
Multi Object Tracking and Panoptic Segmentation in

Monocular Birds Eye View Images

Mircea Paul Muresan

Computer Science Department

Technical University of Cluj-Napoca

Cluj-Napoca, Romania Mircea.Muresan@cs.utcluj.ro

Sergiu Nedevschi

Computer Science Department

Technical University of Cluj-Napoca

Cluj-Napoca, Romania Sergiu.Nedevschi@cs.utcluj.ro

Abstract — Bird’s Eye View (BEV) maps have gained popularity

in the autonomous driving field due to their ability to offer an

information-rich and easily interpretable representation of the

environment, playing a crucial role in various tasks such as

motion planning, perception, and sensor fusion. In this paper, we

propose a novel framework that integrates deep learning with

grid filtering and feature engineering to achieve multi-object

tracking and panoptic segmentation. The framework also

validates object detections and removes spurious instances,

resulting in a more robust environmental representation that

includes tracked objects and semantic segmentation in both

perspective and BEV domains. Furthermore, we introduce an

original hybrid data association function that combines deep

learning-based and handcrafted features to enhance object

tracking accuracy. To support this approach, we present a

dedicated dataset designed for training the deep learning model

used in data association comprising four object categories: cars,

pedestrians, riders, and animals. The proposed solution,

implemented in C++, is integrated with contemporary deep

learning frameworks and has been evaluated on international

benchmarks such as Cityscapes and KITTI.

Keywords—MOTS, BEV, tracking, panoptic segmentation, data

association

I. INTRODUCTION

Autonomous systems such as cars, humanoids or other
robotic platforms rely on a comprehensive understanding of the
environment to perform essential tasks such as motion
planning, obstacle avoidance, and sensor fusion [1]. A widely
adopted approach for scene understanding is to represent the
environment using Bird’s Eye View (BEV) maps, which offer
a compact and efficient way to encode the spatial layout of a
scene [2], [3]. These maps are particularly advantageous due to
their ability to provide a top-down depiction of the
surroundings, that is easy to visualize, process, and interpret.
The fact that in many scenarios, the critical information
required for navigation is primarily concentrated on the ground
plane makes BEV representations well-suited for downstream
tasks such as trajectory estimation and behavior prediction [4].
Several state-of-the-art methods have demonstrated the
effectiveness of deep learning in generating BEV
representations from monocular or multi-view images,
incorporating both semantic and instance-level segmentation to
enhance scene understanding [5]. However, while panoptic
segmentation in BEV has gained significant traction, current
methods primarily focus on segmenting the scene [9], or
detecting objects [6], few methods address panoptic

segmentation, and object tracking is often overlooked, despite
its importance for reliable perception in dynamic environments.

 In this work we aim to overcome this limitation by
proposing a framework that outputs the panoptic image
containing tracked object instances. Existing methods use a
variety of techniques to generate BEV maps from monocular
images. Some approaches, such as IPM [7], use a homography
to transform the perspective image to the bird’s eye view, even
though the flat earth assumption used by IPM-based methods
affect their performance, in regions that lie above the ground
plane. Other methods remove the ground plane using a deep
learning approach and perform an IPM on the remaining
objects, detecting them using a probabilistic occupancy grid and
then tracking them using a particle filter [8], but not providing
any multi class semantic segmentation information of the scene
as output. Semantic BEV maps can also be generated using
multiple sensors such as LiDARs and cameras, however such a
pipeline requires information from multiple sensors and thus
increases the cost of the whole system[9]. The multi object
tracking (MOT) and segmentation tasks are intertwined in real
world applications and by leveraging their synergies the task of
decision-making in self-driving cars is improved. Panoptic
segmentation can improve the overall object tracking
performance, because it can offer more context information in
the form of semantic data, that can be used in object association,
and more precise information about object position, even in
occluded scenarios, through the instance masks. Due to its real
time performance, the tracking by detection paradigm has been
employed in many state of the art MOT applications [10], [11].

When tracking multiple objects, state estimation becomes
challenging due to the need to correctly associate each
measurement with the corresponding tracked object, an issue
commonly referred to as the data association problem. An
incorrect assignment of a measurement can result in inaccurate
parameter estimation or, in the worst case, cause the tracking
system to misidentify targets. Data association performance can
be affected by two main issues which are known in the literature
[12] as the origin uncertainty and the motion uncertainty. The
origin uncertainty refers to the fact that there is no prior
knowledge of how current sensor readings relate to the previous
ones, while the motion uncertainty refers to the fact that real
world objects can have diverse moving patterns which should
be considered when trying to associate the tracks and the
detections. Effective tracking performance requires addressing
both components of the data association problem. It is also
important to note that after projecting objects in BEV space
certain features that can normally aid data association, and are

visible from the perspective view, like the object appearance,
are lost.
 To address the issues mentioned above in this paper we
propose the following contributions:

• We propose an original pipeline that combines panoptic
segmentation, monocular depth estimation and object
tracking to obtain a solution that tracks objects in birds
eye view space. Moreover, the tracked instances—
represented at both bounding box and mask level—can
be accurately reprojected into the perspective view when
required.

• We propose an original grid filtering approach that is
applied on 3D points obtained from monocular depth
perception points coming from object instances to clearly
delimit objects in BEV space.

• We present a novel data association function that combines
feature engineering with the output of Siamese networks
for an improved data association.

• A dataset used for training the Siamese neural networks that
contain 4 types of objects: cars, people, animals and
riders is presented

• Finally, we present the implementation of a validation
module, used for eliminating unwanted detections, and
we also present the modified CNN architecture of one of
the models used in our solution to enable export and
execution in C++ using the TorchScript format.

The proposed solution has been evaluated on sequences
from international benchmarks such as Cityscapes [33] and
KITTI [34] [35]. The rest of the paper is organized as follows:
in Section 2 a literature review of the state of the art in the field
of bird’s eye view detection and object tracking is presented.
Section 3 describes each step of the proposed solution in detail.
Section 4 presents the experimental results and finally, in
Section 5 we conclude the paper.

II. RELATED WORK

A. Detection and Segmentation in BEV

Bird’s Eye View (BEV) perception has emerged as a
fundamental technique in autonomous driving, enabling key
tasks such as collision avoidance, path planning, and object
tracking, by providing a unified and structured representation
of the driving environment. Previous research has explored
BEV perception from multiple perspectives, including camera-
based methods, LiDAR-based approaches, and sensor fusion
techniques.

Camera-based BEV (Bird’s-Eye View) perception methods
aim to transform perspective images into top-down
representations. Some approaches use explicit geometric
transformations based on depth estimation from monocular or
stereo images, followed by reprojection into a unified 3D space
[13]. LiDAR-based methods leverage 3D point clouds for
accurate scene understanding, while voxel-based approaches
divide the space into 3D grids and apply convolutions to extract
spatial features [14]. To improve efficiency, pillar-based
methods collapse the height dimension and apply 2D
convolutions on BEV maps [15].

Multi-sensor fusion methods combine data from multiple
(homogeneous or heterogeneous) sensors, extracting and
aligning features into the BEV domain. MVX-Net [16]

introduces PointFusion and VoxelFusion to enable early-stage
modality interaction for 3D object detection. EPNet [17]
improves fusion robustness using point-wise enhancement and
a confidence-alignment loss. BEVFormer [18] employs a
spatiotemporal transformer for integrating multi-view spatial
features and past BEV representations, enhancing object
detection and map segmentation.

VPN [19] addresses BEV semantic segmentation using
frontal images and CARLA-simulated data but lacks effective
use of geometric cues. In contrast, [9] proposes a two-stage
approach combining monocular depth estimation and semantic
segmentation to project a semantic point cloud into BEV,
enabling better depth reasoning and adaptability across
environments. Finally, [20] introduces the first BEV panoptic
segmentation framework from frontal views, using dual
transformers for vertical and planar mappings and a sensitivity-
aware pixel weighting strategy.

B. Multi-Object Tracking and Segmentation

In tracking-by-detection frameworks, similarity between
detections across frames is commonly assessed using object
appearance and motion cues. The literature outlines three main
strategies for data association: handcrafted feature engineering
[21], data-driven methods [22], and hybrid approaches that
combine both [26]. In [21], a handcrafted cost function is
proposed, integrating features such as object size, color
histograms, and motion via L2 distance, with optimal
assignments solved using the Hungarian algorithm [24].

The authors from [22] extend Mask R-CNN [25] by adding
an association head to their model, which learns feature
embeddings for object identification. The approach is called
TrackR-CNN and it works on color images integrating
detection, tracking and segmentation in a single network. The
authors in [26] combine feature engineered cost functions with
a small CNN to create a data association function able to track
objects in thermal images. The authors used features such as
uniform binary patterns and created an original feature that
combined the histogram of oriented gradients with local binary
patterns to capture textures that can appear on objects from
thermal images. The approach works in real time and can track
objects at bounding box level. In [23] the authors use a feature
engineered data association function and multiple motion
models to track objects at bounding box and instance mask
level. The authors in [27] propose single object BEV tracking
solution that models target motion in BEV using convolutional
layers and a simple regression head, followed by a global max-
pooling and an MLP. The approach relies on motion modeling
rather than explicit appearance matching. By leveraging voxel-
based feature extraction and BEV spatial fusion, it efficiently
tracks objects with diverse motion patterns at real-time speeds.
In [8] the authors perform an object tracking in BEV using a
particle filter approach. The objects are first segmented using
an occupancy grid, and then the cells corresponding to each
object are identified, clustered and a unique id is assigned to
each cluster.

In our approach we build upon the state of the art by creating
a novel approach that can track objects using a hybrid data
association function and can perform a panoptic segmentation
of the scene using a combination of deep learning techniques
and grid filtering, where the tracked objects can then be
displayed in BEV and perspective formats.

III. PROPOSED SOLUTION

A. Processing pipeline overview and object validation

 Section III describes the details of the implemented
framework that performs panoptic segmentation and track
objects at bounding box, instance and in the perspective and
BEV spaces.
 The framework processes monocular RGB images through
multiple processing stages as illustrated in Figure 1. Since the
proposed solution uses optical flow, which requires two frames
to run, the main processing steps start after the second frame is
received. Once the frame is received it is fed into a series of
neural network models such as Efficient PS[36], that computes
the panoptic segmentation, YoloV8x that detects instance
masks and object bounding boxes, depth anything v2 [37] that
estimates the relative depth to each pixel, which is then scaled
to obtain the absolute distances and RAFT [38] dense optical
flow. The monocular depth estimation module also receives the
semantic segmentation map from the Panoptic Segmentation
module and creates an enhanced point cloud that contains for
each 3D point the semantic information as well as the RGB
information from the original image. The instances detected by
EfficientPS and Yolo are fed to a validation module, together
with depth information and the tracked objects computed in the
previous frame (if they are available). The validation module
outputs a list of filtered objects that are tracked by the object
tracker.
 Using features extracted from the perspective image, objects
are tracked and combined with the enhanced semantic point
cloud. This combined data is then processed by a filtering and
projection module, resulting in a BEV-space representation as
the final output. The presented pipeline has been implemented
fully in C++ using LibTorch and Onnx libraries in the case of
depth anything v2. It is worth mentioning that the EfficientPS
neural network model used for panoptic segmentation, as
provided in the Git repository of the authors, cannot be exported
in TorchScript format, compatible with C++. Modifications
were necessary because layers such as In-Place Activated Batch
Normalization cannot be traced in TorchScript, they were
replaced with standard Batch Normalization layers followed by
an ELU activation function to maintain result quality.

Another limitation of the TorchScript format is that it does
not allow custom classes as input or output data for modules,
permitting only tuples of tensors or, in specific cases,
dictionaries. The instance head in Detectron2 uses objects of the

class detectron2.structures.Instances for both, input during
training and output during inference. To avoid export errors, the
Detectron2 library provides the TracingAdapter class, which
flattens custom classes by converting them into tuples of
tensors. This library was used to successfully trace the model
into TorchScript format. Moreover, the size of the intermediate
channels was reduced using 1x1 convolutions and pre-
processing and post-processing steps were also implemented
and optimized in C++ to achieve the desired results. We
empirically observed that the modifications introduced did not
significantly affect the EfficientPS model accuracy, with
performance variations under 1% on key metrics.

Panoptic and instance segmentation models are prone to
errors such as missed detections, false positives, and
misclassifications. Since the tracker focuses on traffic-related
objects within 100 meters in depth and 30 meters laterally from
the ego vehicle, a validation module is required to filter
irrelevant or erroneous detections. Objects beyond 100 meters
are excluded due to the increasing sparsity and unreliability of
the point cloud. To ensure accurate environmental
representation, the validation module cross-verifies detections
using multiple redundant sources, especially in uncertain cases.

In our approach, we are using the information that comes
from the two models (EfficientPS and Yolov8) and the third
source represents the predictions (in the form of bounding
boxes) coming from the tracked objects when available. In the
case one object is detected by only one of the models, we verify
whether the detection confidence and class probability exceed
the 80% threshold, in which case we add the object to the
validated object list. When an object is detected by both
sources, several validation scenarios are considered and
handled accordingly. In the scenario in which we do not have
object predictions coming from a tracking module, we compute
the intersection over union between the bounding boxes coming
from the two models that analyze the scene. When the
intersection over union has a good enough overlapping score,
detected empirically as being over 70%, we check to see if the
semantic classes are the same. If the semantic classes are the
same the object is validated and placed in a validated objects
list. Otherwise, we check to see which of the two detections has
the higher-class probability score, and the detection having the
higher score is kept provided the class probability is higher than
70%. In case the class probability is not higher than the
previously mentioned threshold, the object is not validated.
However, when the tracking predictions are available, in case

Figure 1. Pipeline overview. From an input RGB image (or pair), panoptic and instance segmentation, optical flow, and monocular

depth are computed in parallel. Validated objects are obtained via an object validation module, then tracked and projected into a depth-

based grid, resulting in a bird’s-eye view representation.

Object
List

BEV Tracked

Objects

BEV Projection and

Grid Filtering

Original Image

Panoptic Segmentation

Monocular Depth

Instance Segmentation

Optical Flow

Object
Validation

Tracked Objects
masks and boxes

Object
Tracking

there is an uncertainty regarding an object, we perform an
additional check using the bounding boxes and the semantic
class that is embedded in the predicted tracked object.
 Each tracked object contains a histogram of semantic classes
that is updated after each successful data association of a track
and a detection, using the approach from section III B. The
semantic class having the most votes from that histogram is
considered the dominant semantic class of the track. We
perform the intersection over union between the tracked object
and detections as it was realised using the bounding boxes of
two models. For the objects for which the intersection is above
the previously specified threshold, we check the semantic class
using the data from the tracked object and verify which class
receives 2 of the 3 votes. The class having 2 of the three votes
is considered the semantic class of the object, and the object is
validated. Objects that do not satisfy the mentioned criteria are
not included in the validated object list.

After the validation step, the validated object list is filtered
and only objects that have the closest object point with respect
to the ego vehicle at a distance up to 100 m in depth (Z axis)
and 30m on the sides (X axis) are kept and the rest are removed.
For each object instance in the validate object list, we obtain the
closest point to the ego vehicle, traversing the object instance
mask and computing for each point the Euclidean distance
between the 3D point from the depth map (associated to that
position) and the position of the ego vehicle. The depth
information for each instance is obtained from depth anything
v2 model, that is scaled to obtain the metric depth using the
approach presented in [40]. After validation the object list is
passed to the object tracker.

B. Data association and Tracking

 The proposed tracking solution incorporates an original
approach to computing the similarity cost, combining elements
from three sources: information from dense optical flow,
similarity from a Siamese network, and manually engineered
features. Additionally, the approach includes a scoring system
for both motion similarity between a tracked object and a
detection, as well as an appearance score. The motion score
consists of several components. First, the Euclidean distance
between the tracked object and possible detections within the
track's covariance ellipse is used.
 Another component of the motion score is derived from
optical flow information. We use the Recurrent All-Pairs Field
Transforms (RAFT) neural network [38] to generate dense
optical flow. To extract motion features, we consider the region
of interest defined by an object's bounding box. This region is
divided into a 3×3 grid, and for each grid cell, we compute the
average magnitude and orientation of the optical flow. These
values are used to determine a motion vector for each cell. Each
grid cell casts a vote for the most likely position of the object in
the next frame. Specifically, we use the detection from the
previous frame that was previously associated with a track (and
used to update it). The motion score is then computed based on
the total number of votes linking this past detection to a new
detection in the current frame, helping to determine the best
match for updating the track. The appearance score includes
multiple elements. First, it considers similarity costs related to
the geometric properties of the compared detection and track.
These similarity scores are computed using the L1 norm (1).

 𝐿1(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|1 (1)

 The geometric properties used in this calculation include
object width, height and area. Additionally, the similarity score
includes the Intersection over Union (IoU) score between the
track and the detection.
 Besides geometric properties, the proposed approach also
leverages a Siamese network, which produces a similarity score
between the two objects compared. This network has an
architecture facilitating the high running time of the object
association and includes three main submodules, each
consisting of: ReflectionPad2d, Conv2D, LeakyRelu and
BatchNorm. These layers process the input tensors and extract
relevant features. After these submodules, fully connected
layers with LeakyReLU activation functions further aggregate
the features and generate high-level representations. The
embeddings resulted from the two inputs are then compared
using the Euclidean distance to determine the degree of
similarity. The network has been trained using contrastive
learning using the dataset presented in section III D. All
elements in the similarity score are weighted using empirically
determined weights based on experiments. The final score is
obtained by summing the motion similarity score and the
appearance similarity score (2).

 𝑆𝑓𝑖𝑛𝑎𝑙 = 𝑆𝑚𝑜𝑡𝑖𝑜𝑛 + 𝑆𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 (2)

 After computing the similarity scores, the Hungarian
algorithm [24] is used to optimally assign detections to tracks.
Each tracked object maintains an embedded histogram with six
bins corresponding to different semantic classes: person, car,
rider, bicycle, animal, and traffic element. Whenever a
detection is associated with a track, the semantic class of that
detection casts a vote in the corresponding bin of the histogram.
Over time, as more associations occur, the histogram
accumulates votes reflecting the most frequently observed class
for that tracked object. The semantic class of the track is
determined by selecting the class with the highest vote count in
the histogram. In case of ties, the class corresponding to the first
bin (in a predefined order) is chosen. The tracking stages related
to track management (birth and deletion of tracks) remain
unchanged, following the approach presented in [23]. The
trajectory of tracked objects is filtered using a Kalman Filter,
and in each update step, all available detection information
including object geometrical properties, instance mask, and
other attributes are incorporated into the tracked object.

Figure 2. Tracking multiple objects across frames

 In Figure 2 we can observe the result of the tracking module,
where objects up to 100m (in depth) 30m (latera) are tracked. It
can be observed that the unique ID assigned to the car and the
truck and is color coded with a unique color is maintained
across frames. After this step the tracking module will send the
tracked objects with all their properties including instance
masks and bounding boxes to the BEV Projection and Filtering
Module.

C. BEV transformation

After obtaining the disparity image from the monocular

depth estimation module, we compute the scaled 3D points

using the approach in [39], to recover the absolute depth

information. We then create an enhanced point cloud by storing

for each 3D point the intensity information and semantic label.

This can be easily achieved, because for each disparity point we

know the corresponding pixel in the intensity and semantic

segmentation images. In the process of projecting a 3D point

cloud onto a Bird’s Eye View (BEV) image, the x and z

coordinates must be transformed to fit within a fixed image size.

First, the bounding limits of the point cloud are determined,

defining the minimum and maximum values for x and z,

denoted as 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 . To map these

coordinates into the image space, a scaling factor is computed

for x and z dimensions and to maintain the aspect ratio and

ensure the entire point cloud fits within the image, the smallest

of these scaling factors is selected. To horizontally center the

projection in the image, an x offset is introduced, computed as

in (3).

𝑜𝑓𝑓𝑠𝑒𝑡𝑥 = (𝑤𝑖𝑑𝑡ℎ − (𝑥𝑚𝑖𝑛 − 𝑥𝑚𝑎𝑥) ∗ 𝑠𝑐𝑎𝑙𝑒) / 2 (3)

For the z coordinate, the goal is to align the bottom of the image

with 𝑧𝑚𝑎𝑥 and the top with 𝑧𝑚𝑖𝑛 . Therefore, the z offset is

computed as in (4)

 𝑜𝑓𝑓𝑠𝑒𝑡𝑧 = (ℎ𝑒𝑖𝑔ℎ𝑡 − (𝑧𝑚𝑖𝑛 − 𝑧𝑚𝑎𝑥) ∗ 𝑠𝑐𝑎𝑙𝑒) (4)

The variables height and width represent the height and
width of the BEV image. Once the scaling and offsets are
determined, each 3D point is projected onto the BEV image
using the expression in (5) and (6)

 𝑢 = (𝑥 − 𝑥𝑚𝑖𝑛) 𝑠𝑐𝑎𝑙𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑥 (5)
 𝑣 = (𝑧 − 𝑧𝑚𝑖𝑛) 𝑠𝑐𝑎𝑙𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡𝑧 (6)

where (𝑢, 𝑣) represent the 2D pixel coordinates in the BEV
image. For each (𝑢, 𝑣) we place the color corresponding to the
“stuff” semantic class in the BEV image from the enhanced
point cloud. For projecting the object instances, we create a 4D
occupancy grid having cells of 35cm x 70cm. One dimension
from this 4D occupancy grid is storing the cell density (how
many 3D points fall within that cell), one dimension is storing
minimum distance from that cell to the ego vehicle, and 2 of the
dimensions are storing the real-world X and Z values
corresponding to the point for which the minimum distance was
obtained. As we iterate through the depth values corresponding
to the instance masks, each depth value casts a vote in the cell
of the grid where it falls. We transform the density cells into
probabilities and then perform an adaptive thresholding of the
grid, leaving only the cells for which the density is higher than
a probability threshold. Since the cells that are closer to the ego
vehicle are expected to be denser, then the cells that are further

away the probability threshold for the closer cells is 0.92 and
this gradually decays to the end of the grid where for a cell to
remain active there should be 0.4 probability. Since projected
objects in BEV can become fragmented due to artifacts that
appear when transforming an intensity image—where points
may spread laterally and fill unintended grid cells—we apply a
clustering step. After the adaptive thresholding, we label the
remaining clusters and retain only the largest one, effectively
filtering out noise cells. The labeling is performed using the
two-pass labeling method with equivalence classes, and the
largest cluster is determined by counting the pixels in each
cluster. In the next step, we compute the closest point of the
instance using the available cells of the grid and eliminate all
the points that are at a distance larger than 6m to that point. The
three steps mentioned above can be seen in Figure 3. In the left-
hand side, there are the original projected points belonging to
an object instance, in the middle we have the largest cluster, and
finally in the right-hand side we display the filtered largest
cluster.

The facets of the filtered 2D grid objects are identified, and for
each facet segment, the shortest distance to its closest point
from the ego-vehicle's position is computed. Considering we
want to find the distance from a reference point (𝑥0, 𝑦0) to a
segment of coordinates [(𝑥1, 𝑦1), (𝑥2, 𝑦2)] the parametric
projection of the point onto the line segment is given by (7).

 𝑡 =
(𝑥0−𝑥1)(𝑥2−𝑥1)+(𝑦0−𝑦1)(𝑦2−𝑦1)

(𝑥2−𝑥1)2+(𝑦2−𝑦1)2 (7)

 For t < 0 the closest point on the segment is (𝑥1, 𝑦1) ;
conversely, if t > 1 the closest point is (𝑥2, 𝑦2). For values
within the interval [0, 1], the projection falls within the segment
and is computed using (8) and (9).

 𝑥𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑥1 + 𝑡(𝑥2 − 𝑥1) (8)
 𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑦1 + 𝑡(𝑦2 − 𝑦1) (9)

 Facets are sorted by their Euclidean distance to the ego
vehicle, with the most visible ones being closest. The
intersection point of the two most visible facets is determined
and stored as a reference. Furthermore, the longest of these two
visible facets is used to determine the object's orientation angle
and whether it is observed from the lateral, front, or rear view.
Using the endpoints [(𝑥1, 𝑦1), (𝑥2, 𝑦2)], of the longest facet we
compute the orientation angle θ of this facet in degrees (10).

 θ =
atan(𝑦2−𝑦1,𝑥2−𝑥1)∗180

𝜋
 (10)

 Using this angle, we define an interval to determine whether
the object is observed from the front, rear, or lateral view.
Furthermore, given the reference point, the object's orientation
angle, its semantic class, and its dimensions, we reconstruct the
corresponding rectangle in the BEV space. In Figure 4 we can

Figure 3. The first three steps of the grid filtering algorithm

observe a scene with validated objects (they have blue bounding
boxes) and their projection in the BEV space

 It is important to note that the current approach is working
even in difficult situations. For example, in situations where
multiple instance masks of objects intersect, the depth
estimation module may generate erroneous points especially at
object boundaries, making some objects appear closer than they
are or even overlapping with other instances. However, due to
the proposed BEV filtering approach such situations are
eliminated in the proposed solution. Such a scenario is
presented in Figure 5. An extra inpainting post processing step
can be implemented if the dark regions in the BEV map are
considered undesirable.

D. Dataset used for similarity learning

 Siamese networks generate feature embeddings from data
pairs, using an energy function to evaluate input similarity. To
train such a network for distinguishing object types, a dataset
was constructed with four categories: cars and pedestrians
(1,000 instances each), and riders and animals (500 instances
each). Each instance includes at least 10 images, totaling over
30,000 samples captured from various angles and distances.
The dataset spans diverse conditions (day/night, rain, fog) and
modalities (RGB, grayscale, thermal). Data sources include
public datasets [28–33], YouTube, and sequences recorded by
us, following ethical guidelines. Source distribution is 30%
public datasets, 20% YouTube, and 50% our own recordings.
 For creating the dataset, we have considered the following
criteria:

• The relevance of the images sequence for the classes of
objects of interest. Only traffic sequences containing the
four types of objects of interest were selected.

• Image quality – frames that had a good quality with a high
resolution, a good contrast and reduced noise were
preferred.

• Image diversity – the sequences that captured objects of
interest from many different vantage points were preferred.

• Variations of lightning conditions. Images where the same
instance was captured in different lightning conditions, or

images in different environments (urban, rural, indoor,
outdoor) were preferred.

 The dataset was created in three phases. First, object
instances of interest were manually cropped from each frame
and saved into folders named after their respective sequences.
In the second phase, images of the same object instance were
grouped into individual folders, which were then organized
under their corresponding object class. A final cross-check
ensured the removal of duplicates. For datasets like [31], where
instances were already pre-cropped, the task was limited to
organizing them by viewpoint diversity within each class. The
final dataset structure includes a main 'Dataset' folder with four
subfolders (one per class), each containing folders for
individual instances. Sample images are shown in Figure 6. The
dataset is available at: https://users.utcluj.ro/~mmp/IV2025/ .

IV. EXPERIMENTAL RESULTS

The approach was implemented in C++ using neural
network models trained in PyTorch and converted to LibTorch
for C++ compatibility. ONNX and TensorRT were used with
the Depth Anything v2 module. OpenCV handled visualization

Figure 6. Example of images from the proposed dataset

Figure 4. BEV representation in multiple objects scenario

Figure 5. Scenario where the instance masks intersect

https://users.utcluj.ro/~mmp/IV2025/

and image merging, while the Point Cloud Library managed 3D
data. Implementation ran on an Intel Core i7-11370H (3.3 GHz)
and an Nvidia RTX 3070 GPU. Training data was split into
70% training, 10% validation, and 20% testing. Evaluation on
the KITTI dataset (car category) used HOTA, MOTA, and
AssA metrics. The numerical results are presented in Table I.

TABLE I. EVALUATION OF THE TRACKING APPROACH ON KITTI

Method

HOTA MOTA ASSA

Proposed Approach 79.21 89.8 82.29

UG3DMOT [40] 78.60 87.98 82.28

MSA-MOT [41] 78.52 88.01 82.56

YONTD-MOT[42] 78.08 85.09 82.86

PermaTrack[43] 78.03 91.33 78.41

 It is important to note that the performance of the EfficientPS

model does not suffer any significant changes after the

modifications made to its architecture needed for it to be

exported in C++.

 The performance of the BEV detector was evaluated both

quantitatively using standard metrics such as Accuracy,

Precision, Recall, and visually to observe obvious errors and

validate the consistency of predictions in selected examples.

Additionally, we introduce a custom metric Δ to evaluate

object placement correctness in BEV space, as standard

metrics such as IoU or mAP do not fully capture projection

accuracy in monocular BEV reconstruction tasks. From the

total number of objects detected from the perspective view, we

verify the number of objects correctly placed. The metric for

frame i is presented in equation (11).

 ∆𝑖=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑙𝑎𝑐𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
 (11)

 To assess localization accuracy, the number of correctly

placed objects is determined by subtracting, from the total

number of detections, the objects that either do not appear in

the BEV representation (but are present in the perspective

view) or are incorrectly placed. The mean placement error Δ is

computed as the average of the individual frame errors ∆ₖ. This

evaluation was carried out on the Cityscapes dataset.

Furthermore, we compared our approach against several fully

data-driven deep learning methods trained on the KITTI 360

dataset for BEV scene reconstruction, using the proposed

evaluation metric. The results are presented in Table II. Here,

Accuracy (A) denotes the ratio of correctly localized objects to

the total number in the BEV view, Precision (P) measures the

ratio of correctly matched objects to total BEV detections, and

Recall (R) quantifies the correctly matched objects relative to

the total number in the perspective view. The analysis was

limited to objects classified as cars.

 The proposed solution is the best-performing, with the

highest accuracy, precision, and recall from the compared

methods. The situation in which the proposed solution does not

correctly place objects is when the object instance is heavily

occluded, and there is a small part of it still visible and the 3D

points on that small part are not reliable.

TABLE II. EVALUATION OF COMBINED MODELS ON CITISCAPES

Method Δ A P R
YoloV8n + DeepLabV3 Plus
Bev

0.40 0.52 0.55 0.45

Modified Efficient PS BEV 0.63 0.73 0.77 0.68

YoloV8x-Seg + DeepLabV3

Plus BEV

0.74 0.80 0.81 0.75

Proposed Solution 0.88 0.92 0.90 0.91

 The running time of the proposed pipeline on images from

the Cityscapes dataset is approximately 250ms. To reduce

complexity, a shared backbone for monocular depth

estimation, panoptic segmentation, and optical flow could be

employed. However, due to computational and storage

limitations, the current approach utilizes pretrained models for

Depth Anything v2 and optical flow, leading to a non-multitask

architecture. Additionally, during validation, the redundant

object detector must operate with a distinct feature extractor,

separate from the main network for obtaining the best results.

V. CONCLUSIONS

 In this paper we have presented an original framework that

performs multi-object tracking and panoptic segmentation in

Bird’s Eye View space by integrating deep learning methods,

grid filtering, and feature engineering techniques. The

proposed solution significantly enhances object tracking

accuracy through a hybrid data association function that

combines engineered features with Siamese neural networks.

We also presented a modified version of EfficientPS that can

be exported and integrated in C++. The validation approach

ensures that the environment is correctly represented by

eliminating unwanted detections or misclassified objects. The

dataset created for training the Siamese network from the data

association function includes images from four object

categories and serves as a valuable resource for future research

and applications. The proposed solution was evaluated on

sequences from international publicly available benchmarks.

ACKNOWLEDGMENT

This work is supported by the project "Romanian Hub for

Artificial Intelligence-HRIA", Smart Growth, Digitization and

Financial Instruments Program, MySMIS no. 334906

REFERENCES

[1] J. V. Hurtado, R. Mohan, W. Burgard, and A. Valada, “Mopt: Multi-
object panoptic tracking,” arXiv preprint arXiv:2004.08189, 2020

[2] J. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from
arbitrary camera rigs by implicitly unprojecting to 3d,” in European
Conf. on Computer Vision, 2020

[3] T. Roddick and R. Cipolla, “Predicting semantic map representations
from images using pyramid occupancy networks,” in IEEE Conf. on
Computer Vision and Pattern Recognition, June 2020

[4] N. Radwan, W. Burgard, and A. Valada, “Multimodal interaction-aware
motion prediction for autonomous street crossing,” The International
Journal of Robotics Research, vol. 39, no. 13, pp. 1567–1598, 2020

https://www.cvlibs.net/datasets/kitti/eval_tracking_detail.php?result=c2b17462cecb6a7ffbfa98f347d01d3c7afa8b35
https://www.cvlibs.net/datasets/kitti/eval_tracking_detail.php?result=b8ef277e488b1c6462466ea80263736aefa96deb
https://www.cvlibs.net/datasets/kitti/eval_tracking_detail.php?result=9e98f84c168ce5c7c2a4e1d815bea458a109c96e
https://www.cvlibs.net/datasets/kitti/eval_tracking_detail.php?result=82c08bddb89f9faa0fb00a60d55fea792ebede7d

[5] N. Gosala and A. Valada, "Bird’s-Eye-View Panoptic Segmentation
Using Monocular Frontal View Images," in IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 1968-1975, April 2022.

[6] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-hao Sima, Tong
Lu, Yu Qiao, and Jifeng Dai. Bevformer: Learning bird’s-eye-view
representation from multi-camera images via spatiotemporal
transformers. In European conference on computer vision, pages 1–18.
Springer, 2022

[7] L. Reiher, B. Lampe, and L. Eckstein, “A sim2real deep learning
approach for the transformation of images from multiple vehicle-
mounted cameras to a semantically segmented image in bird’s eye view,”
in Int. Conf. on Intelligent Transportation Systems, 2020.

[8] R. Danescu, R. Itu and M. P. Muresan, "PartID – Individual Objects
Tracking in Occupancy Grids Using Particle Identities," 2020 IEEE 16th
International Conference on Intelligent Computer Communication and
Processing (ICCP), Cluj-Napoca, Romania, 2020, pp. 283-290

[9] M. H. Ng, K. Radia, J. Chen, D. Wang, I. Gog, and J. E. Gonzalez, “Bev-
seg: Bird’s eye view semantic segmentation using geometry and
semantic point cloud,” arXiv preprint arXiv:2006.11436, 2020

[10] Q. Liu, X. Li, Z. He, N. Fan, D. Yuan and H. Wang, "Learning
DeepMulti-Level Similarity for Thermal Infrared Object Tracking," in
IEEETransactions on Multimedia, vol. 23, pp. 2114-2126, 2021,
doi:10.1109/TMM.2020.3008028.

[11] H. Karunasekera, H. Wang and H. Zhang, "Multiple Object
TrackingWith Attention to Appearance, Structure, Motion and Size," in
IEEEAccess, vol. 7, pp. 104423-104434, 2019,
doi:10.1109/ACCESS.2019.2932301.

[12] M. Betke and Z. Wu, Data Association for Multi-Object Visual Tracking.
1st ed. Cham: Springer, 2017.

[13] J. Philion and S. Fidler, "Lift, splat, scityhoot: Encoding images from
arbitrary camera rigs by implicitly unprojecting to 3D," in Computer
Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIV, vol. 16, pp. 194–210, Springer,
2020

[14] J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, "Voxel R-CNN:
Towards high-performance voxel-based 3D object detection," in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 2, pp. 1201–1209, 2021

[15] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
"PointPillars: Fast encoders for object detection from point clouds," in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 12697–12705, 2019

[16] V. A. Sindagi, Y. Zhou, and O. Tuzel, "MVX-Net: Multimodal VoxelNet
for 3D object detection," in 2019 International Conference on Robotics
and Automation (ICRA), pp. 7276–7282, 2019.

[17] T. Huang, Z. Liu, X. Chen, and X. Bai, "EPNet: Enhancing point features
with image semantics for 3D object detection," in Computer Vision –
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XV, vol. 16, pp. 35–52, Springer, 2020.

[18] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong
Lu, Yu Qiao, and Jifeng Dai. Bevformer: Learning bird’s-eye-view
representation from multi-camera images via spatiotemporal
transformers. In European conference on computer vision, pages 1–18.
Springer, 2022

[19] owen Pan, Jiankai Sun, Alex Andonian, Aude Oliva, and Bolei Zhou.
Cross-view semantic segmentation for sensing surroundings. CoRR,
abs/1906.03560, 2019

[20] N. Gosala and A. Valada, "Bird’s-Eye-View Panoptic Segmentation
Using Monocular Frontal View Images," in IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 1968-1975, April 2022

[21] H. Karunasekera, H. Wang and H. Zhang, "Multiple Object
TrackingWith Attention to Appearance, Structure, Motion and Size,"in
IEEEAccess, vol. 7, pp. 104423-104434, 2019,
doi:10.1109/ACCESS.2019.2932301

[22] P. Voigtlaender et al., "MOTS: Multi-Object Tracking and
Segmentation," 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 7934-
7943

[23] M. P. Muresan, R. Danescu and S. Nedevschi, "Multi-Object Tracking,
Segmentation and Validation in Thermal Images," 2023 IEEE Intelligent
Vehicles Symposium (IV), Anchorage, AK, USA, 2023, pp. 1-8

[24] Kuhn, H.W. The Hungarian method for the assignment problem.
Nav.Res. Logist. Q. 1955, 2, 83–97

[25] K. He, G. Gkioxari, P. Dollar, and R. Girshick, ‘‘Mask R-CNN,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2961–2969

[26] M. P. Muresan, S. Nedevschi, and R. Danescu, “Robust DataAssociation
Using Fusion of Data-Driven and Engineered Features forReal-Time
Pedestrian Tracking in Thermal Images,” Sensors, vol. 21,no. 23, p.
8005, Nov. 2021

[27] Y. Yang, Y. Deng, J. Fan, J. Zhang, and Z.-J. Zha, “BEVTrack: A Simple
and Strong Baseline for 3D Single Object Tracking in Bird’s-Eye View,”
arXiv e-prints, p. arXiv-2309, 2024.

[28] L. Ma, H. Liu, L. Hu, C. Wang și Q. Sun, „Orientation Driven Bag of
Appearances for Person Re-identification,” CoRR, vol. abs/1605.02464,
2016

[29] G. Song, B. Leng, C. Hetang și S. Cai, „Region-Based Quality
Estimation Network for Large-Scale Person Re-Identification,” în
Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), NewOrleans, LA, USA,
2018

[30] X. Liu, W. Liu, T. Mei și H. Ma, „Progressive and Multimodal Vehicle
Reidentification for,” IEEE Transactions on Multimedia, vol. 20, nr. 3,
pp. 645- 658, 2018

[31] A. Kumar, M. H. Takehiro Kashiyama, F. Zhang, H. Omata și Y.
Sekimoto,„Vehicle re-identification and trajectory reconstruction using
multiple moving cameras in the CARLA driving simulator,” în BigData
Conference, Osaka, Japan, 2022

[32] „FREE Teledyne FLIR Thermal Dataset for Algorithm Training,”
Teledyne

[33] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R.
Benenson, U. Franke, S. Roth, and B. Schiele, "The Cityscapes Dataset
for Semantic Urban Scene Understanding," in Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[34] Y. Liao, J. Xie, and A. Geiger, “KITTI-360: A Novel Dataset and
Benchmarks for Urban Scene Understanding in 2D and 3D,” Pattern
Analysis and Machine Intelligence (PAMI), 2022.

[35] M. Menze and A. Geiger, “Object Scene Flow for Autonomous
Vehicles,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[36] R. Mohan și A. Valada, "EfficientPS: Efficient Panoptic Segmentation,"
Int. J. Comput. Vis., vol. 129, pp. 1551–1579, 2020

[37] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, și H. Zhao, "Depth
Anything V2," arXiv preprint arXiv:2406.09414, 2024

[38] Z. Teed și J. Deng, "RAFT: Recurrent All-Pairs Field Transforms for
Optical Flow," în Proc. Eur. Conf. Comput. Vis. (ECCV), 2020

[39] F. Xue, G. Zhuo, Z. Huang, W. Fu, Z. Wu and M. H. Ang, "Toward
Hierarchical Self-Supervised Monocular Absolute Depth Estimation for
Autonomous Driving Applications," 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV,
USA, 2020, pp. 2330-2337

[40] Jiawei He, Chunyun Fu, Xiyang Wang, and Jianwen Wang, "3D multi-
object tracking based on informatic divergence-guided data association,"
Signal Processing, vol. 222, p. 109544, 2024.

[41] Z. Zhu, J. Nie, H. Wu, Z. He, and M. Gao, "MSA-MOT: Multi-Stage
Association for 3D Multimodality Multi-Object Tracking," Sensors, vol.
22, no. 22, p. 8650, 2022.

[42] X. Wang, C. Fu, J. He, M. Huang, T. Meng, S. Zhang, H. Zhou, Z. Xu,
and C. Zhang, "You Only Need Two Detectors to Achieve Multi-Modal
3D Multi-Object Tracking," arXiv preprint, arXiv:2304.08709, 2024

[43] P. Tokmakov, J. Li, W. Burgard, și A. Gaidon, "Learning To Track With
Object Permanence," în Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), oct. 2021, pp. 10860–10869.

