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Abstract—In this paper we present a novel multi-object
tracking and segmentation approach that works on thermal
images and is able to track objects at bounding-box and instance
mask levels. Furthermore, we present a novel object validation
module, which is necessary because only specific classes of
objects are tracked and classifiers and detectors can be
subjected to errors such as misclassifications, false detections,
erroneous instance masks and missed detections. One of the key
difficulties in multi-target tracking is the wunknown
correspondences between measurements and targets also known
as the data association problem. To address this issue the
proposed object tracker uses a feature engineering data
association approach that exploits multiple features which
include structure, appearance, size, context, and motion in the
region given by the instance mask. Moreover, an original
strategy has been designed for dealing with motion uncertainty,
based on optical flow and multiple motion models to better
predict the future position of objects in the scene. The proposed
method runs in real-time and has been evaluated on an
international thermal tracking benchmark showing competitive
results.
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I. INTRODUCTION

Multi-object tracking and segmentation (MOTS) [1] is a
challenging problem in computer vision, and has a wide range
of applications in fields such as surveillance, advanced
driving assistance systems, autonomous driving, and
robotics. The goal of multi-object tracking (MOT) [2] is to
accurately reidentify objects bounding boxes in successive
frames and estimate and filter their trajectories, while object
segmentation aims to identify and separate individual objects
within the image and provide a semantic class for each object.
MOTS builds upon the tracking task by using instance
segmentation masks[3] instead of bounding boxes when
creating the object trajectories thus extending the precision to
the pixel level. Furthermore, the instance segmentation
module can provide more precise information about the
position of objects in the scene even in occluded situations,
and the semantic segmentation [4] module can provide more
context information which can aid the data-association
process from the tracking component. The segmentation and
tracking tasks are intertwined in real-world applications [5]
and by exploiting their synergies the tracking performance
and the overall decision-making process of a self-driving car
can be improved. The most dominant multi-object tracking
paradigm among state-of-the-art MOT algorithms that were
used in recent years is tracking-by-detection [2][6][7][8][9].
This MOT paradigm consists of two steps. In the first step
object detections from each frame are extracted and then, in
the second step, detections are linked to form the object
trajectories and maintain object identities across frames.
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One of the most important stages in the multiple object
tracking pipeline is by far the data association [10]. The poor
handling of the data association step can lead to bad tracking
results which can have disastrous effects. The issues that can
affect the performance of the data association can be split into
two main categories: origin and motion uncertainties. The
origin uncertainty refers to the fact that there is no prior
knowledge of how new sensor data relates to previous
measurements. On the other hand, motion uncertainty refers
to the fact that objects in the real world can exhibit multiple
motion patterns, therefore a single motion model cannot
accurately predict the position of all objects in the scene. In
order to have a good tracking solution the data association
issues have to be treated in a robust and efficient manner.

Thermal cameras have attracted a lot of interest in recent
years in the automotive field[8][9][11], due to their ability to
function during all seasons in day, or night scenarios and even
in adverse weather conditions such as snow, rain, or foggy
weather. Moreover, the usage of thermal cameras during the
night improves the reaction time of human drivers due to the
ability of the camera to detect living beings from large ranges.
Furthermore, the thermal images do not saturate in the
presence of lights from incoming vehicles, making thermal
cameras a necessary enabling technology for the automotive
field. The disadvantages of thermal images are that they
usually have a lower resolution and do not contain as much
information as color images making the data association step
for a tracking application more difficult. For solving the
above-mentioned issues, in this paper, we are proposing a
multi-object tracking and panoptic segmentation solution that
has been designed to work on thermal images. To the best of
our knowledge, this is the first work in the literature that
tackles the problem of multi-object tracking and
segmentation on thermal images. In summary, this paper
brings the following contributions:

e  We propose an original pipeline that combines instance
segmentation, semantic segmentation, and multi-object
tracking on thermal images for the task of multi-object
tracking and segmentation. The proposed framework can
output both tracked bounding boxes and masks
depending on an option from the user.

e  Furthermore, we propose a novel detection validation
scheme because object detectors are imperfect and may
provide erroneous results. Moreover, an original mask
refinement strategy is introduced for refining the
obtained instance mask results.

e We present a novel feature engineering data association
approach for dealing with the data association issue, and
an original optical flow-based multi-motion model
selector approach designed to work for multiple objects
that can have diverse motion patterns.

The proposed solution has been extensively evaluated and a

link to a short movie illustrating the results can be found at:



https://youtu.be/Bit3DkKeyK4 The rest of the paper is
organized as follows: Section 2 provides a review of the state
of the art in the field of multi-object tracking. Section 3
describes the proposed approach in detail. Section 4 presents
experimental results and a performance evaluation of our
approach. Finally, in Section 5 we conclude the paper and
discuss future work.

II. RELATED WORK

A. Multi-Object Tracking

The most common sources of information when computing
the similarity between detections in consecutive frames, in a
tracking-by-detection framework, are object appearance and
motion. There are three directions in the literature in which
the features are extracted for the data association task, each
with its advantages and disadvantages: feature engineering
approaches (or model-based), data-driven methods, and a
combination between feature engineering and data-driven.

The authors in [2] present a feature-engineered cost
function for computing the similarity between tracks and
detections. This function incorporates various features such
as object dimension and color histograms. The motion
similarity is fused with the appearance score and contains the
L2 norm computed between the position of the track and
detection. The Hungarian algorithm [12] was used to find the
best track and detection mappings. In [13] Brehar et. al.
presented a tracking approach that also combines feature-
engineered motion and appearance cues. The appearance cost
was composed of a weighted combination of multiple scores
including IoU, differences in object dimensions, and the
uniform LBP of the region of interest. The motion score
contained information from optical flow and differences in
position between track and detection. The work of Yu et. al.
[14] presents another feature engineering data association
approach that uses edge orientations transferred to the Fourier
domain to obtain a very fast object-tracking solution in the
thermal domain.

Data-driven approaches compute the similarity score
between detections and tracks using methods that involve
learning. In the work presented in [6] the authors trained a
Siamese network to distinguish between two objects in the
thermal domain using the optical flow data. To obtain more
rich information that could be used in the data association
function, the Siamese network contained multiple
convolutional layers and fused the data from shallow and
deep layers. In [7] the authors combined a spatial transformer
network with a multi-stage region proposal network (RPN).
Furthermore, they fuse features from shallow and deep layers
in the Siamese network which contain both spatial and
semantic data to obtain a more compact feature
representation. The multi-stage deep feature fusion network
was used for tracking objects in the thermal domain.

Some solutions from the literature combine feature-based
approaches with data-driven methods to obtain more robust
trackers, at the cost of increased complexity. For example, in
[9] the authors create a weighted function using multiple
engineered descriptors that capture the texture, structure, and
size of objects as well as a Siamese neural network. Another
solution presented in [15] combines engineered features with
data-driven results using gradient boosting. Features such as
dimension change, and position change, are combined with
the results of Siamese CNN that takes as input the pixel
values in normalized LUV color format as well as optical
flow components.

B. Multi-Object Tracking and Segmentation

MOTS has been introduced as an extension of MOT to
improve the data association step by incorporating richer
visual cues and overcoming some of the limitations given by
using bounding boxes. The first MOTS method that was
applied to color images was introduced by Voigtlaender et al.
[1]. The authors created a baseline method called TrackRCNN
which builds upon MaskRCNNJ[3] by integrating 3D
convolutions to treat the temporal information. In [16] the
authors propose a method that exploits instance segmentation
and bounding box detection. This approach, entitled
MOTSFusion generates segmentation masks for each
bounding box and then uses 2D optical flow to generate short
tacklets. The tracklets are then fused to obtain the precise
reconstructed 3D object motion, which in turn is used to
recover occluded objects. Yan et. al. in [17] use depth and
optical flow information together with box labels to generate
more accurate instance labels. The objects are associated using
a similarity function that uses the position of the items in the
scene. The authors use bidirectional greedy matching (from
the current to the previous frame and vice versa) for optimal
assignment instead of the Hungarian method and a Kalman
Filter to predict the position of objects in future frames. In the
ReMOTS solution[18], the authors first use a neural network
to detect objects in each frame of a video stream and then use
a combination of motion-based and appearance-based features
to perform the data association for the objects from the current
frame with the ones from the previous frame. The objects are
tracked using a combination of two tracking algorithms
(SORT[19] and DeepSORT[20]), the tracking approach is
selected based on the scenario and quality of the detections.
The instance segmentation network used in this approach is
MaskRCNNJ3].

III. PROPOSED SOLUTION

A. Pipeline and Validation Scheme

In this section, we will present a framework capable of
performing panoptic segmentation (semantic and instance
segmentation) and tracking on bounding boxes and instance
masks for each object of interest. The application runs on
images from the thermal domain and uses an additional
validation step for verifying the correctness of the detections
and object classes for the classes of interest. The validation
scheme is useful because the classification step may be
erroneous and object detectors may be subjected to errors
such as missed detections or false detections. Furthermore,
we are not tracking all objects from the scene only objects
that have specific semantic classes. Therefore, having a
validation module for the object classes and detections is very
important in identifying the objects of interest. The
application uses three different data-driven approaches for
the validation tasks and a model-based approach for the data
association and tracking part. The results from the data-
driven and model-based approaches are fused to obtain the
final results at the mask and box level. A diagram showing an
intuitive depiction of the proposed pipeline is shown in
Figure 1. It is worth noting that the focus of the paper is not
on the object detectors and the used object detectors can be
replaced in the proposed pipeline with other models from the
literature. In the proposed approach semantic segmentation
has been performed using an ERFNet[21]. This model runs
in 8ms on the GPU on input images having a resolution of
640x480 and has been trained to identify 25 semantic classes.
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Figure 1. The proposed multi-object tracking and segmentation for thermal images pipeline

A combination of two object detectors, YOLOv5[22] and
YOLACT [23], has been used for detecting instances. The
reason for using two models has to do with the validation
step. The validation aims to reduce the errors caused by
object detectors or classifiers. To validate the classification
and object detection results, at least three distinct algorithms
need to analyze the same object instances. In this paper, we
have used the output of YOLACT, YOLOvVS, and the
semantic segmentation obtained with ERFNet. The object
detector used is a YOLOv5x which was trained on the FLIR
ADAS dataset. The training set was modified such that only
the following classes of interest are detected: car, bus, truck,
person, cyclist, motorcycle, bicycle, traffic sign, and
semaphore.

One issue of the YOLACT model is that if the detection
threshold is larger than 50% the detector does not capture all
objects of interest from the scene. On the other hand, if the
threshold is below 50% there may be many erroneous
detections. To overcome this issue, we have set the
confidence threshold of the YOLACT detection low at 10%
such that many detections are generated, and then the
intersection over union (IoU) is computed between the
YOLOVS detections and the ones generated by YOLACT.
For each YOLOVS5 object, two YOLACT objects that have
the largest values for IoU are stored. For quick access, the
indices of the objects from the detectors are stored in a lookup
table, with the mention that the IoU value of the associated
items must not be below a threshold, set in our case to 0.8.

In the validation step, we verify if the semantic classes of
the YOLOVS5 correspond to the class of at least one of the two
YOLACT objects. First, the class of the object with the
largest IoU is tested then the other object’s class is tested. In
the case in which the classes correspond, it means that the
object being tested is valid. If both classes are valid, the
YOLACT detection having the largest IoU is considered for
future steps. Otherwise, if the semantic class has not been
validated, we test the object class of the YOLOVS detection
with the dominant semantic class obtained from the semantic
segmentation image in the region of interest (ROI) given by
the YOLOVS detection. So, an algorithm is implemented,
using the CUDA framework, that generates the histogram in
the ROI given by the YOLOVS detection in the semantic
segmentation image and chooses the semantic class
corresponding to the bin that has the most of the most votes
in the histogram. In case two of the semantic classes from the
three algorithms match we say that the bounding box has a
valid semantic class. When all three classes are different the
semantic class of the object is unknown.

In the last step of the algorithm, we verify if there still are
YOLACT objects that have a confidence score over 50% and
have not been previously validated using the YOLOv5
detections. In case there are such objects, their semantic class
is compared with the semantic class coming from the
semantic segmentation image taking as ROI the YOLACT
detections. In a similar manner, we also verify if there are any
YOLOVS5 objects which have not been previously associated,
and their semantic class is verified using the semantic
segmentation image. At the end of the algorithm, we obtain a
list of bounding boxes for which we have the validated
semantic classes. Furthermore, the instance masks can be
obtained from the YOLACT associations. In case there is no
instance mask for an object, the mask is generated using the
semantic segmentation image taking into account the region
of interest given by the detection bounding box and the object
semantic class. It is worth mentioning that for obtaining a
good running time all algorithms have been parallelized on
the CPU and GPU.

B. Mask Refinement

The instance masks can, at times, be imperfect containing
different artifacts or they can be incomplete not covering
entirely the object of interest. For solving these issues, a fast
refinement approach has been implemented.

The used object detector produces for each object instance
a mask image having the same dimension as the original
image. The produced images are binary and contain a value
of 1 where the object mask is localized and 0 in the rest of the
image. Since the bounding box of the object of interest is
known, the first step is to apply an opening morphological
operation using a 7x7 kernel such that artifacts that are
produced and glued to the instance masks of the objects of
interest are split. Then we perform a two-step labeling
algorithm [24] using classes of equivalence to determine the
object clusters from the region of interest given by the object
bounding box and we also compute the object area of each
cluster in this process. We have chosen a two-step labeling
approach with classes of equivalence due to its superior speed
in contrast to other methods. Finally, we select as the object
mask the cluster from the ROI which has the maximum area.

After applying the procedure mentioned above, we extend
the object masks using the semantic segmentation image
considering the dominant semantic class. A new pixel is
added to the instance mask of an object only when it has a
class equal to the dominant semantic class inside the region
of interest and it neighbors an instance mask pixel. The mask
is extended only within the ROI given by the bounding box
detection. Each object instance will have associated to it a



mask image. After the tracking algorithm, all masks will be
fused in one image using a color code associated to the unique
id of the tracked item. It is worth noting that before fusing the
masks, the objects will be ordered in ascending order based
on the distance of the object to the camera. This distance is
obtained using the algorithm presented in [13]. In Figure 2 it
can be observed that the object detector has generated an
erroneous instance mask and multiple artifacts for the object
with pink. By using the proposed refinement approach, the
unwanted artifacts are removed, and the mask is corrected
with the help of the semantic segmentation image.

By annotating more images some erroneous situations can
be avoided, however, it is impossible to cover all scenarios
that may appear in the driving environment and a refinement
procedure ensures more robust results even in difficult
situations. Moreover, it is not common for erroneous results
to appear however if they appear it is important to have a
strategy to mitigate the effects of a bad instance mask.

Figure 2. In the left-hand side the erroneous instance mask. In the
right-hand side the corrected instance masks are displayed

C. Data Association

The tracking solution presented in this paper follows a
tracking-by-detection framework, where the cost function
used for associating tracks and detections uses an appearance
and a motion score. The proposed tracking approach has been
designed to consume few resources having the possibility to
run on embedded devices. The input of the tracking module
consists of a set of detections which include a set of features
extracted and the instance masks for each object which will
be used in the data association process. The output of the
tracking module is a set of tracks that have a unique id and a
filtered trajectory. The output tracks are given at both
bounding box and mask levels. The components of the
proposed method include clutter removal, similarity cost
computation, data association between track and detection,
tracking update, and refinement. A validation gate around the
predicted position was used for reducing the number of
associations and in consequence improving the running time.
Only the detections that fall within the validation gate of a
track are considered in the data association process.

In this paper, we have implemented a feature-engineered
data association approach for computing the similarity score
between tracks and detections. We build upon the state of the
art by creating a similarity score that is computed as a
weighted function having multiple terms. By using a model-
based approach for data association, the running time of the
solution is improved and we are able to see the contribution
of each feature used and come up with a solution in case some
of the results are not as expected.

The appearance score offers the tracker the possibility to
distinguish between objects using visual features. Moreover,
the appearance of the tracks is able to adapt based on the
changes that can appear to objects due to different
illumination, deformations, or point of view changes.

The appearance score between track i and detection j contains
several visual features and the equation of the appearance
score can be seen in (1). The value of a(i,j) is minimal for
the same object instance.

a(i,j) = % + woy (i, ) + wat (i, ) + wup(i,j) +
(1 — miou(i, j))wg + web (1)

The meaning of the parameters is the following: ¢
represents a part-based orientation cost, y is a semantic
segmentation cost, T is the overlapping cost, p is the uniform
local binary pattern (ULBP) cost, u and o are the mean and
variance costs, 6 is a dimension cost, § and w represent the
classification probability and miou is the mask intersection
over the union. The values of the weights have been
determined experimentally. The scores y ,t,u,0,and 6 are
computed by using the L2 norm between the value contained
in the track and the one contained in the detection, while miou
is the mask intersection over union computed between the
instance masks of the track and detection. Features such as
ULBP, object mean and variance are computed similarly to
the approach presented in [13] with the mention that the cost
is computed only in the region given by the instance
segmentation mask, not the whole bounding box.

The score that includes the classification probability is
computed using the L2 norm between the classification
probability stored in the track (of the previous detection) and
one of the current detections. The value of w is 1 when the
semantic classes of the track and detection match and has a
high value otherwise (in our case the value is 2000).

For incorporating context information, we include a
histogram of the semantic classes in the ROI given by the
object bounding box. We reason that the context information
for the same object instance does not change drastically
between frames, and the difference between the histogram
values of the track and detection is minimal for the same
object. The semantic cost between a track and detection is
computed as in equation (2), where y (x) is the value from the
histogram of the bin x and 25 is the number of classes used.

v = XiZo lyvi(k) — y; (k)| 2)

Even though thermal radiation does not depend on any
external light source, the combination of the pedestrian
clothes or even some materials and the thermal radiation
leads to unique textural and structural patterns that can be
exploited by data association functions. Furthermore, even
though the environment in which the thermal images are
captured plays an important role in the apparent temperature
of the target, due to the fact that the framerate of the camera
is sufficiently high and the characteristics of each track are
updated at each frame the multi-object tracking performance
is not affected. We observe that object texture does not
change very much between frames. It is therefore a good
feature to use when measuring the correlation between tracks
and detections. We aimed to capture the texture of each
object, even in partial occlusion situations, by combining a
grid-based matching technique with edge orientations, using
multiple histograms matching between the i track and j*
detection. In the first step, we compute the magnitude G and



orientation @ of the gradient as presented in (3) using the
image derivatives I, and I, which were obtained using a
Sobel descriptor.

|G| = I+ 13; 9=arctan(;—y) 3)

X

We then divide the obtained orientation by a factor of 18 to
have at most 20 orientations values. The bounding box
corresponding to the object of interest is then split into a 3x3
grid and for each cell of the grid, we compute an orientation
histogram that has 20 bins. Each pixel that is in a cell, casts a
vote in the histogram that corresponds to that grid cell
provided that in the instance mask of the object in that
specific position there is a value of 1, meaning there is a mask
in that position. The voting is done using the gradient
magnitude. The similarity for a grid cell is computed as
shown in equation (4) and (5), where @(i, ), represents the
similarity between a grid cell x of track i and detection j, € is
a threshold value which was determined experimentally and
has the value 0.15, while 9(i, j) is the final expression for all
grid cells. The value of 9(i, j) is minimal if the track and
detection belong to the same object instance.

1 ( 20 IHi(k)_Hj(k)I)
o, )x =7 \Z=0 20 <e 4)
0, otherwise
.o w-
90, ) = —— (5)
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The motion score, m(i,j), contains the difference in
position, computed using the Euclidean distance, between the
location of track i and the position of the detection j, with
respect to the center position of the object expressed in 2D
coordinates. The final similarity score between a track and a
detection is composed by summing the appearance and
motion scores. After computing the similarity scores between
tracks and detections, an optimal assignment algorithm is
used [12] for matching each track with its corresponding
detection. After the matching has been done, each track is
updated using the information from the detection and a
filtering approach is employed to smooth the object
trajectory.

D. Optical Flow based Model Selector

Objects in the real world can have different motion
behaviors, therefore by using a single motion model we
cannot adequately capture the position of road users. In this
section we will present an original approach that combines
multiple motion models using different strategies in order to
accurately predict the position of the objects of interest.

The general idea of the proposed approach is to run two
filters in parallel and select the states from the filter that is
best suited for a certain object of interest by using information
from the optical flow. The first filter is a Kalman Filter (KF)
that uses a constant velocity motion model that has been
designed to capture static objects and objects that are moving
slowly while the second filter is an interacting motion model
(IMM) [32] filter that combines constant velocity and a
constant acceleration motion model. The interacting motion
model filter has been designed to capture the dynamic motion
of the maneuvering targets.

When designing the IMM filter a set of modes are first
selected for describing the maneuvering of the target and

there is an assumption that the object is always in one of these
modes. It is worth mentioning that the running time increases
with the number of modes. To obtain a real time performance
in our solution we selected two modes, which can be
described using a constant velocity (CV) and a constant
acceleration (CA) motion model. Each mode has equal
probability when a track is first initialized. Secondly, we
model the transition between modes using a Markov chain
that is represented using the transition probability matrix II,
that was identified experimentally (6).

0.97 0.03

~ lo.o6 0.94] ©

Using the transition probability matrix, the new mode
probabilities can be computed at each iteration using (7),
where m is the number of modes, u represents the mode
probabilities, and ¢ is the new mode probability.

C_j = ?l_ol.uini,j 'j = O,m -1 (7)

Since the state vector of the two used modes has different
dimensionality (the CV model has 4 values in the state vector
while the CA model has 6 values), we have extracted only the
4 common states from the two models and we operate with
them. It is worth noting that even the update of the states and
covariance matrix will be done to the values that involve the
four elements (position on x and y and velocity on x and y
dimensions). Then the mixing probabilities or mixing
weights are computed as in (8).

_ Myju

)
i

Wi,j i,j=0,m—1 (8)

After each KF from the model bank performs an update step
obtaining a mean and covariance, a new mean and covariance
will be computed for each filter using the mixing probabilities
as a weighted sum of the means and covariances of each filter.
The unlikely filter will receive a strong adjustment by the
likely filter and the likely filter will receive only a small
adjustment, process described in (9) (10).

X = Xkt wi i )

P =Yt w (i —5) (i —%5) +P]  (10)

The model probability at time stamp k is updated for each
mode using the mode probability at the previous time stamp
and the likelihood of each filter as shown in (11).

i i
Ukik—1Llk
W j’

X Mi-1Lx

uk = i,j=0,m—1 (11)

The final state estimation of our IMM uses a mixed estimate
from each Kalman Filter as presented in (12) and (13), where
xL and P} represent the predicted state and covariance for
each filter from the filter bank at time stamp k.

X = X" uixl, (12)
_ . —_— — S— — T —
P =3 wil(xp — %) (xf — %) + P (13)



The measurement covariance matrix used with the models
from the model bank of the IMM filter have a different value
depending on the object class. We are using 4 different
measurement covariance matrices for the classes: car,
pedestrian, rider and other. Additionally, to the IMM filter
that uses two motion models, a KF that uses a constant
velocity model is also included to the object tracker. The KF
with the CV model uses only one measurement covariance
matrix and has small values in the process noise covariance
matrix. There are situations in which an IMM filer may
perform poorer than a KF with a constant velocity model, and
for this reason selecting the appropriate filter depending on
the situation is necessary. Some of these situations include
scenarios where objects are moving slowly (for example
when the vehicle is in a parking lot), when the vehicle is
moving on straight roads with respect to the ego vehicle
inside the city or when a self-driving car is navigating in an
environment with a lot of measurement noise such as in a
heavy fog situation or with a malfunctioning sensor. For
addressing these issues, a method of selecting the correct
filter depending on the situation has been implemented by
using the optical flow information.

Sparse optical flow may not provide reliable results from a
qualitative point of view, while dense optical flow can be
demanding form a computational side and may provide
erroneous results on unstructured surfaces. Even though the
individual trajectories obtained from the optical flow may be
erroneous, by aggregating the results from multiple
trajectories inside a region of interest we can obtain clues
regarding the motion of objects in successive frames. The
optical flow algorithm presented in [25] has been applied and
several steps were performed for obtaining the length of the
aggregated flow trajectory for an all objects of interest. To
store the optical flow values 36 bins have been created,
where, using the angle data, each optical flow vector casts a
vote inside a bin. The mean values for the optical flow
magnitude and angle are computed for each bin, after all flow

Figure 3. Multiple tracked pedestrians and
vehicles inside a city.

vectors have voted inside the corresponding bins. Finally, the
mean magnitude and angle corresponding to the bin where
the majority of the votes were cast are selected as the main
flow parameters for the region of interest. To find the distance
corresponding to the identified flow parameters two points
are needed. The first point P1(x4, y;) is located in the center
of the object of interest, and the second point P2(x,, y,) can
be computed using the point P1 together with the found
length and angle as shown in (14) and (15).

X, = x1 + length X cos (angle X %0) (14)
Yy, =y, + length X sin (angle X %0) 1%5)

The ratio between the Euclidean distance between the two
points P1 and P2 and the object width gives us an indication
regarding how much the object has moved between frames.
If the ratio is sub unitary it shows that the object has not
moved so much so the Kalman filter with constant velocity
will be used, otherwise the IMM filter will be used. The
tracked objects are sorted using the depth to the camera
obtained using the algorithm presented in [3], and then all
tracks (masks and bounding boxes) are projected on the
image obtaining the final results as presented in Figures 3 and
4. A track management approach is used to handle objects
that enter and exit the field of view, removal of the old tracks
that have not been updated for a long time etc. A variety of
track management approaches exist in the literature
[2][9][13] and we will not elaborate on this aspect.

Figure 4. Tracked Bounding boxes and masks
for objects inside a parking lot.

IV. EXPERIMENTAL RESULTS

The proposed solution has been implemented in C++ and
the used neural networks models have been trained in Pytorch
and ported in Libtorch framework for obtaining C++
compatibility. OpenCV has been used for drawing, display
and fusing the results in one image. CUDA and OpenMP



have been used for accelerating the speed of the proposed
approach in order to obtain a real time performance. The
solution was developed on an Intel Core 17-11370H processor
having a 3.3 Ghz frequency and an Nvidia GForce RTX 3070
GPU.AII datasets that were used for training the used neural
network models from the proposed solution were split in
three subsets 70% for training, 10% for cross-validation and
20% for testing. The training of the ERFNet network has been
done on a thermal semantic segmentation dataset having
more than 3500 images and 25 semantic classes. The
following augmentation methods were used: Translations,
Horizontal Flip, Gaussian Noise, Gaussian Blur and Gamma
Contrast. The ERFNet was trained for 200 epochs, 100 for
encoder and 100 for decoder using a learning rate of 5e-4 and
a batch size of 4. The IoU obtained on the test set is 62.03%.
It is worth mentioning that a segmentation using
FastSCNN[26] neural net was also tested, due to the high
speed of the model, however it was not used due to the low
IoU 0f 26.4%. YOLOVS has been trained on the FLIR ADAS
thermal dataset and fine-tuned on the CrosIR dataset [13]
obtaining a 55.04% mAP. YOLACT uses a Resnet101-FPN
and has been trained on the COCO dataset and then fine-
tuned by training on 2000 thermal image detections that also
had instance segmentations. The same augmentation
techniques that were used when training the semantic
segmentation model have also been used when training the
YOLACT model. The instance and semantic segmentation
datasets will be made publicly available in a future paper. The
YOLACT with the proposed refinement approach was tested
on 2000 thermal images annotated at instance level obtaining
a mAP of 34.6% in contrast to the method that did not use the
refinement that obtained a 31.2% mean average precision.
The tracking performance was tested on the PTB-TIR
dataset [27] since there is no available dataset for tracking and
segmentation in thermal images. However, since the
proposed solution is also capable of outputting bounding
boxes we are able to test the tracking performance on the
PTB-TIR dataset. This dataset contains multiple sequences
with thermal images each having manual annotations. The
benchmark compares the performance of tracking approaches
with respect to two metrics. The center location error (CLE)
is one of the metrics which is described as being the average
Euclidean distance between the ground truth position and the
object position. A track is considered successful on the PTB-
TIR benchmark, at a given frame, if the CLE is within a 20-
pixel threshold. Another metric used on the PTB-TIR
benchmark is the overlap score which measures the overlap
ration between the bounding box area of the tracked object
and ground truth. If a track has an overlap score that is above
a threshold it is considered successful at a given frame.
Different overlapping thresholds varying from 0 to 1 are used
for ranking different tracking methods on the benchmark.
Table 1. Results on the PTB-TIR dataset

Method Tracking Success Tracking Precision
Score Score.
MDNet[28] 63.5% 79.3%
Proposed 63.1% 82.6%
DeepSTRCF[29] 62.7% 79.8%
VITAL [30] 62.2% 81.0%
TADT [31] 58.8% 73.4%
MLSSNet[8] 51.4% 70.6%

In Figure 5 the precision and success plots obtained on the
PTB-TIR benchmark are presented.
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Figure 5. Graphical representations of the evaluation on the
PTB-TIR dataset.

The evaluation has been done only on the sequences that
were acquired from a vehicle mounted camera because the
current solution is targeting intelligent vehicle applications.
Moreover, only ten methods were displayed on the plots in
order to keep the plots readable. For better readability the
most relevant values from the two plots are also presented in
Table 1.

The prediction step of the proposed solution has also been
tested using only the KF with CV motion model and the IMM
filter with the CV/CA motion models obtaining a precision of
80.5% and 78.7% respectively. The association function
remained the same for both of the cases mentioned above.

In contrast to some of the tracking methods presented in the
PTB-TIR benchmark, the proposed solution is able to track
multiple classes of objects not just pedestrians and is able to
perform multi object tracking not just single object tracking.
The running time of the tracking approach is 8 ms on the CPU.
In Table II the running time of the proposed method on the
intel core I7 on which it was developed and on a Nvidia Jetson
Tegra TX2 are presented.

Table II. Running time of the solution on different platforms

Platform Overall Average

Running Time

Intel Core 17-11370H processor having 100 ms
a 3.3 Ghz frequency and an Nvidia
GForce RTX 3070 GPU
Jetson Tegra TX2 290 ms




V. CONCLUSIONS

In this paper, we have presented a novel multi-object
tracking segmentation and validation pipeline that is able to
track objects in thermal images at bounding box and instance
mask levels. Object detections and their semantic classes are
first validated using three data-driven approaches and are
then passed to the multi-object tracker. Moreover, erroneous
object instance masks are corrected using a novel refinement
approach. The presented multi-object tracker uses an original
model-based data association function that incorporates
multiple terms in a weighted manner. The association
function offers good results because it compares tracking
features at the instance mask level not just at the bounding
box level. Chiefly among the terms of the association
function is an original grid-based multi-histogram of
orientations matching approach that captures the thermal
object’s texture structure and a semantic segmentation
histogram that captures context. Since objects in the real
world can have multiple motion patterns, we presented a
novel optical flow-based multi-motion model selector that
can be used to choose the most suitable motion model for
each object such that future positions are predicted more
accurately. The proposed solution has been evaluated on the
PTB-TIR benchmark and the running speed of the system has
been tested on different computing platforms.
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