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Abstract—In this paper we present a novel multi-object 
tracking and segmentation approach that works on thermal 
images and is able to track objects at bounding-box and instance 
mask levels. Furthermore, we present a novel object validation 
module, which is necessary because only specific classes of 
objects are tracked and classifiers and detectors can be 
subjected to errors such as misclassifications, false detections, 
erroneous instance masks and missed detections. One of the key 
difficulties in multi-target tracking is the unknown 
correspondences between measurements and targets also known 
as the data association problem. To address this issue the 
proposed object tracker uses a feature engineering data 
association approach that exploits multiple features which 
include structure, appearance, size, context, and motion in the 
region given by the instance mask. Moreover, an original 
strategy has been designed for dealing with motion uncertainty, 
based on optical flow and multiple motion models to better 
predict the future position of objects in the scene. The proposed 
method runs in  real-time and has been evaluated  on an  
international thermal tracking benchmark showing competitive 
results. 

Keywords—MOTS, data association, motion models, semantic 
segmentation, instance segmentation, thermal imaging 

I. INTRODUCTION

    Multi-object tracking and segmentation (MOTS) [1] is a 
challenging problem in computer vision, and has a wide range 
of applications in fields such as surveillance, advanced 
driving assistance systems, autonomous driving, and 
robotics. The goal of multi-object tracking (MOT) [2] is to 
accurately reidentify objects bounding boxes in successive 
frames and estimate and filter their trajectories, while object 
segmentation aims to identify and separate individual objects 
within the image and provide a semantic class for each object. 
MOTS builds upon the tracking task by using instance 
segmentation masks[3] instead of bounding boxes when 
creating the object trajectories thus extending the precision to 
the pixel level. Furthermore, the instance segmentation 
module can provide more precise information about the 
position of objects in the scene even in occluded situations, 
and the semantic segmentation [4] module can provide more 
context information which can aid the data-association 
process from the tracking component. The segmentation and 
tracking tasks are intertwined in real-world applications [5] 
and by exploiting their synergies the tracking performance 
and the overall decision-making process of a self-driving car 
can be improved. The most dominant multi-object tracking 
paradigm among state-of-the-art MOT algorithms that were 
used in recent years is tracking-by-detection [2][6][7][8][9]. 
This MOT paradigm consists of two steps. In the first step 
object detections from each frame are extracted and then, in 
the second step, detections are linked to form the object 
trajectories and maintain object identities across frames. 

    One of the most important stages in the multiple object 
tracking pipeline is by far the data association [10]. The poor 
handling of the data association step can lead to bad tracking 
results which can have disastrous effects. The issues that can 
affect the performance of the data association can be split into 
two main categories: origin and motion uncertainties. The 
origin uncertainty refers to the fact that there is no prior 
knowledge of how new sensor data relates to previous 
measurements. On the other hand, motion uncertainty refers 
to the fact that objects in the real world can exhibit multiple 
motion patterns, therefore a single motion model cannot 
accurately predict the position of all objects in the scene. In 
order to have a good tracking solution the data association 
issues have to be treated in a robust and efficient manner.  
   Thermal cameras have attracted a lot of interest in recent 
years in the automotive field[8][9][11], due to their ability to 
function during all seasons in day, or night scenarios and even 
in adverse weather conditions such as snow, rain, or foggy 
weather. Moreover, the usage of thermal cameras during the 
night improves the reaction time of human drivers due to the 
ability of the camera to detect living beings from large ranges. 
Furthermore, the thermal images do not saturate in the 
presence of lights from incoming vehicles, making thermal 
cameras a necessary enabling technology for the automotive 
field. The disadvantages of thermal images are that they 
usually have a lower resolution and do not contain as much 
information as color images making the data association step 
for a tracking application more difficult. For solving the 
above-mentioned issues, in this paper, we are proposing a 
multi-object tracking and panoptic segmentation solution that 
has been designed to work on thermal images. To the best of 
our knowledge, this is the first work in the literature that 
tackles the problem of multi-object tracking and 
segmentation on thermal images.  In summary, this paper 
brings the following contributions: 
 We propose an original pipeline that combines instance

segmentation, semantic segmentation, and multi-object
tracking on thermal images for the task of multi-object
tracking and segmentation. The proposed framework can
output both tracked bounding boxes and masks
depending on an option from the user.

 Furthermore, we propose a novel detection validation
scheme because object detectors are imperfect and may
provide erroneous results. Moreover, an original mask
refinement strategy is introduced for refining the
obtained instance mask results.

 We present a novel feature engineering data association
approach for dealing with the data association issue, and
an original optical flow-based multi-motion model
selector approach designed to work for multiple objects
that can have diverse motion patterns.

 The proposed solution has been extensively evaluated and a 
link to a short movie illustrating the results can be found at: 
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https://youtu.be/Bit3DkKeyK4 The rest of the paper is 
organized as follows: Section 2 provides a review of the state 
of the art in the field of multi-object tracking. Section 3 
describes the proposed approach in detail. Section 4 presents 
experimental results and a performance evaluation of our 
approach. Finally, in Section 5 we conclude the paper and 
discuss future work. 

II. RELATED WORK 

A. Multi-Object Tracking 

   The most common sources of information when computing 
the similarity between detections in consecutive frames, in a 
tracking-by-detection framework, are object appearance and 
motion.  There are three directions in the literature in which 
the features are extracted for the data association task, each 
with its advantages and disadvantages: feature engineering 
approaches (or model-based), data-driven methods, and a 
combination between feature engineering and data-driven.  
      The authors in [2] present a feature-engineered cost 
function for computing the similarity between tracks and 
detections. This function incorporates various features such 
as object dimension and color histograms. The motion 
similarity is fused with the appearance score and contains the 
L2 norm computed between the position of the track and 
detection. The Hungarian algorithm [12] was used to find the 
best track and detection mappings. In [13] Brehar et. al. 
presented a tracking approach that also combines feature-
engineered motion and appearance cues. The appearance cost 
was composed of a weighted combination of multiple scores 
including IoU, differences in object dimensions, and the 
uniform LBP of the region of interest. The motion score 
contained information from optical flow and differences in 
position between track and detection. The work of Yu et. al. 
[14] presents another feature engineering data association 
approach that uses edge orientations transferred to the Fourier 
domain to obtain a very fast object-tracking solution in the 
thermal domain.      
    Data-driven approaches compute the similarity score 
between detections and tracks using methods that involve 
learning. In the work presented in [6] the authors trained a 
Siamese network to distinguish between two objects in the 
thermal domain using the optical flow data. To obtain more 
rich information that could be used in the data association 
function, the Siamese network contained multiple 
convolutional layers and fused the data from shallow and 
deep layers. In [7] the authors combined a spatial transformer 
network with a multi-stage region proposal network (RPN). 
Furthermore, they fuse features from shallow and deep layers 
in the Siamese network which contain both spatial and 
semantic data to obtain a more compact feature 
representation. The multi-stage deep feature fusion network 
was used for tracking objects in the thermal domain.  
   Some solutions from the literature combine feature-based 
approaches with data-driven methods to obtain more robust 
trackers, at the cost of increased complexity. For example, in 
[9] the authors create a weighted function using multiple 
engineered descriptors that capture the texture, structure, and 
size of objects as well as a Siamese neural network. Another 
solution presented in [15] combines engineered features with 
data-driven results using gradient boosting.  Features such as 
dimension change, and position change, are combined with 
the results of Siamese CNN that takes as input the pixel 
values in normalized LUV color format as well as optical 
flow components.  

B. Multi-Object Tracking and Segmentation 

MOTS has been introduced as an extension of MOT to 
improve the data association step by incorporating richer 
visual cues and overcoming some of the limitations given by 
using bounding boxes. The first MOTS method that was 
applied to color images was introduced by Voigtlaender et al. 
[1]. The authors created a baseline method called TrackRCNN 
which builds upon MaskRCNN[3] by integrating 3D 
convolutions to treat the temporal information. In [16] the 
authors propose a method that exploits instance segmentation 
and bounding box detection. This approach, entitled 
MOTSFusion generates segmentation masks for each 
bounding box and then uses 2D optical flow to generate short 
tacklets. The tracklets are then fused to obtain the precise 
reconstructed 3D object motion, which in turn is used to 
recover occluded objects. Yan et. al. in [17] use depth and 
optical flow information together with box labels to generate 
more accurate instance labels. The objects are associated using 
a similarity function that uses the position of the items in the 
scene. The authors use bidirectional greedy matching (from 
the current to the previous frame and vice versa) for optimal 
assignment instead of the Hungarian method and a Kalman 
Filter to predict the position of objects in future frames. In the 
ReMOTS solution[18], the authors first use a neural network 
to detect objects in each frame of a video stream and then use 
a combination of motion-based and appearance-based features 
to perform the data association for the objects from the current 
frame with the ones from the previous frame. The objects are 
tracked using a combination of two tracking algorithms 
(SORT[19] and DeepSORT[20]), the tracking approach is 
selected based on the scenario and quality of the detections. 
The instance segmentation network used in this approach is 
MaskRCNN[3]. 

III. PROPOSED SOLUTION 

A. Pipeline and Validation Scheme 

    In this section, we will present a framework capable of 
performing panoptic segmentation (semantic and instance 
segmentation) and tracking on bounding boxes and instance 
masks for each object of interest. The application runs on 
images from the thermal domain and uses an additional 
validation step for verifying the correctness of the detections 
and object classes for the classes of interest. The validation 
scheme is useful because the classification step may be 
erroneous and object detectors may be subjected to errors 
such as missed detections or false detections. Furthermore, 
we are not tracking all objects from the scene only objects 
that have specific semantic classes. Therefore, having a 
validation module for the object classes and detections is very 
important in identifying the objects of interest. The 
application uses three different data-driven approaches for 
the validation tasks and a model-based approach for the data 
association and tracking part. The results from the data-
driven and model-based approaches are fused to obtain the 
final results at the mask and box level. A diagram showing an 
intuitive depiction of the proposed pipeline is shown in 
Figure 1. It is worth noting that the focus of the paper is not 
on the object detectors and the used object detectors can be 
replaced in the proposed pipeline with other models from the 
literature. In the proposed approach semantic segmentation 
has been performed using an ERFNet[21]. This model runs 
in 8ms on the GPU on input images having a resolution of 
640x480 and has been trained to identify 25 semantic classes.  
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A combination of two object detectors, YOLOv5[22] and 
YOLACT [23], has been used for detecting instances. The 
reason for using two models has to do with the validation 
step. The validation aims to reduce the errors caused by 
object detectors or classifiers. To validate the classification 
and object detection results, at least three distinct algorithms 
need to analyze the same object instances. In this paper, we 
have used the output of YOLACT, YOLOv5, and the 
semantic segmentation obtained with ERFNet. The object 
detector used is a YOLOv5x which was trained on the FLIR 
ADAS dataset. The training set was modified such that only 
the following classes of interest are detected: car, bus, truck, 
person, cyclist, motorcycle, bicycle, traffic sign, and 
semaphore. 
  One issue of the YOLACT model is that if the detection 
threshold is larger than 50% the detector does not capture all 
objects of interest from the scene. On the other hand, if the 
threshold is below 50% there may be many erroneous 
detections. To overcome this issue, we have set the 
confidence threshold of the YOLACT detection low at 10% 
such that many detections are generated, and then the 
intersection over union (IoU) is computed between the 
YOLOv5 detections and the ones generated by YOLACT. 
For each YOLOv5 object, two YOLACT objects that have 
the largest values for IoU are stored. For quick access, the 
indices of the objects from the detectors are stored in a lookup 
table, with the mention that the IoU value of the associated 
items must not be below a threshold, set in our case to 0.8. 
     In the validation step, we verify if the semantic classes of 
the YOLOv5 correspond to the class of at least one of the two 
YOLACT objects. First, the class of the object with the 
largest IoU is tested then the other object’s class is tested. In 
the case in which the classes correspond, it means that the 
object being tested is valid. If both classes are valid, the 
YOLACT detection having the largest IoU is considered for 
future steps. Otherwise, if the semantic class has not been 
validated, we test the object class of the YOLOv5 detection 
with the dominant semantic class obtained from the semantic 
segmentation image in the region of interest (ROI) given by 
the YOLOv5 detection.  So, an algorithm is implemented, 
using the CUDA framework, that generates the histogram in 
the ROI given by the YOLOv5 detection in the semantic 
segmentation image and chooses the semantic class 
corresponding to the bin that has the most of the most votes 
in the histogram. In case two of the semantic classes from the 
three algorithms match we say that the bounding box has a 
valid semantic class. When all three classes are different the 
semantic class of the object is unknown.  

    In the last step of the algorithm, we verify if there still are 
YOLACT objects that have a confidence score over 50% and 
have not been previously validated using the YOLOv5 
detections. In case there are such objects, their semantic class 
is compared with the semantic class coming from the 
semantic segmentation image taking as ROI the YOLACT 
detections. In a similar manner, we also verify if there are any 
YOLOv5 objects which have not been previously associated, 
and their semantic class is verified using the semantic 
segmentation image. At the end of the algorithm, we obtain a 
list of bounding boxes for which we have the validated 
semantic classes. Furthermore, the instance masks can be 
obtained from the YOLACT associations. In case there is no 
instance mask for an object, the mask is generated using the 
semantic segmentation image taking into account the region 
of interest given by the detection bounding box and the object 
semantic class. It is worth mentioning that for obtaining a 
good running time all algorithms have been parallelized on 
the CPU and GPU. 

B. Mask Refinement 

     The instance masks can, at times, be imperfect containing 
different artifacts or they can be incomplete not covering 
entirely the object of interest.  For solving these issues, a fast 
refinement approach has been implemented.  
   The used object detector produces for each object instance 
a mask image having the same dimension as the original 
image. The produced images are binary and contain a value 
of 1 where the object mask is localized and 0 in the rest of the 
image. Since the bounding box of the object of interest is 
known, the first step is to apply an opening morphological 
operation using a 7x7 kernel such that artifacts that are 
produced and glued to the instance masks of the objects of 
interest are split. Then we perform a two-step labeling 
algorithm [24] using classes of equivalence to determine the 
object clusters from the region of interest given by the object 
bounding box and we also compute the object area of each 
cluster in this process. We have chosen a two-step labeling 
approach with classes of equivalence due to its superior speed 
in contrast to other methods. Finally, we select as the object 
mask the cluster from the ROI which has the maximum area.  
    After applying the procedure mentioned above, we extend 
the object masks using the semantic segmentation image 
considering the dominant semantic class. A new pixel is 
added to the instance mask of an object only when it has a 
class equal to the dominant semantic class inside the region 
of interest and it neighbors an instance mask pixel. The mask 
is extended only within the ROI given by the bounding box 
detection. Each object instance will have associated to it a 

 

Figure 1. The proposed multi-object tracking and segmentation for thermal images pipeline 
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mask image. After the tracking algorithm, all masks will be 
fused in one image using a color code associated to the unique 
id of the tracked item. It is worth noting that before fusing the 
masks, the objects will be ordered in ascending order based 
on the distance of the object to the camera. This distance is 
obtained using the algorithm presented in [13]. In Figure 2 it 
can be observed that the object detector has generated an 
erroneous instance mask and multiple artifacts for the object 
with pink. By using the proposed refinement approach, the 
unwanted artifacts are removed, and the mask is corrected 
with the help of the semantic segmentation image.  
  By annotating more images some erroneous situations can 
be avoided, however, it is impossible to cover all scenarios 
that may appear in the driving environment and a refinement 
procedure ensures more robust results even in difficult 
situations. Moreover, it is not common for erroneous results 
to appear however if they appear it is important to have a 
strategy to mitigate the effects of a bad instance mask. 

C. Data Association 

    The tracking solution presented in this paper follows a 
tracking-by-detection framework, where the cost function 
used for associating tracks and detections uses an appearance 
and a motion score. The proposed tracking approach has been 
designed to consume few resources having the possibility to 
run on embedded devices. The input of the tracking module 
consists of a set of detections which include a set of features 
extracted and the instance masks for each object which will 
be used in the data association process. The output of the 
tracking module is a set of tracks that have a unique id and a 
filtered trajectory. The output tracks are given at both 
bounding box and mask levels. The components of the 
proposed method include clutter removal, similarity cost 
computation, data association between track and detection, 
tracking update, and refinement. A validation gate around the 
predicted position was used for reducing the number of 
associations and in consequence improving the running time. 
Only the detections that fall within the validation gate of a 
track are considered in the data association process.  
   In this paper, we have implemented a feature-engineered 
data association approach for computing the similarity score 
between tracks and detections. We build upon the state of the 
art by creating a similarity score that is computed as a 
weighted function having multiple terms. By using a model-
based approach for data association, the running time of the 
solution is improved and we are able to see the contribution 
of each feature used and come up with a solution in case some 
of the results are not as expected. 
    The appearance score offers the tracker the possibility to 
distinguish between objects using visual features. Moreover, 
the appearance of the tracks is able to adapt based on the 
changes that can appear to objects due to different 
illumination, deformations, or point of view changes.  

The appearance score between track i and detection j contains 
several visual features and the equation of the appearance 
score can be seen in (1). The value of 𝛼ሺ𝑖, 𝑗ሻ is minimal for 
the same object instance. 

𝛼ሺ𝑖, 𝑗ሻ ൌ
௪భ

ణሺ௜,௝ሻ
൅ 𝑤ଶ𝛾ሺ𝑖, 𝑗ሻ ൅ 𝑤ଷ𝜏ሺ𝑖, 𝑗ሻ ൅ 𝑤ସ𝜌ሺ𝑖, 𝑗ሻ ൅

                  𝑤ହ𝜇ሺ𝑖, 𝑗ሻ ൅ 𝑤଺𝜎ሺ𝑖, 𝑗ሻ ൅ 𝑤଻𝛿ሺ𝑖, 𝑗ሻ𝜔ሺ𝑖, 𝑗ሻ ൅
                 ሺ1 െ 𝑚𝑖𝑜𝑢ሺ𝑖, 𝑗ሻሻ𝑤଼ ൅ 𝑤ଽ𝜃                                 (1) 

   The meaning of the parameters is the following: 𝜗 
represents a part-based orientation cost, 𝛾  is a semantic 
segmentation cost, 𝜏 is the overlapping cost, 𝜌 is the uniform 
local binary pattern (ULBP) cost, 𝜇 and 𝜎 are the mean and 
variance costs, 𝜃 is a dimension cost, 𝛿 and 𝜔 represent the 
classification probability and 𝑚𝑖𝑜𝑢 is the mask intersection 
over the union. The values of the weights have been 
determined experimentally. The scores 𝛾 , 𝜏 , 𝜇 , 𝜎 , 𝑎𝑛𝑑 𝜃 are 
computed by using the L2 norm between the value contained 
in the track and the one contained in the detection, while miou 
is the mask intersection over union computed between the 
instance masks of the track and detection. Features such as 
ULBP, object mean and variance are computed similarly to 
the approach presented in [13] with the mention that the cost 
is computed only in the region given by the instance 
segmentation mask, not the whole bounding box. 
   The score that includes the classification probability is 
computed using the L2 norm between the classification 
probability stored in the track (of the previous detection) and 
one of the current detections. The value of 𝜔 is 1 when the 
semantic classes of the track and detection match and has a 
high value otherwise (in our case the value is 2000).  
    For incorporating context information, we include a 
histogram of the semantic classes in the ROI given by the 
object bounding box. We reason that the context information 
for the same object instance does not change drastically 
between frames, and the difference between the histogram 
values of the track and detection is minimal for the same 
object. The semantic cost between a track and detection is 
computed as in equation (2), where 𝛾ሺ𝑥ሻ is the value from the 
histogram of the bin x and 25 is the number of classes used.  

                       𝛾ሺ𝑖, 𝑗ሻ ൌ ∑ |𝛾௜ሺ𝑘ሻ െ 𝛾௝ሺ𝑘ሻ|ଶହ
௞ୀ଴       (2) 

    Even though thermal radiation does not depend on any 
external light source, the combination of the pedestrian 
clothes or even some materials and the thermal radiation 
leads to unique textural and structural patterns that can be 
exploited by data association functions. Furthermore, even 
though the environment in which the thermal images are 
captured plays an important role in the apparent temperature 
of the target, due to the fact that the framerate of the camera 
is sufficiently high and the characteristics of each track are 
updated at each frame the multi-object tracking performance 
is not affected. We observe that object texture does not 
change very much between frames. It is therefore a good 
feature to use when measuring the correlation between tracks 
and detections. We aimed to capture the texture of each 
object, even in partial occlusion situations, by combining a 
grid-based matching technique with edge orientations, using 
multiple histograms matching between the ith track and jth 

detection. In the first step, we compute the magnitude 𝐺 and 

 

Figure 2. In the left-hand side the erroneous instance mask. In the 
right-hand side the corrected instance masks are displayed   
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orientation 𝜃  of the gradient as presented in (3) using the 
image derivatives 𝐼௫ 𝑎𝑛𝑑 𝐼௬ , which were obtained using a 
Sobel descriptor. 

                |𝐺| ൌ ඥ𝐼௫
ଶ ൅ 𝐼௬

ଶ;  𝜃 ൌ arctan ቀ
ூ೤

ூೣ
ቁ       (3) 

   We then divide the obtained orientation by a factor of 18 to 
have at most 20 orientations values. The bounding box 
corresponding to the object of interest is then split into a 3x3 
grid and for each cell of the grid, we compute an orientation 
histogram that has 20 bins. Each pixel that is in a cell, casts a 
vote in the histogram that corresponds to that grid cell 
provided that in the instance mask of the object in that 
specific position there is a value of 1, meaning there is a mask 
in that position. The voting is done using the gradient 
magnitude. The similarity for a grid cell is computed as 
shown in equation (4) and (5), where 𝜑ሺ𝑖, 𝑗ሻ௫ represents the 
similarity between a grid cell x of track i and detection j, 𝜀 is 
a threshold value which was determined experimentally and 
has the value 0.15, while 𝜗ሺ𝑖, 𝑗ሻ is the final expression for all 
grid cells. The value of 𝜗ሺ𝑖, 𝑗ሻ is minimal if the track and 
detection belong to the same object instance. 

        𝜑ሺ𝑖, 𝑗ሻ௫ ൌ ൝ 1, ൬∑
หு೔ሺ௞ሻିுೕሺ௞ሻห

ଶ଴
ଶ଴
௞ୀ଴ ൰

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
൑  𝜀      (4) 

                        𝜗ሺ𝑖, 𝑗ሻ ൌ
௪భ

∑ ఝሺ௜,௝ሻೣ
ఴ
ೣసబ

                                    (5) 

    The motion score, 𝑚ሺ𝑖, 𝑗ሻ , contains the difference in 
position, computed using the Euclidean distance, between the 
location of track i and the position of the detection j, with 
respect to the center position of the object expressed in 2D 
coordinates. The final similarity score between a track and a 
detection is composed by summing the appearance and 
motion scores. After computing the similarity scores between 
tracks and detections, an optimal assignment algorithm is 
used [12] for matching each track with its corresponding 
detection. After the matching has been done, each track is 
updated using the information from the detection and a 
filtering approach is employed to smooth the object 
trajectory. 

D. Optical Flow based Model Selector 

    Objects in the real world can have different motion 
behaviors, therefore by using a single motion model we 
cannot adequately capture the position of road users. In this 
section we will present an original approach that combines 
multiple motion models using different strategies in order to 
accurately predict the position of the objects of interest. 
   The general idea of the proposed approach is to run two 
filters in parallel and select the states from the filter that is 
best suited for a certain object of interest by using information 
from the optical flow. The first filter is a Kalman Filter (KF) 
that uses a constant velocity motion model that has been 
designed to capture static objects and objects that are moving 
slowly while the second filter is an interacting motion model 
(IMM) [32] filter that combines constant velocity and a 
constant acceleration motion model. The interacting motion 
model filter has been designed to capture the dynamic motion 
of the maneuvering targets. 
   When designing the IMM filter a set of modes are first 
selected for describing the maneuvering of the target and 

there is an assumption that the object is always in one of these 
modes. It is worth mentioning that the running time increases 
with the number of modes. To obtain a real time performance 
in our solution we selected two modes, which can be 
described using a constant velocity (CV) and a constant 
acceleration (CA) motion model. Each mode has equal 
probability when a track is first initialized. Secondly, we 
model the transition between modes using a Markov chain 
that is represented using the transition probability matrix Π, 
that was identified experimentally (6). 

                                 Π ൌ ቂ0.97 0.03
0.06 0.94

ቃ                     (6) 

   Using the transition probability matrix, the new mode 
probabilities can be computed at each iteration using (7), 
where m is the number of modes, 𝜇  represents the mode 
probabilities, and 𝑐̅ is the new mode probability. 

                         𝑐ఫഥ ൌ ∑ 𝜇௜Π௜,௝
௠ିଵ
௜ୀ଴ , 𝑗 ൌ 0, 𝑚 െ 1തതതതതതതതതതത       (7) 

   Since the state vector of the two used modes has different 
dimensionality (the CV model has 4 values in the state vector 
while the CA model has 6 values), we have extracted only the 
4 common states from the two models and we operate with 
them. It is worth noting that even the update of the states and 
covariance matrix will be done to the values that involve the 
four elements (position on x and y and velocity on x and y 
dimensions). Then the mixing probabilities or mixing 
weights are computed as in (8). 

𝑤௜,௝ ൌ
ஈ೔,ೕఓ೔

௖ണഥ
, 𝑖, 𝑗 ൌ 0, 𝑚 െ 1തതതതതതതതതതത       (8) 

   After each KF from the model bank performs an update step 
obtaining a mean and covariance, a new mean and covariance 
will be computed for each filter using the mixing probabilities 
as a weighted sum of the means and covariances of each filter. 
The unlikely filter will receive a strong adjustment by the 
likely filter and the likely filter will receive only a small 
adjustment, process described in (9) (10). 

     𝑥ఫഥ ൌ ∑ 𝑤௜,௝𝑥௜
௠ିଵ
௜ୀ଴       (9) 

 𝑃௝ ൌ ∑ 𝑤௜,௝ሾ൫𝑥௜ െ 𝑥ఫഥ ൯൫𝑥௜ െ 𝑥ఫഥ ൯
்

൅ 𝑃௜ሿ
௠ିଵ
௜ୀ଴      (10) 

The model probability at time stamp k is updated for each 
mode using the mode probability at the previous time stamp 
and the likelihood of each filter as shown in (11).  

                𝜇௞
௜ ൌ

ఓೖ|ೖషభ
೔ ௅ೖ

೔

∑ ఓೖ|ೖషభ
ೕ ௅ೖ

ೕ
ೕ

, 𝑖, 𝑗 ൌ 0, 𝑚 െ 1തതതതതതതതതതത      (11) 

   The final state estimation of our IMM uses a mixed estimate 
from each Kalman Filter as presented in (12) and (13), where 
𝑥௞

పതതത and 𝑃௞
పഥ  represent the predicted state and covariance for 

each filter from the filter bank at time stamp k. 

                𝑥௞෦ ൌ ∑ 𝜇௞
௜ 𝑥௞

పതതത௠ିଵ
௜ୀ଴        (12) 

        𝑃 ൌ ∑ 𝜇௞
௜ ሾ൫𝑥௞

పതതത െ 𝑥௞෦൯൫𝑥௞
పതതത െ 𝑥௞෦൯

்
൅ 𝑃௞

పഥ ሿ௠ିଵ
௜ୀ଴      (13) 
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    The measurement covariance matrix used with the models 
from the model bank of the IMM filter have a different value 
depending on the object class. We are using 4 different 
measurement covariance matrices for the classes: car, 
pedestrian, rider and other. Additionally, to the IMM filter 
that uses two motion models, a KF that uses a constant 
velocity model is also included to the object tracker. The KF 
with the CV model uses only one measurement covariance 
matrix and has small values in the process noise covariance 
matrix. There are situations in which an IMM filer may 
perform poorer than a KF with a constant velocity model, and 
for this reason selecting the appropriate filter depending on 
the situation is necessary. Some of these situations include 
scenarios where objects are moving slowly (for example 
when the vehicle is in a parking lot), when the vehicle is 
moving on straight roads with respect to the ego vehicle 
inside the city or when a self-driving car is navigating in an 
environment with a lot of measurement noise such as in a 
heavy fog situation or with a malfunctioning sensor. For 
addressing these issues, a method of selecting the correct 
filter depending on the situation has been implemented by 
using the optical flow information. 
    Sparse optical flow may not provide reliable results from a 
qualitative point of view, while dense optical flow can be 
demanding form a computational side and may provide 
erroneous results on unstructured surfaces. Even though the 
individual trajectories obtained from the optical flow may be 
erroneous, by aggregating the results from multiple 
trajectories inside a region of interest we can obtain clues 
regarding the motion of objects in successive frames. The 
optical flow algorithm presented in [25] has been applied and 
several steps were performed for obtaining the length of the 
aggregated flow trajectory for an all objects of interest. To 
store the optical flow values 36 bins have been created, 
where, using the angle data, each optical flow vector casts a 
vote inside a bin. The mean values for the optical flow 
magnitude and angle are computed for each bin, after all flow 

vectors have voted inside the corresponding bins. Finally, the 
mean magnitude and angle corresponding to the bin where 
the majority of the votes were cast are selected as the main 
flow parameters for the region of interest. To find the distance 
corresponding to the identified flow parameters two points 
are needed. The first point 𝑃1ሺ𝑥ଵ, 𝑦ଵ) is located in the center 
of the object of interest, and the second point 𝑃2ሺ𝑥ଶ, 𝑦ଶ) can 
be computed using the point P1 together with the found 
length and angle as shown in (14) and (15).   

         𝑥ଶ ൌ 𝑥ଵ ൅ 𝑙𝑒𝑛𝑔𝑡ℎ ൈ cos ሺ𝑎𝑛𝑔𝑙𝑒 ൈ గ

ଵ଼଴
ሻ                      (14) 

         𝑦ଶ ൌ 𝑦ଵ ൅ 𝑙𝑒𝑛𝑔𝑡ℎ ൈ sin ሺ𝑎𝑛𝑔𝑙𝑒 ൈ గ

ଵ଼଴
ሻ     (15) 

 The ratio between the Euclidean distance between the two 
points P1 and P2 and the object width gives us an indication 
regarding how much the object has moved between frames. 
If the ratio is sub unitary it shows that the object has not 
moved so much so the Kalman filter with constant velocity 
will be used, otherwise the IMM filter will be used. The 
tracked objects are sorted using the depth to the camera 
obtained using the algorithm presented in [3], and then all 
tracks (masks and bounding boxes) are projected on the 
image obtaining the final results as presented in Figures 3 and 
4. A track management approach is used to handle objects 
that enter and exit the field of view, removal of the old tracks 
that have not been updated for a long time etc. A variety of 
track management approaches exist in the literature 
[2][9][13] and we will not elaborate on this aspect. 

IV. EXPERIMENTAL RESULTS 

    The proposed solution has been implemented in C++ and 
the used neural networks models have been trained in Pytorch 
and ported in Libtorch framework for obtaining C++ 
compatibility. OpenCV has been used for drawing, display 
and fusing the results in one image. CUDA and OpenMP 

 

 

Figure 4. Tracked Bounding boxes and masks 
for objects inside a parking lot. 

 

 

Figure 3. Multiple tracked pedestrians and 
vehicles inside a city.  
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have been used for accelerating the speed of the proposed 
approach in order to obtain a real time performance. The 
solution was developed on an Intel Core i7-11370H processor 
having a 3.3 Ghz frequency and an Nvidia GForce RTX 3070 
GPU.All datasets that were used for training the used neural 
network models from the proposed solution were split in 
three subsets 70% for training, 10% for cross-validation and 
20% for testing. The training of the ERFNet network has been 
done on a thermal semantic segmentation dataset having 
more than 3500 images and 25 semantic classes. The 
following augmentation methods were used: Translations, 
Horizontal Flip, Gaussian Noise, Gaussian Blur and Gamma 
Contrast. The ERFNet was trained for 200 epochs, 100 for 
encoder and 100 for decoder using a learning rate of 5e-4 and 
a batch size of 4. The IoU obtained on the test set is 62.03%.      
      It is worth mentioning that a segmentation using 
FastSCNN[26] neural net was also tested, due to the high 
speed of the model, however it was not used due to the low 
IoU of 26.4%. YOLOv5 has been trained on the FLIR ADAS 
thermal dataset and fine-tuned on the CrosIR dataset [13] 
obtaining a 55.04% mAP. YOLACT uses a Resnet101-FPN 
and has been trained on the COCO dataset and then fine-
tuned by training on 2000 thermal image detections that also 
had instance segmentations. The same augmentation 
techniques that were used when training the semantic 
segmentation model have also been used when training the 
YOLACT model. The instance and semantic segmentation 
datasets will be made publicly available in a future paper. The 
YOLACT with the proposed refinement approach was tested 
on 2000 thermal images annotated at instance level obtaining 
a mAP of 34.6% in contrast to the method that did not use the 
refinement that obtained a 31.2% mean average precision. 
    The tracking performance was tested on the PTB-TIR 
dataset [27] since there is no available dataset for tracking and 
segmentation in thermal images. However, since the 
proposed solution is also capable of outputting bounding 
boxes we are able to test the tracking performance on the 
PTB-TIR dataset. This dataset contains multiple sequences 
with thermal images each having manual annotations. The  
benchmark compares the performance of tracking approaches 
with respect to two metrics. The center location error (CLE) 
is one of the metrics which is described as being the average 
Euclidean distance between the ground truth position and the 
object position. A track is considered successful on the PTB-
TIR benchmark, at a given frame, if the CLE is within a 20-
pixel threshold. Another metric used on the PTB-TIR 
benchmark is the overlap score which measures the overlap 
ration between the bounding box area of the tracked object 
and ground truth. If a track has an overlap score that is above 
a threshold it is considered successful at a given frame. 
Different overlapping thresholds varying from 0 to 1 are used 
for ranking different tracking methods on the benchmark. 

Table I. Results on the PTB-TIR dataset 

In Figure 5 the precision and success plots obtained on the 
PTB-TIR benchmark are presented.  

    The evaluation has been done only on the sequences that 
were acquired from a vehicle mounted camera because the 
current solution is targeting intelligent vehicle applications. 
Moreover, only ten methods were displayed on the plots in 
order to keep the plots readable. For better readability the 
most relevant values from the two plots are also presented in 
Table I. 
   The prediction step of the proposed solution has also been 
tested using only the KF with CV motion model and the IMM 
filter with the CV/CA motion models obtaining a precision of 
80.5% and 78.7% respectively. The association function 
remained the same for both of the cases mentioned above.   
    In contrast to some of the tracking methods presented in the 
PTB-TIR benchmark, the proposed solution is able to track 
multiple classes of objects not just pedestrians and is able to 
perform multi object tracking not just single object tracking. 
The running time of the tracking approach is 8 ms on the CPU. 
In Table II the running time of the proposed method on the 
intel core I7 on which it was developed and on a Nvidia Jetson 
Tegra TX2 are presented. 

 Table II. Running time of the solution on different platforms 

Method Tracking Success 
Score 

Tracking Precision 
Score. 

MDNet[28] 63.5% 79.3% 
Proposed 63.1% 82.6% 

DeepSTRCF[29] 62.7% 79.8% 
VITAL [30] 62.2% 81.0% 
TADT [31] 58.8% 73.4% 

MLSSNet[8] 51.4% 70.6% 

Platform Overall Average 
Running Time 

Intel Core i7-11370H processor having 
a 3.3 Ghz frequency and an Nvidia 

GForce RTX 3070 GPU 

100 ms 

Jetson Tegra TX2 290 ms 

 

 

Figure 5. Graphical representations of the evaluation on the 
PTB-TIR dataset. 
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V. CONCLUSIONS 

    In this paper, we have presented a novel multi-object 
tracking segmentation and validation pipeline that is able to 
track objects in thermal images at bounding box and instance 
mask levels. Object detections and their semantic classes are 
first validated using three data-driven approaches and are 
then passed to the multi-object tracker. Moreover, erroneous 
object instance masks are corrected using a novel refinement 
approach. The presented multi-object tracker uses an original 
model-based data association function that incorporates 
multiple terms in a weighted manner. The association 
function offers good results because it compares tracking 
features at the instance mask level not just at the bounding 
box level. Chiefly among the terms of the association 
function is an original grid-based multi-histogram of 
orientations matching approach that captures the thermal 
object’s texture structure and a semantic segmentation 
histogram that captures context. Since objects in the real 
world can have multiple motion patterns, we presented a 
novel optical flow-based multi-motion model selector that 
can be used to choose the most suitable motion model for 
each object such that future positions are predicted more 
accurately. The proposed solution has been evaluated on the 
PTB-TIR benchmark and the running speed of the system has 
been tested on different computing platforms.  
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