The study of a passive two-port system

Laboratory 20

Port: the current into one of the port terminal is, at every instant of time, equal to the current out of the other terminal of the port (*the port current requirement*).

The fundamental equations. ABCD parameters.

$$\begin{cases} \underline{U}_1 = \underline{A}\underline{U}_2 + \underline{B}\underline{I}_2 \\ \underline{I}_1 = \underline{C}\underline{U}_2 + \underline{D}\underline{I}_2 \end{cases}$$

where $\underline{A}, \underline{B}, \underline{C}, \underline{D}$ are called *fundamental* (or *transmission*) *parameters* (\underline{A} and \underline{D} – dimensionless, \underline{B} is impedance, \underline{D} is admittance)

 $\frac{1}{\left(\frac{\underline{U}_2}{\underline{U}_2}\right)}$ - is the reciprocal of the *open-circuit voltage transfer ratio* from port 1 to port 2

- is the reciprocal of the *open-circuit transfer impedance* from port 1 to port 2

- is the reciprocal of the *short-circuit current transfer ratio* from port 1 to port 2.

Tuesday, March 1, 2022

Fig. 2-a (Lab book) Determining <u>C</u>

$$\underline{C} = \frac{\underline{I_1}}{\underline{U_2}} = \frac{I_1 \cdot e^{j\varphi_{I_1}}}{U_2 \cdot e^{j\varphi_{U_2}}} = \frac{I_1}{\underbrace{U_2}} \cdot e^{j\underbrace{(\varphi_{I_1} - \varphi_{U_2})}{\varphi_C}}$$

Where

C – the modulus of the constant <u>C</u> ϕ_c – the phase of the constant <u>C</u>

We measured: $I_1=; U_2=V; P=U_2\cdot I_1\cdot \cos \varphi_C$

Compute: $C = \frac{I_1}{U_2}$ and $cos \varphi_C = \frac{P}{U_2 \cdot I_1}$

Fig. 2-b (Lab book) Determining <u>A</u>

$$\underline{A} = \frac{\underline{U}_1}{\underline{U}_2} = \frac{U_1 \cdot e^{j\varphi_{U_1}}}{U_2 \cdot e^{j\varphi_{U_2}}} = \frac{U_1}{\underbrace{U_2}_A} \cdot e^{j\underbrace{(\varphi_{U_1} - \varphi_{U_2})}{\varphi_A}}$$

Where

A – the modulus of the constant <u>A</u>

 ϕ_{A} – the phase of the constant \underline{A}

We measured: $U_1=;$ $U_2=;$ $I_R=;$ $P=U_2 \cdot I_R \cdot \cos \varphi_A$

Compute A and $\phi_{A.}$

Fig. 2-c (Lab book) Determining <u>B</u>

$$\underline{B} = \frac{\underline{U}_1}{\underline{I}_2} = \frac{U_1 \cdot e^{j\varphi_{U_1}}}{I_2 \cdot e^{j\varphi_{I_2}}} = \frac{U_1}{\underbrace{I_2}_B} \cdot e^{j\underbrace{(\varphi_{U_1} - \varphi_{I_2})}{\varphi_B}}$$

Where

B - the modulus of the constant <u>B</u>

 ϕ_{B} – the phase of the constant $\underline{\text{B}}$

We measured: $U_1=; I_2=; P=U_1 \cdot I_2 \cdot \cos \varphi_B$

Compute B and $\phi_{B.}$

Fig. 2-d (Lab book) Determining D

$$\underline{D} = \frac{\underline{I}_1}{\underline{I}_2} = \frac{I_1 \cdot e^{j\varphi_{I_1}}}{I_2 \cdot e^{j\varphi_{I_2}}} = \frac{I_1}{\underbrace{I}_2} \cdot e^{j\underbrace{(\varphi_{I_1} - \varphi_{I_2})}{\varphi_D}}$$

Where

D – the modulus of the constant \underline{D}

 ϕ_{D} – the phase of the constant $\underline{\text{D}}$

We measured: $I_1=; I_2=; U_R=; P=U_R:I_2:\cos \varphi_D$

Compute D and $\phi_{D.}$

Fig. 3 (Lab book) Determining Z

$$\underline{Z}_{10} = \frac{\underline{U}_{10}}{\underline{I}_{10}} = \frac{U_{10} \cdot e^{j\varphi_{U10}}}{I_{10} \cdot e^{j\varphi_{I10}}} = \frac{U_{10}}{\underbrace{\frac{U_{10}}{I_{10}}}_{Z10}} \cdot e^{j\underbrace{(\varphi_{U10} - \varphi_{I10})}{\varphi_{Z10}}}$$

We measured:

$$I_{10}=; \quad U_{10}=; \quad P_{10}=U_{10} \cdot I_{10} \cdot \cos \varphi_{10} = I_{1sc}=; \quad U_{1sc}=; \quad P_{1sc}=U_{1sc} \cdot I_{1sc} \cdot \cos \varphi_{1sc} = I_{20}=; \quad U_{20}=; \quad P_{20}=U_{20} \cdot I_{20} \cdot \cos \varphi_{20} = I_{2sc}=0,36A; \quad U_{2sc}=; \quad P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A; \quad U_{2sc}=: P_{2sc}=U_{2sc} \cdot I_{2sc} \cdot \cos \varphi_{2sc} = I_{2sc}=0,36A;$$

Compute: Z_{10} and ϕ_{10} ; Z_{1sc} and ϕ_{1sc} ; Z_{20} and ϕ_{20} ; Z_{2sc} and ϕ_{2sc}