
currencies, 473–474, 482–487
-d option, javac command, 790–793
-D option, system properties,

794–795

D

daemon threads, 704
DataInputStream class, 473
DataOutputStream class, 473
Date class, 476–477
DateFormat class, 480–481, 484
dates

Calendar class, 477–479
Date class, 476–477
DateFormat class, 480–481
Locale class, 482–485
orchestrating classes related to,

474–475
overview, 473–474

dead thread state, 716, 720
deadlocks, thread, 745–746
“Deadly Diamond of Death”

scenario, 100

Index 839

decimal literals, 186
decision statements

if
if-else branching, 329–332
legal expressions for, 332–334
overview, 328

switch
break statement in, 335,

338–340
default case, 341–342
fall-through in, 338–340
legal expressions for, 335–338
overview, 328, 334–335

declaration
access modifiers

default, 32–34, 36–38
local variables and, 38–39
overview, 24–26
private, 29–32
protected, 32–36
public, 26–29

array, 219–220, 226–228
class

abstract, 16–19
access, 13
default access, 13–14
final, 15–16
modifiers, 12–13, 15
overview, 10–11
public access, 13–15
source file rules, 11–12

classpath, 797–798
constructor, 47–48
enum

constructors, methods, and
variables in, 63–65

overview, 60–63
exception, 371–376
generics

classes, 623–627
methods, 627–630
overview, 622–623

interface
constants, 22–23
overview, 19–22

for loop, 346, 351
nonaccess modifiers

abstract methods, 41–45
final arguments, 41
final methods, 40

methods with var-args,
46–47

native methods, 46
overview, 39
strictfp methods, 46
synchronized methods, 45

var-arg rule, 47
variable

array, 55–57
in enums, 63–65
final, 57–58
generics and polymorphism, 608
instance, 51–53
local, 53–55
overview, 49
primitive, 49–51
reference, 51
static, 59–60
transient, 59
volatile, 59

declared return types, 129
decoupling reference variables, 258
decrement (--) operator, 302–303
default access classes, 13–14
default access control type, 24
default constructors, 135–139
default hashcode method, 552
default keyword, 341–343
default members, 32–34, 36–38
default primitive and reference type

values, 203
default priority, thread, 725
defining threads, 705–706
delete() method, 440–441
delimiters, 502
descending order, 588
development

compiling with javac command,
790–793

Java Archive files, 802–805
launching applications with java

command, 793–796
overview, 789–790
searching for other classes

classpaths, 797–798
overview, 796–797
packages, 799–801
relative and absolute paths,

801–802
static imports, 806–807

direct subdirectories, 802
directories

classpaths, 797–798
javac command, 791–793
META-INF, 804
myApp, 803
relative and absolute paths,

801–802
root, 804
source, 792
working with files and, 452–457

disabling assertions
at runtime, 390
selective, 390–391

division (/) operator, 306
do loops, 344–345
doInsert() method, 620
doStuff() method, 114, 215, 670, 679
dot (.) metacharacter, 497
dot operator (.), 25, 27
downcasting, 117–118

E

early loop termination, 348
else if statement, 330–331
else statement, 329–332
enabling assertions

compiling assertion-aware code,
388–389

identifiers versus keywords,
387–388

javac, 388
at runtime, 389
selective, 390–391

encapsulation, 86–89
enclosing class, 682
engines, regex, 488
enhanced for loops, 350–352
entry points, 338
enums

declaring constructors, methods,
and variables in, 63–65

equality operators for, 294–295
maps, 584
overview, 60–63

EOFException subclass, 370, 373
equal (=) sign, 191
equal to (==) operator, 245–246,

292–294, 544

840 SCJP Sun Certifi ed Programmer for Java 6 Study Guide

equality operators
for enums, 294–295
overview, 292
for primitives, 292–293
for reference variables, 293–294

equals (==) operator, 245–246,
292–294, 544

equals() method
collections, 562–563
hashCode(), 548–549
hashcodes, 586
inheritance, 91
maps, 583
overriding, 544–549
wrappers, 245–246

equalsIgnoreCase() method, 435–436
equals(java.lang.Object) method, 554
equals(Object) method, 554
Error class, 366–368, 373–375
error detection and handling.

See exceptions
errors, scoping, 201–202
escape codes, 190, 498
events, 9
Exception class, 366–368, 374
ExceptionInInitializerError, 382
exceptions

catch keyword, 357–359
checked, 373–375
declaration and public interface,

371–376
defined, 357, 365–366
finally block, 359–362
hierarchy of, 366–369
JVM thrown, 379–380
matching, 369–371
overview, 328, 356–357
programmatic

defined, 379
list of, 382

programmatically thrown, 380–381
propagating uncaught, 362–365
rethrowing same, 376–378
try keyword, 357–359
unchecked, 373, 375

exclusive-OR (XOR) logical operator,
288, 309–310, 553

execution, threads of, 702, 709, 757
existingDir subdirectory, 454
explicit casts, 193, 197

expressions
assertions, 385–387
for case constant, 335–338
conditional, 346–347
for if statements, 332–334
iteration, 347–348
for statement, 351
for switch statements, 335–338

extends keyword
generic methods, 618
interfaces, 122–124
java.lang.Thread, 705–706

F

fall-through in switch blocks, 338–340
FIFO (first-in, first-out), 564
File class, 443, 445–447
file navigation

combining I/O classes, 449–452
creating files using class File,

445–447
directories, 452–457
FileWriter and FileReader classes,

447–449
overview, 443–445

FileNotFoundException subclass,
370–371

FileReader class, 443, 447–449
FileWriter class, 444, 447–449
final arguments, 41
final classes, 15–16
final keyword, 15, 40
final methods, 40, 103
final variables, 57–58, 303, 336
final void notify() method, 543
final void notifyAll() method, 543
final void wait() method, 543
finalize() method, 263, 542
finally clause, 359–362
find() method, 499
first-in, first-out (FIFO), 564
flags, 507
floating points, 15, 46, 188–189
floor() method, 587
floorKey() method, 587
flow control

assertions
enabling, 387–391
expression rules, 385–387

overview, 383–385
using appropriately, 392–394

exceptions
catch keyword, 357–359
declaration of, 371–376
defined, 365–366
finally block, 359–362
hierarchy of, 366–369
JVM thrown, 379–380
matching, 369–371
overview, 356–357
programmatically thrown,

380–381
propagating uncaught, 362–365
public interface and, 371–376
rethrowing same, 376–378
try keyword, 357–359

if statements
if-else branching, 329–334
legal expressions for, 332–334
overview, 328

loops
break statement, 352–353
continue statement, 352–353
do, 344–345
for, 345–352
labeled statements, 354–356
unlabeled statements, 353–354
while, 343–344

overview, 327–328
switch statements

break statement in, 338–340
default case, 341–342
fall-through in, 338–340
legal expressions for, 335–338
overview, 328, 334–335

flush() method, 448–449
Foo class

argument-defined anonymous
inner classes, 679–680

compiler-generated constructor
code, 137

natural order in, 561
overloaded methods, 114
reference variable assignments, 199
shadowing instance variables,

217–218
for loops

conditional expressions, 346–347
declaration, 346

Index 841

enhanced, 350–352
initialization, 208, 346
issues with, 348–350
iteration expressions, 347–348
legacy collections, 598
overview, 345–346
PriorityQueue class, 592
threads, 714

forced exits, 347–348
forcing garbage collection, 260–262
for-each. See for loops
for-in. See for loops
format() method, 506–508
formatting

dates and numbers
Calendar class, 477–479
Date class, 476–477
DateFormat class, 480–481
Locale class, 482–485
NumberFormat class, 485–487
orchestrating classes, 474–475
overview, 473

tokenizing
and delimiters, 502
format() method, 506–508
overview, 501–502
printf() method, 506–508
Scanner class, 504–506
String.split() method,

502–504

G

garbage collection
code making objects eligible for

finalize() method, 263
forcing, 260–262
isolating references, 259–260
nulling references, 257–258
overview, 257
reassigning reference variables,

258–259
in Java, 255–257
memory management and,

254–255
generics

declaring
classes, 623–627
methods, 627–630
overview, 622–623

legacy code, 597–600
methods, 609–622
mixing with non-generic

collections, 601–607
overview, 541–542, 595–597
polymorphism and, 607–609

get() method, 581, 584, 586, 599, 606
getDateInstance() method, 480–481
getInstance() method, 477, 480
getName() method, 710–711
getProperty() method, 795
getState() method, 708
getter methods, 8–9, 88
greedy quantifiers, 495–497
group() method, 499

H

HardToRead class, 543
HAS-A relationships, 96–98
hashCode() method

equals() method, 548–549
HashSet, 562
Maps, 583
overriding

contract, 554–556
implementing, 552–554
overview, 549–552

real-life hashing, 551
HashMap class

Collection interface, 557, 565
collections, 566
hashCode() method, 555–556
LinkedHashMap, 564
Map interface implementation, 563
overriding equals(), 545
use of, 583

HashSet class, 562, 565
Hashtable class, 557, 560, 564–565
headMap() method, 590
headSet() method, 590
heap, 220–221, 255
hexadecimal literals, 187–188
hierarchy of exceptions, 366–369
high cohesion, 152–153
higher() method, 587
higherKey() method, 587
higher-level classes, 460
highest-priority threads, 724

I

IDE (Integrated Development
Environment) tool, 8

identifiers
versus keywords, 387–388
legal, 5–6
Map interface, 563
overview, 2–4

IEEE 754 standard, 15
if statements

if-else branching, 329–332
initialization, 208
legal expressions for, 332–334
overview, 328

illegal overrides, 109, 114
IllegalArgumentException,

381–382, 393
IllegalMonitorStateException,

749–750
IllegalStateException, 382
immutability of strings, 426–433
implementation classes, 121–122,

560, 680
implementers, interface, 677–678
implementing

equals() method, 546–549
hashCode() method, 552–554
interfaces, 120–125
java.lang.Runnable, 706

implicit casts, 193
import statements, 3–4, 11, 799–800,

805–806
imports, static, 806–807
increment (++) operator, 302–303
increment expression, 350
indenting, 331–332
indexOf() method, 561, 581
IndexOutOfBoundsException, 368
indirect implementations, 296
inheritance

versus dot operator for member
access, 27

HAS-A relationship, 96–98
IS-A relationship, 94–95
overview, 3, 90–94
and serialization, 468–472
and subclasses, 25–26

initialization blocks, 234–237

842 SCJP Sun Certifi ed Programmer for Java 6 Study Guide

initializing
arrays

anonymous, 228–230
elements in loop, 225–226
legal element assignments, 230
multidimensional, 233–234
of object references, 231–232
on one line, 226–228
one-dimensional, 232–233
overview, 224–225
primitive, 230–231
reference assignments for

one-dimensional, 232–234
local variables, 54
for loops, 346

inner classes
anonymous

argument-defined, 678–680
overview, 673–678

coding regular, 664–668
instances, 664, 682
method-local, 670–672
overview, 661–664
referencing inner or outer instance

from within, 668–670
static nested classes, 680–681

insert() method, 441, 602–603
insertion points, 576
instance methods, 102
instance variables

array, 206
defined, 51–53
hashCode() method, 552–553
object reference, 203–206
primitive, 203–204
protecting, 31
scope of, 201
uninitialized

array, 206
object reference, 203–206
overview, 203
primitive, 203–204

instanceof operator
compiler error, 297–298
equals() method, 547
inheritance, 90
IS-A relationship, 233
overview, 295–298

instances
initialization blocks, 234–235, 237
for java.text and java.util

classes, 487
static nested classes, 680

instantiating
constructors

chaining, 132–133
default, 135–139
overloaded, 139–145
overview, 130–132
rules for, 133–134

inner classes, 666–668
outer class, 667
static nested classes, 681
threads, 706–708

int hashCode() method, 543
int indexOf(object) interface

method, 594
int size() interface method, 594
int variable, 192
Integer class, 242, 807
integer literals

decimal, 186
hexadecimal, 187–188
octal, 187

Integrated Development Environment
(IDE) tool, 8

interactions, thread
notifyAll(), 752–757
overview, 746–751

interfaces
as array types, 231
collections

List, 561–562
Map, 563–564
overview, 557–561
Queue, 564–566
Set, 562–563

declaring
constants, 22–23
overview, 19–22

implementers, 677–678
implementing, 120–125
naming standards, 7
overview, 3
relationship with classes, 20

invoking
overloaded methods, 111–113
superclass version of overridden

methods, 107–108
I/O

class File, 445–447
combining classes, 449–452
FileReader, 447–449
files and directories, 452–457
FileWriter, 447–449
java.io.Console class, 457–459
overview, 443–459

IOException class, 370–371, 373
IS-A relationship, 94–95, 233, 251, 547
isAlive() method, 40, 708
isEmpty() method, 755
islands of isolation, 259
isolating references, 259–260
iteration

defined, 560
expressions and for loops, 347–348

Iterators, 580, 594

J

JAR (Java Archive) files, 802–805, 808
jar command, 803–804
Java 6 compiler. See javac command
Java Archive (JAR) files, 802–805, 808
Java Code Conventions, 4, 6–8
java command

launching applications with,
793–796

searching for other classes
classpaths, 797–798
overview, 796–797
packages, 799–801
relative and absolute paths,

801–802
Java Virtual Machine (JVM)

exceptions, 379–380, 382
thread scheduler, 716

JavaBeans standards, 4, 8–10
javac command

assertion-aware code, 388–389
compiling with, 790–793
constructor code generated by, 137
failures, 350

Index 843

JAR files, 804
searching for other classes

classpaths, 797–798
overview, 796–797
packages, 799–801
relative and absolute paths,

801–802
warnings, 603

java.io Mini API, 450
java.io.Console class, 457–459
java.lang.Class instances, 737
java.lang.Enum class, 584
java.lang.Object class, 718
java.lang.Runnable interface, 706
java.lang.Thread class, 705–706, 717
java.text class, 487
java.text.DateFormat, 474
java.text.NumberFormat, 474
java.util class, 487, 796
java.util package, 566, 805
java.util.ArrayList class, 567
java.util.Calendar, 474
java.util.Collections class, 558, 569
java.util.Date class, 474
java.util.HashMap class, 796
java.util.jar package, 805
java.util.Locale, 474
java.util.NavigableMap interface, 586
java.util.NavigableSet interface, 586
java.util.Properties class, 794
java.util.regex package, 805
java.utils.Arrays.sort() method, 571
JButton class, 608
jobs list, 755–756
join() method, 716–717, 726–728
jre/lib/ext subdirectory tree, 805
just-in-time array arguments, 229–230
JVM (Java Virtual Machine)

exceptions, 379–380, 382
thread scheduler, 716

K

keys, 795
keywords

abstract, 15
catch, 357–359
chart, 6

default, 341–343
extends

generic methods, 618
interfaces, 122–124
java.lang.Thread, 705–706

final, 15, 40
versus identifiers, 387–388
new, 222
overview, 3
strictfp, 15, 46
super, 619
throw, 367
try

exceptions, 357–359
with finally block, 359–361
wait() method, 750
without catch block, 361
without finally block, 361

L

labeled statements, 354–356
launching applications with java

command, 793–796
legacy code, 597–602
legal array element assignments, 230
legal expressions

for case constant, 335–338
for if statements, 332–334
for switch statements, 335–338

legal identifiers, 4
legal overloaded methods, 110
legal overridden methods, 109
legal return types

covariant, 127–128
on overloaded methods, 126–127
on overridden methods, 127–128
returning values, 128–130

length attributes, array, 437
length() method, 435–436
length variable, 225–226
LinkedHashMap class, 557, 564–566
LinkedHashSet class, 560, 563, 565
LinkedList class, 562, 564–565, 580
List class, 608
List interface

collections, 561–562
in Collections Framework, 557

converting to arrays, 579
generic declarations, 622
key methods, 594–595
use of, 580–581

List<?> syntax, 620
List<Integer> syntax, 621
List<Object> syntax, 620–621
list.add() method, 620
listeners, 9
lists, enumerated. See enums
literals

boolean, 189
character, 189–190
floating-point, 188–189
integer

decimal, 186
hexadecimal, 187–188
octal, 187

string, 190, 434
live objects, 257
local arrays, 210
local object references, 209–210
local primitives, 207–209
local variables

access member modifiers and,
38–39

array references, 210
assigning one reference variable to

another, 210–213
defined, 53–55
inner classes, 671
object references, 209–210
overview, 207
primitives, 207–209
scope of, 201
uninitialized, 203

Locale class, 482–485
locks, 735–737, 739–740
logical operators

bitwise, 305
boolean invert, 309–310
non-short-circuit, 308–309
short-circuit, 306–308
XOR, 309–310

Long class, 242, 807
loops

break statement, 352–353
continue statement, 352–353

844 SCJP Sun Certifi ed Programmer for Java 6 Study Guide

loops (Cont.)
do, 344–345
for

conditional expression, 346–347
declaration, 346
enhanced, 350–352
initialization, 346
issues with, 348–350
iteration expression, 347–348
legacy collections, 598
overview, 345–346
PriorityQueue class, 592
threads, 714

initializing elements in, 225–226
labeled statements, 354–356
unlabeled statements, 353–354
wait() in, 753–757
while, 343–344

loose coupling, 152
lower() method, 587
lowerKey() method, 587
lower-level classes, 460
lower-priority threads, 724

M

Machine class, 754
main() method, 546, 665, 702, 710, 713
makeArrayList() method, 627
makeInner() method, 666
makeWithdrawal() method, 734
MANIFEST.MF file, 804
Map interface

collections, 563–564
key methods, 594–595
use of, 583–586

MapTest.main() method, 585
marker interfaces, 461, 562
Matcher class, 498–501
matching, exception, 369–371
MAX_VALUE constant, 807
meaningfully equivalent instances,

245–246
Meeks, Jonathan, 97
member classes, 662
member declarations

access modifiers
default members, 32–34,

36–38
local variables and, 38–39
overview, 24–26

private members, 29–32
protected members, 32–36
public members, 26–29

constructor, 47–48
enum

constructors, methods, and
variables in, 63–65

overview, 60–63
nonaccess modifiers

abstract methods, 41–45
final arguments, 41
final methods, 40
methods with var-args, 46–47
native methods, 46
overview, 39
strictfp methods, 46
synchronized methods, 45

variable
array, 55–57
final, 57–58
instance, 51–53
local, 53–55
overview, 49
primitive, 49–51
reference, 51
static, 59–60
transient, 59
volatile, 59

visibility and access, 39
member methods, 662
member modifiers applied to inner

classes, 670
member variables, 662. See also

instance variables
memory

garbage collection, 257
management and garbage

collection, 254–255
and String class, 433–434

metacharacters
and searches, 490–492
and strings, 497–498

META-INF directory, 804
method-local inner classes, 670–672
methods. See also hashCode() method;

individual methods by name
backed collections, 593–595
chained, 442
comparison of modifiers on, 53
declarations, 41
declaring in enums, 63–65

defined, 2
effects of static on, 150
generic, 609–622, 627–630
in interfaces, 20–21
JavaBean signatures for, 10
naming standards, 7
overriding Object

equals(), 544–549
toString(), 542–544

overriding rules, 106–107
passing variables into

object reference, 213–214
overview, 213
pass-by-value semantics,

214–215
primitive, 215–218

String class, 434–438
StringBuffer, 440–442
StringBuilder, 440–442
synchronizing static, 737–739
thread scheduler, 717–718
with var-args, 46–47

mkdir() method, 453
modifiers. See also individual modifiers

by name
applied to inner classes, 670
class access

default, 13–14
public, 14–15

class nonaccess
abstract, 16–19
final, 15–16

member access
default members, 32–34,

36–38
local variables and, 38–39
overview, 24–26
private members, 29–32
protected members, 32–36
public members, 26–29

member nonaccess
abstract methods, 41–45
final arguments, 41
final methods, 40
methods with var-args, 46–47
native methods, 46
overview, 39
strictfp methods, 46
synchronized methods, 45

overview, 12–13
variables and methods, 53

Index 845

Moof class, 546
moofValue instance variable, 546–547
multidimensional arrays, 57, 223,

233–234
multiple inheritance, 100
multiplication (*) operator, 308
multithreading, 702, 713–716
myApp directory, 803
myApp.engine package, 804
myApp.utils package, 804
MyClass class, 738, 791
MyInner class, 666
MyOuter class, 666
MyOuter2 class, 670

N

name variable, 586
names.get(0) method, 743
names.remove(0) method, 744
names.size() method, 743–744
naming standards

classes, 7
interfaces, 7
JavaBean listeners, 9
JavaBean properties, 8–9
methods, 7
variables, 7

narrowing, 193
native methods, 46
natural order, 561
NavigableMap interface, 566
NavigableSet interface, 566
navigating

files
combining I/O classes,

449–452
creating files using class File,

445–447
directories, 452–457
FileWriter and FileReader

classes, 447–449
overview, 443–445

methods relating to, 588
TreeSets and TreeMaps, 586–588

nested classes, static, 680–681. See also
inner classes

new keyword, 222
new threads, 716, 718
next() method, 581

nextXxx() methods, 505–506
no-arg constructors, 133–134
NoClassDefFoundError exception, 382
nonabstract methods, 17–18
nonaccess class modifiers

abstract classes, 16–19
defined, 12
final classes, 15–16

nonaccess member modifiers
abstract methods, 41–45
final arguments, 41
final methods, 40
methods with variable argument

lists (var-args), 46–47
native methods, 46
overview, 39
strictfp methods, 46
synchronized methods, 45

non-final local variables, 682
non-generic collections, 597, 601–607
non-serializable elements, 472
non-short-circuit AND (&) operator,

288, 308
non-short-circuit logical operators,

308–309
non-short-circuit OR (|) operator,

288, 308
non-static inner class instantiation

code, 667
non-static methods, 735, 740–741
non-static synchronized methods,

739, 741
nonstatic variables, 147–148
non-synchronized methods, 736–737
non-transient variables, 556
non-type safe code, 602–607
NoSuchElementException class, 743
not equal to (!=) operator, 292
notify() method, 542, 746, 748,

752–756
notifyAll() method, 542, 746, 752–757
null references, 205, 209, 224,

257–258, 563–564
NullPointerException class, 224, 247,

373, 380, 382
NumberFormat class, 484–487
NumberFormatException class,

381–382
numbers, formatting, 473–487
numeric primitives, 50

O

Object class. See also hashCode()
method

arrays, 579
influencing thread scheduler, 718
overriding methods

equals(), 544–549
toString(), 542–544

overview, 542
object get() interface methods, 594
object graphs, 461–465
object next() method, 580
object orientation

cohesion, 151–154
constructors

chaining, 132–133
default, 135–139
overloaded, 139–145
overview, 130–132
rules for, 133–134

coupling, 151–153
encapsulation, 86–89
implementing interfaces, 120–125
inheritance

HAS-A relationship, 96–98
IS-A relationship, 94–95
overview, 90–94

legal return types
covariant returns, 127–128
on overloaded methods,

126–127
on overridden methods,

127–128
returning values, 128–130

overloaded methods
invoking, 111–113
legal, 110
overview, 109–110
polymorphism in, 113–115

overridden methods
examples of legal and

illegal, 109
invoking superclass version

of, 107–108
overview, 103–107

polymorphism, 98–102
reference variable casting, 116–119
statics

accessing, 148–151
overview, 145–148

846 SCJP Sun Certifi ed Programmer for Java 6 Study Guide

object reference instance variables,
203–206

object reference variables
arrays of, 231–232
assigning null to, 199
passing into methods, 213–214

Object type, 572
Object[] toArray() interface

method, 594
ObjectInputStream method, 460–461
object-oriented design, 97
ObjectOutputStream method, 460–461
objects

arrays as, 297
defined, 2
uneligiblizing for garbage

collection, 263
wrapper, 239–240

octal literals, 187
offer() method, 562, 591–592
one-dimensional arrays, 221–222,

232–233
operands, 298
operators. See also individual operators

by name
arithmetic

decrement, 302–303
increment, 302–303
overview, 298
remainder, 299
string concatenation, 299–301

assignment
compound, 197, 289–290
overview, 288–290

conditional, 304–305
instanceof

compiler error, 297–298
overview, 295–297

logical
bitwise, 305
boolean invert, 309–310
non-short-circuit, 308–309
short-circuit, 306–308
XOR, 309–310

precedence, 290
relational

equality operators, 292–295
overview, 290–291

OR operator
non-short-circuit, 288, 308
short-circuit, 306, 308

ordered collections, 560
outer classes

instantiating inner class from
within, 666–668

overview, 664
referencing from within inner

classes, 668–670
static members of, 681

OutOfMemoryError subtype, 375
outside outer class instance code,

666–668
overloaded constructors, 139–145
overloading methods

with boxing and var-args, 249–250
in combination with var-args,

253–254
invoking, 111–113
legal, 110
legal return types on, 126–127
versus overridden methods, 115
overview, 109–110, 247–249
polymorphism in, 113–115
when combining widening and

boxing, 251–253
widening reference variables,

250–251
overridden methods. See also

hashCode() method
invoking superclass version

of, 107–108
legal and illegal, 109
legal return types on, 127–128
Object

equals(), 544–549
toString(), 542–544

versus overloaded methods, 115
overview, 103–107
polymorphism in, 113–115
versus static methods, 151

P

packages, 3, 11–12, 799–801
parameterized type, 598, 626–628
parameters, 46
parentheses, 300
parse() method, 481
parseXxx() methods, 241
parsing

locating data via pattern matching,
498–501

overview, 487–488
searches

greedy quantifiers, 495–497
overview, 488–489
predefined dot, 495
simple, 489–490
strings and metacharacters,

497–498
using metacharacters, 490–492
using quantifiers, 492–495

Part class, 566
pass-by-value semantics, 214–215
passing variables into methods

object reference variables, 213–214
overview, 213
pass-by-value semantics, 214–215
primitive variables, 215–218

Pattern class, 498–501
pattern matching, 498–501
peek() method, 562, 591
poll() method, 562, 588, 591–592
pollFirst() method, 588
pollFirstEntry() method, 588
pollFirstXxx() method, 591
polling, 588
pollLast() method, 588
pollLastEntry() method, 588
polymorphism

anonymous inner classes, 675
defined, 92
generics and, 607–610
in overloaded methods, 113–115
in overridden methods, 113–115
overriden methods, 108
overview, 98–102

pool, String constant, 434
populateList() method, 570
precedence, 299
precision format string element, 507
predefined dot, 495
preventing thread execution,

720–721
primitive arrays, 230–231
primitive instance variables, 203–204
primitive literals

boolean, 189
character, 189–190
defined, 186
floating-point, 188–189
integer, 186–188
string, 190

Index 847

primitive return types, 128–129
primitive variables

assignments, 191–193
casting

assigning floating-point num-
bers, 196

assigning literals too large for,
196–197

assigning one primitive to
another, 198

overview, 193–195
declaration, 49–51
defined, 49
equality operators for, 292–293
passing into methods, 215–218
ranges, 49–51

printf() method, 506–508
PrintWriter class, 444
priorities, thread, 724–728
PriorityQueue class

backed collections, 591–592
Collection interface, 565
methods, 594
overview, 564–566

private access, 32
private constructors, 133
private members, 29–32
private method-local inner class, 672
private methods, 11, 393
private variables, 733
programmatic exceptions

defined, 379
list of, 382

programmatically thrown exceptions,
380–381

propagating uncaught exceptions,
362–365

properties, system, 794–795
protected access, 37
protected members, 32–36
protected method-local inner class, 672
public access

classes, 14–15
effects of, 32

public boolean
equalsIgnoreCase(String s)
method, 436

public char charAt(int index)
method, 435

public int length() method, 436
public interface, 371–376

public members, 26–29
public methods, 11, 392–393, 672
public modifier, 21
public static String toString()

methods, 593
public static void sort() method, 593
public String concat(String s) method,

435–436
public String replace(char old, char

new) method, 436
public String substring() methods,

436–437
public String toLowerCase()

method, 437
public String toString() method, 438,

441–442
public String toUpperCase()

method, 438
public String trim() method, 438
public StringBuilder delete(int start, int

end) method, 440–441
public StringBuilder insert(int offset,

String s) method, 441
public synchronized StringBuffer

append(String s) method, 440
public synchronized StringBuffer

reverse() method, 441
put(key, value) interface method, 594

Q

quantifiers
greedy, 495–497
and searches, 492–495

Queue interface, 557, 564–566,
594–595

queues, 562, 591–592, 717

R

race conditions, 733
RandomAccess interface, 562
ranges, primitive variable, 49–51
reachable references, 257
read() method, 746
readLine() method, 455, 457
readObject() method, 465–468
readPassword method, 457
reassigning reference variables,

258–259
Red-Black tree structure, 563

reference type, 113
reference variables

anonymous inner classes, 674, 676
assignments, 198–200
casting, 116–119
declaring, 51
defined, 49, 191
equality operators for, 293–294
isolating, 259–260
nulling, 257–258
polymorphism, 99
reassigning, 258–259
and string objects, 429
widening, 250–251

references, reachable, 257
referencing instances from within inner

classes, 668–670
reflexiveness of equals() method, 549
regex (regular expressions)

engines, 488
Matcher class, 498–501
overview, 488, 510
Pattern class, 498–501
searches

dot metacharacter, 495
greedy quantifiers, 495–497
overview, 488–489
simple, 489–490
string and metacharacters,

497–498
using metacharacters,

490–492
using quantifiers, 492–495

tokenizing, 501–506
regions, 500
regular expressions (regex)

engines, 488
Matcher class, 498–501
overview, 488, 510
Pattern class, 498–501
searches

dot metacharacter, 495
greedy quantifiers, 495–497
overview, 488–489
simple, 489–490
string and metacharacters,

497–498
using metacharacters,

490–492
using quantifiers, 492–495

tokenizing, 501–506

848 SCJP Sun Certifi ed Programmer for Java 6 Study Guide

regular inner classes, 664–668
relational operators

equality
for enums, 294–295
overview, 292
for primitives, 292–293
for reference variables, 293–294

overview, 290–291
relative paths, 801–802
remainder (%) operator, 299
removeFirst() method, 743–744
remove(index) interface method, 594
remove(key) interface method, 594
remove(object) interface method, 594
replace() method, 435–436
rethrowing exceptions, 376–378
return types, legal

covariant returns, 127–128
on overloaded methods, 126–127
on overridden methods, 127–128
returning values, 128–130

reverse() method, 441, 593
roll() method, 479
root directory, 804
rules for constructors, 133–134
run() method

Thread class
completion, 716
instantiating, 708
leaving running state, 728
making thread, 704–705
order of actions, 714
overview, 710

using wait() in loop, 755–757
Runnable interface, 678, 705–709
runnable threads, 716–719, 726
running multiple threads, 713–716
running threads, 719, 733
runtime

disabling assertions at, 390
enabling assertions at, 389

Runtime class, 261
RuntimeException class, 366–368,

373–374

S

s variable, 200
Scanner class, 501, 504–506
scheduler, thread, 716–718, 728

scope, variable, 200–202, 349
searching

arrays, 576–578
Java Archive files and, 803–805
for other classes, 796–802

classpaths, 797–798
overview, 796–797
packages, 799–801
relative and absolute paths,

801–802
simple searches, 489–490
TreeSets and TreeMaps, 586–588
using metacharacters, 490–492
using quantifiers, 492–495

seeOuter() method, 670
selective enabling and disabling of

assertions, 390–391
semantics, pass-by-value, 214–215
semicolons (;), 17, 41, 344–345, 675
serial numbers, 566
serialization

and inheritance, 468–472
object graphs, 461–465
ObjectInputStream methods,

460–461
ObjectOutputStream method,

460–461
overview, 459–460
readObject method, 465–468
and statics, 472–473
transient variables, 59
writeObject method, 465–468

Set interface
implementations for collections,

562–563
key methods, 594–595
use of, 581–583

Set keySet() interface method, 594
setParseIntegerOnly() method, 486
setPriority() method, 725
setProperty method, 795
setter methods, 8–9, 88
shadowing variables, 54–55, 201,

216–218
short-circuit AND (&&) operator, 306,

308, 548
short-circuit logical operators, 306–308
short-circuit OR (||) operator,

306, 308
shortcut syntax, array, 226–228

side effects, assertion, 394
signed number types, 49
simple searches, 489–490
size() method, 581, 743
sleep() method, 717, 721, 723, 727, 757
sleeping threads, 719–724
sort() method

ArrayList class, 569
Arrays class, 576, 593
Collections class, 571–572, 574

SortedMap class, 591
SortedSet class, 591
sorting collections

Arrays class, 576
Comparable interface, 571–573
Comparator interface, 574–575
defined, 561
overview, 569–571

source directories, 792
source file declaration rules, 11–12
-source option, javac command, 790
split() method, 502–504
spontaneous wakeup, 755
square brackets, 219–220
StackOverflowError subtype, 380, 382
standards, JavaBeans, 4, 8–10
start() method

Matcher class, 499
threads, 708–709, 716, 718, 757

starting threads
overview, 709–712
and running multiple, 713–716
thread scheduler, 716–718

statements. See also decision statements
assert, 386–389, 394
break

labeled, 354–356
in switch blocks, 338–340
switch statements, 335
unlabeled, 353–354
use of, 352–353

continue
labeled, 354–356
overview, 352–353
unlabeled, 353–354

else, 329–332
else if, 330–331
import, 3–4, 11, 799–800, 805–806
labeled, 354–356
unlabeled, 353–354

Index 849

states
defined, 2
thread

overview, 718–720
preventing execution,

720–721
priorities and yield(), 724–728
sleeping, 721–724

static boolean equals() method, 593
static Comparator reverseOrder()

method, 593
static compile() method, 499
static imports, 806–807
static initialization blocks, 234–235
static inner classes, 680
static int binarySearch() method, 593
static List asList() method, 593
static methods

accessing, 148–151
blocked threads, 720
defined, 59–60
inner classes, 667–668
local classes declared in, 672
overview, 145–151
sort(), 576
synchronizing, 737–741
in Thread class, 756
Thread.sleep(), 721

static modifier, 45, 59–60, 145, 682
static nested classes, 680–682
static synchronized methods, 739, 741
static Thread.currentThread()

method, 711
static Thread.yield() method, 726
static variables

accessing, 148–151
defined, 59–60
overview, 145–151
scope of, 201
and serialization, 472–473

static void reverse() method, 593
static void sort() method, 593
stop() method, 720
Stream classes, 444
strictfp keyword, 15, 46
String class

creating new strings, 434
immutability, 426–433
important methods, 434–438
and memory, 433–434

overriding equals(), 546
overview, 426
reference variables, 211–213
split() method, 502–504
toString() method, 543

string concatenation operator, 299–301
String constant pool, 434
StringBuffer class

important methods, 440–442
overview, 438–440
synchronizing code, 738–739
thread-safe, 742

StringBuilder class
important methods, 440–442
overview, 438–440
thread-safe, 742

StringIndexOutOfBoundsException
subclass, 368

strings
collections, 566
generics, 596
literals, 190, 434
Maps, 584
and metacharacters, 497–498
overview, 426
reference variables, 211–213
String class

creating new, 434
immutability, 426–433
important methods, 434–438
and memory, 433–434
overview, 426

StringBuffer class
important methods, 440–442
overview, 438–440

StringBuilder class
important methods, 440–442
overview, 438–440

synchronizing code, 738
subclasses

and inheritance, 3, 25–26
inner classes, 677
versus interfaces, 122
protected and default members,

32–34
Thread class, 705

subMap() method, 589–590
subSet() method, 590
substring() method, 435–437
subtraction (-) operator, 306

subXxx() method, 591
Sun’s Java Code Conventions, 4
super constructors, 136–139
super keyword, 619
superclasses, 3
suspend() method, 720
switch statements

break statement in, 335, 338–340
default case, 341–342
fall-through in, 338–340
legal expressions for, 335–338
overview, 328, 334–335

symmetry of equals() method, 549
synchronized methods

in code synchronization, 734–740
defined, 45
thread interaction, 751
Vector, 562
wait() in loops, 756

synchronizedList() method, 744
synchronizing code

atomic operations, 733–735
deadlock, 745–746
if thread can’t get lock, 739–740
locks, 735–737
overview, 728–733
static methods, 737–739
thread-safe classes, 742–744
when synchronization is needed,

740–742
syntax

array shortcut, 226–228
generics, 598

system properties, 794–795
System.gc() method, 261
System.out.println() method, 504,

542, 630

T

T[] toArray(T[]) interface method, 594
tailMap() method, 590
tailSet() method, 590
tailXxx() method, 591
target Runnables, 707
ternary operators, 304
test expressions, 347
TestClass class, 800
testIt() method, 33
this reference, 29, 668

850 SCJP Sun Certifi ed Programmer for Java 6 Study Guide

Thread class
extending, 705–706
final methods, 40
influencing thread scheduler, 717
instantiating thread, 706–708
methods, 704–705, 720
one-dimensional arrays, 222
run() method completion, 716
starting thread, 709–712

thread scheduler, 716–718, 728
threads

blocked, 719–720
dead, 716, 720
defining, 705–706
of execution, 702, 709, 757
instantiating, 706–708
interaction

notifyAll(), 752–757
overview, 746–751

making, 704–705
new, 716, 718
overview, 701–704
runnable, 716–719, 726
running, 719, 733
sleeping, 719–724
starting

overview, 709–712
and running multiple,

713–716
thread scheduler, 716–718

states and transitions
overview, 718–720
preventing execution,

720–721
priorities, 724–728
sleeping, 721–724
yield() method, 726

synchronizing code
atomic operations, 733–735
deadlock, 745–746
if thread can’t get lock,

739–740
locks, 735–737
overview, 728–733
static methods, 737–739
thread-safe classes, 742–744
when needed, 740–742

waiting, 719–720
thread-safe classes, 742–744
Thread.sleep() method, 721

throw keyword, 367
Throwable class, 366–368
thrown exceptions, 357
tight coupling, 152
toArray() method, 579, 581
tokenizing

and delimiters, 502
format() method, 506–508
overview, 501–502
printf() method, 506–508
Scanner class, 504–506
String.split() method, 502–504

toLowerCase() method, 437
toString() method

overriding, 542–544, 570
overriding equals(), 548
public string, 438
in String class, 435
StringBuffer class, 441–442
wrapper conversion, 242

toUpperCase() method, 438
toXxxString() method, 242–243
transient method-local inner class, 672
transient modifier, 465
transient variables, 59, 460, 470,

555–556
transitions, thread

overview, 718–720
preventing execution, 720–721
priorities and yield(), 724–728
sleeping, 721–724
yield(), 724–728

transitivity of equals() method, 549
TreeMap class

backed collections, 589–590
collections, 557, 565–566
methods, 588, 590
overview, 564
searching, 586–588
subMap(), 589

TreeSet class
backed collections, 590
Collection interface, 565
methods, 588, 590
overview, 563, 582
searching, 586–588

trim() method, 438
try keyword

exceptions, 357–359
with finally block, 359–361

wait() method, 750
without catch block, 361
without finally block, 361

t.start() method, 713
two-dimensional arrays, 223
type erasure, 604–605
type parameters, 598, 626–628
type safe code, 602–606

U

UML (Unified Modeling Language), 97
unboxing

equals() method, 245–246
equals operator, 245–246
overloading

with var-args and, 249–250
when combining widening

and, 252–253
overview, 244–245
in switch statements, 337
use of, 246–247

uncaught exceptions, propagating,
362–365

unchecked exceptions, 373, 375
Unicode characters, 51, 189, 426–427
Unified Modeling Language (UML), 97
uninitialized variables

array instance, 206
object reference instance, 203–206
overview, 203
primitive instance, 203–204

unique hashcodes, 585
unique identifiers, 563
unlabeled statements, 353–354
unwinding stack, 367
upcasting, 118
use cases, date and number, 475

V

valueOf() methods, 240–241
values, constant, 23
var-args (variable argument lists)

declaration rules for, 47
methods with, 46–47
overloading, 249–250, 253–254
syntax, 796

variable scope, 200–202, 349

Index 851

variables. See also individual variables
by name

assignment operators
assigning one primitive to

another, 198
floating-point numbers, 196
literals too large for, 196–197
overview, 190–191
primitive, 191–193
primitive casting, 193–195
reference, 198–200
scope, 200–202

comparison of modifiers on, 53
declarations

arrays, 55–57
in enums, 63–65
final, 57–58
generics and polymorphism,

608
instance, 51–53
local, 53–55
overview, 49
primitive, 49–51
reference, 51
static, 59–60
transient, 59
volatile, 59

effects of static on, 150
in interfaces, 20–21
local

access member modifiers
and, 38–39

array references, 210
assigning one reference to

another, 210–213
defined, 53–55
inner classes, 671
object references, 209–210
overview, 207
primitives, 207–209
scope of, 201
uninitialized, 203

naming standards, 7
passing into methods

object reference variables,
213–214

overview, 213
pass-by-value semantics,

214–215
primitive variables, 215–218

uninitialized
array instance, 206
object reference instance,

203–206
overview, 203
primitive instance, 203–204

Vector class, 562, 564–565
VirtualMachineError subtype, 375
void finalize() method, 543
void return types, 129
volatile variables, 59

W

wait() method
lock status, 740
in loops, 753–757
overview, 718
thread interaction, 746–752
threads leaving running state, 728

waiting threads, 719–720
wakeup, spontaneous, 755
warnings, compiler, 603
while loops, 343–344, 756
widening

overloading when combining
boxing and, 251–253

reference variables, 250–251
wrapper classes, 251

width format string element, 507
wrappers

autoboxing
equals() method, 245–246
equals operator, 245–246

overview, 244–245
use of, 246–247

classes
overriding equals(), 546
overview, 237–238
and widening, 251

constructors, 239
conversion methods, 243
conversion utilities

parseXxx() methods, 241
toString() method, 242
toXxxString() method,

242–243
valueOf() method, 241
xxxValue() methods,

240–241
NullPointerException, 247
valueOf() methods, 240

wrapping I/O classes, 449–452
writeObject() method, 465–468

X

x variable, 200
x2 variable, 200
x3 variable, 200
-Xlint:unchecked flag, 605
XOR (exclusive-OR) logical operator,

288, 309–310, 553
xxxValue() methods, 240–241

Y

y variable, 200
yield() method, 724–728

Z

z variable, 200

LICENSE AGREEMENT

THIS PRODUCT (THE “PRODUCT”) CONTAINS PROPRIETARY SOFTWARE, DATA AND INFORMATION (INCLUDING
DOCUMENTATION) OWNED BY THE McGRAW-HILL COMPANIES, INC. (“McGRAW-HILL”) AND ITS LICENSORS. YOUR
RIGHT TO USE THE PRODUCT IS GOVERNED BY THE TERMS AND CONDITIONS OF THIS AGREEMENT.

LICENSE: Throughout this License Agreement, “you” shall mean either the individual or the entity whose agent opens this package. You
are granted a non-exclusive and non-transferable license to use the Product subject to the following terms:
(i) If you have licensed a single user version of the Product, the Product may only be used on a single computer (i.e., a single CPU). If you
licensed and paid the fee applicable to a local area network or wide area network version of the Product, you are subject to the terms of the
following subparagraph (ii).
(ii) If you have licensed a local area network version, you may use the Product on unlimited workstations located in one single building
selected by you that is served by such local area network. If you have licensed a wide area network version, you may use the Product on
unlimited workstations located in multiple buildings on the same site selected by you that is served by such wide area network; provided,
however, that any building will not be considered located in the same site if it is more than five (5) miles away from any building included in
such site. In addition, you may only use a local area or wide area network version of the Product on one single server. If you wish to use the
Product on more than one server, you must obtain written authorization from McGraw-Hill and pay additional fees.
(iii) You may make one copy of the Product for back-up purposes only and you must maintain an accurate record as to the location of the
back-up at all times.

COPYRIGHT; RESTRICTIONS ON USE AND TRANSFER: All rights (including copyright) in and to the Product are owned by
McGraw-Hill and its licensors. You are the owner of the enclosed disc on which the Product is recorded. You may not use, copy, decompile,
disassemble, reverse engineer, modify, reproduce, create derivative works, transmit, distribute, sublicense, store in a database or retrieval
system of any kind, rent or transfer the Product, or any portion thereof, in any form or by any means (including electronically or otherwise)
except as expressly provided for in this License Agreement. You must reproduce the copyright notices, trademark notices, legends and logos
of McGraw-Hill and its licensors that appear on the Product on the back-up copy of the Product which you are permitted to make hereunder.
All rights in the Product not expressly granted herein are reserved by McGraw-Hill and its licensors.

TERM: This License Agreement is effective until terminated. It will terminate if you fail to comply with any term or condition of this
License Agreement. Upon termination, you are obligated to return to McGraw-Hill the Product together with all copies thereof and to purge
all copies of the Product included in any and all servers and computer facilities.

DISCLAIMER OF WARRANTY: THE PRODUCT AND THE BACK-UP COPY ARE LICENSED “AS IS.” McGRAW-HILL, ITS
LICENSORS AND THE AUTHORS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE RESULTS TO BE OBTAINED
BY ANY PERSON OR ENTITY FROM USE OF THE PRODUCT, ANY INFORMATION OR DATA INCLUDED THEREIN AND/OR
ANY TECHNICAL SUPPORT SERVICES PROVIDED HEREUNDER, IF ANY (“TECHNICAL SUPPORT SERVICES”).
McGRAW-HILL, ITS LICENSORS AND THE AUTHORS MAKE NO EXPRESS OR IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE WITH RESPECT TO THE PRODUCT.
McGRAW-HILL, ITS LICENSORS, AND THE AUTHORS MAKE NO GUARANTEE THAT YOU WILL PASS ANY
CERTIFICATION EXAM WHATSOEVER BY USING THIS PRODUCT. NEITHER McGRAW-HILL, ANY OF ITS LICENSORS NOR
THE AUTHORS WARRANT THAT THE FUNCTIONS CONTAINED IN THE PRODUCT WILL MEET YOUR REQUIREMENTS OR
THAT THE OPERATION OF THE PRODUCT WILL BE UNINTERRUPTED OR ERROR FREE. YOU ASSUME THE ENTIRE RISK
WITH RESPECT TO THE QUALITY AND PERFORMANCE OF THE PRODUCT.

LIMITED WARRANTY FOR DISC: To the original licensee only, McGraw-Hill warrants that the enclosed disc on which the Product is
recorded is free from defects in materials and workmanship under normal use and service for a period of ninety (90) days from the date of
purchase. In the event of a defect in the disc covered by the foregoing warranty, McGraw-Hill will replace the disc.

LIMITATION OF LIABILITY: NEITHER McGRAW-HILL, ITS LICENSORS NOR THE AUTHORS SHALL BE LIABLE FOR ANY
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, SUCH AS BUT NOT LIMITED TO, LOSS OF ANTICIPATED PROFITS
OR BENEFITS, RESULTING FROM THE USE OR INABILITY TO USE THE PRODUCT EVEN IF ANY OF THEM HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF LIABILITY SHALL APPLY TO ANY CLAIM OR
CAUSE WHATSOEVER WHETHER SUCH CLAIM OR CAUSE ARISES IN CONTRACT, TORT, OR OTHERWISE. Some states do
not allow the exclusion or limitation of indirect, special or consequential damages, so the above limitation may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS: Any software included in the Product is provided with restricted rights subject to
subparagraphs (c), (1) and (2) of the Commercial Computer Software-Restricted Rights clause at 48 C.F.R. 52.227-19. The terms of this
Agreement applicable to the use of the data in the Product are those under which the data are generally made available to the general public
by McGraw-Hill. Except as provided herein, no reproduction, use, or disclosure rights are granted with respect to the data included in the
Product and no right to modify or create derivative works from any such data is hereby granted.

GENERAL: This License Agreement constitutes the entire agreement between the parties relating to the Product. The terms of any Purchase
Order shall have no effect on the terms of this License Agreement. Failure of McGraw-Hill to insist at any time on strict compliance with
this License Agreement shall not constitute a waiver of any rights under this License Agreement. This License Agreement shall be construed
and governed in accordance with the laws of the State of New York. If any provision of this License Agreement is held to be contrary to law,
that provision will be enforced to the maximum extent permissible and the remaining provisions will remain in full force and effect.

	Contents
	Contributors
	Acknowledgments
	Preface
	Introduction
	1 Declarations and Access Control
	Java Refresher
	Identifiers & JavaBeans (Objectives 1.3 and 1.4)
	Legal Identifiers
	Sun's Java Code Conventions
	JavaBeans Standards

	Declare Classes (Exam Objective 1.1)
	Source File Declaration Rules
	Class Declarations and Modifiers
	Exercise 1-1: Creating an Abstract Superclass and Concrete Subclass

	Declare Interfaces (Exam Objectives 1.1 and 1.2)
	Declaring an Interface
	Declaring Interface Constants

	Declare Class Members (Objectives 1.3 and 1.4)
	Access Modifiers
	Nonaccess Member Modifiers
	Constructor Declarations
	Variable Declarations
	Declaring Enums
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers

	2 Object Orientation
	Encapsulation (Exam Objective 5.1)
	Inheritance, Is-A, Has-A (Exam Objective 5.5)
	IS-A
	HAS-A

	Polymorphism (Exam Objective 5.2)
	Overriding / Overloading (Exam Objectives 1.5 and 5.4)
	Overridden Methods
	Overloaded Methods

	Reference Variable Casting (Objective 5.2)
	Implementing an Interface (Exam Objective 1.2)
	Legal Return Types (Exam Objective 1.5)
	Return Type Declarations
	Returning a Value

	Constructors and Instantiation (Exam Objectives 1.6, 5.3, and 5.4)
	Determine Whether a Default Constructor Will Be Created
	Overloaded Constructors

	Statics (Exam Objective 1.3)
	Static Variables and Methods

	Coupling and Cohesion (Exam Objective 5.1)
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers

	3 Assignments
	Stack and Heap—Quick Review
	Literals, Assignments, and Variables (Exam Objectives 1.3 and 7.6)
	Literal Values for All Primitive Types
	Assignment Operators
	Exercise 3-1: Casting Primitives
	Using a Variable or Array Element That Is Uninitialized and Unassigned
	Local (Stack, Automatic) Primitives and Objects

	Passing Variables into Methods (Objective 7.3)
	Passing Object Reference Variables
	Does Java Use Pass-By-Value Semantics?
	Passing Primitive Variables

	Array Declaration, Construction, and Initialization (Exam Objective 1.3)
	Declaring an Array
	Constructing an Array
	Initializing an Array
	Initialization Blocks

	Using Wrapper Classes and Boxing (Exam Objective 3.1)
	An Overview of the Wrapper Classes
	Creating Wrapper Objects
	Using Wrapper Conversion Utilities
	Autoboxing

	Overloading (Exam Objectives 1.5 and 5.4)
	Garbage Collection (Exam Objective 7.4)
	Overview of Memory Management and Garbage Collection
	Overview of Java's Garbage Collector
	Writing Code That Explicitly Makes Objects Eligible for Collection
	Exercise 3-2: Garbage Collection Experiment
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers

	4 Operators
	Java Operators (Exam Objective 7.6)
	Assignment Operators
	Relational Operators
	instanceof Comparison
	Arithmetic Operators
	Conditional Operator
	Logical Operators
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers

	5 Flow Control, Exceptions, and Assertions
	if and switch Statements (Exam Objective 2.1)
	if-else Branching
	switch Statements
	Exercise 5-1: Creating a switch-case Statement

	Loops and Iterators (Exam Objective 2.2)
	Using while Loops
	Using do Loops
	Using for Loops
	Using break and continue
	Unlabeled Statements
	Labeled Statements
	Exercise 5-2: Creating a Labeled while Loop

	Handling Exceptions (Exam Objectives 2.4 and 2.5)
	Catching an Exception Using try and catch
	Using finally
	Propagating Uncaught Exceptions
	Exercise 5-3: Propagating and Catching an Exception
	Defining Exceptions
	Exception Hierarchy
	Handling an Entire Class Hierarchy of Exceptions
	Exception Matching
	Exception Declaration and the Public Interface
	Rethrowing the Same Exception
	Exercise 5-4: Creating an Exception

	Common Exceptions and Errors (Exam Objective 2.6)
	Working with the Assertion Mechanism (Exam Objective 2.3)
	Assertions Overview
	Enabling Assertions
	Using Assertions Appropriately
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers

	6 Strings, I/O, Formatting, and Parsing
	String, StringBuilder, and StringBuffer (Exam Objective 3.1)
	The String Class
	Important Facts About Strings and Memory
	Important Methods in the String Class
	The StringBuffer and StringBuilder Classes
	Important Methods in the StringBuffer and StringBuilder Classes

	File Navigation and I/O (Exam Objective 3.2)
	The java.io.Console Class

	Serialization (Exam Objective 3.3)
	Dates, Numbers, and Currency (Exam Objective 3.4)
	Working with Dates, Numbers, and Currencies

	Parsing, Tokenizing, and Formatting (Exam Objective 3.5)
	A Search Tutorial
	Locating Data via Pattern Matching
	Tokenizing
	Formatting with printf() and format()
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers

	7 Generics and Collections
	Overriding hashCode() and equals() (Objective 6.2)
	Overriding equals()
	Overriding hashCode()

	Collections (Exam Objective 6.1)
	So What Do You Do with a Collection?
	List Interface
	Set Interface
	Map Interface
	Queue Interface

	Using the Collections Framework (Objectives 6.3 and 6.5)
	ArrayList Basics
	Autoboxing with Collections
	Sorting Collections and Arrays
	Navigating (Searching) TreeSets and TreeMaps
	Other Navigation Methods
	Backed Collections

	Generic Types (Objectives 6.3 and 6.4)
	Generics and Legacy Code
	Mixing Generic and Non-generic Collections
	Polymorphism and Generics
	Generic Methods
	Generic Declarations
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers

	8 Inner Classes
	Inner Classes
	Coding a "Regular" Inner Class
	Referencing the Inner or Outer Instance from Within the Inner Class

	Method-Local Inner Classes
	What a Method-Local Inner Object Can and Can't Do

	Anonymous Inner Classes
	Plain-Old Anonymous Inner Classes, Flavor One
	Plain-Old Anonymous Inner Classes, Flavor Two
	Argument-Defined Anonymous Inner Classes

	Static Nested Classes
	Instantiating and Using Static Nested Classes
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers

	9 Threads
	Defining, Instantiating, and Starting Threads (Objective 4.1)
	Defining a Thread
	Instantiating a Thread
	Starting a Thread

	Thread States and Transitions (Objective 4.2)
	Thread States
	Preventing Thread Execution
	Sleeping
	Exercise 9-1: Creating a Thread and Putting It to Sleep
	Thread Priorities and yield()

	Synchronizing Code (Objective 4.3)
	Synchronization and Locks
	Exercise 9-2: Synchronizing a Block of Code
	Thread Deadlock

	Thread Interaction (Objective 4.4)
	Using notifyAll() When Many Threads May Be Waiting
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers
	Exercise Answers

	10 Development
	Using the javac and java Commands (Exam Objectives 7.1, 7.2, and 7.5)
	Compiling with javac
	Launching Applications with java
	Searching for Other Classes

	JAR Files (Objective 7.5)
	JAR Files and Searching

	Using Static Imports (Exam Objective 7.1)
	Static Imports
	Two-Minute Drill
	Q&A: Self Test
	Self Test Answers

	A: About the CD
	System Requirements
	Installing and Running Master Exam
	Master Exam

	Electronic Book
	Help
	Removing Installation(s)
	Technical Support
	LearnKey Technical Support

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Copyright © 2008 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Contributors:
	Acknowledgments:
	Preface:
	Introduction:
	1 Declarations and Access Control:
	Java Refresher:
	Identifiers & JavaBeans (Objectives 1:
	3 and 1:
	4):

	Legal Identifiers:
	Sun's Java Code Conventions:
	JavaBeans Standards:
	Declare Classes (Exam Objective 1:
	1):

	Source File Declaration Rules:
	Class Declarations and Modifiers:
	Exercise 1-1: Creating an Abstract Superclass and Concrete Subclass:
	Declare Interfaces (Exam Objectives 1:
	1 and 1:
	2):

	Declaring an Interface:
	Declaring Interface Constants:
	Declare Class Members (Objectives 1:
	3 and 1:
	4):

	Access Modifiers:
	Nonaccess Member Modifiers:
	Constructor Declarations:
	Variable Declarations:
	Declaring Enums:
	2 Object Orientation:
	Encapsulation (Exam Objective 5:
	1):

	Inheritance, Is-A, Has-A (Exam Objective 5:
	5):

	IS-A:
	HAS-A:
	Polymorphism (Exam Objective 5:
	2):

	Overriding / Overloading (Exam Objectives 1:
	5 and 5:
	4):

	Overridden Methods:
	Overloaded Methods:
	Reference Variable Casting (Objective 5:
	2):

	Implementing an Interface (Exam Objective 1:
	2):

	Legal Return Types (Exam Objective 1:
	5):

	Return Type Declarations:
	Returning a Value:
	Constructors and Instantiation (Exam Objectives 1:
	6, 5:
	3, and 5:
	4):

	Determine Whether a Default Constructor Will Be Created:
	Overloaded Constructors:
	Statics (Exam Objective 1:
	3):

	Static Variables and Methods:
	Coupling and Cohesion (Exam Objective 5:
	1):

	Two-Minute Drill:
	Q&A: Self Test:
	Self Test Answers:
	3 Assignments:
	Stack and Heap–Quick Review:
	Literals, Assignments, and Variables (Exam Objectives 1:
	3 and 7:
	6):

	Literal Values for All Primitive Types:
	Exercise 3-1: Casting Primitives:
	Using a Variable or Array Element That Is Uninitialized and Unassigned:
	Local (Stack, Automatic) Primitives and Objects:
	Passing Variables into Methods (Objective 7:
	3):

	Passing Object Reference Variables:
	Does Java Use Pass-By-Value Semantics?:
	Passing Primitive Variables:
	Array Declaration, Construction, and Initialization (Exam Objective 1:
	3):

	Declaring an Array:
	Constructing an Array:
	Initializing an Array:
	Initialization Blocks:
	Using Wrapper Classes and Boxing (Exam Objective 3:
	1):

	An Overview of the Wrapper Classes:
	Creating Wrapper Objects:
	Using Wrapper Conversion Utilities:
	Autoboxing:
	Overloading (Exam Objectives 1:
	5 and 5:
	4):

	Garbage Collection (Exam Objective 7:
	4):

	Overview of Memory Management and Garbage Collection:
	Overview of Java's Garbage Collector:
	Writing Code That Explicitly Makes Objects Eligible for Collection:
	Exercise 3-2: Garbage Collection Experiment:
	4 Operators:
	Java Operators (Exam Objective 7:
	6):

	Assignment Operators:
	Relational Operators:
	instanceof Comparison:
	Arithmetic Operators:
	Conditional Operator:
	Logical Operators:
	5 Flow Control, Exceptions, and Assertions:
	if and switch Statements (Exam Objective 2:
	1):

	if-else Branching:
	switch Statements:
	Exercise 5-1: Creating a switch-case Statement:
	Loops and Iterators (Exam Objective 2:
	2):

	Using while Loops:
	Using do Loops:
	Using for Loops:
	Using break and continue:
	Unlabeled Statements:
	Labeled Statements:
	Exercise 5-2: Creating a Labeled while Loop:
	Handling Exceptions (Exam Objectives 2:
	4 and 2:
	5):

	Catching an Exception Using try and catch:
	Using finally:
	Propagating Uncaught Exceptions:
	Exercise 5-3: Propagating and Catching an Exception:
	Defining Exceptions:
	Exception Hierarchy:
	Handling an Entire Class Hierarchy of Exceptions:
	Exception Matching:
	Exception Declaration and the Public Interface:
	Rethrowing the Same Exception:
	Exercise 5-4: Creating an Exception:
	Common Exceptions and Errors (Exam Objective 2:
	6):

	Working with the Assertion Mechanism (Exam Objective 2:
	3):

	Assertions Overview:
	Enabling Assertions:
	Using Assertions Appropriately:
	6 Strings, I/O, Formatting, and Parsing:
	String, StringBuilder, and StringBuffer (Exam Objective 3:
	1):

	The String Class:
	Important Facts About Strings and Memory:
	Important Methods in the String Class:
	The StringBuffer and StringBuilder Classes:
	Important Methods in the StringBuffer and StringBuilder Classes:
	File Navigation and I/O (Exam Objective 3:
	2):

	The java:
	io:
	Console Class:

	Serialization (Exam Objective 3:
	3):

	Dates, Numbers, and Currency (Exam Objective 3:
	4):

	Working with Dates, Numbers, and Currencies:
	Parsing, Tokenizing, and Formatting (Exam Objective 3:
	5):

	A Search Tutorial:
	Locating Data via Pattern Matching:
	Tokenizing:
	Formatting with printf() and format():
	7 Generics and Collections:
	Overriding hashCode() and equals() (Objective 6:
	2):

	Overriding equals():
	Overriding hashCode():
	Collections (Exam Objective 6:
	1):

	So What Do You Do with a Collection?:
	List Interface:
	Set Interface:
	Map Interface:
	Queue Interface:
	Using the Collections Framework (Objectives 6:
	3 and 6:
	5):

	ArrayList Basics:
	Autoboxing with Collections:
	Sorting Collections and Arrays:
	Navigating (Searching) TreeSets and TreeMaps:
	Other Navigation Methods:
	Backed Collections:
	Generic Types (Objectives 6:
	3 and 6:
	4):

	Generics and Legacy Code:
	Mixing Generic and Non-generic Collections:
	Polymorphism and Generics:
	Generic Methods:
	Generic Declarations:
	8 Inner Classes:
	Inner Classes:
	Coding a "Regular" Inner Class:
	Referencing the Inner or Outer Instance from Within the Inner Class:
	Method-Local Inner Classes:
	What a Method-Local Inner Object Can and Can't Do:
	Anonymous Inner Classes:
	Plain-Old Anonymous Inner Classes, Flavor One:
	Plain-Old Anonymous Inner Classes, Flavor Two:
	Argument-Defined Anonymous Inner Classes:
	Static Nested Classes:
	Instantiating and Using Static Nested Classes:
	9 Threads:
	Defining, Instantiating, and Starting Threads (Objective 4:
	1):

	Defining a Thread:
	Instantiating a Thread:
	Starting a Thread:
	Thread States and Transitions (Objective 4:
	2):

	Thread States:
	Preventing Thread Execution:
	Sleeping:
	Exercise 9-1: Creating a Thread and Putting It to Sleep:
	Thread Priorities and yield():
	Synchronizing Code (Objective 4:
	3):

	Synchronization and Locks:
	Exercise 9-2: Synchronizing a Block of Code:
	Thread Deadlock:
	Thread Interaction (Objective 4:
	4):

	Using notifyAll() When Many Threads May Be Waiting:
	Exercise Answers:
	10 Development:
	Using the javac and java Commands (Exam Objectives 7:
	1, 7:
	2, and 7:
	5):

	Compiling with javac:
	Launching Applications with java:
	Searching for Other Classes:
	JAR Files (Objective 7:
	5):

	JAR Files and Searching:
	Using Static Imports (Exam Objective 7:
	1):

	Static Imports:
	A: About the CD:
	System Requirements:
	Installing and Running Master Exam:
	Master Exam:
	Electronic Book:
	Help:
	Removing Installation(s):
	Technical Support:
	LearnKey Technical Support:
	Index:

