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Abstract—Modeling the performance of large scale systems is
the core idea of this paper. We focus on modeling the performance
specific behavior of LarKC 1- The Large Knowledge Collider a
platform for large scale integrated reasoning and Web-search.
A set of instrumentation and monitoring tools are employed to
collect metrics related to execution time, resources, and specific
platform measurements like running workflows and plug-ins. Our
method performs machine learning on top of instrumented data
and tries to find relations between input defined metrics and
output metrics that describe the instrumentation observations
of the LarKC platform, plug-ins or workflows. The proposed
method is a combination of clustering and regression techniques.

I. INTRODUCTION

LarKC is developing a platform that enables the develop-
ment of large-scale reasoning applications using and combin-
ing techniques from various Semantic Web related research
fields. The pluggable architecture of LarKC enables the inter-
ested LarKC users to test their ideas for doing reasoning. It
allows them to integrate and deploy their own components,
known as plug-ins in LarKC terminology, in the platform, to
flexibly connect them in order to build workflows, to run and
to test them.

The instrumentation and monitoring of such a system is
extremely important. LarKC platform comes with a collection
of tools that allow users get real-time data about the resources,
execution time and other specific behavior of the platform,
plug-ins and workflows. It offers the means for developers
to specify the metrics of interest, to instrument the code, to
collect and observe how well the system and its components
are performing. For example, LarKC developers can find out
how are their plugins and workflows, how many resources they
use, how much data they consume and produce, etc.

The instrumented data is further used by a novel component
described in this paper. It performs machine learning on top
of the data and it can be used to model the behavior of
LarKC platform, plug-ins and workflows given a certain input
workload to the platform.

Modeling behavior of systems like LarKC is a complex
task because of the high variability in workload and input
pattern configurations, the available resources and system
configuration vary among different machines on which the
platform is run, the different components interacting with
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the platform should not have conflicting hardware/software or
network requirements, massive parallelization and workload
distribution.

The instrumentation measurements try to capture various
aspects of the platform, plug-ins and workflow behavior, that
is we have generated workloads for which the system provides
a successful execution, workloads for which the system fails
(because of lack of resources or because of network problems),
workloads for which the execution takes long time, but we still
get a result. Using all this collected data we try to model the
behavior of the system on new, unknown workload configura-
tion that are susceptible to a set of predefined constraints.

The structure of the document is as follows: section II
presents the state of the art methods in modeling system
performance, section III defines the mathematical model em-
ployed by our method, section IV provides details about the
clustering and regression methods we have used, section V
details our experimental methodology and finally section VI
concludes the paper and provides directions for future work.

II. RELATED WORK

Modeling system performance is a new and active field of
research and it can be applied to numerous system models:
distributed systems, networking, database systems, parallel I/O
systems etc.

Statistical machine learning techniques, namely clustering,
regression, principal component analysis and kernel canon-
ical correlation analysis are employed by [1] and [2] to
optimize multicore performance or to accurately predict the
performance metrics of database queries in vary large data
warehouse.

Frequent pattern mining and principal component analysis
are also used by [3] for detecting large-scale system problems.
They use information retrieval to transform free-text console
logs into numerical features and based on these features
identify the operational problems.

Neural networks, support vector machines and decision tree-
based regression models have been experimented by [4] in
order to asses the performance of TOB protocols (Total Order
Broadcast - is a main building block for developing strongly
consistent replicated systems).

Neural networks have been experimented in other types of
systems. For example [5] apply neural networks and Bayesian
networks for modeling the response time of service-oriented



computing facilities in the construction of dynamic, complex
distributed systems. A radial basis function neural network has
been applied by [6] for modeling the performance of a parallel
I/O system with experiments on IBM SP.

Techniques based on a Instance Based Learning algorithm
and several improvements are proposed and empirically evalu-
ated by [7] for workload modeling and performance prediction
in space-shared, data-intensive Grid environments.

TCM-KNN (Transductive Confidence Machines for K-
Nearest Neighbors) machine learning algorithm evaluated on
KDD Cup 1999 dataset by [8] is used for anomaly detection
in network.

Predictive models used to identify parts of a Java system
with a high fault probability are proposed by [9] that assess
three aspects on how to build and evaluate fault-proneness
models in the context of the large Java legacy system devel-
opment project.

III. METHOD DESCRIPTION

Our method models the behavior of a large scale reasoning
systems - namely LarKC2. LarKC is developing a platform that
enables the development of large-scale reasoning applications
using and combining techniques from various Semantic Web
related research fields. The pluggable architecture of LarKC
enables the interested LarKC users to test their ideas for doing
reasoning. It allows them to integrate and deploy their own
components, known as plug-ins in LarKC terminology, in the
platform, to flexibly connect them in order to build workflows,
to run and to test them.

A. General context

A general scenario in which LarKC can be used is shown
in Figure 1. In this situation each user may “ask” one or
more queries that are send serially to the platform. Each query
is “solved” by a workflow that is formed of several plug-
ins that are running serially or in a remote manner. Even if
LarKC supports more interaction patterns between users and
the platform, we will use the previous general scenario: query
– workflow (list of plugins) – response.

Queries have the form of SPARQL 3 queries.

B. Metrics

LarKC comes with a set of instrumentation tools that
measure the parameters of the system at runtime. We call these
parameters metrics. They can be grouped with respect to the
type of entity for which they are generated. For example we
may have:

• query metrics – provide information from the
SPARQL query or from the execution of the query;
The information extracted from SPARQL can be:
QuerySizeInTriples, QueryNamespacesNb, QueryNames-
pace, QueryVariablesNb, QueryDataSetSourcesNb,
QueryResultOrderingNb, QueryResultLimitNb,
QueryResultOffsetNb. Other metrics related to
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Fig. 1. LarKC - use case for modeling the system behavior

the query include: QueryTotalResponseTime,
QueryCompletionStatus, QueryBlockedTime.

• workflow metrics – offer information about the behavior
of the workflow at runtime. They include WorkflowPlu-
ginsNb, WorkflowDuration.

• plug-in metrics – supply data about the plug-ins’ be-
havior at runtime. They comprise: PluginInputSizeIn-
Triples, PluginOutputSizeInTriples, PluginInputSizeIn-
Bytes, PluginOutputSizeInBytes, PluginDataLayerAc-
cess, PluginBlockedTime.

• platform metrics – describe the performace of the
platform at runtime. They include: PlatformCPULoad,
PlatformMemoryUsage, PlatformMemoryDim, Platform-
GarbageCollectingTime.

C. System model

We consider that the LarKC processing system has as input
a workload that can be a query or a workflow as depicted
in Figure 2. The query is in the SPARQL format and it

Fig. 2. System model

should be a valid query. The input workflow can be given
as a combination of plug-ins that the user wants to utilize in
order to solve a certain computation task.



Using instrumentation we may extract:
• Input metrics that quantify the characteristics of the

workload (comprise query related metrics and workflow
related metrics or plug-in related metrics if the input
workload contains the parameters of the workflow).

• Output metrics: capture the behavior of the LarKC pro-
cessing system (performance,resources) during the exe-
cution of tasks required by the input workload.

Our purpose is to use the recorded historical behavior of the
system (given by instrumented data) to develop a predictive
model (LarKC Processing Relevance Feedback Model) that
finds relations between input metrics and output metrics.
Figure 3 presents the idea behind the predictive model or rel-

Fig. 3. Predictive Model

evance feedback model. Our method is applicable for several
use-case scenarios like:

• Execution status analysis captured by the success or
failure rate of the system. Using the relevance feedback
model one may find the relation between input workload
parameters and success/failure rate of the system. Success
shows that the execution corresponding to a certain work-
load was completed by the system successfully while fail-
ure marks that the execution corresponding to a workload
has not been accomplished because a component of the
system crashed.

• Scalability analysis:
– Given a workload find the relationship between the

metrics that quantify the workload and the resources
needed by the system to handle the workload.

– Given a constraint on resources/performance find the
input workload that can be handled by the system.

D. Mathematical model

In order to find the relation between input metrics and output
metrics we deploy a mathematical model containing clustering
and regression. Consider the following notations:

• The set of input metrics: I = I1, ..., In
• The set of output metrics: O = O1, ..., Om

• The measurements/observations obtained from instru-
mentation and monitoring module are a matrix with p
instances:

I11 I12 ... I1n O11 O12 ... O1m

I21 I22 ... I2n O21 O22 ... O2m

... ... ... ... ... ... ... ...

Ip1 Ip2 ... Ipn Op1 Op2 ... Opm



Another notation:
Inst11 Inst12 ... Inst1u

Inst21 Inst22 ... Inst2u

... ... ... ...

Instp1 Instp2 ... Instpu

 , u = m+ n

Generally, the relevance feedback model that we propose
can be described as a function that takes a set of inputs and
tries to define an output value:

Oj = fj(I), j = 1,m

In the above formula, the function fj can be: a)
1) a clustering rule followed by a regression model which

return a numerical value
2) a clustering rule and a numbering (ranking) to:

b1) return a probability
b2) return a list of nominal values

The clustering process takes the set of instances and forms
q groups (clusters):

Cluster(Inst,K)⇒ C1, ..., Cq

where:
1) q is the total number of clusters
2) K is the set of clustering criteria:

K = {Ki|Ki ∈ I,Ki is a clustering criterion}
⇒ K ⊆ I (1)

The cluster number p on criteria K is:

CK
p = {Insti}where

Insti ∈ Inst, ∀Instj ∈ CK
p ,

similarK(Insti, Instj)⋃q
j=1 C

K
j = Inst,

⋂q
j=1 C

K
j = φ (2)

CK =
{
CK

p |p = 1, q
}

, where q is the cardinality of CK

Given a new workload Q characterized by a set of input
parameters (metrics):

IW = (IW1, IW2, ..., IWn)

The objective is to find the cluster where the new workload
belongs to:

CK
b = CK

j |similarK(IW , Ii),∀Ii ∈ CK
j , where

j = 1, q , q = |CK |

The way that the prediction is applied in all previously
mentioned cases is described in the next paragraphs.

Case a)
Find a regression function which returns a numeric value.

It will be used in prediction of a numeric value of an output
metric Op:

Op ∈ O, p ∈ {1, 2, ...,m}

fp : I → <



Op = fp(I)

The function fp is obtained by a regression method applied
on the instances from the selected cluster CK :

fp(I) =

n∑
i=1

aiIi + a0

The predicted value of Op for the given input Iw is:

OpW = fp(IW )

Case b1)
Find a probability function which returns a real value

between 0 and 1. It is used in prediction of a nominal output
metric Op.The values of Op are from the set {n1, ..., ns}.

Define s probability functions fp1, ..., fps which output the
probability values for {n1, ..., ns}.

Inside the cluster CK
b perform a selection on fixed nominal

values {n1, ..., ns}. The result is a set of selection clusters:

CK1
b1 = Select(CK

b ,K1),K1 = {n1}

...

CKs
bs = Select(CK

b ,Ks),Ks = {ns}

CKt
bt = {Insti} having

Insti ∈ CK
b ,

∀Instj ∈ CK
b , exactKt(Insti, Instj)

t = 1, s (3)

The appearance probability of the nominal value nt for input
parameters IW is ntW

fpt(I) =
|CKt

bt |
|CK

b |

ntW = fpt(InstW ) =
|CKt

bt |
|CK

b |

Case b2)
This case is used for getting the best configuration (nominal

attribute) that maximizes the values from a set of constraints
applied on the input metrics. The constraints set Z ⊆ I (cost
functions, performance metrics, etc.) is:

Z = {Z1, ..., Zc}

Consider the previous case b1) and the possible values for that
nominal attribute n1, ..., ns. The selection clusters are known:
CKt

bt , t = 1, s.
Compute the mean performance for each input configuration

for each cluster:

µt = avgZ(C
Kt
bt ), t = 1, s

µt = (µt1, ..., µtc)

Kt = {nt}

Sort descending the selection clusters Cb1, ..., Cbs by consid-
ering the mean performance µt, t = 1, s as sorting criteria ⇒
the sorted result will be the set of selection clusters Sb1, ..., Sbs

. The output consist in the ordered list of nominal values from
Sb1, ..., Sbs:

n(Sb1), ..., n(Sbs)

which represent the ordered list of nominal values from the
best one to the worst one.

IV. THEORETICAL BACKGROUND - CLUSTERING AND
REGRESSION

A. Clustering

In our mathematical model we have used clustering for
grouping similar instances. In our implementation we use
Expectation Maximization (EM) Clustering method.

EM is a mixture based algorithm that attempts to maximize
the likelihood of the model. It makes the assumption that
attributes are independent random variables. An instance is
characterized by a set of attributes. EM is performed in two
steps:

1) expectation: calculation of the cluster probabilities
(which represent the “expected” class values)

2) maximization: computation of the distribution parame-
ters that is the maximization of the likelihood of the
distributions given the data.

EM can decide how many clusters to create by cross vali-
dation. For this prototype, the cross validation performed to
determine the number of clusters is done in the following steps
[10]:

1) the number of clusters is set to 1
2) the training set is split randomly into 10 folds.
3) EM is performed 10 times using a certain number of

folds folds .
4) the log-likelihood is averaged over all 10 results.
5) if log-likelihood has increased the number of clusters is

increased by 1 and the program continues at step 2.

B. Regression

Within each cluster a regression model is build.
The regression model is used to predict the result of an

unknown dependent variable, given the values of the inde-
pendent variables. The estimation target is a function of the
independent variables called regression function. In our pre-
diction problem we use a linear regression model. The Akaike
criterion determines the model selection by choosing from a
set of candidates (e.g. total least squares, generalized least
squares, adaptive estimation, principal component regression,
ridge regression) that one with the minimum AIC (Akaike
Information Criterion) value, and is able to deal with weighted
instances. Each instance is represented by a vector of input
metrics (attributes) values “x” and a value “y” of the output
metric (class). The linear regression model determines a linear
equation of the form y = ax + b for finding the relation be-
tween the values from input vector “x” and the corresponding
value for output “y”. The parameters that are computed by



the regression model refer to the vector “a” which is used for
weighting the input attributes values and the constant value
“b” that is added to the weighted sum. An attribute selection
using M5’s[11] method that steps through all the attributes
and removes the one with the smallest coefficient until no
improvement is observed in the estimate of the error given by
the AIC and a greedy selection using the Akaike information
metric are also used.

V. EXPERIMENTS AND RESULTS

A. Model training

In order to build our relevance feedback model we have in-
strumented several LarKC workflows. We have collected data
for the generated queries and we have trained our combined
clustering and regression model.

The data used in the predictor’s training is loaded from a
specific ARFF file. An ARFF (Attribute-Relation File Format)
file is an ASCII text file that describes a list of instances
corresponding to a set of attributes. In the following we
describe an experiment regarding training and prediction for
a scalability scenario.

The attributes considered are divided in two sections: input
metrics and output metrics, as described in the mathematical
model section.

The input metrics are: QueryTimestamp, QueryContent,
QueryNamespaceNb, QueryNamespaceKeys, QueryNames-
paceValues, QueryVariablesNb, QueryDataSetSourcesNb,
QueryResultOrderingNb, QueryResultLimitNb, QueryRe-
sultOffsetNb, QuerySizeInTriples.

The output metrics (the predicted metrics)
are: WorkflowDurationFromPlatform, QueryTotal-
ResponseTimeFromClient, QueryCompletionStatus,
DeciderTotalExecutionTime, TransformerTotalExecutionTime,
IdentifierTotalExecutionTime, SelecterTotalExecutionTime,
ReasonerTotalExecutionTime, WorkflowPluginNb,
DeciderThreadsStartedNB, WorkflowDuration.

Each metric has a specific type: Date (e.g. QueryTimes-
tamp), String (e.g. QueryNamespaceValues), Numeric (e.g.
WorkflowDuration) or nominal values (e.g. QueryCompletion-
Status with values in the set SuccessfulQuery, FailedQuery).

In the training phase, the instances’ values for both input
and output metrics are known by analyzing the input query
and by instrumenting the platform. The first step consist in
preprocessing the ARFF file and generate unique attributes
for namespaces. The values that represent compound inputs
(e.g. query namespaces) are tokenized using a string-to-word
tokenizer, resulting a set of atomic entities. A preprocessing
function that converts nominal values to numeric indexes is
also applied on the data. The second step is the clustering
based only on the query’s attributes (already numeric values).
After this step the result is a set of clusters. The third step
comes and computes a linear regression model inside each
formed cluster.

For the given data four clusters have been formed. Within
each cluster the regression model has been build.

B. Model evaluation and application

For the prediction phase, a query is given and we try to
predict the output metrics values. First we convert the query
in ARFF format, then the namespaces are tokenized in atomic
values and nominal values are converted in numeric indexes.
The nearest cluster to the given query is found. Last step
consist in selecting the regression model or the probabilistic
model which is already computed for that nearest cluster. The
result is returned by applying that model with the input values
from the given query.

The models have been evaluated on several test data. In the
Figure 4, 5 and 6 are presented some prediction results on a set
of few given queries and corresponding workflows. The errors
between the predicted values and the real values obtained by
executing those given queries are subjectively low. The results
are promising and they can be improved by training on a larger
amount of instrumentation data.

For example the predicted values for the metric “Query-
TotalResponseTimeFromClient” are given in Figure 4. The
values represents the time elapsed (in milliseconds) for a query
to complete its execution at the client side. The prediction is
realized by applying the already computed linear regression
model of the nearest cluster where the given query belongs
to. There are some cases where the predicted value is below 0
due to the fact that the result is a pure linear combination of
some input attributes’ values. In these situations the predicted
value can be considered equal to 0.

Fig. 4. Predicted outputs vs. true values for the “QueryTotalResponseTime-
FromClient” metric.

The predicted values for the metric “WorkflowDura-
tionFromPlatform” are given in Figure 5. The values represents
the platform workflow duration (in milliseconds) for complet-
ing the execution of the given query. This case is similar to the
previous one, having the same remarks. Overall, the predicted
results in these two cases are good.

The predicted values for the metric “QueryCompletionSta-
tus” are given in Figure 6. The real values for this metric
are from the set {FailedQuery, SuccessfulQuery}. These two



Fig. 5. Predicted outputs vs. true values for the “WorkflowDurationFromPlat-
form” metric.

nominal values correspond to the set of two probabilities {0–
FailedQuery, 1–SuccessfulQuery}. Due to the fact that the
prediction model finds the success completion probability of
the given query, the results are values between 0 and 1 (in a
fuzzy manner).

Fig. 6. Predicted outputs vs. true values for the “QueryCompletionStatus”
metric.

The model we have trained can be applied on new workload
parameters. For example, the user can give a query and
chooose a scenario for which the prediction can be made.
This is done via a visualization component responsible for
sending input metrics to the relevance feedback module and
displaying the results provided by the relevance feedback.
The Visualization Component is a real-time web application
that allows an easier interpretation of the historical data
collected during instrumentation and monitoring. It includes
the following main components:

• Client-Side Component is the front end part that runs in

the end user’s web browser as a rich content AJAX ap-
plication. For the client-side component implementation
we choose Google Web Toolkit (GWT). By using GWT
the front end application is written entirely in Java and
deployed as a highly optimized JavaScript that runs across
all browsers.

• Server-Side Component includes a controller of business
logic which coordinates requests from clients, as well
as the data layer queries and responses. Based on client
requests and data base (data layer) query results, actions
are carried out by the server.

Figure 7 offers a screen shot of the on-line demo.

Fig. 7. Relevance feedback integrated in the visualization component

The visualization interface offers us the possibility to in-
teractively extract and identify important patterns in a large
amount of rough data about.

• LarKC platform in general.
• Queries that were passed to the LarKC platform.
• Workflows used to solve the queries.
• Plug-ins that compose the workflows.

Furthermore, visualization results allow users to discover the
potential anomalies and make appropriate decisions.

VI. CONCLUSIONS AND FUTURE WORK

The paper has presented a machine learning based approach
for modeling the behavior of LarKC - a platform for dis-
tributed large scale reasoning and Web-search. The novelty
of the approach resides in the application of clustering and
regression on instrumentation specific data collected for the
LarKC platform and its satellite components: the plug-ins and
the workflows. The obtained results are promising and the
efficiency of the method can be improved by increasing the
number of instrumented workflows in the LarKC platform in
order to generate data with a high variability, by applying other
machine learning techniques (like multi-variate dataset analy-
sis), or by testing out feature selection and outlier detection
methods before the actual prediction is made.
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