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Abstract—This paper describes a super-sensor that enables 
360-degree environment perception for automated vehicles in 
urban traffic scenarios. We use four fisheye cameras, four 360-
degree LIDARs and a GPS/IMU sensor mounted on an automated 
vehicle to build a super-sensor that offers an enhanced low-level 
representation of the environment by harmonizing all the 
available sensor measurements. Individual sensors cannot provide 
a robust 360-degree perception due to their limitations: field of 
view, range, orientation, number of scanning rays, etc. The novelty 
of this work consists of segmenting the 3D LIDAR point cloud by 
associating it with the 2D image semantic segmentation. Another 
contribution is the sensor configuration that enables 360-degree 
environment perception. The following steps are involved in the 
process: calibration, timestamp synchronization, fisheye image 
unwarping, motion correction of LIDAR points, point cloud 
projection onto the images and semantic segmentation of images. 
The enhanced low-level representation will improve the high-level 
perception environment tasks such as object detection, 
classification and tracking.  

Keywords—automated driving; environment perception; fisheye 
images; 3D LIDAR points; 360-degree perception; super-sensor 

I. INTRODUCTION 

The Society of Automobile Engineers (SAE) classifies 
driving into: driver only, assisted, partial automation, 
conditional automation, high automation and full automation 
corresponding to levels of automation from 0 (driver only) to 5 
(fully automated) [1]. Level 3 of automation allows the human 
driver to do other activities while driving, whereas, levels 4 and 
5 consider a complete adoption of the driving process by the 
vehicle while the driver is even able to fall sleep. 

On a commercial level the automotive industry has already 
reached quite an advanced level, proved by the smart driving 
assistance technologies including adaptive cruise control, lane 
departure warning, and lane keeping assistance that come 
integrated with many new vehicles. Although the driver still has 
to interact with the vehicle, the previously mentioned 
technologies represent a significant step towards automated 
driving. It seems clear that a combination of adaptive cruise 
control with lane keeping assistance and an advanced 
environment perception will lead to an automated driving 
solution in the future. 

On a research and pre-development level, vehicle 
manufacturers and research companies have organized 
automated driving demonstration events. For instance, Google 

presented a self-driving car. Daimler drove the route from 
Mannheim to Pforzheim with an automated driving prototype 
car. Renault demonstrated an automated valet parking 
technology on an electric vehicle, performing a drive along a 
controlled road. 

Thus, while the levels of automation 0 to 2 are available on 
the market, intensive research is performed for levels 3 to 5, and 
in particular for the development of key base technologies that 
will enable them. One such technology is a sensor capable of 
robust 360-degree environment perception.  

In this paper, we introduce the idea of building a super-
sensor which is necessary for 360-degree environment 
perception for automated vehicles. In chapter II, we review the 
state of the art in single- and multi-modal perception and 
demonstrate the importance of the omnidirectional perception in 
developing automated and fully automated vehicles. In chapter 
III, all the available sensors are individually presented. In 
chapter IV, the building process and the data representation of 
the super-sensor is described. In chapter V, all the experimental 
results are shown. Finally, chapter VI draws the conclusions. 

II. RELATED WORK 

Environment perception in automated and autonomous 
driving applications refers mainly to object detection, tracking 
and classification in the driving environment. The key elements 
to achieve these tasks are a redundant, robust, accurate and 
multimodal sensorial system providing a 360-degree coverage 
of the vehicle surrounding. 

In this regard, the use of 3D passive sensors, represented by 
stereo systems, in combination with other modalities is currently 
in development. A single stereo sensor provides a significantly 
larger volume of information than other sensors and offers at 
least three different, but aligned modalities: depth, optical flow 
and grey level intensities. The fusion of these modalities 
increases the dimensionality of low level representation and,  
by consequence, the quality of detection, tracking and 
classification. In contrast, a 6D-vision approach [2] computes 
the 3D scene points and their associated 3D motion vectors. The 
exact position, moving direction and speed for each pixel is 
determined, offering the possibility of predicting the future 
positions. Rectangular elements like stixels that adapt very well 
to the objects in the traffic scene may be used for obtaining an 
optimized scene representation. Stixel motion estimation and 



tracking across multiple frames is achieved by using the 6D-
vision approach. 

Concerning representation, in [3] the concept of classified 
elevation map was introduced allowing the navigable channel 
detection and accurate objects separation even in unstructured or 
crowded environments. The attributed polygonal lines are used 
for compact object representation suitable together with optical 
flow for tracking and classification tasks [4]. Superpixels on 
gray levels are used together with depth and optical flow for 
segmenting the obstacles in traffic scenarios [5]. 3D Voxel 
concepts [6] allow the detection even of hanging objects and can 
benefit from the optical flow or motion vectors for tracking 
purposes. Unfortunately, none of these approaches offers an 
exhaustive solution to the perception problem. There are 
uncertainties in the acquisition process, in the measurements of 
the sensors and in the models employed, a robust system must 
implement a higher level of redundancy of the sensors, a 360-
degree coverage of the vehicle environment, an early low level 
fusion of the sensor data along with better detection, tracking 
and classification approaches. 

There are several approaches presented in the literature 
regarding the problem of correcting the distortion of 3D LIDAR 
data when scanning the environment from a moving platform. 
The SLAM methods presented in [7] and [8] perform the 
correction in the process of integrating new scans in the global 
map. Both algorithms use features detected in the scans (edge 
lines, surfaces) to perform a matching between them and 
estimate the ego-motion of the vehicle. Another approach is 
presented in [9], where the authors also provide a solution for 
correcting the position of non-static objects by using a tracking 
algorithm. 

Our approach stems from the work presented in [10] which 
employs the Iterative Closest Point algorithm applied on scan 
points to determine the ego-motion of the sensor platform. This 
approach is susceptible to errors when the scene contains 
moving elements such as pedestrians or other vehicles. We 
adapted the algorithm to use the data from other position 
sensors, and to correct the data to an arbitrarily chosen 
timestamp. 

The papers [11] and [12] present different approaches for 3D 
point cloud segmentation.  We will focus on methods that rely 
on multimodal information such as color and laser points. In [13] 
a graph-based method is proposed for color laser point 
segmentation. Split criterion is based on position, color and 
surface normal components. In [14] and [15] segmentation 
approaches are presented for UAV images enhanced with 3D 
point clouds. The paper [16] shows that including reflectance as 
an additional feature for segmentation significantly improves the 
results. In [17] Markov Random Fields are utilized for 
segmentation. The works [18] and [19] focus on surveying and 
reconstruction from RGB + 3D data. In [20] 3D reconstructed 
points from monocular image streams are enhanced with 
semantic classes. All methods relying on fusion between color 
and LIDAR perform segmentation in the 3D space. To the best 
of our knowledge, there are no approaches that transfer 
segmentation results from the image space onto 3D points. 

III. SENSORS, CALIBRATION AND TIME SYNCHRONIZATION 

This chapter describes the available sensors mounted on the 
vehicle. The calibration provides relative positions and 
orientations of LIDARs and fisheye cameras with respect to the 
vehicle reference coordinate system which coincides with the 
GPS/IMU reference frame. High accuracy calibration of each 
sensor is needed to achieve high quality of the super-sensor 
data. The available data coming from all sensors is harmonized 
using the calibration results to a common timestamp.  

 

 
Fig. 1. Autonomous vehicle equipped with sensors: 4 fisheye cameras (blue); 

4 LIDARs (yellow) and GPS/IMU (red) 

 

A. Fisheye cameras 

Four cameras are mounted on the vehicle, one in each 
separate direction: front, right, rear, left (see Fig. 1). This system 
of cameras delivers color images of 1280x800 pixel resolution, 
JPEG compressed, at maximum 30 fps. The front and rear 
cameras are mounted horizontally. The side cameras are tilted 
downwards. Due to the large horizontal field of view (190 
degrees) of each camera, the system offers 360-degree coverage 
of vehicle surroundings with some overlap between the 
neighboring cameras. The disadvantage of the large field of 
view is that objects even at moderate distances appear small in 
the image.  

The calibration process determines the intrinsic and extrinsic 
camera parameters. The extrinsic parameters are then used to 
register the cameras into a common coordinate system of a 
selected 360-degree LIDAR (master). 

We use the unified projection model proposed by Geyer in 
[21] and adapted for fisheye lenses in [22]. The model uses only 
9 parameters: � – mirror parameter; ��, ��, ��, ��  – radial and 

tangential distortion coefficients; ��, 	�� – horizontal and vertical 

focal distance in pixels; ��, 	��  – coordinates of the principal 
point in pixels. In the following, we define the forward 
projection function. 

Let �� be a 3D point in the camera reference frame, in non-
homogeneous space: 

�� = [� � �]� 

and let � be its distance from the camera center: 

� = √�� + �� + ��. 

The first step is projecting the point onto the normalized 
image plane: 

� = �
�

� + ��

�

� + ��
1�

�

= [� � 1]� 



Next, radial and tangential distortion is applied onto the x and 
y components: 

�� = �(1 + ���� + ����) + 2���� + ��(�� + 2��) 

�� = �(1 + ���� + ����) + 2���� + ��(�� + 2��) 

The final projection into pixel coordinates is obtained via 
multiplication with the internal matrix K in 2D homogeneous 
coordinates: 

�
�
�
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The projection function P is then defined as the function 
applied on the 3D point and having as output the [�	�] pixel 
coordinates: 

�(��) = [�	�	1]�  

B. 360-degree LIDARs 

In order to increase the number of scanning planes and to 
achieve surround coverage of the environment, four 360 degree 
LIDARs are mounted on top of the vehicle (see Fig. 1). Each 
performs scans along 16 planes, covering 30 degrees in vertical 
direction and about 100m in depth. The update rate is set to 
100ms (10 fps) and the expected accuracy is +/- 3cm. With this 
setup, a coverage of at least one scanning plane per degree is 
guaranteed for each side of the vehicle. 

The calibration process determines the extrinsic parameters 
for all the LIDARs with respect to the chosen master. Then, the 
master sensor coordinate system is registered with respect to the 
standard vehicle coordinate system.  

C. GPS/IMU 

The vehicle also is equipped with a sensor capable of 
providing precise inertial and GPS data for measuring ego-
motion position and orientation (see Fig. 1). The resolutions of 
the navigation parameters are: 0.01m in position, 0.05 km/h in 
speed, 0.03 deg. in pitch/roll angle, and 0.1 deg. in heading 
angle. 

This sensor is also used for acquiring a universal timestamp 
for all sensor measurements. This is given by the GPS time and 
it is used for synchronizing data coming asynchronously from 
different sensors. Timestamp synchronization and ego-motion 
estimation is crucial for building the super-sensor. 

 

IV. BUILDING THE SUPER-SENSOR 

The super-sensor perceives the environment like it has the 
capabilities of all available sensors mounted on the vehicle 
(cameras, LIDARs, GPS/IMU). Its measurements should be 
similar to the individual sensors measurements fused together 
at a low level. This low-level representation is generated by a 
four phase process: 

 3D points motion correction 
 Image undistortion and unwarping 
 Semantic segmentation 
 Points projection and information fusion 

The low-level representation consists of a multi-
dimensional feature vector with the following features: 

 Pixel position: (u, v) coordinates in the image 
 Pixel color information: (R, G, B) values 
 Pixel 2D optical flow vector: (du, dv) displacements 

computed on u and v axes 
 Pixel semantic segment value  
 Pixel class value 
 3D point position (X, Y, Z) 
 3D point velocity vector (Vx, Vy, Vz) 
 3D point class value (3Dclass) 

In this work we only present the transfer of the pixel-level 
semantic segment value to its corresponding 3D point. The 
super-sensor and its associated low-level representation 
represents a scientific contribution that adds value and increases 
the accuracy of the high-level processing tasks like object 
detection, tracking and classification. This representation may 
be generated and used when all the available sensors are 
functioning. If there are some malfunctioning sensors, the high-
level processing may be done by only using the information 
coming from either 3D sensors or image sensors that are 
operating normally. 

In the following sections, all the necessary steps towards 
building the super-sensor and its low-level representation are 
presented. 

A. 3D points motion correction 

The movement of the ego vehicle introduces a distortion in 
the measured data, as the sensor’s reference frame changes its 
position during the scan period. Thus, the coordinates of 
scanned points must be adjusted based on the movement, not 
only to ensure proper representation of the environment at a 
single moment in time, but also in order to synchronize the 
LIDAR data with data captured by the other sensors. 

The synchronization timestamp is chosen to coincide with 
the timestamp of the most recent camera frame, which allows 
us to correctly project the points onto the images (we assume 
that all four fisheye cameras are synchronized). We denote the 
ith point taken at time ��  from a generic laser as 
���,� = [�	�	�	1]�, for which we define the parameter Δ� as: 

Δ� = � − �� 
where �  is the target timestamp taken from the most recent 
image frame.  

The transformation that is used to correct individual points 
is computed from the ego-motion transform matrix of the 
vehicle, ���� . This encompasses the 6 degrees of freedom 
motion during the period Δ� and is represented as a 4x4 matrix.  

Before applying the correction, the scanned point must first 
be represented in the vehicle’s coordinate system, based on the 
sensor’s extrinsic parameters, because this coincides with the 
coordinate system of the ����	transform. Thus, the ith point can 
be corrected using: 

���,� = (����
� )�� ⋅ �� ⋅ ����

� ⋅ ���,� 



where ����
�  is the LIDAR-to-vehicle coordinate system 

transform and �� is the correction transform for point i, which is 
computed from the ����transform by raising it to a fractional 
power dependent on the Δ�  value: 

�� = ����
���/�� = exp	(−Δ�/Δ� ⋅ log	(����))  

Here, we apply the notions of matrix exponential and 
logarithmic functions as presented in [23] in order to compute 
this transform. For the implementation we use algorithms 
integrated in the Eigen linear algebra library. This correction 
scheme is valid irrespective of the temporal relation between the 
target timestamp and the start or end time of the scan. 

The correction transform must be computed for each 
individual point of a scan for achieving accurate results. 
However, due to the high volume of data and the need for very 
fast processing, the process can be sped up by computing a 
lookup table of correction transforms for each scan. 

B. Image undistortion and unwarping 

The raw fisheye image is not used in practice for further 
processing since real world objects are highly distorted in the 
image. Once the forward projection model of the camera and 
lenses are known the image can be transformed to obtain a more 
suitable representation of the scene. 

To obtain an undistorted and unwarped image we start from 
a target surface which represents a virtual imager. The surface is 
discretized and projected onto the distorted image. Color values 
can be obtained for each position by interpolating values from 
the original fisheye image. Either bilinear or bicubic 
interpolation can be performed. The described procedure clearly 
shows that there is no need for the inverse projection model. 

The surface of projection can be: a single plane; multiple 
planes or a cylinder. The field of view, the resolution and the 
orientation of the surface needs to be determined to offer the 
optimal view of the scene. Knowing the camera orientation 
enables us to preserve the orientation of vertical lines. This is 
essential for higher level processing steps. 

Using a single plane yields a single perspective image. 
Perspective images preserve straight lines, but for larger field of 
view it elongates objects at positions which are far from the 
image center. This kind of unwarping is convenient for the 
central region and should be applied with a reduced field view. 
A horizontal field of view close to 180 degrees is impossible to 
achieve with a single plane. Projecting onto multiple planes can 
resolve this issue. 

We define the planar surface for projection as a planar grid 
placed at distance z=1 from the camera parameterized by u and 
v in the following way: 

�

�(�, �)
�(�, �)

�(�, �)

=
=
=

−�� + 2���/(� − 1)

−�� + 2���/(ℎ − 1)
1

 

where �� = tan(�/2), �� = ���/ℎ, � is the horizontal field of 
view and w, h are the horizontal and vertical resolutions 
respectively and � ∈ 0 : � − 1�����������, � ∈ 	 0 : ℎ − 1����������. This implies that 
� ∈ [−��, ��] and � ∈ [−��, ��]. 

Another option is to use the side of a cylinder as the 
projection surface. The cylinder should have its axis aligned 
with the normal to the ground surface in order to preserve the 
orientation of vertical lines. Cylindrical unwarping can generate 
a single image with large horizontal field of view with smaller 
distortions than a single perspective image. Only vertical lines 
remain straight after this transformation. 

We define the cylindrical surface as the face of a cylinder 
having its rotation axis aligned with the y axis and having a base 
radius of 1: 

�

�(�, �)
�(�, �)

�(�, �)

=
=
=

sin(−� + � ⋅ �/(� − 1))

−� + � ⋅ �/(ℎ − 1)

cos(−� + � ⋅ �/(� − 1))
 

where �  is the horizontal field of view and � = �ℎ/� . We 
define rotation matrices for each camera which perform the 
required rotation from the vehicle reference frame to the specific 
camera while preserving alignment with the vehicle reference 
frame (only 90-degree rotations): 

������
��� = �

0 −1 0
0 0 −1
1 0 0

�			������
��� = �

1 0 0
0 0 −1
0 1 0

�	 

 

������
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−1 0 0
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C. Semantic segmentation 

We propose to segment the undistorted fisheye images in 
order to enable the semantic perception of the surrounding 
environment. The result of the segmentation is the pixel-wise 
labeling of images using representative semantic classes for 
traffic scenarios. Due to the unwarping of the fisheye images we 
can employ any segmentation solution designed for undistorted 
non-fisheye images and can use any available dataset for 
training purposes. To achieve robust segmentation results it is 
important to have a large and diverse training dataset with 
images that were labeled manually. The Cityscapes database 
[24] is an ideal training dataset, considering that it contains 
25000 manually labeled images captured from traffic scenarios 
from 50 different cities. 

The literature on semantic segmentation is extensive. There 
are several solutions providing different classification 
performances at different computational costs. We opt for a 
boosting-based solution based on our segmentation approach 
proposed in [25], which provides a good trade-off between 
segmentation performance and computational costs. Due to the 
different nature of depth from the Cityscapes training dataset 
(from stereo reconstruction) and depth from LIDAR, we employ 
only color image features and ignore depth features. Manual 
labelling of training images together with depth data (from 
LIDAR) will enable the learning of depth features for 
classification. To further reduce classification costs, we use only 
the 7 Cityscapes category classes as semantic labels (instead of 
the 19 classes at finer level): ground, sky, nature, construction, 
object, human and vehicle. 

To generate image features the input images are decomposed 
into multiple channels, consisting of LUV color channels, 
gradient magnitude and six orientation channels. In order to 



capture color and edge features at different scales and 
orientations a multiresolution filtering scheme is applied over 
the image channels resulting in multiresolution filtered 
channels. The filtering scheme is detailed in [25]. 

The multiresolution filtered channels are extended with deep 
convolutional neural network (CNN) channels, as described in 
[25]. These channels are obtained by applying deep CNN 
kernels over the input image. These kernels are learning-based 
and are able to capture different complex structures. The best 
results were achieved using LUV color and gradient channels 
together with the last 512 convolutional filters of the 4th layer 
(conv4_3) of the ImageNet pretrained VGG16 neural network 
[26]. 

The purpose of the multiresolution filtered channels and 
deep convolutional channels is to provide classification features 
for semantic pixel classifiers. A boosted decision forest is 
learned for each semantic class using multirange channel 
features as classification features (see details in [25]). The 
multirange features consist of channel values at different relative 
spatial positions and the boosting algorithm has the role of 
selecting the most relevant features for each class. 

 
Fig. 2. Cylindrically unwarped rear image and segmentation results 

 

 
Fig. 3. Cylindrically unwarped right image and segmentation results 

 
Semantic segmentation is achieved by computing the 

multiresolution filtered channels and deep CNN channels, and 
by applying the learned pixel classifiers. The input image is 
segmented into superpixels and only the center pixel of each 
superpixel is used for classification, resulting in a significant 
reduction of necessary classifications. The classification results 
are retained at superpixel level and are further refined using a 
dense conditional random field (CRF) [27]. Due to the low 

computational costs the multiclass labelling of the input image 
using 7 semantic classes is achieved at 100 ms using an NVidia 
GTX 980Ti GPU. In Fig. 2 and Fig. 3 we illustrate the semantic 
segmentation of the rear and front fisheye images. 

 

D. Points projection and information fusion 

Information fusion between the any laser and any camera 
can be obtained by projecting the 3D points from the LIDAR 
onto the imager of the camera. In the following we define the 
steps required to project onto the original fisheye images, the 
planar image and cylindrical image. 

Let ��� be a 3D point in the native coordinate system of a 
general laser sensor, in homogeneous coordinates: 

��� 	 = [�		�		�		1]� 

Projection onto the fisheye image can be obtained by: 

[�	�	1]� = �(����
� ���) 

����
� = �����

��� ����
���

� 1
� ⋅ �����

� ����
�

� 1
�, 

i.e. we apply the projection function onto the point transformed 
to the camera coordinate system. The transformation from 
vehicle to camera uses the extrinsic rotation and translation 
found during calibration. 

Projection onto the planar image aligned with the car 
reference frame can be obtained by: 

[�	�	1]� = � ⋅ ���ℎ(�����
� ���) 

� = �
�/(2	��)	 0 �/2

0 ℎ/(2	��) ℎ/2
0 0 1

� 

�����
� = ������

��� �
� 1

� ⋅ �����
� ����

�

� 1
�. 

The function nonh() switches to non-homogeneous 
coordinates and afterwards we normalize the coordinates by the 
third component. Here, the transformation from vehicle to 
camera uses the rotation matrices defined for aligned views and 
no translation. 

Projection onto the cylindrical image aligned with the car 
reference can be obtained by: 

[�	�	1]� = � ⋅ �(�����
� ���) 

The internal matrix K has same form as defined previously 
but in this case �� equals half the horizontal field of view. The 
function g finds the 3D point which is the intersection of a ray 
passing through the point [�	�	�] and the face of the cylinder 
aligned with the vehicle reference frame. It can be shown the g 
has the following form: 

�([�	�	�	1]�) = [asin(�/�)		�/�		1]� 

� = ��� + ��	. 

Once the coordinates of the 3D point are known, information 
can be transferred from the image domain to the 3D points. We 
augment the point cloud with color information and with the 
class of the semantic segment. 



It is important to note that cameras and lasers view the world 
from different viewpoints and so there can be cases where the 
laser measures distances to objects which are occluded in the 
camera view. Projecting such 3D points onto the image will 
result in erroneous associations with the occluding object. 
Resolving this issue can be achieved by considering consistency 
in color, making use of laser reflectivity or by reasoning in 3D 
space.  

V. EXPERIMENTAL RESULTS 

A. 3D points motion correction 

Fig. 4 and Fig. 5 illustrate 3D points projected onto the 
fisheye image. The points’ color represents the distance to the 
camera. The effectiveness of the motion correction algorithm 
can be observed by comparing the two figures, with noticeable 
improvements visible especially on thin vertical objects (poles 
and trees). The uncorrected data appears shifted to the left. 
Also, points measured by different LIDARs at different 
timestamps do not overlap each other (see Fig. 4). These issues 
are solved by the motion correction (see Fig. 5). 

  

 
Fig. 4. Raw points projected onto the frontal camera 

 
Fig. 5. Motion-corrected points projected onto the frontal camera 

 

B. Image undistortion and unwarping 

The following figures (Fig. 6 and Fig. 7) illustrate 
unwarping results for a single planar surface and a cylindrical 
surface. We also show the effect of alignment on vertical lines. 

 

 
Fig. 6. Planar unwarping, 100-degree horizontal field of view; 

left: surface not aligned to vehicle; right: surface aligned to vehicle 

 

  
Fig. 7. Cylindrical unwarping, 160-degree horizontal field of view; 
left: surface not aligned to vehicle; right: surface aligned to vehicle 

 

C. Semantic segmentation 

We evaluate the performance of the semantic segmentation 
using the Cityscapes [24] traffic scene validation set. We 
measure the classification performance for 7 semantic 
categories. As performance metric, we compute the intersection 
over union (IoU) for each individual class representing the 
number of true positive pixels divided by the sum of the number 
of true positive, false positive and false negative pixels. The 
employed segmentation approach achieves a mean IoU of 
70.5%, mean accuracy (average class-level true positive rate) 
of 81.8% and global accuracy (pixel-level true positive rate) of 
90.8% over the validation set. The class-level IoU is provided 
in Table I. 

TABLE I. INTERSECTION OVER UNION SCORE (%) FOR DIFFERENT SEMANTIC 

CLASSES EVALUATED ON THE CITYSCAPES VALIDATION SET 
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D. Points projections and information fusion 

Fig. 8 and Fig. 9 show sample segmented point clouds along 
with the view offered by the frontal camera. The road plane is 
visible (magenta). The main traffic participants can also be 
distinguished: pedestrians (red), vehicles (blue), vegetation 
(green), buildings (gray). 



 
Fig. 8. Segmented point cloud and the associated cylindrically unwarped frontal 
view. The arrow indicates the orientation of the car. 

 

 
Fig. 9. Segmented point cloud and the associated cylindrically unwarped frontal 
view. The arrow indicates the orientation of the car. 

VI. CONCLUSIONS 

This work presented a solution for building a super-sensor 
from fisheye cameras and laser scanners. For a correct 
representation of the environment, all sensors must be aligned to 
a single moment in time. Motion correction is thus crucial and 
we have shown how to adjust the 3D LIDAR point cloud to the 
acquisition time of the cameras.  

Afterwards, three different image unwarping methods were 
described. Cylindrically unwarped images offer the advantage 
of a large field of view at the cost of slight distortions. We have 
shown that these images can be used as input for powerful and 
fast semantic segmentation approaches that work in the image 
domain. The semantic classes were transferred onto the accurate 

3D LIDAR point cloud. The transfer was also made in the other 
direction by providing depth information to image processing 
methods. The segmentation approach was evaluated on the 
popular Cityscapes dataset. The global pixel-level accuracy is 
over 90% and requires only 100ms for the full resolution image. 
Performing an annotation and training on cylindrical images 
should further increase the accuracy values. 

The presented approach was integrated and tested on a real 
vehicle. The current paper establishes the required steps for 
obtaining the low-level fusion of LIDAR and camera data. More 
high-level processing steps are future work and will build upon 
this representation. 
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