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Abstract—Accurate depth estimation from cameras is a
highly important task for autonomous systems. Existing
monocular depth estimation methods span a wide range of
approaches, from supervised techniques which leverage labelled
datasets, to self-supervised methods which utilize video
sequences without explicit depth annotations. Additionally,
stereo vision solutions provide absolute depth measurements
using the disparity maps obtained via stereo correspondence.
This paper proposes a depth fusion system combining
Monodepth2, MiDaS and stereo vision using semantic-aware
scaling and error-aware selection. The original contributions of
our work are three-fold. First, our approach proposes an
original method of scaling the relative disparities from
monocular depth estimation using semantic segmentation and
an original depth discretization technique. Then, an original
method is proposed for combining self-supervised and
supervised approaches using the probability of information
obtained from learning the error each type of monocular depth
estimation method produces. The final contribution consists in
the presentation of the fault tolerant system used to reconstruct
the scene. The proposed approach has been tested on the KITTI
dataset and highlights the effectiveness of combining these
complementary methods showing good results even in situations
where individual methods would fail.
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I. INTRODUCTION

Depth estimation is a fundamental task in environment
perception for autonomous systems because it tries to
recognize the spatial structure of the scene where the robot
must safely navigate. A wide range of sensors can be used to
extract depth information and among the most popular in the
autonomous driving filed are LiDARs, Radars and cameras.
Each of these sensors have their advantages and disadvantages
when working in real world scenarios, and typically for a real
world autonomous system to navigate safely the redundant
sensorial information is fused [1]. Cameras have attracted the
attention of researchers due to their ability to obtain semantic
information of the environment, they do not have moving
mechanical parts and their price is relatively cheaper
compared to other sensors.

To accurately infer the depth of a scene from a 2D image
multiple challenges must be overcome such as varying
lighting conditions, occlusions, or the inherent ambiguities of
depth cues in monocular images.
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Through the years, numerous depth estimation solutions
[2,3] have been developed each with its strengths and
weaknesses. Broadly, based on the number of cameras, the
most popular depth estimation methods used in autonomous
driving can be classified into monocular depth estimation
methods, when only one camera is available, and stereo
reconstruction methods, when two cameras are available. The
monocular depth estimation methods can be further classified
into supervised and self-supervised methods depending on the
approach used to train the deep neural network that outputs the
depth information.

Supervised approaches [4] rely on large datasets with
ground truth annotations to train the neural networks to infer
the depth from a single image. While the results are
impressive, obtaining large, labelled datasets is an expensive
and time-consuming task. Self-supervised methods [5] have
emerged to address the issue of data dependency by training
monocular depth estimation methods on single image video
sequences without requiring ground truth information. These
methods, rely on photometric consistency between adjacent
frames to infer depth, however they struggle with scale
ambiguity and can be less accurate in static scenes.

When monocular depth estimation models are not trained
on annotated datasets with metric depth values — or when the
training setup does not enforce metric consistency — the
resulting depth maps are usually scaled relatively rather than
providing absolute measurements. This is due to the inherent
limitations of monocular images that only provide depth cues
without direct information about the actual distances in the
scene. The relative depth is converted in absolute
measurement using a scaling factor [6,7] that adjusts the depth
values from the monocular algorithm to real world distances.
Finding an accurate scaling factor is a difficult task and a
crucial endeavour for applications requiring precise depth
measurements. The incorrect scaling of the depth can lead to
inaccuracies in the scene reconstruction and can have
disastrous effects on other modules of an autonomous system.

Stereo vision sensors [8] can offer dense depth maps that
are particularly effective when providing absolute depth
measurements which are very important to applications where
scale consistency is important. Despite their accuracy stereo
methods can be affected by multiple issues such as low texture
regions, repetitive surfaces, occlusions or the inherent
assumption that the distances within matching windows are
the same which is false on slanted surfaces or due to the
perspective effect. All these issues can lead to the
deterioration of the depth map. Moreover, if for any reason
one of the cameras of the stereo system is not providing



images the stereo reconstruction cannot happen and in an
urban environment where a robot must navigate safely this can
have unwanted outcomes.

Given the complementary nature of these types of
reconstruction methods, there is significant potential in
combining them to leverage their advantages while
eliminating most of their shortcomings. In this paper, a novel
framework is proposed that integrates supervised, self-
supervised, and stereo depth estimation techniques to create a
more robust, fault-tolerant, and accurate depth prediction
system. By fusing the strengths of different reconstruction
solutions, our approach addresses the limitations of individual
methods, resulting in improved performance across a variety
of environments and conditions.

Based on the aforementioned motivation, this paper
contributes the following:

e A novel scaling mechanism that uses semantic
information and depth discretization to transform the
relative depth estimation in absolute measurements.
This approach also leverages an adapted online pre-
scaling method called Semantic Dense Geometrical
Constraint (SDGC) that is used for an initial relative
depth scaling.

e A fusion mechanism between different types of
monocular depth estimation approaches by using the
probability map resulted from learning the error each
type of method produces.

e A fault tolerant approach that combines the stereo and
monocular depth estimation methods such that a
depth map can be always retrieved even when one of
the cameras is not working properly

The proposed approach has been evaluated on the
KITTI [9] dataset, and the results clearly demonstrate
increased accuracy when combining the depth estimation
methods as opposed to individual approaches. Moreover, the
results indicate that by combining different depth estimation
paradigms, a more reliable depth estimation system can be
achieved even when one of the sensors is not operational.

II. RELATED WORK

Metric depth estimation (MDE) methods that were
originally implemented, leveraged labelled datasets and used
supervised learning approaches to train the deep learning
models. Notable here the work of Eigen et al.[10] proposed a
continuous regression multi-scale CNN that combined global
and local features for improving depth reconstruction
accuracy. Following this approach the authors boosted the
performance of their original method by using surface normal
and semantic segmentation via a multi-task network[11].

A broad diversification of the methods used to estimate
depth followed in recent years. For example, a domain shift
occurs where the methods transition from continuous
regression to discrete modelling techniques. Newer methods
strategies discretize depth into intervals and frame the depth
estimation task as a classification problem [12], rather than
regressing raw depth values. Fu et al. [13] build on this idea
and proposed a regression model that applies a non-linear
depth binning scheme and an ordinal-aware loss function to
further evolve the initial idea. This approach laid the
foundation for later works [14]-[18], which created hybrid
models combining regression and classification, and
dynamically adapting binning. Zoedepth [18], created an
automatic routing mechanism that selects the appropriate

prediction head based on whether a scene is classified as
indoor or outdoor.

An alternative to metric depth estimation is relative depth
estimation (RDE), which, rather than predicting absolute
depth values, aims to estimate depth orderings between image
regions. More specifically, RDE solutions focus on
determining if one point is closer or farther away than another
[19], or on determining the relative spatial arrangement of
scene elements [20]. This approach has the advantage of
being robust to changes in scale, as the ordinal depth relations
remain consistent regardless of camera internal parameters,
or the actual range of the scene. The authors from [19] and
[21] employed CNNs to predict the relative depth between
pixel pairs, while also considering properties specific to real
world scenes such as reflectance and illumination. Using
these examples as a theoretical foundation, subsequent
studies have explored ways of combining RDE and MDE
pipelines to improve generalization as well as to reduce the
need of metric annotations. In this way Chen et al. [22]
demonstrated that some models can achieve competitive
metric predictions in complex uncontrolled environments
even when trained with sparse relative depth labels. The
authors from [24] introduced a scale invariant loss function
to mitigate the scale ambiguity issues, and that was later
refined in subsequent works such as [23] and [25], enabling
models to make consistent predictions across varying scale
ranges.

Jun et. al. proposed in [26] a decomposition strategy based
on two branches in a deep net, that run in parallel, and which
separately estimate relative and metric depth. Recent models
such as Depth Anything [27] and Marigold [28] have
demonstrated amazing generalization across diverse datasets.
However, even these approaches output relative depth maps
and require additional scaling transformations to recover
metric representations, not to mention the dimensions of the
models which are very large. Some approaches from the
literature such as [29] and [30] make a fail-safe mechanism
for real time depth estimation methods, toggling between
stereo and monocular depth perception. These approaches
ensure that if only one image is captured some depth
estimation is offered to the downstream perception tasks.

III. PROPOSED SOLUTION

The Proposed Solution section is divided into three
subsections. The first subsection describes the novel approach
used to transform relative depth information into absolute
measurements using semantic data. The second subsection
presents the strategy employed to fuse the complementary
monocular depth estimation modules, and the final subsection
outlines the fault-tolerant architecture of the proposed system.
In this work, MonodepthV2 is employed as the self-
supervised monocular depth estimation model, MIDAS for
the supervised monocular depth estimation model and a stereo
approach developed by us based on the paper of Hirschmuler
[31]. Although MiDaS is trained in a supervised manner using
multiple labeled datasets, its predictions are not in metric scale
and require external scaling to be used as absolute depth.
Therefore, both monocular approaches are scaled using the
method described in Section III.A before fusion. It is worth
noting that the proposed solution can work with any type of
depth estimation algorithm and is not limited by the methods
mentioned above.



A. Semantic Aware Scaling

Monocular depth estimation methods only estimate a
relative relation between depths but cannot provide the
absolute distance without additional information. Scaling is
necessary to adjust the depth estimate to a real scale consistent
with the physical world. In the proposed solution, a semantic
segmentation architecture, DeepLabV3+ [32], trained on the
KITTI dataset, is used to extract semantic information from
the scene.

At runtime two scenarios emerge. In the first scenario
the images from both cameras are available. The stereo
reconstruction will happen and the resulted depth map is used
as reference to compute the scaling factor. In the second
scenario, only one image is available, due to one of the images
from one of the two cameras being corrupted or missing. In
this scenario there are two main steps an online step (that is
semantic class agnostic) and an offline step (that is computed
only once in a pre-processing step). For the preprocessing
offline step the KITTI 2015 stereo data flow LiDAR ground
truth is used as reference and the general steps of the
procedure are the same as in the case when the depth image is
computed using the two available images (only this time is
computed once using the LiIDAR ground truth).

The data used for scaling, depending on the scenario, will
be referred to as the reference image.

The first scenario considers the case in which both images
are available, allowing the computation of the stereo depth
map through stereo reconstruction.

The points from each monocular depth estimation method
(MonodepthV2 and MIDAS) and from the reference image
are transformed from disparity space to depth space. The
number of different semantic classes is extracted from the
semantic segmentation image. For every semantic class, all
the 3D points from each monocular depth estimation solution
and from the reference image, corresponding to that semantic
class are extracted and stored in a separate vector. Therefore,
for each semantic class for every monocular depth estimation
method as well as for the reference data there will be a separate
vector. All vectors corresponding to each semantic class are
sorted in ascending order. A discretization of the depth is then
considered, where the vectors are divided into 7 bins
containing an equal number of points each. Next, for each bin,
the median value is chosen. A ratio is performed to find the
scaling factor between the median value of each bin and the
median value from the reference image from the
corresponding bin, for each semantic class. This operation is
performed separately for each monocular depth estimation
solution. The value of T has been found empirically and has
the value of 400 bins in our solution. Additionally for each bin
the minimum and maximum values of depth are also
computed.

After obtaining the scaling factor for each bin of each
semantic class, the scaling factors are applied. The unscaled
depth image 1is traversed, and the semantic class
corresponding to the coordinates of each unscaled point is
extracted. From the vector associated with that class, the bin
in which the unscaled depth value is located is determined
using the previously obtained minimum and maximum values.
The scaling factor for the corresponding interval is then
applied, and the resulting scaled point is stored. To mitigate
effects such as banding or other artifacts that may arise when
using interval-based scaling algorithms, linear interpolation is
employed between scaling factors to ensure a smooth
transition. The interpolation is done according to equations (1)
and (2) below.
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In equation (1) the meaning of the terms are the following:
depth represents the depth value of the current pixel being
evaluated, minVals is a vector that contains the minimum
depth values for each semantic class and for each interval
within that class (minValues[classldx][k] represents the
minimum depth value for the k-th interval of the classldx
class), maxVals is a vector that contains the maximum depth
values for each semantic class and for each interval within that
class, t represents the relative position of the depth value
within the identified interval, measured from the lower bound
(minValues[k]) to the upper bound (maxValues[k+1]); t will
be a number between 0 and 1. In equation (2) the meaning of
the terms is the following: scaleFactors represents a vector that
contains the scaling factors for each semantic class and for
each interval within that class (scaleFactors[classIdx][k] is the
scaling factor associated with the lower bound of the k-th
interval for the classIdx class and scaleFactors[classIdx][k +
1] is the scaling factor associated with the upper bound of the
(k+1)-th interval for the classldx class), scale represents the
scaling factor calculated for the depth value depth (it is
obtained by linearly interpolating between the two scaling
factors specific to the interval where depth falls).

In the absence of the stereo depth image, due to failure of
one of the cameras, the procedure consists of offline and
online steps. For this scenario, a general scaling factor is
computed for each frame using the Semantic Dense
Geometrical Constraint (SDGC) method for the entire image.
Subsequently, scaling factors for each semantic class are
computed as previously described. In this approach, the
scaling factors and interval limits for each bin of each
semantic class are computed offline as averages, using LIDAR
ground truth as a reference instead of the stereo depth image.
The averaging is performed over all KITTI 2015 training
images. During runtime, the initial scale is computed using
SDGC, followed by the application of the individual class-
specific scaling factors as described previously.

The method proposed for scaling the entire image is
referred to as Semantic Dense Geometrical Constraint
(SDGC) and constitutes an original adaptation of DGC [33]
that additionally incorporates semantic information. For
completeness, the entire process employed by SDGC is
overviewed. First, the relative 3D points are obtained,
followed by estimation of the surface normal for each point.
From the relative depth map, the 3D points are reconstructed,
and the surface normal is estimated in the vicinity of each
point. An 8-neighbourhood around each point is considered,
and four planes are created for which the surface normals are
computed. The final normal is determined as the average of
these normals, as illustrated in equation (3).
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Subsequently, ground points are identified. A pixel is
classified as a ground point if its surface normal is close to the
ideal ground normal and the semantic class of the pixel
corresponds to the ground type. This process is illustrated in
equations (4) and (5)
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For each detected ground point, the estimated camera
height is the projection of the 3D point onto its surface normal.
This is illustrated analytically in equation (6) and intuitively
in Figure 1.
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Figure 1. Intuitive depiction of the height estimation
process

The final camera height is the median of all estimated heights
(hM). Given the known real camera height (from the extrinsic
calibration), the scale factor is computed as in (7)

fr=:2 ()

Finally, the scaled values are obtained by multiplying the
relative 3D points by the scaling factor.

For the scenario where the stereo depth map is available the
scaled fused monocular depth estimation results will be used
to fill in regions that were not successfully reconstructed(for
example in regions with repetitive structures or unstructured
regions).

When the stereo image is available the scaling is performed
at runtime using the method previously described and the
monocular depth estimation values are used to fill
unreconstructed regions of the stereo reconstruction.

B. Monocular Depth Fusion

For fusing the monocular depth estimation images, an
innovative approach is employed in which data combination
is performed using error probabilities from the semantic
segmentation of the error learned for each point after the
scaling operation. For this segmentation task, a DeepLabV3
architecture is utilized. Instead of relying on predictive
uncertainty via ensembles or dropout, a lightweight
segmentation-based estimation of depth error regions is
applied using LiDAR-based ground truth, motivated by the
need for real-time performance. The idea is to treat the error
map as a binary semantic segmentation task and learn the
likely error regions for each depth estimation method.

The dataset is first generated using the KITTI 2015 and
2012 ground truth data. For each monocular depth estimation
model, the scaling procedure described in the previous
section is applied, followed by computation of the error maps
using the KITTI ground truth LiDAR data. The scaled values
are compared with the ground truth depth values, and a pixel
is considered erroneous if the ratio exceeds a predefined
threshold; otherwise, it is considered correctly reconstructed.
In this case, the threshold is set to 1.25. This is done for the
left and right images to increase the size of the dataset.
Moreover, the dataset is also augmented using a horizontal

flip operation resulting in a total of 1600 images. We then
generate the corresponding labels for each error image which
we treat as a semantic image annotation and split the dataset
in train, test and validation considering 70% for train, 20%
for validation and 10% for test.

Figure 2. Result of training the semantic segmentation
to identify the error map of a scene

The error segmentation model is trained for 350 epochs for
each type of depth estimation model. The numerical results
of the training are shown in the evaluation section.

After training a softmax is applied on the output of the
network to convert the logits in a set of probabilities in the 0
and 1 interval.

Figure 2 shows the result of the segmentation on an unseen
scenario. The top image represents the original RGB image,
next is the disparity image obtained from Monodepth2 which
has been scaled, then the error map computed using the
KITTI ground truth LiDAR data, next is the result of the
semantic segmentation which shows where the errors are
detected, the final image show the probability map of the
segmentation, the closer the colour value is to a darker tone
the less probable the semantic class is. The same operation
has been applied on the monocular supervised approach.

The probability maps are used to combine the data from the
two monocular depth estimation models.

To obtain the final depth map, the probability maps are
iterated, and values from the depth estimation method with
the highest probability of correct detection are selected. The
error maps of the individual depth estimation methods as well
as their fusion are presented in Figure 3. The overall result is
visibly improved, even though some of the errors that appear
in both methods remain. The white regions represent



erroneous regions while the black ones are regions where the
depth is correct. In Figure 3 the top image represents the error
obtained from the Monodepth2 algorithm, following is the
error probability for Monodepth2, the next image is the error
map for the MIDAS algorithm and its error probability map,
and finally the last image represents the error map of the
fusion. The scene presented in Figure 3 is the same one as in
Figure 2. The evaluation has been done on the KITTI dataset
on images that were not used for training.
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Figure 3. The error maps and the corresponding
probability maps of Monodepth2 and Midas. The bottom
image illustrates the fusion of the two methods.

C. Fault Tolerant Depth Estimation Architecture

The fault tolerant depth estimation architecture ensures
that at each time moment the autonomous system will have a
depth map on which it can rely to navigate safely in the
environment. The dense stereo matching methods are more
robust in terms of accuracy however they rely on two images
to reconstruct the scene. Images can be corrupted for various
reasons such as sensor issues or over saturation. When there is
only one image available the system should be able to estimate
the depth using that image. For evaluating image quality, a
histogram is computed on the lower part of the image (the sky
and upper part are not relevant for autonomous ground
vehicles) using 10 randomly selected patches of 20%20 pixels
each. If the mean intensity of the image is below a threshold
T1 (set experimentally to 15) or above T2 (set to 245), the
image is considered unusable. This test is performed on both
images. If both images are usable the stereo vision algorithm
is used, having as reference the left image, together with the
monocular algorithms on the left image. The relative depth
obtained through monocular depth estimation is scaled using

the absolute depth from stereo as reference. The monocular
depth estimation from the supervised and self-supervised
method are combined using the methods presented in the
previous section. The unreconstructed regions from the stereo
are filled with the data from the fused monocular depth
estimates. If only one image is available, the monocular depth
estimation fusion presented in section 3 B is used. The system
diagram of the fault tolerant system is presented in Figure 4.

The Frame 1 and Frame 2 blocks from Figure 4 represent
the images coming from the two cameras, the Frame
Consistency module checks if the two images are consistent
using the algorithm presented before and provides to the Scale
Supervised and Scale Self-Supervised modules the consistent
image from the two frames. If both images are consistent then
the left image is used. Moreover, the Frame Consistency
module tells the system if it should use the monocular depth
estimation, the stereo approach or just display a warning sign
in case no frame is available to reconstruct the scene. The
Scale Supervised and Scale Self-Supervised modules compute
the monocular depth estimation and scale the relative depth
maps using the algorithm presented in section 3 A. The
disparity map from the stereo module is provided in cases both
frames are consistent to scale the monocular depth estimation
algorithms using this information. The stereo module
computes the stereo disparity map if the two frames are
consistent. The Mono Fusion block combines the two
complementary monocular depth estimation methods, and the
Depth Fusion module combines the stereo result with the
fused monocular depth.
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Figure 4. Block diagram of the fault tolerant system

IV. EXPERIMENTAL RESULTS

For evaluating the proposed solution, the KITTI benchmark
was used, which provides traffic images along with depth
ground truth data acquired from LiDAR sensors. The
specification of the system on which the solution was
implemented has an 11th generation Intel processor i17-11370
running at 3.3 GHz, 4 Cores and 8 logical processors, 40.0
GB DDR4 memory and an Nvidia GForce RTX 3070 GPU.
The networks used in this paper were trained using Pytorch
and then traced in Libtorch to be used with C++. Other
frameworks used for visualization purposes are point cloud
library and OpenCV.



For training the DeepLabV3+ semantic model to segment
regions potentially containing errors, the dataset was first
generated and then split into 70% for training, 20% for
validation, and 10% for testing. Evaluation on the test set
yields a mloU of 89.5 and an accuracy of 95.1% for the
MIDAS CNN error map, and a mloU of 86.7 and an accuracy
0f 93.5% for MonoDepth v2.

The running time of the whole solution is approximately
110ms using GPU and CPU optimizations. This includes both
monocular depth estimation models running in parallel as
well as semantic segmentation and stereo reconstruction.
The accuracy of the scaled fusion was computed using the
KITTI 2015 dataset ground truth. For each image equation
(8) was used, where TH has the values 1,2 and 3.

GT,
| — depth | >TH (8)
ObtainedDepth

For the given threshold values the results obtained for the
fused monocular depth estimation are illustrated in Table 1.
It is worth mentioning that the results have been averaged on
the obtained values across the dataset and transformed the
erroneous pixels result to percentage. Accuracy of the
Monocular depth fusion on the KITTI Dataset

TABLE L. ACCURACY OF THE MONOCULAR DEPTH FUSION
ON THE KITTI DATASET
Threshold Nr of erroneous pixels
1 5.2877%
2 2.0955111%
3 0.0208149%

Table II illustrates the comparative performance of the
fused monocular depth estimation and baseline methods on
the KITTI dataset, using a threshold of 1.25 and a reduced
image size. All methods were tested using the same resized
KITTI images at a resolution of 832x256, chosen to balance
runtime efficiency with spatial detail. For fairness, depth
maps from all methods were scaled to a common metric scale
using our semantic-aware scaling approach, when required.

TABLE II. COMPARISON OF THE PROPOSED MONOCULAR DEPTH
FUSION METHOD WITH RESPECT TO THE BASELINE METHODS

Method & > 1.25 (Lower is better)
MIDAS 21.8
Monodepth 12.1
Fused 8.25

As can be seen from Table II, the fused approach offers
overall better results than the individual methods. This aspect
could also be seen visually from Figure 3.

Table III presents a comparison of the proposed fusion
approach with other methods from the literature using the
KITTI dataset. The proposed fusion approach proves better
on the KITTI dataset than other approaches from the
literature. In comparison to [18] the proposed solution is
lightweight from the point of view of resource consumption.
It is worth noting that the quality of the reconstruction
depends on the size of the input image.

TABLE IIL. COMPARISON OF THE PROPOSED MONOCULAR DEPTH
FUSION METHOD WITH OTHER METHODS

Method 8 < 1.25 (Higher is better)
PWA[36] 95.8
BTS[35] 95.6
AdaBins[34] 96.4
Fused 96.5
ZoeDepth[18] 96.8

With respect to some fault tolerant approaches from the
literature such as the one presented in [29] the proposed
approach also considers a fusion of different complementary
monocular depth perception methods and thus can better
adapt to unseen scenarios. In Figure 5, the result obtained
after combining the monocular fused result with the stereo
information.

Figure 5. The
complementary monocular approaches and the stereo
reconstructed image.

combination between the fused

In Figure 5, the top image illustrates the result obtained
through stereo reconstruction, the middle image corresponds
to the monocular fusion approach, and the bottom image
depicts the integrated outcome of both methods. The black
regions indicate areas that were not accurately reconstructed
in the stereo process; these have been subsequently filled
using information provided by the monocular fusion method.

CONCLUSIONS

This paper presents a 3D depth reconstruction system that
fuses complementary depth estimations from MonoDepth2,
MiDaS, and stereo vision using semantic-aware scaling and
error-driven selection. Although each depth estimator
performs differently across scene types and distances, their
combination results in a more robust and consistent depth
prediction.



The proposed system employs a novel scaling technique
based on semantic segmentation and discretized ground truth
statistics to convert relative monocular depth maps to a
common scale. Additionally, an efficient method is
introduced to detect potential errors in each depth map using
a binary semantic segmentation network trained on binary
error masks, allowing fusion of only the most reliable depth
values at each pixel location. Furthermore, the approach
includes an adapted version of the DGC method, named
SDGC, and presents the architecture of a fault-tolerant depth
estimation system that switches between different depth
estimation methods based on the number of correctly
acquired images.

The results on the KITTI dataset demonstrate
improvements in individual methods and over several recent
approaches. The architecture is computationally efficient and
suitable for real-time applications
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