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Abstract—This paper presents a system capable of detecting 
various large sized wild animals from traffic scenes. Visual data is 
obtained from a camera with monocular color vison. The goal is to 
analyze the traffic scene image, to locate the regions of interest and 
to correctly classify them for finding the animals that are on the 
road and might cause an accident. A saliency map is generated 
from the traffic scene image, based on intensity, color and 
orientation features. The salient regions of this map are considered 
to be regions of interest. A database is compiled from a large 
number of images containing different four-legged wild animals. 
Relevant features are extracted from these and are used to train 
Support Vector Machine classifiers. These classifiers provide an 
accuracy of above 90% and is used to predict whether or not the 
selected regions of interest contain animals. If one of the regions is 
classified as containing an animal, a warning can be signaled. 
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I. INTRODUCTION 

The domain of driving assistance systems is one of great 
potential. Particularly in the last decade numerous companies, 
governments and research institutions have invested time, 
money and effort into the development of such systems, with the 
goal of enhancing or automating vehicles for safety and better 
driving. These safety measures include collision and accident 
avoidance, through either taking over the control mechanisms of 
the vehicle, or signaling the driver for possible dangers. 

The field of computer vision is closely associated with 
driving assistance, visual sensors, e.g. cameras, are an essential 
part of data gathering from the environment. The type of visual 
data can range from infrared vision, providing information 
especially in low light conditions, to computer stereo vision, 
extracting 3D information from digital images by comparing 
images from multiple vantage points.  

With the large amount of data becoming available through 
constant gathering from experimental results, machine learning 
and especially pattern recognition is often used for object 
classification, an important part of the surroundings analysis. 
The most common detection targets are vehicles, pedestrians, 
traffic signs, road surface, markings, etc. One area that would 
merit increased attention is the detection of wild animals in 
traffic. Roads often cut through the natural habitat of wildlife 

and without creating special crossings, wild animals often 
attempt to cross the road, leading to dangerous situations that 
endanger the safety of both humans and animals involved.  

The severity of animal-vehicle collisions (AVCs) depends on 
multiple factors, vehicle speed and size of the animal amongst 
others. The most common and dangerous AVC is side collision 
with a large sized animal that attempts to cross the road, 
appearing spontaneously in front of the vehicle. Such animals 
include deer, moose, stag, reindeer, elk, etc. Governmental 
institutions, insurance companies and animal protection 
agencies have conducted studies to determine the impact of 
these accidents. In 2000, there were 1 million involved AVCs 
out of the 6.1 million reported lightweight motor vehicle 
collisions in the United States. Collisions with deer alone lead to 
200 human deaths and $1.1 billion in property damage every 
year. In 2012, 1.23 million deer related accidents occurred 
during a one year period, causing on average over $3000 in 
property damage. Governments, insurance companies and 
drivers spend annually around $3 billion to reduce the number 
of accidents [2]. 

 

II. RELATED WORK 

Although the field of driving assistance and autonomous 
driving is in the center of focus of many research institutions, 
the area of animal detection is not always included amongst the 
goals. Some of the reasons why this topic is avoided includes 
lack of serious need for such detection (in mostly urban areas), 
lack of data or equipment, big variations amongst animals, and 
difficulty in testing such systems.  

Volvo has implemented Large Animal Detection [8], which 
is part of their City Safety system. This software can identify 
large animals in front of the vehicle, viewed from the side while 
engaging in a normal movement pattern. Even this system 
however has its limitations, for example it cannot recognize 
animals seen from the front or behind, partially obscured large 
animals, large animals that run or move quickly, animals if the 
background contrast is poor or small animals. 

Those that have attempted to find solutions have proposed 
different methods for this kind of problem. One category of 
solutions involve some kind of external sensor that 
communicates with the vehicles that are near their physical 



locations. In this Vehicle-to-Infrastructure communication 
system the advantage is that it creates a network between the 
vehicles and the sensors, managing more complex coordination, 
providing data about traffic and other obstacles that are out of 
the line of sight of these vehicles. The major disadvantage is 
that the system is spatially bounded and requires external 
sensors. This type of system is proposed by Vishnu et al. in [3] 
which uses fixed cameras in intersections that communicate 
wirelessly with nearby vehicles. Their proposed architecture 
can be seen in Fig. 1. 

 

Fig. 1. Vehicle-to-Infrastructure communication [3] 

 

Another category relies on an on board camera in the 
vehicle, that monitors the road ahead, and the software analyzes 
the video feed. In terms of hardware, the camera may have 
infrared vision such as in [4] proposed by Forslund and 
Bjarkefur, for detection in low light situations, fog or at night.  

The algorithms used for image analysis vary. There have 
been many different approaches with different results that are 
applied not only in the context of vehicles, but facial 
recognition, such as Zhang et al. in [5] or Viola and Jones in [6] 
and other related fields. These involve some sort of image 
descriptor (Haar features, Local-Binary Pattern, Histogram of 
Oriented Gradients, etc.) and a classifier (AdaBoost, Support 
Vector Machine, etc.).  

Yamanashi et al. present a segmentation method in [10] 
using variable regions of interest. They used saliency maps to 
determine high-salience positions and in combination with the 
scale invariant transform features, the foreground objects are 
separated from the background. 

The most important metrics in animal detection are accuracy 
and speed. Creating a system that fulfills both of these metrics 
is difficult because they are usually in a trade-off relationship: 
increased accuracy results in reduced speed and vice versa.  

 

Fig. 2. Two stage classification system [7] 

 

Mammeri et al. propose a compromise solution to this 
problem in [7] by creating a multi stage detection system that 
combines a first, speed oriented stage that offers fast selection 
of potential regions of interest, and a second, accuracy oriented 
stage that has the role of eliminating any false positive regions 
that have been selected by the first stage (see Fig. 2). 

 

III. SYSTEM ARCHITECTURE 

Since the scope of animal detection is too broad and vague, 
for our purposes, first it needs to be narrowed down and then 
made more specific.  

The first decision to be made is the type of animals that we 
want to detect. The important aspects that have been considered 
are: prevalence and the danger posed. The size of the animal is 
usually correlated with the danger: small animals cause less 
harm upon impact than their larger counterparts and as a result 
they will be not included in the scope of this study. Some 
animals are regional, and thus only in specific cases should be 
paid attention to them. With these considerations, the selected 
animals must be of greater size and generally prevalent around 
the globe. Such animals include deer, elk, moose and horse.  

The second decision was to determine the shape that we 
focus on. Unlike the case with pedestrians, the shape of an 
animal differs greatly when viewed from different perspectives, 
so they have to be treated separately. Research done by Volvo 
[8] shows that the most common shape that a vehicle is likely 
to encounter is the side view. Without special equipment, such 
as an infrared camera, detection becomes increasingly difficult 
as well as in the case of only partially visible animal. Therefore 
the presumptions that have been made about the context include 
good lighting conditions and a fully visible animal, having a 
normal movement pattern. Fig. 3 shows such examples of 
outlines. 

 

Fig 3. Elk and horse body outline from the side 

When it comes to decisions made about the hardware, the 
type of camera used is the most important one. Stereo vision 
has many advantages, the additional information could be used 
to determine the distance of the vehicle from animal however it 
requires special equipment that is not always available. 
Monocular vision can provide enough data and is more 
available. Color vision is an obvious choice over black and 
white since valuable information can be extracted from the 
color data.  

 

A. Hardware components 

The system requires a computer for data processing and an 
input source that can be either a color camera with sufficiently 
large resolution, or from the computer’s file system. 

 



B. Software components 

The software part is developed using the OpenCV library, 
which offers a great number of tools pertaining to image 
processing, pattern recognition and computer vision.  

The architecture of the software will be based on the 
performance-accuracy compromise solution proposed in [7], 
employing a multi stage classification process. 

The first software component is called Region of interest 
(ROI) detector and it gets as input the raw image or video data. 
Its role is to isolate any potential regions that might contain 
animals. This should be performed as fast as possible, 
eliminating the majority of the input, the parts that are 
considered irrelevant. The selected regions are forwarded to the 
second stage of the architecture. 

The second component is a classifier and it gets its inputs 
from the output of the first component. The role of the classifier 
is to eliminate any possible false positives that were selected by 
the first component. Two parallel classifiers can be used 
simultaneously, one for left-to-right facing animals and one for 
the right-to-left facing ones. If a true positive is found by either 
classifier in this stage, a warning can be signaled. 

Fig. 4 shows the conceptual software architecture of the 
system.  

 

Fig. 4. Conceptual software architecture of the system: 

1- Initial input 
2- Regions of interest sent to first classifier 
3- Regions of interest sent to second classifier 
4- Responses from first classifier 
5- Responses from second classifier 
6- Final decision based on all responses 

 

IV. ROI DETECTOR 

The ROI detector is the first stage in the system. The used 
method was developed by Itti et al. in [9] with some 
modifications to better fit our purposes. The algorithm creates 
saliency maps (SM) of the scenes based on three features: 
intensity, colors and orientations. The regions with high 
saliency are subsequently considered for selection. 

The input images can be of different sizes, large resolutions 
are scaled down to reduce the computational costs and increase 
the performance. 

The first step is to obtain intensity, color and orientation 
maps. Each pixel from the intensity map I is computed as a 
weighted sum (see equation 1). 

I = 0.3*r + 0.586*g + 0.114*b  (1) 

      where r, g and b represent the three color channels of the 
original image. Any intensity pixel that falls below the 10% 
threshold of the maximum value of the map is set to 0.  

Four different color maps are created, for red, green, blue 
and yellow respectively, these are denoted by R, G, B and Y (see 
equations 2-5).  

 R = r – (g + b) / 2    (2) 

 G = g – (r + b) / 2    (3) 

 B = b – (r + g) / 2    (4) 

 Y = (r + g) / 2 - |r – g| / 2 – b   (5) 

The orientation maps are created for 0°, 45° , 90° and 145°, 
denoted by O(0), O(45), O(90) and O(145) respectively. Four 
different convolution kernels (see matrices 6-9) are used for 
generating the orientation maps.  

O(0):        	ሾെ1 0 1ሿ                           (6) 

O(45):       ൥
0 0 1
0 0 0
െ1 0 0

൩                           (7)  

O(90):             ൥
1
0
െ1

൩                                (8) 

O(135):     ൥
1 0 0
0 0 0
0 0 െ1

൩                           (9) 

In case of negative convolution results, the absolute values are 
taken. 

The next step is to create Gaussian pyramids from the 
previously obtained intensity, color and orientation maps. A 
pyramid is created from each of the maps (total of 9 maps), each 
having 8 levels, the lowest, level 0, being the original map. Such 
a pyramid is created by low-pass filtering and subsampling the 
image, resulting in vertical and horizontal reductions ranging 
from 1:1 (level 0) to 1:128 (level 7).  

The elements of the resulting pyramids are labeled I(σ), 
R(σ), G(σ), B(σ), Y(σ),  O(σ, θ), where σ ∈ [0..7] and θ ∈ {0, 
45, 90, 145}. 

After we obtained the pyramids, we must calculate the inter-
level differences in each pyramid. From the intensity pyramid 
six difference maps are generated, labeled I(c, s) where c ∈ {2, 
3, 4}, s = c + δ, where δ ∈ {3, 4} (see equation 10). 

I(c, s) = | I(c) – I(s) |     (10) 

From the color pyramids we need to extract 12 maps, 6 for 
the red/green chromatic and 6 for the blue/yellow opponency, 
called RG and BY (see equations 11-12).  

 RG(c, s) = | (R(c) – G(c)) – (G(s) – R(s)) |  (11) 

BY(c, s) = |  (B(c) – Y(c)) – (Y(s) – B(s)) |   (12) 

For orientation, a total of 24 maps are computed, 6 for each 
angle (see equation 13). 

 O(c, s, θ) = | O(c, θ) – O(s, θ) |            (13) 

       where θ ∈ {0, 45, 90, 145}. 

 



The obtained maps need to be normalized in order to elevate 
a small number of strong peaks and suppress maps where a 
large number of such peaks exist. The normalizing operator N(.) 
performs the following operations on a map: 

1. Calculates the average of the sum of local maxima from 
the image called ഥ݉  

2. Find the value of the global maxima called M 
3. Multiply all values by ሺܯ െ	 ഥ݉ሻଶ 

 

The normalization operator will be applied to all the 42 
maps obtained. We reduce the resolution of the obtained maps 
to 1/16th of the original to increase the performance. The 
normalized maps are summed up separately based on the 
features they describe to create 3 conspicuity maps, one for 
intensity, color and orientation respectively. These are denoted 
by	ܥ̅̅,ܫ and	 തܱ. 

Each pixel from the final saliency map S is finally computed 
as an average (see equation 14).  

ܵ	 ൌ 	1/3	 ∗ ሺܰሺܫሻ̅ ൅ ܰ൫ܥ൯ ൅ ܰሺ തܱሻሻ	       (14) 

  

Fig. 5. Original image 

 

Fig. 6. Saliency map 

Our experiments have shown, that eliminating areas of the 
saliency map that contain green predominantly increases the 
accuracy, since green areas are mostly vegetation, and certainly 
not the color of the animal that we are looking for.  

Figure 5 shows an input image depicting a typical scenario, 
a deer on the road with vegetation in the background. Figure 6 
shows the resulting saliency map. To be noted here, the large 
black area that is the suppressed vegetation and the higher 
intensity pixels mostly centered on the deer.  

From the saliency map the regions of interest can be selected 
by centering a box around the pixel with the highest intensity. 
This process is repeated multiple times to select multiple 
regions. To prevent the selection of the same area multiple 
times, after each iteration the area around the highest intensity 
pixel is set to zero. Figure 7 shows such a resulting selection. 
The final resulting regions are sent to the second stage of the 
architecture to be classified.  

 

Fig. 7. A Region of Interest 

 

V. CLASSIFICATION 

The second stage of the architecture consists in the 
classification of the regions of interests that are sent by the first 
stage. For this, two separate support vector machines are built, 
one is trained to classify animals facing right and the other is 
trained to classify animals facing left.  

A database of images was assembled from different sources, 
containing scenarios where the animal is shown from the side. 
As for the type of animals being considered, the dataset contains 
50% images of deer, 25% images of horses and 25% images of 
moose. The regions containing the animals are cropped out and 
resized to a standard 80*112 pixels format. Each image is 
mirrored vertically to obtain a symmetrical image that depicts 
the same animal but facing the other direction. 

 

  

Fig. 8: Animal dataset 

Figure 8 shows a snippet from the database containing left 
facing animals.  

A set of negative images is also extracted from the traffic 
scenarios, these contain anything that is not an animal, from 
vegetation to empty road, from other vehicles to road signs. 
Figure 9 shows a snippet from this dataset. 



 

Fig. 9: Negative images 
 

For the feature extraction, histogram of oriented gradient 
descriptors were chosen, the comparisons done in [7] indicate 
it as being the most relevant in comparison to other descriptors. 

The configuration of the descriptor is the following: cell size 
of 8*8 pixels, 2*2 cells per block and 9 bins for colors. 

For an image of 80*112 pixels size, 4212 features are 
generated. This is generated for all the images, both negative 
and positive, and is used to train the support vector machines. 
The selected SVM is C-SVM type, classifying two classes with 
imperfect separation, with c = 2.5 penalty multiplier for 
outliers. 

The two support vector machines that are used in the system 
are saved to files and can be any time loaded. The regions 
arriving from the first stage are resized to the standard 80*112 
pixels size, their HOG descriptors are generated. The two 
SVMs classify these regions and if any of them detect an 
animal, that region is highlighted as containing an animal. 

 
 

VI. EXPERIMENTAL RESULTS 

The support vector machines have been tested through the 
bootstrap aggregating technique. During the tests, 90% of the 
data set is used for training the SVM and the remaining 10% is 
used for testing. Both left and right classifiers were tested, both 
with positive and negative images. The first column shows the 
results for left facing images, second column for right facing 
images and the third one for negative images. A total of 10 tests 
were performed and results can be seen in  
Table I. On average, regions are classified correctly 95.5% of 
the time. 

TABLE I. PERFORMANCE OF SUPPORT VECTOR MACHINES CLASSIFIERS 

Test 
Number 

Performance metrics 

Left facing 
animal 

(TP rate) 

Right facing 
animal 

(TP rate) 

Regions with no 
animals 

(TN rate)
1 100% 100% 100% 

2 100% 95% 95% 

3 100% 100% 95% 

4 100% 100% 95% 

5 95% 95% 95% 

6 95% 90% 90% 

7 85% 85% 100% 

8 90% 85% 100% 

9 100% 100% 80% 

10 100% 100% 100% 

Typical successful results (true positives and true negatives) 
are presented in Fig. 10, where the selected region of interest 
encompasses the whole animal with minimal extra regions that 
are between the animal and the border. 

The experiments have shown that classification works well 
as long the regions of interest contains the whole animal that is 
viewed from the side, but does not include a too broad border 
between the animal and the edge of the box. 

 

    

     

   
a) 

    
b) 

Fig. 10: Successful classification: a) true positives;  
b) true negatives 

 

VII. CONCLUSIONS 

Following the experimental results, it can be said that the 
proposed method for detecting animals works reasonably well 
within the scope of its purposes. The strengths of the system are 
the highly accurate classifiers that perform well even though 
they were trained using a limited dataset. The results can be 
improved by better quality training data in larger  
quantities and by creating more specialized classifiers. 

For future work, the region of interest detection can be 
improved upon. The biggest weakness of the algorithm is the 
static size of region delimiter box. By creating dynamically 
changing box sizes, the risk of including only parts of the 
animal or including too much background can be reduced. 
Other classifiers using Neural Networks will be developed and 
their results will be compared. 
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