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Abstract—Accurate depth estimation from cameras is a 
highly important task for autonomous systems. Existing 
monocular depth estimation methods span a wide range of 
approaches, from supervised techniques which leverage labelled 
datasets, to self-supervised methods which utilize video 
sequences without explicit depth annotations. Additionally, 
stereo vision solutions provide absolute depth measurements 
using the disparity maps obtained via stereo correspondence. 
This paper proposes a depth fusion system combining 
Monodepth2, MiDaS and stereo vision using semantic-aware 
scaling and error-aware selection. The original contributions of 
our work are three-fold. First, our approach proposes an 
original method of scaling the relative disparities from 
monocular depth estimation using semantic segmentation and 
an original depth discretization technique. Then, an original 
method is proposed for combining self-supervised and 
supervised approaches using the probability of information 
obtained from learning the error each type of monocular depth 
estimation method produces. The final contribution consists in 
the presentation of the fault tolerant system used to reconstruct 
the scene. The proposed approach has been tested on the KITTI 
dataset and highlights the effectiveness of combining these 
complementary methods showing good results even in situations 
where individual methods would fail. 

Keywords— Depth Estimation, Monocular Depth, Stereo 
Vision, Information Fusion, Multimodal Depth Estimation  

I. INTRODUCTION 
Depth estimation is a fundamental task in environment 

perception for autonomous systems because it tries to 
recognize the spatial structure of the scene where the robot 
must safely navigate. A wide range of sensors can be used to 
extract depth information and among the most popular in the 
autonomous driving filed are LiDARs, Radars and cameras. 
Each of these sensors have their advantages and disadvantages 
when working in real world scenarios, and typically for a real 
world autonomous system to navigate safely the redundant 
sensorial information is fused [1]. Cameras have attracted the 
attention of researchers due to their ability to obtain semantic 
information of the environment, they do not have moving 
mechanical parts and their price is relatively cheaper 
compared to other sensors.     

To accurately infer the depth of a scene from a 2D image 
multiple challenges must be overcome such as varying 
lighting conditions, occlusions, or the inherent ambiguities of 
depth cues in monocular images. 

    Through the years, numerous depth estimation solutions 
[2,3] have been developed each with its strengths and 
weaknesses. Broadly, based on the number of cameras, the 
most popular depth estimation methods used in autonomous 
driving can be classified into monocular depth estimation 
methods, when only one camera is available, and stereo 
reconstruction methods, when two cameras are available. The 
monocular depth estimation methods can be further classified 
into supervised and self-supervised methods depending on the 
approach used to train the deep neural network that outputs the 
depth information. 

 Supervised approaches [4] rely on large datasets with 
ground truth annotations to train the neural networks to infer 
the depth from a single image. While the results are 
impressive, obtaining large, labelled datasets is an expensive 
and time-consuming task. Self-supervised methods [5] have 
emerged to address the issue of data dependency by training 
monocular depth estimation methods on single image video 
sequences without requiring ground truth information. These 
methods, rely on photometric consistency between adjacent 
frames to infer depth, however they struggle with scale 
ambiguity and can be less accurate in static scenes.  

When monocular depth estimation models are not trained 
on annotated datasets with metric depth values — or when the 
training setup does not enforce metric consistency — the 
resulting depth maps are usually scaled relatively rather than 
providing absolute measurements. This is due to the inherent 
limitations of monocular images that only provide depth cues 
without direct information about the actual distances in the 
scene. The relative depth is converted in absolute 
measurement using a scaling factor [6,7] that adjusts the depth 
values from the monocular algorithm to real world distances. 
Finding an accurate scaling factor is a difficult task and a 
crucial endeavour for applications requiring precise depth 
measurements. The incorrect scaling of the depth can lead to 
inaccuracies in the scene reconstruction and can have 
disastrous effects on other modules of an autonomous system. 

Stereo vision sensors [8] can offer dense depth maps that 
are particularly effective when providing absolute depth 
measurements which are very important to applications where 
scale consistency is important. Despite their accuracy stereo 
methods can be affected by multiple issues such as low texture 
regions, repetitive surfaces, occlusions or the inherent 
assumption that the distances within matching windows are 
the same which is false on slanted surfaces or due to the 
perspective effect. All these issues can lead to the 
deterioration of the depth map. Moreover, if for any reason 
one of the cameras of the stereo system is not providing This work is supported by the project "Romanian Hub for Artificial 

Intelligence - HRIA", SMIS no. 351416. 



images the stereo reconstruction cannot happen and in an 
urban environment where a robot must navigate safely this can 
have unwanted outcomes.  

    Given the complementary nature of these types of 
reconstruction methods, there is significant potential in 
combining them to leverage their advantages while 
eliminating most of their shortcomings. In this paper, a novel 
framework is proposed that integrates supervised, self-
supervised, and stereo depth estimation techniques to create a 
more robust, fault-tolerant, and accurate depth prediction 
system. By fusing the strengths of different reconstruction 
solutions, our approach addresses the limitations of individual 
methods, resulting in improved performance across a variety 
of environments and conditions.  

    Based on the aforementioned motivation, this paper 
contributes the following: 

• A novel scaling mechanism that uses semantic 
information and depth discretization to transform the 
relative depth estimation in absolute measurements. 
This approach also leverages an adapted online pre-
scaling method called Semantic Dense Geometrical 
Constraint (SDGC) that is used for an initial relative 
depth scaling. 

• A fusion mechanism between different types of 
monocular depth estimation approaches by using the 
probability map resulted from learning the error each 
type of method produces. 

• A fault tolerant approach that combines the stereo and 
monocular depth estimation methods such that a 
depth map can be always retrieved even when one of 
the cameras is not working properly 

    The proposed approach has been evaluated on the 
KITTI [9] dataset, and the results clearly demonstrate 
increased accuracy when combining the depth estimation 
methods as opposed to individual approaches. Moreover, the 
results indicate that by combining different depth estimation 
paradigms, a more reliable depth estimation system can be 
achieved even when one of the sensors is not operational. 

II. RELATED WORK 
    Metric depth estimation (MDE) methods that were 
originally implemented, leveraged labelled datasets and used 
supervised learning approaches to train the deep learning 
models. Notable here the work of Eigen et al.[10] proposed a 
continuous regression multi-scale CNN that combined global 
and local features for improving depth reconstruction 
accuracy. Following this approach the authors boosted the 
performance of their original method by using surface normal 
and semantic segmentation via a multi-task network[11]. 
    A broad diversification of the methods used to estimate 
depth followed in recent years. For example, a domain shift 
occurs where the methods transition from continuous 
regression to discrete modelling techniques. Newer methods 
strategies discretize depth into intervals and frame the depth 
estimation task as a classification problem [12], rather than 
regressing raw depth values. Fu et al. [13] build on this idea 
and proposed a regression model that applies a non-linear 
depth binning scheme and an ordinal-aware loss function to 
further evolve the initial idea. This approach laid the 
foundation for later works [14]-[18], which created hybrid 
models combining regression and classification, and 
dynamically adapting binning. Zoedepth [18], created an 
automatic routing mechanism that selects the appropriate 

prediction head based on whether a scene is classified as 
indoor or outdoor. 
     An alternative to metric depth estimation is relative depth 
estimation (RDE), which, rather than predicting absolute 
depth values, aims to estimate depth orderings between image 
regions. More specifically, RDE solutions focus on 
determining if one point is closer or farther away than another 
[19], or on determining the relative spatial arrangement of 
scene elements [20]. This approach has the advantage of 
being robust to changes in scale, as the ordinal depth relations 
remain consistent regardless of camera internal parameters, 
or the actual range of the scene. The authors from [19] and 
[21] employed CNNs to predict the relative depth between 
pixel pairs, while also considering properties specific to real 
world scenes such as reflectance and illumination. Using 
these examples as a theoretical foundation, subsequent 
studies have explored ways of combining RDE and MDE 
pipelines to improve generalization as well as to reduce the 
need of metric annotations. In this way Chen et al. [22] 
demonstrated that some models can achieve competitive 
metric predictions in complex uncontrolled environments 
even when trained with sparse relative depth labels. The 
authors from [24] introduced a scale invariant loss function 
to mitigate the scale ambiguity issues, and that was later 
refined in subsequent works such as [23] and [25], enabling 
models to make consistent predictions across varying scale 
ranges. 
   Jun et. al. proposed in [26] a decomposition strategy based 
on two branches in a deep net, that run in parallel, and which 
separately estimate relative and metric depth. Recent models 
such as Depth Anything [27] and Marigold [28] have 
demonstrated amazing generalization across diverse datasets. 
However, even these approaches output relative depth maps 
and require additional scaling transformations to recover 
metric representations, not to mention the dimensions of the 
models which are very large. Some approaches from the 
literature such as [29] and [30] make a fail-safe mechanism 
for real time depth estimation methods, toggling between 
stereo and monocular depth perception. These approaches 
ensure that if only one image is captured some depth 
estimation is offered to the downstream perception tasks. 

III. PROPOSED SOLUTION 
The Proposed Solution section is divided into three 

subsections. The first subsection describes the novel approach 
used to transform relative depth information into absolute 
measurements using semantic data. The second subsection 
presents the strategy employed to fuse the complementary 
monocular depth estimation modules, and the final subsection 
outlines the fault-tolerant architecture of the proposed system. 
In this work, MonodepthV2 is employed as the self-
supervised monocular depth estimation model, MIDAS for 
the supervised monocular depth estimation model and a stereo 
approach developed by us based on the paper of Hirschmuler 
[31]. Although MiDaS is trained in a supervised manner using 
multiple labeled datasets, its predictions are not in metric scale 
and require external scaling to be used as absolute depth. 
Therefore, both monocular approaches are scaled using the 
method described in Section III.A before fusion. It is worth 
noting that the proposed solution can work with any type of 
depth estimation algorithm and is not limited by the methods 
mentioned above. 



A. Semantic Aware Scaling 
Monocular depth estimation methods only estimate a 

relative relation between depths but cannot provide the 
absolute distance without additional information. Scaling is 
necessary to adjust the depth estimate to a real scale consistent 
with the physical world. In the proposed solution, a semantic 
segmentation architecture, DeepLabV3+ [32], trained on the 
KITTI dataset, is used to extract semantic information from 
the scene. 

    At runtime two scenarios emerge. In the first scenario 
the images from both cameras are available. The stereo 
reconstruction will happen and the resulted depth map is used 
as reference to compute the scaling factor. In the second 
scenario, only one image is available, due to one of the images 
from one of the two cameras being corrupted or missing. In 
this scenario there are two main steps an online step (that is 
semantic class agnostic) and an offline step (that is computed 
only once in a pre-processing step). For the preprocessing 
offline step the KITTI 2015 stereo data flow LiDAR ground 
truth is used as reference and the general steps of the 
procedure are the same as in the case when the depth image is 
computed using the two available images (only this time is 
computed once using the LiDAR ground truth).  

The data used for scaling, depending on the scenario, will 
be referred to as the reference image.  

The first scenario considers the case in which both images 
are available, allowing the computation of the stereo depth 
map through stereo reconstruction. 

 The points from each monocular depth estimation method 
(MonodepthV2 and MIDAS) and from the reference image 
are transformed from disparity space to depth space. The 
number of different semantic classes is extracted from the 
semantic segmentation image. For every semantic class, all 
the 3D points from each monocular depth estimation solution 
and from the reference image, corresponding to that semantic 
class are extracted and stored in a separate vector. Therefore, 
for each semantic class for every monocular depth estimation 
method as well as for the reference data there will be a separate 
vector. All vectors corresponding to each semantic class are 
sorted in ascending order. A discretization of the depth is then 
considered, where the vectors are divided into T bins 
containing an equal number of points each. Next, for each bin, 
the median value is chosen. A ratio is performed to find the 
scaling factor between the median value of each bin and the 
median value from the reference image from the 
corresponding bin, for each semantic class. This operation is 
performed separately for each monocular depth estimation 
solution. The value of T has been found empirically and has 
the value of 400 bins in our solution. Additionally for each bin 
the minimum and maximum values of depth are also 
computed. 

    After obtaining the scaling factor for each bin of each 
semantic class, the scaling factors are applied. The unscaled 
depth image is traversed, and the semantic class 
corresponding to the coordinates of each unscaled point is 
extracted. From the vector associated with that class, the bin 
in which the unscaled depth value is located is determined 
using the previously obtained minimum and maximum values. 
The scaling factor for the corresponding interval is then 
applied, and the resulting scaled point is stored. To mitigate 
effects such as banding or other artifacts that may arise when 
using interval-based scaling algorithms, linear interpolation is 
employed between scaling factors to ensure a smooth 
transition. The interpolation is done according to equations (1) 
and (2) below. 

        𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑘𝑘]
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑘𝑘+1]−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑐𝑐𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑘𝑘]

             (1) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑘𝑘](1 − 𝑡𝑡) +
                 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑘𝑘 + 1]𝑡𝑡   (2) 

In equation (1) the meaning of the terms are the following: 
depth represents the depth value of the current pixel being 
evaluated, minVals is a vector that contains the minimum 
depth values for each semantic class and for each interval 
within that class (minValues[classIdx][k] represents the 
minimum depth value for the k-th interval of the classIdx 
class), maxVals is a vector that contains the maximum depth 
values for each semantic class and for each interval within that 
class, t represents the relative position of the depth value 
within the identified interval, measured from the lower bound 
(minValues[k]) to the upper bound (maxValues[k+1]); t will 
be a number between 0 and 1. In equation (2) the meaning of 
the terms is the following: scaleFactors represents a vector that 
contains the scaling factors for each semantic class and for 
each interval within that class (scaleFactors[classIdx][k] is the 
scaling factor associated with the lower bound of the k-th 
interval for the classIdx class and scaleFactors[classIdx][k + 
1] is the scaling factor associated with the upper bound of the 
(k+1)-th interval for the classIdx class), scale represents the 
scaling factor calculated for the depth value depth (it is 
obtained by linearly interpolating between the two scaling 
factors specific to the interval where depth falls).  

In the absence of the stereo depth image, due to failure of 
one of the cameras, the procedure consists of offline and 
online steps. For this scenario, a general scaling factor is 
computed for each frame using the Semantic Dense 
Geometrical Constraint (SDGC) method for the entire image. 
Subsequently, scaling factors for each semantic class are 
computed as previously described. In this approach, the 
scaling factors and interval limits for each bin of each 
semantic class are computed offline as averages, using LiDAR 
ground truth as a reference instead of the stereo depth image. 
The averaging is performed over all KITTI 2015 training 
images. During runtime, the initial scale is computed using 
SDGC, followed by the application of the individual class-
specific scaling factors as described previously. 

    The method proposed for scaling the entire image is 
referred to as Semantic Dense Geometrical Constraint 
(SDGC) and constitutes an original adaptation of DGC [33] 
that additionally incorporates semantic information. For 
completeness, the entire process employed by SDGC is 
overviewed. First, the relative 3D points are obtained, 
followed by estimation of the surface normal for each point. 
From the relative depth map, the 3D points are reconstructed, 
and the surface normal is estimated in the vicinity of each 
point. An 8-neighbourhood around each point is considered, 
and four planes are created for which the surface normals are 
computed. The final normal is determined as the average of 
these normals, as illustrated in equation (3).           

  𝑁𝑁�𝑃𝑃𝑖𝑖,𝑗𝑗� = 1
4
∑ 𝑛𝑛𝑔𝑔

||𝑛𝑛𝑔𝑔||
4
𝑔𝑔=1                       (3) 

Subsequently, ground points are identified. A pixel is 
classified as a ground point if its surface normal is close to the 
ideal ground normal and the semantic class of the pixel 
corresponds to the ground type. This process is illustrated in 
equations (4) and (5) 

              𝑠𝑠�𝑃𝑃𝑖𝑖,𝑗𝑗� = arccos (
𝑛𝑛�∗𝑁𝑁�𝑃𝑃𝑖𝑖,𝑗𝑗�

||𝑛𝑛||�∗|�𝑁𝑁�𝑃𝑃𝑖𝑖,𝑗𝑗��|
)      (4) 



𝐺𝐺𝐺𝐺(𝑖𝑖, 𝑗𝑗) =

   �1, 𝑖𝑖𝑖𝑖 𝑠𝑠�𝑃𝑃𝑖𝑖,𝑗𝑗� < 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                   

        (5) 

For each detected ground point, the estimated camera 
height is the projection of the 3D point onto its surface normal. 
This is illustrated analytically in equation (6) and intuitively 
in Figure 1. 

          𝐻𝐻(𝑃𝑃𝑖𝑖1,𝑗𝑗1) = 𝑁𝑁�𝑃𝑃𝑖𝑖1,𝑗𝑗1�
𝑇𝑇*O𝑃𝑃𝚤𝚤1,𝚥𝚥1
������������⃗                      (6) 

The final camera height is the median of all estimated heights 
(ℎ𝑀𝑀). Given the known real camera height (from the extrinsic 
calibration), the scale factor is computed as in (7) 

   𝑓𝑓𝑓𝑓 = ℎ𝑅𝑅
ℎ𝑀𝑀

         (7) 

Finally, the scaled values are obtained by multiplying the 
relative 3D points by the scaling factor. 
    For the scenario where the stereo depth map is available the 
scaled fused monocular depth estimation results will be used 
to fill in regions that were not successfully reconstructed(for 
example in regions with repetitive structures or unstructured 
regions). 
    When the stereo image is available the scaling is performed 
at runtime using the method previously described and the 
monocular depth estimation values are used to fill 
unreconstructed regions of the stereo reconstruction. 

B. Monocular Depth Fusion 
    For fusing the monocular depth estimation images, an 
innovative approach is employed in which data combination 
is performed using error probabilities from the semantic 
segmentation of the error learned for each point after the 
scaling operation. For this segmentation task, a DeepLabV3 
architecture is utilized. Instead of relying on predictive 
uncertainty via ensembles or dropout, a lightweight 
segmentation-based estimation of depth error regions is 
applied using LiDAR-based ground truth, motivated by the 
need for real-time performance. The idea is to treat the error 
map as a binary semantic segmentation task and learn the 
likely error regions for each depth estimation method.  
    The dataset is first generated using the KITTI 2015 and 
2012 ground truth data. For each monocular depth estimation 
model, the scaling procedure described in the previous 
section is applied, followed by computation of the error maps 
using the KITTI ground truth LiDAR data. The scaled values 
are compared with the ground truth depth values, and a pixel 
is considered erroneous if the ratio exceeds a predefined 
threshold; otherwise, it is considered correctly reconstructed. 
In this case, the threshold is set to 1.25. This is done for the 
left and right images to increase the size of the dataset. 
Moreover, the dataset is also augmented using a horizontal 

flip operation resulting in a total of 1600 images. We then 
generate the corresponding labels for each error image which 
we treat as a semantic image annotation and split the dataset 
in train, test and validation considering 70% for train, 20% 
for validation and 10% for test.  

    The error segmentation model is trained for 350 epochs for 
each type of depth estimation model. The numerical results 
of the training are shown in the evaluation section.  
    After training a softmax is applied on the output of the 
network to convert the logits in a set of probabilities in the 0 
and 1 interval.  
    Figure 2 shows the result of the segmentation on an unseen 
scenario. The top image represents the original RGB image, 
next is the disparity image obtained from Monodepth2 which 
has been scaled, then the error map computed using the 
KITTI ground truth LiDAR data, next is the result of the 
semantic segmentation which shows where the errors are 
detected, the final image show the probability map of the 
segmentation, the closer the colour value is to a darker tone 
the less probable the semantic class is. The same operation 
has been applied on the monocular supervised approach. 
The probability maps are used to combine the data from the 
two monocular depth estimation models.  
    To obtain the final depth map, the probability maps are 
iterated, and values from the depth estimation method with 
the highest probability of correct detection are selected. The 
error maps of the individual depth estimation methods as well 
as their fusion are presented in Figure 3. The overall result is 
visibly improved, even though some of the errors that appear 
in both methods remain. The white regions represent 

 
Figure 1. Intuitive depiction of the height estimation 
process 

 

 

 

 
Figure 2. Result of training the semantic segmentation 

to identify the error map of a scene 

 
 



erroneous regions while the black ones are regions where the 
depth is correct. In Figure 3 the top image represents the error 
obtained from the Monodepth2 algorithm, following is the 
error probability for Monodepth2, the next image is the error 
map for the MIDAS algorithm and its error probability map, 
and finally the last image represents the error map of the 
fusion. The scene presented in Figure 3 is the same one as in 
Figure 2. The evaluation has been done on the KITTI dataset 
on images that were not used for training. 

C. Fault Tolerant Depth Estimation Architecture 
 The fault tolerant depth estimation architecture ensures 

that at each time moment the autonomous system will have a 
depth map on which it can rely to navigate safely in the 
environment. The dense stereo matching methods are more 
robust in terms of accuracy however they rely on two images 
to reconstruct the scene. Images can be corrupted for various 
reasons such as sensor issues or over saturation. When there is 
only one image available the system should be able to estimate 
the depth using that image. For evaluating image quality, a 
histogram is computed on the lower part of the image (the sky 
and upper part are not relevant for autonomous ground 
vehicles) using 10 randomly selected patches of 20×20 pixels 
each. If the mean intensity of the image is below a threshold 
T1 (set experimentally to 15) or above T2 (set to 245), the 
image is considered unusable. This test is performed on both 
images. If both images are usable the stereo vision algorithm 
is used, having as reference the left image, together with the 
monocular algorithms on the left image. The relative depth 
obtained through monocular depth estimation is scaled using 

the absolute depth from stereo as reference. The monocular 
depth estimation from the supervised and self-supervised 
method are combined using the methods presented in the 
previous section. The unreconstructed regions from the stereo 
are filled with the data from the fused monocular depth 
estimates. If only one image is available, the monocular depth 
estimation fusion presented in section 3 B is used. The system 
diagram of the fault tolerant system is presented in Figure 4.  

The Frame 1 and Frame 2 blocks from Figure 4 represent 
the images coming from the two cameras, the Frame 
Consistency module checks if the two images are consistent 
using the algorithm presented before and provides to the Scale 
Supervised and Scale Self-Supervised modules the consistent 
image from the two frames. If both images are consistent then 
the left image is used. Moreover, the Frame Consistency 
module tells the system if it should use the monocular depth 
estimation, the stereo approach or just display a warning sign 
in case no frame is available to reconstruct the scene. The 
Scale Supervised and Scale Self-Supervised modules compute 
the monocular depth estimation and scale the relative depth 
maps using the algorithm presented in section 3 A. The 
disparity map from the stereo module is provided in cases both 
frames are consistent to scale the monocular depth estimation 
algorithms using this information. The stereo module 
computes the stereo disparity map if the two frames are 
consistent. The Mono Fusion block combines the two 
complementary monocular depth estimation methods, and the 
Depth Fusion module combines the stereo result with the 
fused monocular depth. 

IV. EXPERIMENTAL RESULTS 
For evaluating the proposed solution, the KITTI benchmark 
was used, which provides traffic images along with depth 
ground truth data acquired from LiDAR sensors. The 
specification of the system on which the solution was 
implemented has an 11th generation Intel processor i7-11370 
running at 3.3 GHz, 4 Cores and 8 logical processors, 40.0 
GB DDR4 memory and an Nvidia GForce RTX 3070 GPU. 
The networks used in this paper were trained using Pytorch 
and then traced in Libtorch to be used with C++. Other 
frameworks used for visualization purposes are point cloud 
library and OpenCV. 

 

 

 
 
 
 
 

 
 

 

 
 
 
 
 

 
 

 

 
Figure 3. The error maps and the corresponding 
probability maps of Monodepth2 and Midas. The bottom 
image illustrates the fusion of the two methods. 

 

 
Figure 4. Block diagram of the fault tolerant system 



   For training the DeepLabV3+ semantic model to segment 
regions potentially containing errors, the dataset was first 
generated and then split into 70% for training, 20% for 
validation, and 10% for testing. Evaluation on the test set 
yields a mIoU of 89.5 and an accuracy of 95.1% for the 
MIDAS CNN error map, and a mIoU of 86.7 and an accuracy 
of 93.5% for MonoDepth v2. 
   The running time of the whole solution is approximately 
110ms using GPU and CPU optimizations. This includes both 
monocular depth estimation models running in parallel as 
well as semantic segmentation and stereo reconstruction.  
The accuracy of the scaled fusion was computed using the 
KITTI 2015 dataset ground truth. For each image equation 
(8) was used, where TH has the values 1,2 and 3.  

                 |
𝐺𝐺𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ
| > 𝑇𝑇𝑇𝑇                     (8) 

    For the given threshold values the results obtained for the 
fused monocular depth estimation are illustrated in Table I. 
It is worth mentioning that the results have been averaged on 
the obtained values across the dataset and transformed the 
erroneous pixels result to percentage. Accuracy of the 
Monocular depth fusion on the KITTI Dataset 

TABLE I.   ACCURACY OF THE MONOCULAR DEPTH FUSION 
ON THE KITTI DATASET 

 
 
 
 
 
 
 
    Table II illustrates the comparative performance of the 
fused monocular depth estimation and baseline methods on 
the KITTI dataset, using a threshold of 1.25 and a reduced 
image size. All methods were tested using the same resized 
KITTI images at a resolution of 832×256, chosen to balance 
runtime efficiency with spatial detail. For fairness, depth 
maps from all methods were scaled to a common metric scale 
using our semantic-aware scaling approach, when required. 

TABLE II.  COMPARISON OF THE PROPOSED MONOCULAR DEPTH 
FUSION METHOD WITH RESPECT TO THE BASELINE METHODS 

Method 𝞭𝞭 > 1.25 (Lower is better) 
MIDAS 21.8 

Monodepth 12.1 
Fused 8.25 

    As can be seen from Table II, the fused approach offers 
overall better results than the individual methods. This aspect 
could also be seen visually from Figure 3. 
    Table III presents a comparison of the proposed fusion 
approach with other methods from the literature using the 
KITTI dataset. The proposed fusion approach proves better 
on the KITTI dataset than other approaches from the 
literature. In comparison to [18] the proposed solution is 
lightweight from the point of view of resource consumption. 
It is worth noting that the quality of the reconstruction 
depends on the size of the input image. 

TABLE III.  COMPARISON OF THE PROPOSED MONOCULAR DEPTH 
FUSION METHOD WITH OTHER METHODS 

Method 𝞭𝞭 < 1.25 (Higher is better) 
PWA[36] 95.8 
BTS[35] 95.6 

AdaBins[34] 96.4 
Fused 96.5 

ZoeDepth[18] 96.8 
 
   With respect to some fault tolerant approaches from the 
literature such as the one presented in [29] the proposed 
approach also considers a fusion of different complementary 
monocular depth perception methods and thus can better 
adapt to unseen scenarios. In Figure 5, the result obtained 
after combining the monocular fused result with the stereo 
information.  

In Figure 5, the top image illustrates the result obtained 
through stereo reconstruction, the middle image corresponds 
to the monocular fusion approach, and the bottom image 
depicts the integrated outcome of both methods. The black 
regions indicate areas that were not accurately reconstructed 
in the stereo process; these have been subsequently filled 
using information provided by the monocular fusion method. 

CONCLUSIONS 
    This paper presents a 3D depth reconstruction system that 
fuses complementary depth estimations from MonoDepth2, 
MiDaS, and stereo vision using semantic-aware scaling and 
error-driven selection. Although each depth estimator 
performs differently across scene types and distances, their 
combination results in a more robust and consistent depth 
prediction. 

Threshold Nr of erroneous pixels 

1 5.2877% 

2 2.0955111% 

3 0.0208149% 

 
 
 
 

 
 

 

 
Figure 5. The combination between the fused 
complementary monocular approaches and the stereo 
reconstructed image. 



    The proposed system employs a novel scaling technique 
based on semantic segmentation and discretized ground truth 
statistics to convert relative monocular depth maps to a 
common scale. Additionally, an efficient method is 
introduced to detect potential errors in each depth map using 
a binary semantic segmentation network trained on binary 
error masks, allowing fusion of only the most reliable depth 
values at each pixel location. Furthermore, the approach 
includes an adapted version of the DGC method, named 
SDGC, and presents the architecture of a fault-tolerant depth 
estimation system that switches between different depth 
estimation methods based on the number of correctly 
acquired images. 
    The results on the KITTI dataset demonstrate 
improvements in individual methods and over several recent 
approaches. The architecture is computationally efficient and 
suitable for real-time applications 
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