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Abstract — Bird’s Eye View (BEV) maps have gained popularity 

in the autonomous driving field due to their ability to offer an 

information-rich and easily interpretable representation of the 

environment, playing a crucial role in various tasks such as 

motion planning, perception, and sensor fusion. In this paper, we 

propose a novel framework that integrates deep learning with 

grid filtering and feature engineering to achieve multi-object 

tracking and panoptic segmentation. The framework also 

validates object detections and removes spurious instances, 

resulting in a more robust environmental representation that 

includes tracked objects and semantic segmentation in both 

perspective and BEV domains. Furthermore, we introduce an 

original hybrid data association function that combines deep 

learning-based and handcrafted features to enhance object 

tracking accuracy. To support this approach, we present a 

dedicated dataset designed for training the deep learning model 

used in data association comprising four object categories: cars, 

pedestrians, riders, and animals. The proposed solution, 

implemented in C++, is integrated with contemporary deep 

learning frameworks and has been evaluated on international 

benchmarks such as Cityscapes and KITTI. 

Keywords—MOTS, BEV, tracking, panoptic segmentation, data 

association 

I. INTRODUCTION  

Autonomous systems such as cars, humanoids or other 
robotic platforms rely on a comprehensive understanding of the 
environment to perform essential tasks such as motion 
planning, obstacle avoidance, and sensor fusion [1]. A widely 
adopted approach for scene understanding is to represent the 
environment using Bird’s Eye View (BEV) maps, which offer 
a compact and efficient way to encode the spatial layout of a 
scene [2], [3]. These maps are particularly advantageous due to 
their ability to provide a top-down depiction of the 
surroundings, that is easy to visualize, process, and interpret. 
The fact that in many scenarios, the critical information 
required for navigation is primarily concentrated on the ground 
plane makes BEV representations well-suited for downstream 
tasks such as trajectory estimation and behavior prediction [4]. 
Several state-of-the-art methods have demonstrated the 
effectiveness of deep learning in generating BEV 
representations from monocular or multi-view images, 
incorporating both semantic and instance-level segmentation to 
enhance scene understanding [5]. However, while panoptic 
segmentation in BEV has gained significant traction, current 
methods primarily focus on segmenting the scene [9], or 
detecting objects [6], few methods address panoptic 

segmentation, and object tracking is often overlooked, despite 
its importance for reliable perception in dynamic environments. 

 In this work we aim to overcome this limitation by 
proposing a framework that outputs the panoptic image 
containing tracked object instances. Existing methods use a 
variety of techniques to generate BEV maps from monocular 
images. Some approaches, such as IPM [7], use a homography 
to transform the perspective image to the bird’s eye view, even 
though the flat earth assumption used by IPM-based methods 
affect their performance, in regions that lie above the ground 
plane. Other methods remove the ground plane using a deep 
learning approach and perform an IPM on the remaining 
objects, detecting them using a probabilistic occupancy grid and 
then tracking them using a particle filter [8], but not providing 
any multi class semantic segmentation information of the scene 
as output. Semantic BEV maps can also be generated using 
multiple sensors such as LiDARs and cameras, however such a 
pipeline requires information from multiple sensors and thus 
increases the cost of the whole system[9]. The multi object 
tracking (MOT) and segmentation tasks are intertwined in real 
world applications and by leveraging their synergies the task of 
decision-making in self-driving cars is improved. Panoptic 
segmentation can improve the overall object tracking 
performance, because it can offer more context information in 
the form of semantic data, that can be used in object association, 
and more precise information about object position, even in 
occluded scenarios, through the instance masks. Due to its real 
time performance, the tracking by detection paradigm has been 
employed in many state of the art MOT applications [10], [11].  

When tracking multiple objects, state estimation becomes 
challenging due to the need to correctly associate each 
measurement with the corresponding tracked object, an issue 
commonly referred to as the data association problem. An 
incorrect assignment of a measurement can result in inaccurate 
parameter estimation or, in the worst case, cause the tracking 
system to misidentify targets. Data association performance can 
be affected by two main issues which are known in the literature 
[12] as the origin uncertainty and the motion uncertainty. The 
origin uncertainty refers to the fact that there is no prior 
knowledge of how current sensor readings relate to the previous 
ones, while the motion uncertainty refers to the fact that real 
world objects can have diverse moving patterns which should 
be considered when trying to associate the tracks and the 
detections. Effective tracking performance requires addressing 
both components of the data association problem. It is also 
important to note that after projecting objects in BEV space 
certain features that can normally aid data association, and are 



visible from the perspective view, like the object appearance, 
are lost. 
   To address the issues mentioned above in this paper we 
propose the following contributions: 

• We propose an original pipeline that combines panoptic 
segmentation, monocular depth estimation and object 
tracking to obtain a solution that tracks objects in birds 
eye view space. Moreover, the tracked instances—
represented at both bounding box and mask level—can 
be accurately reprojected into the perspective view when 
required. 

• We propose an original grid filtering approach that is 
applied on 3D points obtained from monocular depth 
perception points coming from object instances to clearly 
delimit objects in BEV space.  

• We present a novel data association function that combines 
feature engineering with the output of Siamese networks 
for an improved data association. 

• A dataset used for training the Siamese neural networks that 
contain 4 types of objects: cars, people, animals and 
riders is presented 

• Finally, we present the implementation of a validation 
module, used for eliminating unwanted detections, and 
we also present the modified CNN architecture of one of 
the models used in our solution to enable export and 
execution in C++ using the TorchScript format. 

The proposed solution has been evaluated on sequences 
from international benchmarks such as Cityscapes [33] and 
KITTI [34] [35]. The rest of the paper is organized as follows: 
in Section 2 a literature review of the state of the art in the field 
of bird’s eye view detection and object tracking is presented. 
Section 3 describes each step of the proposed solution in detail. 
Section 4 presents the experimental results and finally, in 
Section 5 we conclude the paper. 

II. RELATED WORK 

A. Detection and Segmentation in BEV 

Bird’s Eye View (BEV) perception has emerged as a 
fundamental technique in autonomous driving, enabling key 
tasks such as collision avoidance, path planning, and object 
tracking, by providing a unified and structured representation 
of the driving environment. Previous research has explored 
BEV perception from multiple perspectives, including camera-
based methods, LiDAR-based approaches, and sensor fusion 
techniques.  

Camera-based BEV (Bird’s-Eye View) perception methods 
aim to transform perspective images into top-down 
representations. Some approaches use explicit geometric 
transformations based on depth estimation from monocular or 
stereo images, followed by reprojection into a unified 3D space 
[13]. LiDAR-based methods leverage 3D point clouds for 
accurate scene understanding, while voxel-based approaches 
divide the space into 3D grids and apply convolutions to extract 
spatial features [14]. To improve efficiency, pillar-based 
methods collapse the height dimension and apply 2D 
convolutions on BEV maps [15]. 

Multi-sensor fusion methods combine data from multiple 
(homogeneous or heterogeneous) sensors, extracting and 
aligning features into the BEV domain. MVX-Net [16] 

introduces PointFusion and VoxelFusion to enable early-stage 
modality interaction for 3D object detection. EPNet [17] 
improves fusion robustness using point-wise enhancement and 
a confidence-alignment loss. BEVFormer [18] employs a 
spatiotemporal transformer for integrating multi-view spatial 
features and past BEV representations, enhancing object 
detection and map segmentation. 

VPN [19] addresses BEV semantic segmentation using 
frontal images and CARLA-simulated data but lacks effective 
use of geometric cues. In contrast, [9] proposes a two-stage 
approach combining monocular depth estimation and semantic 
segmentation to project a semantic point cloud into BEV, 
enabling better depth reasoning and adaptability across 
environments. Finally, [20] introduces the first BEV panoptic 
segmentation framework from frontal views, using dual 
transformers for vertical and planar mappings and a sensitivity-
aware pixel weighting strategy. 

B. Multi-Object Tracking and Segmentation 

In tracking-by-detection frameworks, similarity between 
detections across frames is commonly assessed using object 
appearance and motion cues. The literature outlines three main 
strategies for data association: handcrafted feature engineering 
[21], data-driven methods [22], and hybrid approaches that 
combine both [26]. In [21], a handcrafted cost function is 
proposed, integrating features such as object size, color 
histograms, and motion via L2 distance, with optimal 
assignments solved using the Hungarian algorithm [24]. 

The authors from [22] extend Mask R-CNN [25] by adding 
an association head to their model, which learns feature 
embeddings for object identification. The approach is called 
TrackR-CNN and it works on color images integrating 
detection, tracking and segmentation in a single network. The 
authors in [26] combine feature engineered cost functions with 
a small CNN to create a data association function able to track 
objects in thermal images. The authors used features such as 
uniform binary patterns and created an original feature that 
combined the histogram of oriented gradients with local binary 
patterns to capture textures that can appear on objects from 
thermal images. The approach works in real time and can track 
objects at bounding box level. In [23] the authors use a feature 
engineered data association function and multiple motion 
models to track objects at bounding box and instance mask 
level. The authors in [27] propose single object BEV tracking 
solution that models target motion in BEV using convolutional 
layers and a simple regression head, followed by a global max-
pooling and an MLP. The approach relies on motion modeling 
rather than explicit appearance matching. By leveraging voxel-
based feature extraction and BEV spatial fusion, it efficiently 
tracks objects with diverse motion patterns at real-time speeds. 
In [8] the authors perform an object tracking in BEV using a 
particle filter approach. The objects are first segmented using 
an occupancy grid, and then the cells corresponding to each 
object are identified, clustered and a unique id is assigned to 
each cluster.  

In our approach we build upon the state of the art by creating 
a novel approach that can track objects using a hybrid data 
association function and can perform a panoptic segmentation 
of the scene using a combination of deep learning techniques 
and grid filtering, where the tracked objects can then be 
displayed in BEV and perspective formats. 



III. PROPOSED SOLUTION 

A. Processing pipeline overview and object validation 

   Section III describes the details of the implemented 
framework that performs panoptic segmentation and track 
objects at bounding box, instance and in the perspective and 
BEV spaces.  
    The framework processes monocular RGB images through 
multiple processing stages as illustrated in Figure 1. Since the 
proposed solution uses optical flow, which requires two frames 
to run, the main processing steps start after the second frame is 
received. Once the frame is received it is fed into a series of 
neural network models such as Efficient PS[36], that computes 
the panoptic segmentation, YoloV8x that detects instance 
masks and object bounding boxes, depth anything v2 [37] that 
estimates the relative depth to each pixel, which is then scaled 
to obtain the absolute distances and RAFT [38] dense optical 
flow. The monocular depth estimation module also receives the 
semantic segmentation map from the Panoptic Segmentation 
module and creates an enhanced point cloud that contains for 
each 3D point the semantic information as well as the RGB 
information from the original image. The instances detected by 
EfficientPS and Yolo are fed to a validation module, together 
with depth information and the tracked objects computed in the 
previous frame (if they are available). The validation module 
outputs a list of filtered objects that are tracked by the object 
tracker.  
    Using features extracted from the perspective image, objects 
are tracked and combined with the enhanced semantic point 
cloud. This combined data is then processed by a filtering and 
projection module, resulting in a BEV-space representation as 
the final output. The presented pipeline has been implemented 
fully in C++ using LibTorch and Onnx libraries in the case of 
depth anything v2.  It is worth mentioning that the EfficientPS 
neural network model used for panoptic segmentation, as 
provided in the Git repository of the authors, cannot be exported 
in TorchScript format, compatible with C++. Modifications 
were necessary because layers such as In-Place Activated Batch 
Normalization cannot be traced in TorchScript, they were 
replaced with standard Batch Normalization layers followed by 
an ELU activation function to maintain result quality. 

Another limitation of the TorchScript format is that it does 
not allow custom classes as input or output data for modules, 
permitting only tuples of tensors or, in specific cases, 
dictionaries. The instance head in Detectron2 uses objects of the 

class detectron2.structures.Instances for both, input during 
training and output during inference. To avoid export errors, the 
Detectron2 library provides the TracingAdapter class, which 
flattens custom classes by converting them into tuples of 
tensors. This library was used to successfully trace the model 
into TorchScript format. Moreover, the size of the intermediate 
channels was reduced using 1x1 convolutions and pre-
processing and post-processing steps were also implemented 
and optimized in C++ to achieve the desired results. We 
empirically observed that the modifications introduced did not 
significantly affect the EfficientPS model accuracy, with 
performance variations under 1% on key metrics. 

Panoptic and instance segmentation models are prone to 
errors such as missed detections, false positives, and 
misclassifications. Since the tracker focuses on traffic-related 
objects within 100 meters in depth and 30 meters laterally from 
the ego vehicle, a validation module is required to filter 
irrelevant or erroneous detections. Objects beyond 100 meters 
are excluded due to the increasing sparsity and unreliability of 
the point cloud. To ensure accurate environmental 
representation, the validation module cross-verifies detections 
using multiple redundant sources, especially in uncertain cases.  

In our approach, we are using the information that comes 
from the two models (EfficientPS and Yolov8) and the third 
source represents the predictions (in the form of bounding 
boxes) coming from the tracked objects when available. In the 
case one object is detected by only one of the models, we verify 
whether the detection confidence and class probability exceed 
the 80% threshold, in which case we add the object to the 
validated object list. When an object is detected by both 
sources, several validation scenarios are considered and 
handled accordingly. In the scenario in which we do not have 
object predictions coming from a tracking module, we compute 
the intersection over union between the bounding boxes coming 
from the two models that analyze the scene. When the 
intersection over union has a good enough overlapping score, 
detected empirically as being over 70%, we check to see if the 
semantic classes are the same. If the semantic classes are the 
same the object is validated and placed in a validated objects 
list. Otherwise, we check to see which of the two detections has 
the higher-class probability score, and the detection having the 
higher score is kept provided the class probability is higher than 
70%. In case the class probability is not higher than the 
previously mentioned threshold, the object is not validated.     
However, when the tracking predictions are available, in case 

 
Figure 1. Pipeline overview. From an input RGB image (or pair), panoptic and instance segmentation, optical flow, and monocular 

depth are computed in parallel. Validated objects are obtained via an object validation module, then tracked and projected into a depth-

based grid, resulting in a bird’s-eye view representation. 
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there is an uncertainty regarding an object, we perform an 
additional check using the bounding boxes and the semantic 
class that is embedded in the predicted tracked object.  
   Each tracked object contains a histogram of semantic classes 
that is updated after each successful data association of a track 
and a detection, using the approach from section III B. The 
semantic class having the most votes from that histogram is 
considered the dominant semantic class of the track. We 
perform the intersection over union between the tracked object 
and detections as it was realised using the bounding boxes of 
two models. For the objects for which the intersection is above 
the previously specified threshold, we check the semantic class 
using the data from the tracked object and verify which class 
receives 2 of the 3 votes. The class having 2 of the three votes 
is considered the semantic class of the object, and the object is 
validated. Objects that do not satisfy the mentioned criteria are 
not included in the validated object list.  

After the validation step, the validated object list is filtered 
and only objects that have the closest object point with respect 
to the ego vehicle at a distance up to 100 m in depth (Z axis) 
and 30m on the sides (X axis) are kept and the rest are removed. 
For each object instance in the validate object list, we obtain the 
closest point to the ego vehicle, traversing the object instance 
mask and computing for each point the Euclidean distance 
between the 3D point from the depth map (associated to that 
position) and the position of the ego vehicle. The depth 
information for each instance is obtained from depth anything 
v2 model, that is scaled to obtain the metric depth using the 
approach presented in [40]. After validation the object list is 
passed to the object tracker. 

B. Data association and Tracking  

    The proposed tracking solution incorporates an original 
approach to computing the similarity cost, combining elements 
from three sources: information from dense optical flow, 
similarity from a Siamese network, and manually engineered 
features. Additionally, the approach includes a scoring system 
for both motion similarity between a tracked object and a 
detection, as well as an appearance score.  The motion score 
consists of several components. First, the Euclidean distance 
between the tracked object and possible detections within the 
track's covariance ellipse is used. 
    Another component of the motion score is derived from 
optical flow information. We use the Recurrent All-Pairs Field 
Transforms (RAFT) neural network [38] to generate dense 
optical flow. To extract motion features, we consider the region 
of interest defined by an object's bounding box. This region is 
divided into a 3×3 grid, and for each grid cell, we compute the 
average magnitude and orientation of the optical flow. These 
values are used to determine a motion vector for each cell. Each 
grid cell casts a vote for the most likely position of the object in 
the next frame. Specifically, we use the detection from the 
previous frame that was previously associated with a track (and 
used to update it). The motion score is then computed based on 
the total number of votes linking this past detection to a new 
detection in the current frame, helping to determine the best 
match for updating the track. The appearance score includes 
multiple elements. First, it considers similarity costs related to 
the geometric properties of the compared detection and track. 
These similarity scores are computed using the L1 norm (1). 

           𝐿1(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|1       (1) 

   The geometric properties used in this calculation include 
object width, height and area. Additionally, the similarity score 
includes the Intersection over Union (IoU) score between the 
track and the detection. 
    Besides geometric properties, the proposed approach also 
leverages a Siamese network, which produces a similarity score 
between the two objects compared. This network has an 
architecture facilitating the high running time of the object 
association and includes three main submodules, each 
consisting of: ReflectionPad2d, Conv2D, LeakyRelu and 
BatchNorm. These layers process the input tensors and extract 
relevant features. After these submodules, fully connected 
layers with LeakyReLU activation functions further aggregate 
the features and generate high-level representations. The 
embeddings resulted from the two inputs are then compared 
using the Euclidean distance to determine the degree of 
similarity. The network has been trained using contrastive 
learning using the dataset presented in section III D. All 
elements in the similarity score are weighted using empirically 
determined weights based on experiments. The final score is 
obtained by summing the motion similarity score and the 
appearance similarity score (2). 

                 𝑆𝑓𝑖𝑛𝑎𝑙 = 𝑆𝑚𝑜𝑡𝑖𝑜𝑛 + 𝑆𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒                      (2)  

    After computing the similarity scores, the Hungarian 
algorithm [24] is used to optimally assign detections to tracks. 
Each tracked object maintains an embedded histogram with six 
bins corresponding to different semantic classes: person, car, 
rider, bicycle, animal, and traffic element. Whenever a 
detection is associated with a track, the semantic class of that 
detection casts a vote in the corresponding bin of the histogram. 
Over time, as more associations occur, the histogram 
accumulates votes reflecting the most frequently observed class 
for that tracked object. The semantic class of the track is 
determined by selecting the class with the highest vote count in 
the histogram. In case of ties, the class corresponding to the first 
bin (in a predefined order) is chosen. The tracking stages related 
to track management (birth and deletion of tracks) remain 
unchanged, following the approach presented in [23]. The 
trajectory of tracked objects is filtered using a Kalman Filter, 
and in each update step, all available detection information 
including object geometrical properties, instance mask, and 
other attributes are incorporated into the tracked object.  

 

 
Figure 2. Tracking multiple objects across frames 



    In Figure 2 we can observe the result of the tracking module, 
where objects up to 100m (in depth) 30m (latera) are tracked. It 
can be observed that the unique ID assigned to the car and the 
truck and is color coded with a unique color is maintained 
across frames. After this step the tracking module will send the 
tracked objects with all their properties including instance 
masks and bounding boxes to the BEV Projection and Filtering 
Module. 

C. BEV transformation 

After obtaining the disparity image from the monocular 

depth estimation module, we compute the scaled 3D points 

using the approach in [39], to recover the absolute depth 

information. We then create an enhanced point cloud by storing 

for each 3D point the intensity information and semantic label. 

This can be easily achieved, because for each disparity point we 

know the corresponding pixel in the intensity and semantic 

segmentation images. In the process of projecting a 3D point 

cloud onto a Bird’s Eye View (BEV) image, the x and z 

coordinates must be transformed to fit within a fixed image size. 

First, the bounding limits of the point cloud are determined, 

defining the minimum and maximum values for x and z, 

denoted as 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛  and 𝑧𝑚𝑎𝑥 . To map these 

coordinates into the image space, a scaling factor is computed 

for x and z dimensions and to maintain the aspect ratio and 

ensure the entire point cloud fits within the image, the smallest 

of these scaling factors is selected. To horizontally center the 

projection in the image, an x offset is introduced, computed as 

in (3). 

𝑜𝑓𝑓𝑠𝑒𝑡𝑥 = (𝑤𝑖𝑑𝑡ℎ − (𝑥𝑚𝑖𝑛 − 𝑥𝑚𝑎𝑥) ∗ 𝑠𝑐𝑎𝑙𝑒) / 2       (3) 

For the z coordinate, the goal is to align the bottom of the image 

with 𝑧𝑚𝑎𝑥  and the top with 𝑧𝑚𝑖𝑛 . Therefore, the z offset is 

computed as in (4) 

   𝑜𝑓𝑓𝑠𝑒𝑡𝑧 = (ℎ𝑒𝑖𝑔ℎ𝑡 − (𝑧𝑚𝑖𝑛 − 𝑧𝑚𝑎𝑥) ∗ 𝑠𝑐𝑎𝑙𝑒)          (4) 

The variables height and width represent the height and 
width of the BEV image. Once the scaling and offsets are 
determined, each 3D point is projected onto the BEV image 
using the expression in (5) and (6) 

 𝑢 = (𝑥 − 𝑥𝑚𝑖𝑛) 𝑠𝑐𝑎𝑙𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑥                      (5) 
  𝑣 = (𝑧 − 𝑧𝑚𝑖𝑛) 𝑠𝑐𝑎𝑙𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑧        (6) 

where (𝑢, 𝑣)  represent the 2D pixel coordinates in the BEV 
image. For each (𝑢, 𝑣) we place the color corresponding to the 
“stuff” semantic class in the BEV image from the enhanced 
point cloud. For projecting the object instances, we create a 4D 
occupancy grid having cells of 35cm x 70cm. One dimension 
from this 4D occupancy grid is storing the cell density (how 
many 3D points fall within that cell), one dimension is storing 
minimum distance from that cell to the ego vehicle, and 2 of the 
dimensions are storing the real-world X and Z values 
corresponding to the point for which the minimum distance was 
obtained. As we iterate through the depth values corresponding 
to the instance masks, each depth value casts a vote in the cell 
of the grid where it falls. We transform the density cells into 
probabilities and then perform an adaptive thresholding of the 
grid, leaving only the cells for which the density is higher than 
a probability threshold. Since the cells that are closer to the ego 
vehicle are expected to be denser, then the cells that are further 

away the probability threshold for the closer cells is 0.92 and 
this gradually decays to the end of the grid where for a cell to 
remain active there should be 0.4 probability. Since projected 
objects in BEV can become fragmented due to artifacts that 
appear when transforming an intensity image—where points 
may spread laterally and fill unintended grid cells—we apply a 
clustering step. After the adaptive thresholding, we label the 
remaining clusters and retain only the largest one, effectively 
filtering out noise cells. The labeling is performed using the 
two-pass labeling method with equivalence classes, and the 
largest cluster is determined by counting the pixels in each 
cluster. In the next step, we compute the closest point of the 
instance using the available cells of the grid and eliminate all 
the points that are at a distance larger than 6m to that point. The 
three steps mentioned above can be seen in Figure 3. In the left-
hand side, there are the original projected points belonging to 
an object instance, in the middle we have the largest cluster, and 
finally in the right-hand side we display the filtered largest 
cluster. 

The facets of the filtered 2D grid objects are identified, and for 
each facet segment, the shortest distance to its closest point 
from the ego-vehicle's position is computed. Considering we 
want to find the distance from a reference point (𝑥0, 𝑦0) to a 
segment of coordinates [(𝑥1, 𝑦1), (𝑥2, 𝑦2)]  the parametric 
projection of the point onto the line segment is given by (7). 

  𝑡 =
(𝑥0−𝑥1)(𝑥2−𝑥1)+(𝑦0−𝑦1)(𝑦2−𝑦1)

(𝑥2−𝑥1)2+(𝑦2−𝑦1)2          (7) 

     For t < 0 the closest point on the segment is (𝑥1, 𝑦1) ; 
conversely, if t > 1 the closest point is (𝑥2, 𝑦2). For values 
within the interval [0, 1], the projection falls within the segment 
and is computed using (8) and (9). 

    𝑥𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑥1 + 𝑡(𝑥2 − 𝑥1)        (8) 
   𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑦1 + 𝑡(𝑦2 − 𝑦1)        (9) 

    Facets are sorted by their Euclidean distance to the ego 
vehicle, with the most visible ones being closest. The 
intersection point of the two most visible facets is determined 
and stored as a reference. Furthermore, the longest of these two 
visible facets is used to determine the object's orientation angle 
and whether it is observed from the lateral, front, or rear view. 
Using the endpoints [(𝑥1, 𝑦1), (𝑥2, 𝑦2)], of the longest facet we 
compute the orientation angle θ of this facet in degrees (10). 

   θ =
atan(𝑦2−𝑦1,𝑥2−𝑥1)∗180 

𝜋
     (10) 

   Using this angle, we define an interval to determine whether 
the object is observed from the front, rear, or lateral view. 
Furthermore, given the reference point, the object's orientation 
angle, its semantic class, and its dimensions, we reconstruct the 
corresponding rectangle in the BEV space. In Figure 4 we can 

 
Figure 3. The first three steps of the grid filtering algorithm 



observe a scene with validated objects (they have blue bounding 
boxes) and their projection in the BEV space 

     It is important to note that the current approach is working 
even in difficult situations. For example, in situations where 
multiple instance masks of objects intersect, the depth 
estimation module may generate erroneous points especially at 
object boundaries, making some objects appear closer than they 
are or even overlapping with other instances. However, due to 
the proposed BEV filtering approach such situations are 
eliminated in the proposed solution. Such a scenario is 
presented in Figure 5. An extra inpainting post processing step 
can be implemented if the dark regions in the BEV map are 
considered undesirable. 

D. Dataset used for similarity learning 

    Siamese networks generate feature embeddings from data 
pairs, using an energy function to evaluate input similarity. To 
train such a network for distinguishing object types, a dataset 
was constructed with four categories: cars and pedestrians 
(1,000 instances each), and riders and animals (500 instances 
each). Each instance includes at least 10 images, totaling over 
30,000 samples captured from various angles and distances. 
The dataset spans diverse conditions (day/night, rain, fog) and 
modalities (RGB, grayscale, thermal). Data sources include 
public datasets [28–33], YouTube, and sequences recorded by 
us, following ethical guidelines. Source distribution is 30% 
public datasets, 20% YouTube, and 50% our own recordings. 
    For creating the dataset, we have considered the following 
criteria:  

• The relevance of the images sequence for the classes of 
objects of interest. Only traffic sequences containing the 
four types of objects of interest were selected. 

• Image quality – frames that had a good quality with a high 
resolution, a good contrast and reduced noise were 
preferred.  

• Image diversity – the sequences that captured objects of 
interest from many different vantage points were preferred. 

• Variations of lightning conditions. Images where the same 
instance was captured in different lightning conditions, or 

images in different environments (urban, rural, indoor, 
outdoor) were preferred.  

    The dataset was created in three phases. First, object 
instances of interest were manually cropped from each frame 
and saved into folders named after their respective sequences. 
In the second phase, images of the same object instance were 
grouped into individual folders, which were then organized 
under their corresponding object class. A final cross-check 
ensured the removal of duplicates. For datasets like [31], where 
instances were already pre-cropped, the task was limited to 
organizing them by viewpoint diversity within each class. The 
final dataset structure includes a main 'Dataset' folder with four 
subfolders (one per class), each containing folders for 
individual instances. Sample images are shown in Figure 6. The 
dataset is available at: https://users.utcluj.ro/~mmp/IV2025/ . 

IV.  EXPERIMENTAL RESULTS 

The approach was implemented in C++ using neural 
network models trained in PyTorch and converted to LibTorch 
for C++ compatibility. ONNX and TensorRT were used with 
the Depth Anything v2 module. OpenCV handled visualization 

 

 
Figure 6. Example of images from the proposed dataset 

 

 
Figure 4. BEV representation in multiple objects scenario 

 

 
Figure 5. Scenario where the instance masks intersect 
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and image merging, while the Point Cloud Library managed 3D 
data. Implementation ran on an Intel Core i7-11370H (3.3 GHz) 
and an Nvidia RTX 3070 GPU. Training data was split into 
70% training, 10% validation, and 20% testing. Evaluation on 
the KITTI dataset (car category) used HOTA, MOTA, and 
AssA metrics. The numerical results are presented in Table I. 

TABLE I.  EVALUATION OF THE TRACKING APPROACH ON KITTI 

Method 
   

HOTA MOTA ASSA 

Proposed Approach 79.21 89.8 82.29 

UG3DMOT [40] 78.60 87.98 82.28 

MSA-MOT [41] 78.52 88.01 82.56 

YONTD-MOT[42] 78.08 85.09 82.86 

PermaTrack[43] 78.03  91.33  78.41  

   It is important to note that the performance of the EfficientPS 

model does not suffer any significant changes after the 

modifications made to its architecture needed for it to be 

exported in C++. 

   The performance of the BEV detector was evaluated both 

quantitatively using standard metrics such as Accuracy, 

Precision, Recall, and visually to observe obvious errors and 

validate the consistency of predictions in selected examples. 

Additionally, we introduce a custom metric Δ to evaluate 

object placement correctness in BEV space, as standard 

metrics such as IoU or mAP do not fully capture projection 

accuracy in monocular BEV reconstruction tasks. From the 

total number of objects detected from the perspective view, we 

verify the number of objects correctly placed. The metric for 

frame i is presented in equation (11). 

          ∆𝑖=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑙𝑎𝑐𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
             (11) 

    To assess localization accuracy, the number of correctly 

placed objects is determined by subtracting, from the total 

number of detections, the objects that either do not appear in 

the BEV representation (but are present in the perspective 

view) or are incorrectly placed. The mean placement error Δ is 

computed as the average of the individual frame errors ∆ₖ. This 

evaluation was carried out on the Cityscapes dataset. 

Furthermore, we compared our approach against several fully 

data-driven deep learning methods trained on the KITTI 360 

dataset for BEV scene reconstruction, using the proposed 

evaluation metric. The results are presented in Table II. Here, 

Accuracy (A) denotes the ratio of correctly localized objects to 

the total number in the BEV view, Precision (P) measures the 

ratio of correctly matched objects to total BEV detections, and 

Recall (R) quantifies the correctly matched objects relative to 

the total number in the perspective view. The analysis was 

limited to objects classified as cars. 

     The proposed solution is the best-performing, with the 

highest accuracy, precision, and recall from the compared 

methods. The situation in which the proposed solution does not 

correctly place objects is when the object instance is heavily 

occluded, and there is a small part of it still visible and the 3D 

points on that small part are not reliable. 

TABLE II.  EVALUATION OF COMBINED MODELS ON CITISCAPES 

Method Δ A P R 
YoloV8n + DeepLabV3 Plus 
Bev 

0.40 0.52 0.55 0.45 

Modified Efficient PS BEV 0.63 0.73 0.77 0.68 

YoloV8x-Seg + DeepLabV3 

Plus BEV 

0.74 0.80 0.81 0.75 

Proposed Solution 0.88 0.92 0.90 0.91 

   The running time of the proposed pipeline on images from 

the Cityscapes dataset is approximately 250ms. To reduce 

complexity, a shared backbone for monocular depth 

estimation, panoptic segmentation, and optical flow could be 

employed. However, due to computational and storage 

limitations, the current approach utilizes pretrained models for 

Depth Anything v2 and optical flow, leading to a non-multitask 

architecture. Additionally, during validation, the redundant 

object detector must operate with a distinct feature extractor, 

separate from the main network for obtaining the best results. 

V. CONCLUSIONS 

    In this paper we have presented an original framework that 

performs multi-object tracking and panoptic segmentation in 

Bird’s Eye View space by integrating deep learning methods, 

grid filtering, and feature engineering techniques. The 

proposed solution significantly enhances object tracking 

accuracy through a hybrid data association function that 

combines engineered features with Siamese neural networks. 

We also presented a modified version of EfficientPS that can 

be exported and integrated in C++. The validation approach 

ensures that the environment is correctly represented by 

eliminating unwanted detections or misclassified objects. The 

dataset created for training the Siamese network from the data 

association function includes images from four object 

categories and serves as a valuable resource for future research 

and applications. The proposed solution was evaluated on 

sequences from international publicly available benchmarks.  
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