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Abstract—Network Virtualization is a promising concept to
diversify the Future Internet architecture into separate Virtual
Networks (VN) that can support simultaneously multiple network
experiments, services and architectures over a shared substrate
network. To take full advantage of this paradigm this paper
addresses the challenge of assigning VNs to the underlying
physical network in a distributed and efficient manner. A dis-
tributed algorithm responsible for load balancing and mapping
virtual nodes and links to substrate nodes and links has been
designed, implemented and evaluated. A VN Mapping Protocol
is proposed to communicate and exchange messages between
agent-based substrate nodes to achieve the mapping. Results
of the implementation and a performance evaluation of the
distributed VN mapping algorithm using a Multi-agent approach
are reported.

I. INTRODUCTION

Network Virtualization has recently received considerable
attention in both academia and industry as an important
enabler for designing the Future Internet architecture [1],
[2]. The Network Virtualization concept has been proposed
as a potential solution for diversifying the Future Internet
architecture into separate Virtual Networks (VN). The VNs
can support simultaneous network experiments, services and
architectures over a shared substrate network [3], [4], [5].
A VN is a group of Virtual Nodes (e.g. virtual routers)
interconnected via dedicated Virtual Links over a substrate
network. As depicted in the figure 1, multiple virtual networks
may share the same underlying physical network. The set of
virtual nodes and virtual links forming the VN should be
assigned to a specific set of Substrate Nodes and Substrate
Paths, respectively. A Substrate Path is a logical path between
two substrate nodes which may be a single substrate link or a
sequence of substrate links.

Fig. 1. Mapping of Virtual Networks to a shared substrate network

The VN set up is achieved by selecting the best and optimal
network topology from the physical substrate comprising both
virtual nodes and links. Mapping multiple VNs into a shared
physical infrastructure represents a significant challenge that
has been addressed in many research studies. A number of
proposals and algorithms have been put forward to address
the VN assignment/mapping problem [6], [7], [8], [9]. The
objective is to make efficient use of the substrate network by
providing effective methods and algorithms for mapping a VN
to the substrate network.

In these proposals, the VN mapping algorithms are carried
out in a centralized manner. A central entity is responsible
for receiving VN requests and for assigning a set of virtual
nodes to a set of substrate nodes. This entity should maintain
up to date information about the substrate network to make
the appropriate VN mapping decisions. However, maintaining
up to date information about the substrate network in a
centralized way suffers from scalability limitation, high latency
and serious delays in making decisions especially when the
underlying physical network is a highly dynamic and changing
environment (e.g. node joining/leaving). This is exactly the
motivation of this paper whose goal is to provide the design,
implementation and evaluation of a distributed algorithm for
mapping VNs to substrate network resources. The objective
is to enable and guarantee a balanced load-sharing among all
substrate nodes and links during the VN mapping.

The design and implementation of the proposed VN map-
ping algorithm relies on the Multi-Agent based approach [10]
to ensure distributed negotiation and synchronization between
the substrate nodes. These nodes handle autonomous and intel-
ligent agents which exchange messages and cooperate to carry
out the distributed VN mapping algorithms. A VN Mapping
Protocol is proposed to enable communications between the
agent-based substrate nodes in a distributed manner. Perfor-
mance and scalability results of the distributed VN mapping
algorithm developed using Multi-agent based approach are
reported.

The remainder of this paper is organized as follows. Section
II of this paper summarizes related work. Section III presents
the network model and the VN mapping problem. The design
of a distributed VN mapping algorithm is addressed in Sec-
tion IV. The implementation and evaluation of the proposed
algorithm based on multi-agent based approach is reported in
Section V.
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II. RELATED WORK AND MOTIVATION

A number of heuristic greedy algorithms [6], [9], [11],
customized algorithms [9] and iterative mapping processes [8]
have been put forward to efficiently assign VN to substrate
resources. In [6] and [9], authors proposed heuristic greedy
algorithms to maintain low and balanced stress among all
substrate nodes and links during the VN assignment process.
The aim of such greedy algorithms is to assign virtual nodes
to substrate nodes with maximum available resources. The
overall objective is to achieve near optimal VN mapping
solutions. However, the proposed VN mapping algorithms are
carried out in a centralized manner. A central coordinator
is required to maintain global substrate information. Using
this information, the centralized VN mapping algorithm may
avoid conflicts and inconsistencies during resource allocation
and can easily obtain the globally optimal solution. However,
maintaining a global view and knowledge about the substrate
network requires efficient message-passing mechanisms which
can impose a large overhead on the central entity. The central-
ized mapping approach presents limitations in resilience and
scalability when the number of substarte/virtual nodes and VN
requests increases. This is especially challenging for highly
dynamic substrate networks that can change not only in state
but also in composition (node failures, node joining/leaving...).
The central coordinator has to process a significant number of
signalling messages which may require complex algorithms
for synchronization with substrate state. This can increase
complexity and induce costly and time-consuming mapping.

The objective of our work is to decentralize the VN mapping
algorithm among the substrate nodes. These nodes should be
able to decide which mapping actions to undertake. The main
advantages of the decentralized VN mapping approach are the
ability to: (1) reduce communication costs and the number of
messages exchanged with the central coordinator, (2) ensure
robustness since no central entity is used avoiding single
point of failure, (3) achieve high-speed parallel processing of
multiple VN requests, and (4) deal with partial failures that
require automatic and runtime reparation. When a node/link
failure occurs, there is no need to consult a central entity since
localized control can react quickly to local failures.

III. VN MAPPING MODEL AND PROBLEM FORMULATION

A. Substrate Network Model

The substrate network can be represented by a weighted
undirected graph Gs = (Ns, Ls), where Ns is the set of
substrate nodes and Ls is the set of substrate links between
nodes of the set Ns. Each substrate node ns ∈ Ns is associated
with the capacity weight value C(ns) which denotes the
available capacity of the physical node ns. Each substrate link
ls(i, j) ∈ Ls between two substrate nodes i and j is associated
with two non-negative values: 1) an additive weight value
w(ls(i, j)) which denotes a set of parameters including the cost
and delay of the substrate link and 2) a capacity weight value
C(ls(i, j)) which denotes the available bandwidth capacity
associated to the substrate link.

Let ψ be a set of substrate paths in the substrate network
Gs. The available bandwidth capacity C(P ) associated to a
substrate path P ∈ ψ between two substrate nodes can be
evaluated as the minimal residual bandwidth of the links along
the substrate path:

C(P ) = min
ls(i,j)∈P

C(ls(i, j)) (1)

The weight (i.e. cost, delay, jitter) of the substrate path w(P )
can be measured as the sum of all link weights along the path
P :

w(P ) =
∑

ls(i,j)∈P

w(ls(i, j)) (2)

B. Virtual Network Model

Users/customers should send requests to the substrate
provider to set up on-demand VN topologies with differ-
ent capacity parameters over the shared substrate. The VN
request can be represented by a weighted undirected graph
Gv = (Nv, Lv), where Nv is the set of virtual nodes and
Lv is the set of virtual links between nodes of the set Nv .
Each virtual node nv ∈ Nv is associated with a minimum
required capacity denoted by C(nv). Each virtual link lv ∈ Lv

between two virtual nodes is associated with a capacity weight
value C(lv) which denotes the minimum required bandwidth
capacity of the virtual link lv .

In this work, the VN request is represented by the quadru-
ple Req = (Reqid,Gv, Vv,Mv) where Reqid represents the
unique identifier for the request Req. Gv = (NReqid

v , LReqid
v ),

where NReqid
v and LReqid

v denote the set of virtual nodes and
links, respectively, associated to the request Req. In this work,
Vv and Mv denote a node capacity vector and a link capacity
matrix, respectively, associated to the graph Gv such that:

• Vv=[C(ni
v)] is the minimum required capacity vector for

virtual nodes ni
v , where 1 ≤ i ≤ |NReqid

v |.
• Mv=[C(lv(i, j))] is the minimum required bandwidth

capacity matrix for virtual links lv ∈ LReqid
v between

nodes ni
v and nj

v , where 1 ≤ i, j ≤ |NReqid
v |.

C. Virtual Network Mapping Problem Description

Based on the substrate and VN models, the challenge is
to find the best mapping between the virtual graph Gv and
the substrate graph Gs. This mapping, denoted by MAP,
should achieve the best load balancing in the substrate network
resources, with respect to the capacity constraints, while
reducing the cost.

1) Node Mapping: Let MAPN : NReqid
v → NReqid

s ⊆
Ns denotes a mapping function between virtual nodes and
substrate nodes, where NReqid

s represents the set of substrate
nodes capable of supporting at least one virtual node of
a request Req, i.e. NReqid

s = {ns ∈ Ns | C(ns) ≥
minnv∈NReqid

v
{C(nv)}}.

2) Link Mapping: Let MAPL : LReqid
v → φ ⊆ ψ denotes

a mapping function between virtual links and substrate paths,
where φ = {P ∈ ψ | C(P ) ≥ C(lv),∀ lv ∈ LReqid

v }
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3) Objectives: Finding the optimal VN mapping solution
that satisfies multiple objectives and constraints can be for-
mulated as an NP-hard problem. The objective of this work
is to design, implement and evaluate a distributed heuristic
algorithm to efficiently assign VNs to specific substrate nodes
and links, while minimizing the network cost. To simplify the
problem, we assume that the substrate network resources (e.g.
CPU, bandwidth) are unlimited to accept and handle all VN
requests. We also suppose that all VN requests are defined and
specified in advance, i.e. Offline problem.

IV. DISTRIBUTED LOCALIZED VN MAPPING ALGORITHM

Since VN topologies can become quite large, mapping the
requested VN to the entire substrate at once is not feasible for
latency and complexity reasons. One well known and viable
solution is to subdivide the entire VN topology into a set of
elementary clusters (e.g. path, tree and star clusters). This
decomposition may reduce the complexity of mapping the
entire VN topology and can provide also an efficient solution
to deal with the dynamic aspect of a substrate.

This work focuses on the star based VN decomposition. The
VN topology can be viewed as interconnected star (or hub-
and-spoke) clusters. The hub-and-spoke cluster is composed of
a central node (i.e hub) to which multiple adjacent nodes (i.e.
spokes) are connected. Spokes may also represent the hubs of
other clusters. The mapping of a VN topology to a substrate
network is achieved by assigning sequentially the hub-and-
spoke clusters constituting the VN. The selection and mapping
of these clusters are in general performed by using centralized
heuristic algorithms [6], [9]. This paper addresses how to
decompose and map the star topologies in a collaborative and
decentralized manner.

The selection of the hub-and-spoke clusters from the entire
VN topology is performed as follows:

1) Find the virtual node with the highest capacity as the
hub of the cluster.

2) Determine the neighboring virtual nodes directly con-
nected to the hub node to represent the spoke nodes.

3) Remove the hub and spoke nodes as well as their
corresponding links from the VN topology

4) Select the next hub-and-spoke cluster: Go to (1)

The mapping of the hub-and-spoke cluster to the substrate
is executed as follows:

1) Find the substrate node, called root, with the maximum
available resources to be assigned to the hub node.

2) Determine the set of substrate nodes able to support the
spoke nodes based on shortest path algorithms.

3) Remove the substrate nodes and paths already assigned
to the hub-and-spoke cluster.

4) Select the next root node: Go to (1)

In this work, the VN mapping algorithm used for selecting
and assigning the hub-and-spoke clusters to the substrate is
distributed. Each substrate node designated as ”root node” will
be responsible for selecting and mapping one cluster to the
substrate. The root nodes should communicate, collaborate and

interact with each other to plan collective VN mapping deci-
sions. This enables distributed localized mapping of VNs. The
proposed distributed algorithm can be viewed as a cooperative
task executed jointly by all root nodes via messages exchange.
The distributed algorithm relies on a communication protocol,
called Virtual Network Mapping Protocol, to exchange mes-
sages and control/signaling information between all substrate
nodes.

A. Virtual Network Mapping Protocol

The VN mapping protocol is based on five types of
messages: MSG, START, NOTIFY, NEXT and STOP. These
messages are sent and received asynchronously between the
substrate nodes to exchange information and organize the
distributed algorithm iterations. The protocol messages are
described as follows:

• MSG (ns, C(ns)): This message is used to exchange
node capacities among all substrate nodes. Each node
broadcasts its capacity to all other nodes.

• START (Req): This message is sent from a synchronizer
(e.g. network provider) to all substrate nodes to trigger
and start the distributed mapping algorithm for the request
Req.

• NOTIFY (Reqid, {nv , ns}, lv): After assigning a virtual
node nv (or a virtual link lv) of a request Req, the root
node ns should notify the other nodes about this mapping.

• NEXT(Reqid): Once the hub-and-spoke cluster of a re-
quest Req has been assigned, the root node supporting the
hub should send a NEXT to all substrate nodes to solicit
a successor root node for supporting the new cluster.

• STOP (Reqid): This message is used to stop the execution
of the distributed algorithm once the entire request Req
is mapped successfully onto the substrate.

B. Distributed VN Mapping Algorithm

This section presents the proposed distributed VN mapping
algorithm to honor different VN requests on the shared sub-
strate. This distributed algorithm should be able to process
multiple VN requests simultaneously.

In this work, each substrate node ni
s, (1 ≤ i ≤ |Ns|)

executes three distributed algorithms running in parallel: a
Capacity-Node-Sorting algorithm (see Algorithm 1), a Shortest
Path Tree (SPT) algorithm and a main VN mapping algorithm
(see Algorithm 2). The Capacity-Node-Sorting and SPT algo-
rithms are executed continuously and periodically to maintain
up to date information about the substrate network (e.g. node
and link capacities). This information is communicated to
the main VN mapping algorithm at run time during the VN
assignment process.

Two predefined functions are used in this paper: Sort and
Head function. Sort is a sorting function that sorts a vector
of nodes (e.g. Ns) based on their capacities by ordering them
from higher to lower capacity. The Head function returns the
first element (node identifier) of the vector.
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1) The Capacity-Node-Sorting algorithm: As depicted in
the Algorithm1, the substrate nodes exchange their node ca-
pacities via the MSG message (see P1 and P2). Based on this
exchange of capacities, each node constructs (step a) progres-
sively the capacity vector (Vs): Vs=[C(ni

s)],(1 ≤ i ≤ |Ns|)
which represents the available capacity vector for all substrate
nodes. The vector Vs should be updated dynamically when
the available capacity of a given substrate node changes (e.g.
node failure, capacity update after a mapping process, etc).
The Sort function is used to order Ns from higher to lower
capacity. The Capacity-Node-Sorting algorithm maintains up
to date information about all substrate node capacities and
returns a sorted Ns vector to the main VN mapping algorithm.

Algorithm 1 : Capacity-Node-Sorting Algorithm for each
Substrate Node ni

s ∈ Ns, (1 ≤ i ≤ |Ns|)
Input/Output: Ns; Vs ⇐ NULL

P1. ni
s Send MSG(ni

s, C(ni
s)) to all nodes nj

s ∈ Ns \ {ni
s}

P2. Upon receiving MSG(nj
s, C(nj

s)) do
a. Vs[n

j
s] ⇐ C(nj

s) // Create/Update the capacity vector Vs

b. Sort (Ns) // Sort Ns based on their capacities in Vs

2) The Shortest Path Tree (SPT) algorithm: The SPT
algorithm computes a path from node ni

s to each node nj
s

(i �= j) so that the weight between node ni
s and all other nodes

is minimum. In this work, the SPT is implemented by using
the distributed Bellman-Ford algorithm which is known as the
fastest distributed algorithm for solving shortest path problems
for general network topologies [12]. We assumed that each
substrate node ni

s maintains all parameters (e.g. capacity
and weight) of the links directly connected to its network
interfaces. Let Pj denotes the shortest path between node ni

s

and a substrate node nj
s. The substrate path Pj is associated

with the minimum path weight w(Pj) between nj
s and ni

s (see
equations 2). Consequently, the SPT algorithm returns a set T
associated to the node ni

s such that: T = {(Pj , w(Pj))}. The
set T is maintained up to date to be used by the main VN
mapping algorithm.

Due to the important number of messages exchanged be-
tween the substrate nodes in both the Capacity-Node-Sorting
and the SPT algorithms, a separate signalling/control network
is required to support these messages. This can reduce time
delay and message overload in the substrate network.

3) The main VN mapping algorithm: Upon receiving a VN
request, each substrate node ni

s ∈ Ns executes Algorithm
2 which in turn calls a Hub-Spokes-Mapping procedure de-
scribed further in this paper. The VN mapping algorithm is
started upon receiving a START message (S1) handling the VN
request (Req). A NReqid

s vector should keep an up to date copy
of Ns maintained by the Capacity-Node-Sorting algorithm.
The main function of (S1) is summarized as follows:

• Check if the node ni
s is the root node: In the case when

node ni
s represents the highest substrate node capacity

(i.e. Head(NReqid
s )), the node ni

s will be designated as
the root node (S1.b.i).

Algorithm 2 : The Main VN Mapping Algorithm for each
Substrate Node ni

s ∈ Ns, (1 ≤ i ≤ |Ns|)
Input: Req = (Reqid, Gv, Vv, Mv) // Gv = (NReqid

v , LReqid
v )

(S1) Upon receiving START(Req) do
// Check if ni

s ∈ NReqid
s

if C(ni
s) < minnv∈Nv{C(nv)} then Exit else

a. N ′Reqid
v ⇐ NReqid

v ; NReqid
s ⇐ Ns // Initialisation

b. if ni
s = Head(NReqid

s ) then
i. root ⇐ ni

s // ni
s is the root

// root node determines the first hub and spoke cluster
ii. Sort(NReqid

v ), hub ⇐ Head (NReqid
v )

iii. Spokes ⇐ {nv ∈ NReqid
v | ∃lv(hub, nv) ∈ LReqid

v }
iv. Hub-Spokes-Mapping (hub, Spokes)
v. if NReqid

v = ∅ and LReqid
v = ∅ then

Send STOP(Reqid) to all nodes in NReqid
s

else Send NEXT(Reqid) to all nodes in NReqid
s

(S2) Upon receiving NOTIFY(Reqid, {nv, ns}, lv) do
a. NReqid

v ⇐ NReqid
v \ {nv}, NReqid

s ⇐ NReqid
s \ {ns}

b. LReqid
v ⇐ LReqid

v \ {lv}
// M: Set of {nv, ns} pair already assigned
c. M ⇐ M ∪ {nv, ns}

(S3) Upon receiving NEXT(Reqid) do
// Virtual Nodes are still not assigned
a. if NReqid

v �= ∅ then
i. hub ⇐ Head (NReqid

v )

ii. Synch (NReqid
s , Ns)

iii. if ni
s = Head(NReqid

s ) then root ⇐ ni
s

iv. Spokes ⇐ {nv ∈ N ′Reqid
v | ∃lv(hub, nv) ∈ LReqid

v }
// A: Set of Spokes Already Assigned
v. A ⇐ Spokes ∩ {nv | {nv, ns} ∈ M}
vi. Spokes ⇐ Spokes \ A

vii. Hub-Spokes-Mapping(hub, Spokes)
viii. Send NEXT(Reqid) to all nodes in NReqid

s

// Virtual Links are still not assigned
b. if NReqid

v = ∅ and LReqid
v �= ∅ then hub ⇐ M [ni

s]

i. ∀ {nv, ns} ∈ M , if ∃lv(hub, nv) ∈ LReqid
v then

1. MAPL(hub, nv) ⇐ Pns

2. LReqid
v ⇐ LReqid

v \ {(hub, nv)}
3. Send NOTIFY(hub, nv) to all nodes

// All virtual nodes and links are assigned
c. if NReqid

v = ∅ and LReqid
v = ∅ then

Send STOP(Reqid) to all nodes in NReqid
s

• Next, the root node determines the first hub and spoke
cluster: The hub node is determined by searching the
highest virtual node capacity. The Sort and Head func-
tions applied successively to NReqid

v provide the hub
node (S1.b.ii). The set Spokes of spoke nodes directly
connected to the hub is determined in step (S1.b.iii).

• The root node assigns the hub and spoke nodes to
the substrate (S1.b.iv) (using the Hub-Spokes-Mapping
procedure).
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The Hub-Spokes-Mapping procedure is responsible for as-
signing hub and spoke nodes to the substrate nodes. As
depicted in the Procedure 3, the procedure assigns the hub
node to the root node (see a), updates the capacity vector
Vs in the Capacity-Node-Sorting Algorithm by sending a
MSG message handling the new root node capacity (see b),
removes the hub and root nodes from the node lists (see c),
and notifies all substrate nodes, via the NOTIFY message, to
inform them about this mapping (see d). Upon receiving a
NOTIFY message (see algorithm 2. S2), the substrate nodes
should remove the virtual nodes and substrate nodes already
assigned from their node lists and should also store the
mapping information in the set M (M is the set of {nv, ns}
pair already assigned).

Procedure 3 : Hub-Spokes-Mapping Procedure
Input: hub, Spokes

a. MAPN (hub) ⇐ root

b. Send MSG(root, C(root)) to all substrate nodes
c. NReqid

v ⇐ NReqid
v \ {hub}; NReqid

s ⇐ NReqid
s \ {root}

d. Send NOTIFY (Reqid, {hub, root}) to all nodes
// Define the set of ns nodes to be assigned to the spoke nodes
e. Sort (Spokes)
f. K ⇐ Card(Spokes) // The size of the set Spokes
g. T Reqid ⇐ T // T = SPT(root)

h. T ′Reqid = {(Pj , w(Pj)) ∈ T Reqid | C(nj
s) ≥ C(nv), ∀ nv}

i. Mink(T ′Reqid)

j. S = {nj
s ∈ NReqid

s | w(Pj) ∈ Mink(T ′Reqid)}; Sort (S)
// Assign spoke nodes and virtual links to the substrate.
k. Repeat

i. MAPN (Head(Spokes)) ⇐ Head(S)

ii. Send MSG(Head(S), C(Head(S))) to all substrate nodes
iii. MAPL(hub, Head(Spokes)) ⇐ PHead(S)

iv. M ⇐ M ∪ {Head(Spokes), Head(S)}
v. Send NOTIFY({Head(Spokes),Head(S)},(hub,Head(Spokes)))
vi. Spokes ⇐ Spokes \ {Head(Spokes)}
vii. NReqid

v ⇐ NReqid
v \ {Head(Spokes)}

viii. LReqid
v ⇐ LReqid

v \ {(hub, Head(Spokes))}
ix. NReqid

s ⇐ NReqid
s \ {Head(S)}

Until Spokes = ∅

Once the hub is assigned to the root node, the challenge
is to efficiently define the appropriate set of substrate nodes
to be assigned to the spoke nodes. Our work does not only
consider the link constraint but takes also into account the
spoke node capacity requirements. The Hub-Spokes-Mapping
procedure determines the substrate nodes that have the shortest
path to the root node and, at the same time, have the maximum
node capacity. The spoke nodes with higher required capacity
should be mapped to the substrate nodes with higher available
capacity. These steps are achieved as follows (steps: e to j):
First, the procedure takes the set T from the SPT algorithm,
all substrate paths that do not satisfy the bandwidth capacity
constraints specified in the matrix Mv should be removed.
Let TReqid = {(Pj , w(Pj)) | ∀ lv ∈ LReqid

v , C(Pj) ≥ C(lv)},

where C(Pj) denotes the available bandwidth capacity asso-
ciated to the substrate path Pj (equations 1).

Once TReqid is computed, the Hub-Spokes-Mapping proce-
dure selects from the set TReqid the pairs (Pj , w(Pj)) in which
their associated nodes nj

s satisfy the capacity node constraints
specified in Vv . Let T ′Reqid denotes this set of selected pairs
(Pj , w(Pj)). Next, the predefined function Mink(T ′Reqid) is
used to select the k-minimum weight value w(pi) from the
set T ′Reqid, where k is the size of the set Spokes computed in
the Hub-Spokes-Mapping procedure. Finally, the Hub-Spokes-
Mapping procedure determines the set S of selected substrate
nodes to be mapped to the spoke nodes.

Once the two sets S and Spokes are determined, the repeat-
until loop is used in the procedure (step k) to map, one by
one, the spoke nodes and their virtual links to the substrate.

Let us come back to the main algorithm. Once the first hub-
and-spoke cluster is mapped, the node ni

s should send a NEXT
message (S1.b.v) to all substrate nodes to solicit a successor
root node to support the next hub-and-spoke cluster of the VN
topology. Upon receiving a NEXT message (see S3), the new
root node should first synchronize NReqid

s with the Ns vector
(S3.a.ii). That is, the content of NReqid

s is re-sorted based on
the order of Ns. Next, the same steps as S1 are repeated to
determine the hub and spoke nodes. Step (S3.a.v) determines
the set of neighboring spoke nodes already assigned to the
substrate (i.e. the set A). Next, the hub-and-spoke procedure is
called to map the spoke nodes which are not already assigned
(i.e. Spokes except A). Finally, (S3.b) computes the shortest
paths between the hub node and the spoke nodes already
assigned to previous clusters. Once the entire request Req is
mapped successfully onto the substrate, a STOP message is
sent (S3.C) to stop the execution of the distributed algorithm.

V. PERFORMANCE EVALUATION

A. Multi-Agent based Distributed VN Mapping Algorithm

Since the Multi-Agent System approach [10] represents a
good tool to build modular and autonomous systems capable
of operating in dynamic and distributed environments, we pro-
pose to implement and evaluate the distributed VN mapping
algorithm based on autonomous and intelligent agents. The
Multi-Agent based algorithm ensures distributed negotiation
and synchronization between the substrate nodes. These nodes
handle autonomous and intelligent agents which exchange
messages and cooperate to perform the distributed VN map-
ping algorithm. Declarative Agent Communication Language
(ACL) [13] is used to define and specify the interactions
and messages between the agent-based substrate nodes. The
Distributed VN Mapping Algorithm is implemented and tested
over the GRID5000 platform [14]. This platform can emulate
a real substrate network where different topologies can be
generated. An agent development framework [15] is used to
implement the autonomous agents responsible for carrying out
the distributed algorithm. These agents are deployed in the
GRID5000 machines to emulate the substrate nodes and to
handle the main VN mapping algorithm.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

5638



0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Number of nodes

T
im

e(
s)

Capacity−Node−Sorting

(a)

0 20 40 60 80 100
0

5

10

15

Number of nodes

T
im

e(
s)

SPT

 

 

Partial Mesh
Full Mesh

(b)

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
Mapping of VN (5 Hub, 4 Spokes for each hub)

Number of nodes

T
im

e(
s)

 

 

Distributed in FMS
Distributed in PMS
Centralized in FMS
Centralized in PMS

(c)

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of nodes

N
um

be
r 

of
 m

es
sa

ge
s

Capacity−Node−Sorting

(d)

0 20 40 60 80 100
0

1

2

3

4

5

6

7
x 10

4

Number of nodes

N
um

be
r 

of
 m

es
sa

ge
s

SPT

 

 

Partial Mesh
Full Mesh

(e)

20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

Number of nodes

N
um

be
r 

of
 m

es
sa

ge
s

Mapping of VN (5 Hubs, 4 Spokes for each hub)

 

 

Distributed in FMS
Distributed in PMS
Centralized in FMS
Centralized in PMS

(f)

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Mapping of 10 VNs requests         
VN (5 Hubs, 4 Spokes for each hub) 

Number of nodes

T
im

e(
s)

 

 

Distributed VN Mapping
Centralized VN Mapping

(g)

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
Time delay required to repair a local failure

Number of nodes

T
im

e(
s)

 

 

Distributed VN Mapping
Centralized VN Mapping

(h)

Fig. 2. (a) Capacity-Node-Sorting Algorithm evaluation: Time versus Nodes (b) SPT procedure evaluation: Time versus Nodes (c) The time delay taken by
the mapping algorithm to assign one VN request in both FMS and PMS topologies: centralized vs distributed (d) Capacity-Node-Sorting Algorithm evaluation:
Messages versus Nodes (e) SPT procedure evaluation: Messages versus Nodes (f) Number of messages used by the mapping algorithm to map one VN request:
centralized vs distributed (g) The time delay taken by the mapping algorithm to assign ten VN requests: centralized vs distributed (h) The time delay taken
by the mapping algorithm to repair a node failure: centralized vs distributed

B. Performance Results

Our objective is to evaluate the distributed VN mapping
algorithm performance in terms of time delay and number of
messages required to map a given VN topology to a substrate.
A number of experiments have been set up to assess the three
distributed algorithms: Capacity-Node-Sorting, SPT and main
mapping algorithms.

The Capacity-Node-Sorting and SPT algorithms require a
significant time delay due to the important number of messages
exchanged between substrate nodes in the signalling/control
network. The first objective is, thus, to evaluate the perfor-
mance of these two algorithms in terms of time delay and
message overload in the substrate network.

A first experiment has been conceived to evaluate the
Capacity-Node-Sorting algorithm. Several random substrate
topologies with different sizes (from 0 up to 100 nodes) are
generated over the GRID5000 platform. As shown in figure
2(a), the response time remains below 1 s when the number of
nodes is in the range from 0 to 80 and exhibits less variability
on the average. Beyond 80 nodes, the Capacity-Node-Sorting
response time is more affected but is limited to a span of 1 to
2.7 s. Figure 2(d) depicts the number of messages exchanged
between nodes that grows exponentially with increasing size
of the substrate topology.

The second experiment concerns the performance evaluation
of the SPT algorithm. The SPT algorithm has been deployed in
two types of substrate topology (Full Mesh Substrate (FMS)
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and Partial Mesh Substrate(PMS)). Figure 2(b) depicts two
time delay curves. The lower and upper curves represent the
time delay of the SPT algorithm running on a partial mesh
and a full mesh topology, respectively. Our major observation
is that the additional delay between the two curves increases
from 0 to 4.5 s when the number of nodes increases from
0 to 100. This additional delay is induced by the increasing
number of messages illustrated in figure 2(e).

A third experiment evaluates the time delay taken by the
distributed algorithm to map one VN topology (with 25
virtual nodes) to both full and partial mesh topologies. The
performance results are compared to those achieved by a
centralized VN mapping algorithm. The time delay required
to map a VN in centralized manner (the two upper curves) is
higher to the time delay needed to map a VN in a distributed
fashion (the two lower curves). The additional delay, in the
case of the centralized approach, is due to the time delay
needed for a central coordinator to gather all information
about the substrate links. This delay depends on the substrate
topology (i.e. FMS vs PMS topology). This is different from
the distributed approach where each substrate node already
maintains all parameters (e.g. capacity and weight) of the links
directly connected to its network interfaces. As illustrated in
figure 2(f), the number of messages exchanged to map a VN, in
both centralized and distributed cases, corroborates the delay
results shown in the figure 2(c).

A fourth experiment determines the time delay taken by the
main algorithm to map simultaneously multiple VN topologies
to a full mesh substrate. The time delay required to assign
multiple VNs in both centralized and distributed mapping
cases is depicted in the figure 2(g). The time delay required to
map ten VN requests (with 25 virtual nodes) in a centralized
manner (the upper curve) is higher compared to the time delay
needed to map ten VN requests in a distributed manner (the
lower curve). The decentralized VN mapping achieves high-
speed parallel processing of several VN requests.

The last experiment concerns the evaluation of the time
delay needed to repair/reassign a VN when a change occurs
in the substrate or the VNs (e.g. node/link failures). As shown
in figure 2(h), the time delay required by the distributed VN
mapping algorithm to localize the affected cluster and reassign
it (see upper curve) is lower compared to the time delay needed
by a centralized VN mapping to react to local failures (lower
curve).

In conclusion, the performance results conducted in this
paper show that:

• In the distributed mapping approach, the number of sig-
nalling messages exchanged between the substrate nodes
may be important (e.g. in the case of SPT and Capacity-
Node-Sorting algorithms). This increases time delay and
message overload in the signalling/control network.

• Compared to the centralized mapping approach, the pro-
posed distributed algorithm can reduce the time delay to
process multiple VN requests in parallel.

• Unlike the centralized approach, the distributed VN map-
ping algorithm can reduce the time delay required to
repair partial failures in the substrate.

VI. CONCLUSION

This paper presented the design, implementation and eval-
uation of a distributed VN mapping algorithm. The substrate
nodes handle autonomous and intelligent agents which ex-
change messages and cooperate to carry out the proposed
algorithm. A VN Mapping Protocol is used to communicate
and exchange messages between the agent-based substrate
nodes. Results from performance evaluation of the distributed
mapping suggest that the challenge of constructing VNs from
a shared physical network can find viable solutions.

Future work will consist of implementing and evaluating
more thoroughly a self-healing system for the VN mapping.
This system should monitor, analyze, identify node/link fail-
ures and repair localized problems automatically in the sub-
strate. The distributed VN mapping algorithm presented in this
paper can be a potential starting point for self-provisioning and
self-management of VNs in a shared substrate and certainly
a decentralized VN provisioning and management framework
[16] for further investigation.
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