
1. GI/ITG KuVS Fachgespräch
„Virtualisierung“

Paderborn Center for Parallel Computing PC²
Universität Paderbon
11.-12. Februar 2008

André Brinkmann, Holger Karl (Editoren)

� � � � � � � � 	 �

 � � � � � � �

� 	
 � � � � �

 � � � � � 	 � �

i

Liste der Teilnehmer

Karsten Beins Fujitsu Siemens
Computers GmbH

Simon Kastenmüller Fujitsu Siemens
Computers GmbH

Georg Birkenheuer PC² Timo Kerstan Universität Paderborn
Roland Bless Universität Karlsruhe Markus Köster Imperial College,

London, UK
Stefan Boettger Kirchhoff-Institut für

Physik
Reihold Kroeger Fachhochschule

Wiesbaden
André Brinkmann Universität Paderborn Marcel Kunze Forschungszentrum

Karlsruhe
Sven Brütt Fujitsu Siemens

Computers GmbH
Tobias Lindinger Ludwig-Maximilians-

Universität München
Christopher Dobroschke AMD Dan Marinescu Fachhochschule

Wiesbaden
Hubert Doemer Universität Paderborn Mario Mense Universität Paderborn
Sascha Effert Universität Paderborn Gudrun Oevel Universität Paderborn
Ali Fesi Universität Tübingen Hans P. Reiser Universidade de

Lisboa
Xiaoming Fu Georg-August-

Universität Göttingen
Gunnar Schomaker Universität Paderborn

Christoph Geisler Bernhard Schräder Fujitsu Siemens
Computers GmbH

Carmelita Görk Universität Bremen Jens Simon PC²
Henning Haesken Universität Paderborn Anke Spiegel Hochschule Fulda
Jens Hagemeyer Universität Paderborn Katharina Stahl Universität Paderborn
Bernhard Homölle Fujitsu Siemens

Computers GmbH
Martin NEC Laboratories

Europe
Matthias Hovestadt TU Berlin Kerstin Voss PC²
Robert Kaiser Fachhochschule

Wiesbaden
Andreas Wundsam TU Berlin

Holger Karl Universität Paderborn Yasir Zaki Universität Bremen

ii

iii

Inhaltsverzeichnis

Hardware, CPUs und eingebettete Systeme

Applying Virtualisation to Real Time Embedded Systems..3
R. Kaiser, Fachhochschule Wiesbaden

Multi Root I/O Virtualization (MR IOV) ... 11
B. Homölle, B. Schräder, S. Brütt, Fujitsu Siemens Computers GmbH

Hardware Virtualization Exploiting Dynamically Reconfigurable Architectures 19
J. Hagemeyer, M. Porrmann, M. Köster, Universität Paderborn und Imperial College London

Cost Saving and Flexibility Virtualization is changing the IT landscape .. 29
C. Dobroschke, AMD

Netzwerk-Virtualisierung

A Network Virtualisation Concept based on the Ambient Networks SATO System 33
M. Stiemerling, X. Fu, M. Brunner, NEC Laboratories Europe und Universität Göttingen

Flexible Architecture for the Future Internet based on Virtual Networks ... 37
Y. Zaki, C. Görg, S. Baucke, N. Niebert, Universität Bremen und Ericsson

HPC-Virtualisierung und Grids

Efficient High Performance computing using Virtualisation ... 41
S. Boettger, V. Lindenstruth, U. Kebschull, KIP Heidelberg

Distributed Load Balancing in Heterogeneous Peer to Peer Networks for Web
Computing Libraries .. 47
J. Gehweiler, G. Schomaker, Universität Paderborn

Increasing Fault Tolerance by introducing Virtual Execution Environments ... 55
D. Battré, M. Hovestadt, O. Kao, A. Keller, K. Voss, TU Berlin und Universität Paderborn

From CIM to GLUE: Translate Resource Information of Virtual Machines to
Computational Grids ... 61
L. Wang, M. Kunze, J. Tao, Forschungszentrum Karlsruhe

Virtualization of Grid Services in D Grid .. 71
F. Kulla, M. Kunze, Forschungszentrum Karlsruhe

iv

Management

Towards a Framework for the Autonomic Management of Virtualization Based Environments 77
D. Marinescu, R. Kroeger, Fachhochschule Wiesbaden

Fault and Intrusion Tolerance on the Basis of Virtual Machines... 83
H. P. Reiser, R. Kapitza, Universidade de Lisabon und Universität Erlangen Nürnberg

Server Virtualization basic building block for Dynamic IT ... 89
K. Beins, Fujitsu Siemens Computers GmbH

Implementierungen

Virtualizing an IT Lab for Higher Education Teaching ... 97
N. gentschen Felde, T. Lindinger, H. Reiser, Munich Network Management Team

Speichervirtualisierung

Storage Virtualisation, Basic Building Block for Dynamic IT.. 107
S. Kastenmüller, Fujitsu Siemens Computers GmbH

Storage Cluster Architectures.. 113
S. Effer, H. Dömer, A. Brinkmann

Hardware, CPUs und eingebettete Systeme

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 1

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 2

Applying Virtualisation to
Real-Time Embedded Systems

Robert Kaiser
Distributed Systems Lab,

University of Applied Sciences, Wiesbaden, Germany
kaiser@informatik.fh-wiesbaden.de

Abstract

Virtualisation has recently received increasing attention.
This new interest is caused mainly by the new applicabil-
ity of the technology to desktop computers. Embedded sys-
tems, however, have so far hardly been regarded as a viable
target for virtualisation, although such an approach would
definitely make sense: Software for embedded devices to-
day often comes from different vendors requiring different
operating system interfaces and it has generally reached a
level of complexity comparable to that of desktop applica-
tions. Embedded systems are now facing many of the same
problems that once initiated the consolidation movement in
the server world. Thus, it seems only logical to apply the
technology that has worked so well for servers to embedded
devices now. However embedded systems also have some
requirements which are new to virtualisation: Most notably,
there are real-time applications that must show determinis-
tic timing behaviour.

In this contribution, we concentrate on the problem
of achieving temporal determinism with virtual machines
(VMs). We will give an estimation of the impact that virtu-
alisation has on timely execution of programs, we present
measurement results showing the temporal behaviour of
the Xen virtual machine monitor, and we suggest some ap-
proaches how – taking into account the typical requirements
of real-time programs – better timing predictability can be
achieved.

1 Introduction

Virtualisation has received increasing attention during
the past four years, both from academia as well as practi-
tioners. The reason for this new interest in a technology
which was invented almost forty years ago is mainly due
to its new applicability to non-mainframe computers. Prod-

ucts like Xen [2] and VMware [10] enable multiple operat-
ing systems to coexist securely within a single machine and
nowadays both are widely used in the area of server consol-
idation as well as on desktop machines.

Embedded systems have so far hardly been regarded as a
viable target for virtualisation, although applying the tech-
nology in this field would also stand to reason: Embedded
applications have reached a level of complexity equal to that
of many desktop applications. This increased complexity
brings new challenges to the embedded world: Safety and
security requirements call for securely isolated subsystems,
applications from different vendors may require different
(sometimes even contradictive) operating system function-
alities, yet they must coexist (and cooperate) in a single
physical machine. Embedded systems are now facing many
of the same challenges that once initiated the consolidation
movement in the server world. Moreover, most modern em-
bedded system hardware is capable of supporting virtuali-
sation. Thus, it seems only logical to apply the technology
that has successfully worked for servers to embedded de-
vices now.

However, when using virtualisation in embedded sys-
tems, some new problems emerge that were not present in
the field of server consolidation. Most notably, there fre-
quently exist real-time applications that must show deter-
ministic timing behaviour.

2 Requirements of complex embedded sys-
tems

Embedded systems have seen a steady increase in com-
putational resources over the last years. Today, even lower-
end embedded systems have processing capacities that not
so long ago would have required a workstation to provide.
The relation between the cost of the computing components
versus the overall system cost has reached a point where
cutting down on memory and processor performance no

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 3

longer yields a significant cost reduction. Yet, even lower-
end systems are capable of covering a range of functionali-
ties that would formerly have required a multitude of sepa-
rate embedded control units, and, for the sake of cost effec-
tiveness, that is exactly what they should be used for [4, 9].

Besides yielding more functionality at less cost, reduc-
ing the number of nodes in a distributed system of embed-
ded controllers also promises better reliability, because the
overall complexity of the hardware is reduced. However,
the complexity of software per system increases. As a re-
sult, we are facing some new challenges:

• Diversity of operating system interfaces: Specific
operating system interfaces are chosen because they
reflect the requirements of the applications that use
them. When multiple different applications are consol-
idated into a single system, many of them will typically
bring along their own idea of what the operating sys-
tem’s functionality should be. This presents a problem
because, traditionally, there exists only one operating
system interface per machine. To define an interface
that will equally fit all application’s needs is difficult,
and, even if such a versatile operating system can be
found, all programs will need to be adapted to it. This
is a costly task, especially for legacy code.

• Need for fault containment: When multiple func-
tions are integrated into a single system, a fault in one
of them can potentially affect all other functions. This
is unacceptable in a situation where the functions are
logically independent. The corresponding programs
may even come from different vendors and may be
completely unaware of each other. Clearly, a mech-
anism is needed, which ensures that any fault remains
contained within the domain in which it occurred.

These problems have been faced in the field of server
consolidation before and virtualisation has been a success-
ful response. Embedded systems, however, also have to
support real-time applications. This is a new requirement
for virtualisation: The spatial and temporal separation be-
tween virtual machines does not suffice, spatial and tempo-
ral determinism are also required.

The system workload of an embedded system typically
consists of of a mixture of applications with a very broad
range of timing requirements. There will usually be:

• ”hard” real-time processes for which even the slightest
violation of deadline must be considered a fatal error,

• ”soft” real-time processes for which it is generally de-
sired to complete within a deadline, but exceeding it
occasionally is not considered harmful,

• ”non-real-time” processes that do not have timing re-
quirements at all. Instead, these processes are expected

to evenly share their computational resources, and to
maximise system utilisation.

Real-time processes (whether ”soft” or ”hard’) will gen-
erally fall into one of two sub-categories:

• Time-driven: Program execution is controlled by a
static schedule. Processes are activated at prede-
termined points in time and run for predetermined
amounts of time. In all practical cases, the schedule
will be repeated periodically, i.e. these are also peri-
odic processes.

• Event-driven: Processes are activated in response to
events which occur at unpredictable points in time.
Although unpredictable, the maximum rate, at which
events can possibly occur, must be assumed to be
bounded, otherwise a system overload could not be
prevented, i.e. these are also sporadic processes.

Both approaches have their specific advantages and dis-
advantages, and combining both in a single system is gen-
erally problematic [3].

Whether real-time requirements are considered ”soft” or
”hard” is more a question of service quality than a concep-
tual one. However, whether or not processes are designed
to meet real-time requirements at all does have a significant
impact on the concepts they use.

3 Virtualisation impact on timing behaviour

A virtualisation platform that supports multiple VMs
needs to define some method of scheduling according to
which it switches between them. This virtual machine
scheduler is typically, but not necessarily, an integral part
of the virtual machine monitor (VMM) that implements the
VMs. From its point of view, VMs are just processes. It
is oblivious to the fact that these processes might internally
run operating systems which – again – switch between pro-
cesses. The goal of a virtual machine monitor is to give each
VM the illusion of having the resources of a complete phys-
ical machine at its disposal, while these resources are really
only subsets of a physical machine. Processing capacity is
one of those resources, thus each of the VMs should receive
a proportional share of the total processing capacity.

Ideally, this share would be evenly distributed over time,
however, with a single processor1, a virtual machine sched-
uler can only allocate time periodically to the VMs in units
of finite time slices, so the actual relationship between the
VM’s execution time and real world time can only approx-
imate this idealised behaviour (see the solid lines in Figure
1).

1or, more generally: when the number of VMs exceeds the number of
processors

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 4

2

1

real world time

VM
1

VM
2

active VM

exec time

VM

Figure 1. VM execution time vs. real time.

To estimate the impact of virtualisation on the temporal
behaviour of processes that run inside a VM, we consider
a simplified example: We assume a system with N VMs,
all of which are periodically active for the same duration,
Tvm. The time it takes to switch between VMs is consid-
ered to be constant, Tsw. The period of the VM schedule is
p = (Tvm + Tsw) · N . Every VM experiences a ”blackout
period”, i.e. a periodically repeated interval of inactivity
where none of its processes can run. The duration of this
time interval is:

Tdel = Tvm · (N − 1) + Tsw · N (1)

Since we can not expect process activity inside the VM
to be correlated with the VM scheduling cycle, we must as-
sume that this ”blackout” can hit a process at an arbitrary
point in time: if, for example, it occurs between a process’
arrival time and its start time, then the process’ response
time is increased by Tdel, which implies that the process’
jitter, i.e. the worst case distance between a process ar-
rival time and its start time is also increased by Tdel. If the
”blackout” occurs while a process is running, then its com-
putation time will be increased by Tdel, so any deadline the
process has to meet must be increased by the same amount.
Thus, virtualisation has an impact on all process parameters
which describe its real-time performance.

To reduce this impact, it would obviously be desirable to
make the per VM time allocation, Tvm as small as possi-
ble, but there is a practical limit due to the inherent cost of
switching between VMs: The context switching time Tsw

remains constant (it is basically a hardware property). Thus,
when making Tvm smaller, more time is wasted by con-
text switches. The relative performance overhead caused
by switching between VMs is

Uvm =
N · Tsw

N · (Tvm + Tsw)
=

Tsw

Tvm + Tsw
(2)

Thus, the worst case impact Tdel expressed by context
switch time and overhead is:

Tdel = Tsw +
Tsw · (N − 1)

Uvm
(3)

(In this equation, the context switch time is a property
of the computing hardware, while the acceptable switching
overhead would be up to the system designer to decide.)

Comparing this to the situation of a real-time system that
runs on a real machine instead of a virtual one reveals a
severe drawback: Here, the achievable response time and
jitter are directly limited by the context switch time, Tsw.
Therefore, the relative impact of virtualisation on worst case
response time (and also jitter) of a VM-hosted system, i.e.
the ratio between the worst case response time of a virtu-
alised program and that of a non-virtualised, but otherwise
equivalent program, is:

Tdel

Tsw
= 1 +

N − 1
Uvm

(4)

To give a realistic example: A system with three VMs
and an accepted switching overhead of 5% will exhibit a
worst case latency which is 41 times higher than that of an
otherwise equivalent, non-virtualised system. This impact
is quite severe, nevertheless, it is bounded.

4 Experiment: Xen

In order to obtain a realistic picture of the real-time func-
tionalities that current virtualisation systems are able to pro-
vide, an experiment was made with the Xen virtual machine
monitor: A Xen system hosting two virtual machines was
configured. The first VM (”Dom0”) hosted a typical Linux
System, while the second VM (”DomU”) hosted a periodic
real-time process. This real-time process was programmed
to cause a constant load, i.e. to actively consume – in the
shown case – 60% of its time slice. The period of the real-
time process was varied in steps, while the Linux system in
Dom0 was kept either idle or fully loaded by an application
program (busy loop). In this configuration, the latency of
the real-time process was measured.

Figures 2 and 3 show the results of the experiment. The
line indicated as ”limit” shows the borderline above which
the sum of the measured latency and the real-time process’
execution time is greater than its period. For all points
above this line, the deadline has been exceeded, i.e. real-
time requirements can not be met.

The measured latencies appear2 to be bounded, implying
that real-time operation is possible in principle. However,

2This is only an experiment, not a proof

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 5

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200 250

La
te

nc
y[

μs
]

Period[ms]

Limit: Latency = Δ p - Δ e
Max
Min

Average

Figure 2. Xen process latency (Linux idle).

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200 250

La
te

nc
y[

μs
]

Period[ms]

Limit: Latency = Δ p - Δ e
Max
Min

Average

Figure 3. Xen process latency (Linux busy).

the observed latency values exceed those of contemporary,
non-virtualised real-time systems by roughly three orders of
magnitude.

Moreover, a comparison of figures 2 and 3 demonstrates
that, even though the domains may be spatially decou-
pled, there is clearly a strong temporal dependency between
them: wether the Linux system in Dom0 was idle or busy
had a strong impact on the temporal behaviour of the real-
time process in DomU.

5. Requirements for real-time virtual machine
scheduling

In section 3, we estimated the impact of virtualisation on
critical real-time properties of processes such as response
time, jitter and worst case computation time. This im-
pact turned out to be quite extensive, nevertheless, it is a
bounded value. The experimental data shown in section
4 confirm this assertion qualitatively, although the values
measured for the Xen virtual machine monitor are even
worse than what our simple model would have predicted.
At any rate, we can say that programs running in a virtual-
isation environment are in principle able to meet real-time

requirements, however, their real-time performance as mea-
sured by jitter and shortness of the deadlines a system is able
to meet, will always be worse than that of an equivalent pro-
gram running on a physical machine by several orders of
magnitude.

Whether or not this is acceptable depends on the require-
ments of the real-time application (e.g. the process being
controlled). There are many practical use cases where re-
sponse times and jitters in the range of tens or hundreds of
milliseconds are perfectly adequate. Such applications can
thus be straightforwardly executed under a virtualisation en-
vironment. However, especially in the fields of automotive,
avionics or industrial control, there exist many applications
for which such latencies are simply unacceptable.

If virtualisation is to succeed as a generic approach to
embedded system consolidation, the requirements of such
high-performance real-time applications have do be consid-
ered. Summarising the requirements outlined in section 2,
a virtualisation system should be prepared to handle three
conceptually different classes of processes: time-driven and
event-driven real-time processes as well as non-real-time
processes. The functionalities that these process classes re-
quire their operating system to provide are largely (though
not entirely) orthogonal. Although it is conceivably pos-
sible for an operating system to support typical real-time
as well as non-real-time functionalities with a single pro-
gramming interface, such a system will in practice tend to
be either unnecessarily complex or to be insufficient from
either the real-time or the non-real-time perspective. There-
fore, in a virtualisation environment, whose main ability is
to support multiple operating systems, each class of process
should be able to use its own, dedicated operating system
interface. Therefore, our approach assumes that different
process classes will each exist in separate VMs: We assume
that a virtual machine environment for embedded systems
will have to schedule VMs which are explicitly time-driven,
event-driven, or non-real-time VMs as a whole. For each
VM class, different requirements are to be fulfilled by the
VM scheduler:

1. Determinism: For time-driven processes to be able to
execute at their predetermined points in time their VMs
must be active whenever any of them is active, i.e. the
VM schedule must be matched against the schedules of
the time-driven processes. More formally, with σi(t)
being the schedule for the processes of the i-th VM
and with σi(t) �= 0 for any point in time t when any of
its processes is running, the VM schedule for all time-
driven VMs is:

σvm(t) =
{

i, ∀t ∈ R+, i ∈ N+, σi(t) �= 0
0, ∀t ∈ R+, i ∈ N+, σi(t) = 0 (5)

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 6

1
(t)

1
2
3

2
(t)

1
2
3

3
(t)

1
2
3

t

t

vm
(t)

1
2
3

σ

σ

σ

σ

t

t

Figure 4. ”Enclosing” VM schedule for time-
driven virtual machines.

i.e. the VM schedule ”encloses” the time-driven
schedules of the VMs (see Figure 4). This assumes that
the time-driven schedules do not overlap. Also, if they
are periodic (as they are in most practical cases), they
must all use the same period. Since all time-driven pro-
cess schedules are predefined, the same also applies to
the enclosing VM schedule: The schedule for the time-
driven class of VMs must be strictly a function of time
only.

2. Responsiveness: For event-driven real-time pro-
cesses, the prime requirement is their ability to react
on an external event within a deterministic (and prefer-
ably short) amount of time. However, if the process
handling such an event runs within a VM, its reac-
tion can only take place while that VM is active. With
VMs being activated cyclically according to a prede-
fined schedule as the previous requirement demands,
the considerations of section 3 apply here, i.e. worst
case response time, worst case computation time and
jitter are predictable, but they may simply be too long
in some situations. These potential problems motivate
a second requirement, namely that there should be a
way at least for select, privileged VMs to respond to
events outside of the time-driven schedule, i.e. to pre-
empt the currently running VM.

3. Dynamic re-allocation of excess computing time: In
real-time scheduling, it is generally necessary to al-

locate time to processes according to worst-case as-
sumptions. However, worst-case scenarios only apply
rarely and in the average case, real-time processes of-
ten have more than sufficient time to complete their
jobs. As a result, real-time systems tend to exhibit a
low average processor utilisation. This is considered
to be the ”price of real-time”. But if there also exist
non-real-time processes in the same system, these ex-
cess computational resources could be put to good use
by passing them on to those non-real-time processes.
Since we assumed above that real-time and non-real-
time processes exist in different VMs, the virtual ma-
chine scheduler would be the place to implement this
dynamic time re-allocation policy.

6 Approach

The first of our requirements (maintaining a determin-
istic VM schedule) is straightforwardly accomplished by
using a strictly time-driven scheduler: Every VM is stati-
cally assigned an individual time slice. The virtual machine
scheduler periodically executes each VM in turn for the du-
ration of their respective time slices.

In this way, VMs receive fixed amounts of processing
capacity at predefined points in time. Thus, they are able to
schedule time-driven real-time processes themselves. How-
ever, if a VM has no runnable processes during its active
time slice, or if its processes have completed before the time
slice is over, it can not simply do a switch to another VM,
because that would destroy the temporal determinism. All
it can do is ”burn away” the unused time. Figure 5 shows
an example: The VM schedule σvm(t) assigns time slots
to three VMs. These time slots are dimensioned accord-
ing to the VM’s respective worst case computation times,
Twce1, Twce2 and Twce3. Since these are worst case times,
the actual execution will usually finish earlier. In Figure 5,
αvm(t) shows an example of the actual VM activities. The
accumulated unused computation time is shown in Figure 5
as eexc(t).

To enable re-use of these excess processing capacities,
we combine time-driven scheduling with priority-based
scheduling: In addition to a time slice duration, we also
assign a priority to each VM. To all the time-driven real-
time VMs, we assign (possibly different) mid- or high-level
priorities. We continue to switch between these VMs ac-
cording to a strictly time-dependent schedule. All non-real-
time VMs are assigned the same low-level priority. Switch-
ing between these VMs is done by a classical round-robin
scheduler to achieve load balancing. Thus, whenever the
currently active time-driven real-time VM has no processes
to run, it can sleep for the rest of its time slice, effectively
passing its excess processing time to all low priority (pre-
sumably non-real-time) VMs, which will share it evenly.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 7

wce1 wce2 wce3wce1 wce2 wce3

(t)
vm

(t)
vm

t

t

t

(t)
exc

1
2
3

1
2
3Actual VM

activity

 VM
Schedule

Unused
execution
time

α

σ

e

T T TT T T

Figure 5. Strictly time-driven VM scheduling
and unused processing time.

Figure 6 shows an example: The low-priority VM schedule
(λvm(t)) is activated whenever time is not allocated to or
used by the mid- and high-priority VMs. This accomplishes
our third requirement.

wce1 wce2 wce3 nrt wce1 wce2

Guaranteed mimimum allocation

(t)
vm

(t)
vm

vm
(t)λ

α

σ
3
2
1

1
2
3

1

Actual mid−

and high−priority

VM activity

Low−priority

VM activity

 VM

Schedule

T TT T T T

Figure 6. Combined time and priority-driven
scheduling.

In order to prevent starvation of the non-real-time VMs
in cases where the real-time VMs actually do consume all
of their allocated time, we can assign a certain minimum
time allocation to the non-real-time VMs, simply by leaving
a portion of the time-driven scheduler’s cycle unallocated.
Figure 6 also shows this: In this example, the non-real-time
VMs will always have at least a time of Tnrt at their dis-

posal.
With the features introduced so far, an event-driven real-

time VM that needs to activate processes in response to
asynchronous events can only do so during its allocated
time slice. As explained earlier, this leads to rather long
worst case response times and jitter. The effects can be re-
duced to some extent by invoking the VM at a higher rate,
either by increasing the cycle frequency, or by allocating
multiple time slices per cycle to the response-critical VMs.
However, the resulting frequent context switches cause in-
creased overhead.

If the requirements regarding response time and/or jit-
ter can not be met using these methods, the one remain-
ing possibility is to assign a sufficiently high priority to the
VM in question, thus enabling it to preempt other, lower
priority VMs at any time. Such a feature must be used
with care, though, because high priority VMs effectively
”steal” their processing time from whichever other VM hap-
pens to be active at the time the triggering event occurs.
In a worst-case scenario, all high-priority VMs that exist
in the system could be triggered at the same time, so the
worst case amount of ”stolen” time would be equal to the
combined worst-case computation times of all high-priority
VMs. This potential amount of time that may possibly be
consumed by high-priority VMs must be known in advance,
and it must be bounded. Therefore, only a select group of
well-trusted VMs whose worst case computation times are
known can be granted the privilege of a high priority. To
compensate for the potential loss of time, all lower priority
real-time VM’s time allocations must be increased by this
worst-case time amount. If this rule is obeyed, the mid-
priority VMs will be able to meet their deadlines even in
the presence of high-priority event-driven VMs. However,
they will also exhibit increased jitter. Despite its slightly
unattractive properties, we feel that the concept of high-
priority VMs is generally needed to enable fast, determin-
istic reaction to external events (i.e. interrupts). It satisfies
our second requirement.

The problem is actually a classical example of the di-
chotomy between the time-driven and the event-driven ap-
proach: whenever both are combined in a system, one of
them has to be given precedence and as a consequence, the
other is destined to perform poorly. This cannot be solved in
a single processor environment. Nevertheless, our approach
is flexible enough to allow the choice of precedence to be
made individually for every time-driven virtual machine:
Since every VM (whether time-driven or event-driven) can
be assigned an individual priority level, every time-driven
VM is able to select the event-driven VMs which are able
to preempt it, simply by choosing an appropriate priority for
itself with respect to the priorities of the event-driven VMs
in the system.

Whether or not use of this functionality is necessary de-

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 8

pends on the potential delay in response time that a given
application can tolerate and also on the switch rate that the
system can achieve while maintaining an acceptable over-
head. This overhead is partly a feature of the underlying
computer architecture3, but it also depends on the effective-
ness of the scheduling mechanism. In the next section, we
describe a practical implementation of the methods outlined
so far.

7. Implementation

The scheduling method outlined in the previous section
is in practical use today as part of ”PikeOS”, a commercial
product [5]. PikeOS is a microkernel-based runtime envi-
ronment targeted at embedded systems. It is able to host
multiple real-time and non-real-time guest operating sys-
tems, guaranteeing to each of them their own set of tempo-
ral as well as spatial resources. The system uses only a very
small amount of trusted code (mainly the microkernel) to
implement this separation policy.

The PikeOS microkernel is conceptually based on the
ideas introduced by Jochen Liedtke’s microkernel L4 [6, 7]:
Activities are represented as threads and each thread is
linked to a ”task” which serves as a container for rights
to access different kinds of resources. All threads that be-
long to a given task have access to these resources. Similar
to L4, threads are assigned a static priority level, but un-
like L4, they are also grouped into sets which we refer to
as ”time domains”, τi. The microkernel supports a config-
urable number of such time domains. Each of them is repre-
sented in the microkernel as an array of linked lists (called
ready queues), with one list per priority level (see Figure
7). Threads that have the same priority level are linked into
the same list in a first in/first out manner. The thread at the
head of the list is executed first. When a thread blocks,
it is appended to the end of the list. So, within a time
domain, there is a typical, priority-driven scheduling with
round robin scheduling between threads at the same prior-
ity level, as it is used in many real-time operating systems
today. However, unlike those systems, the PikeOS micro-
kernel supports multiple time domains instead of just one.
Threads can only execute while their corresponding time
domain is active, regardless of their priority. If we cycled
through the time domains, activating each one at a time for
a fixed duration, we would obtain the exact behaviour of an
ARINC 653 scheduler as described in [1]. But in contrast
to this, the PikeOS kernel allows two of the time domains to
be active at the same time:

• The first time domain, τ0 plays a special role in that it
is always active.

3Depending on cache and TLB structure, the cost of a context switch
can vary significantly between different architectures.

• Of all other domains τi(i �= 0), only one can be ac-
tive at a time. The microkernel provides a (privileged)
system call to select the currently active time domain.
Switching happens cyclically, according to a precon-
figured, static schedule.

The microkernel scheduler always selects for execution
the thread with the highest priority from the set union of τ0

and τi. Figure 7 shows the principle.

τN−1

τ1

τ0

prio

prio

prio

switch_domain()

.................

.............
.....

.....

.............
.....

.....

.............
.....

.....

0

1

2

N−2.....
N−1

prio>? dispatch

Ready queues

Figure 7. Principle of implementation.

In this picture, switch domain() is a microkernel
function that selects one of the domains τi(i �= 0) to be the
currently active one. The threads have different semantics,
depending on their priorities and on their time domain:

• τi(i �= 0): The totality of all threads in the currently
active ”foreground” time domain cyclically receives a
fixed amount of time. Generally, these threads will be
configured to have a mid- through high-level priorities
(though this is technically not a requirement).

• τ0: The semantics of the threads assigned to τ0, the
”background” time domain depend on their respective
priorities. Usually, these will be either below or above
those of the threads in all the possible forground time
domains τi(i �= 0).

– Low-priority threads within τ0 will receive the
processing time that was assigned to, but not used
by the mid-priority threads in τi. All non-real-
time VMs are therefore implemented by threads
running at the same, low priority in τ0. Since
their priorities are equal, they run under a round
robin scheduler, sharing their amount of compu-
tation time evenly.

– High-priority threads in τ0 can preempt any low-
or mid-priority threads at any time. This is
used to implement the event-driven, high-priority
VMs described in the previous section.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 9

The microkernel implements only the mechanism4 to se-
lect one of the time domains as active foreground domain.
The policy part of deciding which of the domains is acti-
vated when is left to the user level. This can be done by an
interrupt handler thread which runs at a high priority in τ0.
In a typical configuration, this thread gets activated by an
external one-shot timer whenever the timeslice of the cur-
rently active foreground domain has expired. It then acti-
vates the next time domain, re-programs the one-shot timer
to trigger an interrupt when the next domain’s time alloca-
tion expires and then waits for the interrupt. However, this
is only one possible example: Since it is implemented at
the user level, the domain switching policy can easily be
replaced without any changes to the microkernel.

Some initial experiments with a PowerPC platform5 have
shown worst case context switch times to be in the range of
25μs. Therefore, if an application can live –for example–
with a context switch overhead of 10%, minimum per do-
main time allocations can be made as low as 225μs.

8. Conclusion and outlook

In this paper, we estimated the impact of virtualisation on
the real-time properties of programs and we analysed the re-
quirements for using virtual machine schedulers in embed-
ded systems. Looking at the Xen virtual machine monitor as
an example, we showed that it does not fulfil these require-
ments and is thus of limited use in its current form. We out-
lined a scheduling method for switching between VMs with
varying degrees of real-time requirements. This method en-
ables hard real-time and non-real-time virtual machines to
coexist both safely and effectively in a single machine.

Current research aims at extending the scheduling
method for use in both multiprocessor as well as dis-
tributed systems. This opens up a number of interesting
new prospects:

• Separation of time-driven and event-driven real-time
programs: The presented method can alleviate some of
the problems that tend to emerge whenever time-driven
and event-driven programs are mixed. Yet, as we have
seen, it can not completely eliminate those problems.
They could be solved, however, in a multiprocessor
system by binding the time-driven and event-driven
threads to separate processor cores.

• Coscheduling of parallel applications: Parallel pro-
grams execute as multiple, tightly interacting threads.
In order to live up to their potential, these threads need
to execute at the same time on different processor cores
[8]. The system should support this by identifying

4Called switch domain() in figure 7
5Motorola MPC5200 at 400 MHz.

threads which are part of a parallel program and by
ensuring that they are always executed simultaneously.

• Coscheduling of distributed applications: In a dis-
tributed system, there is often a need for multiple pro-
grams residing on different nodes to act synchronously.
From the scheduler’s point of view, this is similar to the
coscheduling of a parallel program’s threads, except
that here the threads exist on different nodes. There-
fore, the schedulers on all the nodes in the distributed
system need to have a common notion of time. Fur-
thermore, the communication channels used by the
threads to interact with each other need to be taken into
consideration when making scheduling decisions. So,
in addition to temporal and spatial resources, the sys-
tem will also have to provide guaranteed communica-
tional resources (e.g. network bandwidth) to its VMs.

References

[1] ARINC. Avionics Application Software Standard Interface.
Technical Report ARINC Specification 653, Aeronautical
Radio, Inc., 1997.

[2] P. Barham, B. Dragovic, K. Fraser, S. H, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization, 2003.

[3] G. Fohler. Flexible Reliable Timing - Real-Time vs. Reli-
ability. In Keynote Address, 10th European Workshop on
Dependable Computing, 1999.

[4] R. Greene and G. Lownes. Embedded CPU target migration,
doing more with less. In TRI-Ada ’94: Proceedings of the
conference on TRI-Ada ’94, pages 429–436, New York, NY,
USA, 1994. ACM Press.

[5] R. Kaiser and S. Wagner. Evolution of the PikeOS Micro-
kernel. In I. Kuz and S. M. Petters, editors, Proceedings of
the first international workshop on mikrokernels for embed-
ded systems MIKES 2007, pages 50–58, Sydney NSW 2052,
Australia, January 2007. MIKES, National ICT Australia.

[6] J. Liedtke. On μ-Kernel Construction. In SOSP, pages 237–
250, 1995.

[7] J. Liedtke. L4 reference manual - 486, pentium, pentium
pro, 1996.

[8] J. K. Ousterhout. Partitioning and Cooperation in a Dis-
tributed Multiprocessor Operating System: Medusa. PhD
thesis, Computer Science Department, Carnegie-Mellon
University, apr 1980.

[9] D. Stepner, N. Rajan, and D. Hui. Embedded application
design using a real-time OS. In DAC ’99: Proceedings of the
36th ACM/IEEE conference on Design automation, pages
151–156, New York, NY, USA, 1999. ACM Press.

[10] VMware. VMware ESX Server Online Documentation,
2005.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 10

Multi Root I/O Virtualization (MR-IOV)

Bernhard Homölle, Bernhard Schräder, Sven Brütt
Fujitsu Siemens Computers GmbH

{Bernhard.Homoelle,Bernhard.Schraeder,Sven.Bruett}@fujitsu-siemens.com

Abstract

This article introduces architectural-wise the Multi

Root I/O Virtualization (MR-IOV) approach as being
released by the PCI-SIG® group. It also prospects
about technical advantages, weaknesses and
respective implications coming along with technology
adoption especially to blade server systems.

1. Introduction

Server Virtualization these days gets high
awareness in the industry, as the technology brings
significant benefits in respect to hardware resource
utilization, security of operation, re-locatability and
availability of complete OS installations.

HW technologies in chipsets and CPU’s have been
introduced in the last years, to simplify and to improve
efficiency of Virtual Machine Management Software.
Significant hardware technology milestones in the
evolutional process of improving performance and
security of virtual operation have been introduced:

• Instruction Set architectural extensions for virtual
operation to the processors

• Memory Management Unit (MMU) Extensions
supporting concurrent multiple virtual System
Image (SI) operation

Improved hardware resource utilization, better power
utilization, possibilities to migrate system instances to
different hardware platforms are main features driving
the demand for server virtualization. Still a
fundamental pain to widely deploy Virtual Machines
in datacenters is I/O performance.

In virtualized environments, multiple Operating
System Instances (SI’s) may share single physical I/O
endpoint devices. Virtual Machine Management
Software has to handle and to switch all data and
message transfers between different Guest OS’s and

their assigned I/O devices. This is very time
consuming, especially as the Virtual Machine
Management Software has to ensure communication
stream protection among separate virtual System
Images for data and message transfers.

In early 2007 the PCI-SIG® group has introduced
a Single Root IO Virtualization Specification (SR-
IOV) with the intention to address the respective I/O
performance and security issues. A set of architectural
elements has been specified to lower latency, to lower
effort and to improve security for I/O data and
message transfers in virtualized system environments.
Major functional elements of the SR-IOV specification
to improve I/O performance in virtualized
environments:

• Address Translation and Protection Table (ATPT).
An IOMMU which ensures that traffic initiated by
a certain I/O device can access memory regions of
the associated System Image, only.

• Multiple Virtual Functions (VFs) associated with
an I/O device Physical Function (PFs), to offer
improved sharing capabilities for an I/O endpoint
device

The implementation of SR-IOV architectural elements
does enable a platform for direct communication
between guest operating systems and their assigned
I/O device functions. The Virtual Machine
Management (VMM) software does not need to handle
all kind of I/O traffic between guest OS and I/O device
any more.
 Beyond SR-IOV specification, the PCI-SIG® is
now going to introduce architectural enhancements
which intend to offer further possibilities to
consolidate I/O infrastructures. This technology might
fit well to Blade server systems, which host multiple
root complexes within a single chassis enclosure. An
initial revision of a“Multi Root I/O Virtualization
Specification” (MR-IOV) is under work by the PCI-

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 11

mailto:@fujitsu-siemens.com

SIG® group. The MR-IOV specification defines
mechanisms which will allow sharing of physical
PCIe endpoint devices among multiple System Images
(SI’s), running on multiple physical Server Systems.

2. Present Techniques of I/O
Virtualization in Server Systems

2.1 SW based Virtualization of Server I/O
Infrastructure

In traditional server configuration, PCIe endpoint

devices are under control of the Virtualization
Intermediary (VI). All I/O that is coming from the
various System Images (SI), is switched and managed
within the Virtual Intermediary (VI), which takes full
responsibility for all I/O related actions.

The VI has to ensure that application specific I/O data
and message transfer needs to be isolated between
different applications for security reasons.

Compared to native Server System installations,
virtualized servers show basic I/O performance issues
as there is need to handle several tasks in the VI by
software. E.g. for storage traffic a VI needs to copy

and to protect outgoing block transfers from a Guest
SI into the VI. The VI needs to switch storage data
transfers among multiple SI’s then. For incoming
traffic the VI has to figure out about incoming
destination addresses and to copy blocks of storage
data into the right destination guest SI then.
 To consider latency impact we did look at response
times for block I/O read requests in different kind of
virtualized environments. The lowest storage block
transfer latency impact due to virtualization has been
observed running a scenario with para-virtualized
drivers on guest OS’es.

Figure 2: Virtualized Storage Data Access

The chart below compares average response times for
a 512 byte block read (non-random) from storage in
virtualized scenario against response times in a native,
non virtualized configuration.

Average Access Time for a
512 Byte Block Read from Storage (ms)

0 0,1 0,2 0,3 0,4 0,5

Native

Virtualized

Figure 3: Block Read Access Times

PCIe
Switch

Processor

SI

Memory

Root Complex (RC)

Root
Port
(RP)

Root
Port
(RP)

PCIe Device

PCIe Device PCIe Device

SI SI SI SI

Virtualization Intermediary (VI)

AP1..n AP1..n AP1..n AP1..n AP1..n

Figure 1: Virtualized Server Infrastructure

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 12

For larger packet sizes the relative latency difference
between native and virtualized access will be lower.
However, as for LAN access lots of small packets are
to be transferred, the latency impact of virtualization
limits network performance significantly. To address
above like shown I/O access latency issues the PCI-
SIG® has introduced multiple functional elements in a
Single Root IOV Specification.

2.2 Single Root I/O Virtualization (SR-IOV)

Single-Root I/O Virtualization, as being specified
by the PCI-SIG®, provides mechanisms to share
physical PCIe endpoint devices among multiple SI’s.
The Advantage of SR-IOV over software based I/O
virtualization is that there is no more need to manage
all I/O traffic between SI and PCIe device through the
virtual intermediary.

Figure 4: SR-IOV Functional Extensions

 SR-IOV capable PCIe devices will offer within a

single physical device a single physical function (PF)
and multiple virtual functions (VF’s). A VF within a
PCIe device can be assigned to a related System
Image. I/O data transfer between SI and related VF in
a PCIe device can be handled directly without any VI
interference.

Allocation of a VF in a PCIe device is done by a
Single-Root-PCI Manager (SR-PCIM), which is part
of the VI. A hardware based address translation and
protection infrastructure as specified in the SR-IOV
specification will ensure that VF initiated memory
access may reach memory areas of the related SI, only.

Due to performance and security aspects being
addressed by the SR-IOV specification, it looks that all
major vendors of CPU, Chipset and I/O-Device
technology will provide sooner or later SR-IOV
technology within their products. Different parts of
that technology are going to be introduced under
company specific trademarks, names and
specifications which make it difficult to keep an
overview. The address translation and access
protection mechanisms e.g. are going to be introduced
by Intel as “Virtualization Technology for Directed
I/O, VT-d”. AMD has introduced functional similar
parts under the name “Rapid Virtualization Indexing
RVI”. RVI is part of AMD’s overall Virtualization
Technology being entitled “AMD-V”. Technical
details of AMD’s implementation have been disclosed
as “IOMMU Architectural Specification”.

3. Technical Introduction to Multi Root
I/O Virtualization (MR-IOV)

 Beyond SR-IOV the PCI-SIG® is going to release a
Multi Root IOV MR-IOV specification which enables
I/O infrastructure consolidation in server system
enclosures containing multiple PCI root complexes.
MR-IOV supports sharing of PCIe endpoint devices
among multiple physical servers. MR-IOV as being
specified by the PCI-SIG®, will allow omitting PCIe
devices from a physical server motherboard to save
costs, power and space. Instead a software-transparent
PCIe interface will be exposed from the physical
compute node to access an external PCIe fabric, which
provides access to sharable PCIe endpoint devices. In
this approach, the virtual hierarchy of each host
extends through the fabric to each PCIe endpoint
device. A MRA-IOV (Multi Root Aware IOV) switch
contains a virtual fan-out switch routed to each host
port. Transaction layer packets are routed through the
RC to PCI endpoint devices without any changes,
which allows end to end data transport integrity check.
The multi root fabric is software transparent only after
a management and configuration agent, called MR-
PCIM (Multi Root PCI Manager), has configured the
fabric and coordinated sharing of I/O devices by
dealing with resource assignment and allocation. Once
this is done, each host may enumerate its own virtual

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 13

hierarchy and configure the virtual I/O devices
allocated to it by MR PCIM using standard PCIe
enumeration software. Device drivers may need minor
tweaks but no architectural changes to support MR-
IOV.

Figure 5: MR-IOV Infrastructure Overview

4. Prospects, Weaknesses and Implications
upcoming with MR-IOV

The discussed aspects in this chapter may give an
impression about possible implications of an MR-IOV
technology adoption to blade server systems.
Investigations just have started. Final conclusions
can’t be given, yet.

The advantage of MR-IOV is that it will allow
omitting I/O-devices from a server module,
particularly those for storage and networking. Instead
PCIe interfaces coming out of CPU and Chipset are
routed directly to a software-transparent PCIe switch
fabric which forwards the I/O traffic to the PCIe

endpoint devices. Below in this article we consider an
adoption of MR-IOV technology to Blade Server
Systems and will compare features then against the
conventional I/O infrastructure of Blade Systems. We
look especially at Blade Server Systems, as the MR-
IOV approach seems to match well with Blade Server
System architectures, enclosing Multiple physical
Roots at high density packaging.

Figure 6: Conventional Blade Infrastructure

Above example of Conventional Blade Infrastructure
implementation shows 16 Blades, each having a dual
channel 10Gb NIC and a dual channel FC Adapter
populated and being connected to redundant FC and
LAN Switching Modules. By having a PCIe fabric in
the MR-IOV approach, like shown in the picture
below, there will be no more need to have separate
types of fabrics for storage and LAN within a single
blade chassis enclosure. Two PCI Fabrics are still
employed in below example to ensure fabric
redundancy.

Figure 7: MR-IOV Blade Infrastructure Example

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 14

4.1 HW Cost Advantages by MR-IOV

The native capability of MR-IOV to share I/O
Devices will reduce Blade Box Entry Costs. Even for
typical configurations it looks that the End User Price
for hardware will be lowered by making use of the
MR-IOV approach.

PCIe Cards: Typically the ratio of downlink ports

to uplink ports for switches is in the range of 3 to 5.
As MR-IOV is making use of fractions (VFs) of
adapters and doesn’t require FC and LAN adapters per
each blade, the overall PCIe adapter costs are expected
to be a third to a fifth compared to the conventional
approach, only. Looking at a time frame from 2009 to
2011, the costs for FC and 10Gb Ethernet PCIe
adapters are assumed to remain a significant portion
of the blade total system costs.

Switches: For a blade system which offers MR-

IOV infrastructure, there will be no more need to
adopt different kind of switch modules for different
interface technologies like 1Gb LAN, 10Gb LAN and
4/8Gb FC to the blade housing. There will be also no
more need to adopt specific switches to blade boxes,
which offer e.g. unique LAN manageability features.
As PCIe remains to be switched only within a blade
box, the MR-IOV approach will give more flexibility
in configuring type and throughput of I/O devices,
while requiring a less number of switch module types.
This will simplify I/O infrastructure and reduce
generic blade box costs. To offer variable I/O traffic
bandwidth per blade, PCIe switch units for different
port width (PCIe x2, x4, x8, x16) operation might be
required.

If we try by now an early estimation about HW
costs for MR-IOV like PCIe HW switching in
comparison to HW costs for a conventional LAN and
FC switching infrastructure in a blade box, we expect
to see cost advantages for the MR-IOV approach,
assuming alike performing solutions. Of course there
is need to dig into this more deeply based on more
specific plans of implementation.

4.2 Performance

If we look at below shown elements affecting
throughput and latency of I/O traffic within a blade
box, the HW internal implementation of SWITCH
devices will be of major relevance, comparing a
“Conventional” against the MR-IOV approach.

Figure 8: Blade Box IO Traffic Transfer Latencies

Latencies: The implementation of Physical Layer

packet routing, congestion and buffer resource
management within a switching chip device will
finally make the difference in transport latency over
the switch device.

For low workload conditions we wouldn’t expect to
see a significant packet transfer time difference,
comparing an MR-IOV switch device against a 10Gb
Layer2/3 LAN or even against a FC switch. To rate
about packet transport delay at heavy workload
scenarios, it will be essential to look at the very details
of a switching device implementation.

 Throughput: The MR-IOV approach allows
assigning multiple I/O endpoint devices to a certain
blade. This makes it possible to provide high I/O
device bandwidth to individual blades. However, the
maximum I/O bandwidth per blade will be limited by
the number of wires and by the bandwidth per wire
connecting blades to the I/O switch fabrics.
 The actually released PCIe standard Revision 2.0,
specifies per signal pair a maximum data rate of
5Gb/s, which is half of the speed, at which 10Gb LAN
traffic is transferred per PCB routed copper wire pair
(10GBASE-KR) in Blade systems today. Ethernet
physical layer transfer speed per wire will continue
being ahead against the per wire data rate of PCIe over
the next few years even if PCIe physical layer speed
will catch up in the next two years.
 All this means that in the MR-IOV approach,
roughly speaking a 1.5 times number of wires between
switches and blades will be required to offer alike
bandwidth against the conventional approach.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 15

4.3 Power

 As the I/O resource sharing capability of the MR-
IOV approach typically reduces the required number
of PCIe endpoint devices to a third till a fifth, the
power saving will be significantly. Assuming a power
consumption of 15 Watt per typical LAN or FC PCIe
Card, an adoption of the MR-IOV approach could easy
save 300 Watt for a fully stuffed Blade Box.

4.4 Not yet covered by the MR-IOV Spec.

Host to Host Traffic: The initial available MR
IOV specification does not specify a mechanism for
host-to-host communications. It looks that this
complex and controversial feature was omitted to get
the initial revision of the specification closed.

Figure 9: Host to Host Communication

For “High Availability” and “Load Balanced”
Server System Configurations as well as in the High
Performance Computing Market (HPC), clustering of
servers has become usual. Various implementations
for clustering of servers using different hardware
interconnect interfaces as well as using different kind
of software infrastructure models do exist.

Especially for blade systems it is a pity that the
industry could not agree on a common standard to
enable server clustering over cheap, low latency PCIe
connections at high bandwidth. Of course there are
traditional ways to cluster Blades e.g. by going
through NIC devices. But this is less performing and
more expensive in various matters is it could be by
having respective specification in the MR-IOV spec.

4.5 MR-IOV Specification Standard

There are various aspects which need to be

considered if it comes to the implementation of MR-
IOV in the server environment. There is to mention
the ongoing certification process for MR-IOV. Until
the final specification isn’t available there is some
uncertainty about implementation details. However
with the release of 0.9 almost all major topics are
addressed. First prototypes can be built on that
specification. We expect the final release of MR-IOV
by the PCI-SIG® in Q1/08.

By making extensive use of 1st prototypes we
have to learn more about the implementation in real
server scenarios. In this sense the MR-IOV
specification is just the framework for shared I/O
realization. The specification itself allows different
types of implementation at the Server, PCIe Controller
and Management side. We have to research
dependencies and opportunities of the shared MR-IOV
approach along with the virtualization aspects. This
includes topics like I/O stream prioritization and
congestion management in the PCIe environment
which will be shared between different virtual
identities and even different physical servers.

• What type of interference in real server scenarios

may or will happen?
• Will the VMM community support special

features like VF migration or hot plugging?
• What type of interaction is required between the

SR-PCIM and MR-PCIM?
• How to automate I/O assignment on application

demand in virtualized and in non virtualized
environments?

All these aspects are mentioned but not restricted by
the MR-IOV specification and will allow vendor
specific implementations. This can be seen as threat as
well as a chance to get an MR-IOV ECO system
established.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 16

5 Added Values for Customers

The MR-IOV approach provides some new

thoughts of how servers can be efficiently connected to
the outer world including I/O management while
keeping the current PCIe Controller environment.
The next chapters will show some of these ideas with
respect to added value for end customers.

5.1 Motion of Server Environments

New virtualization features like Xen-Motion or

VMotion allow movement of virtualized environments
beyond server borders. To make that efficient it is
useful to prepare and manage I/O identities like MAC
or WWN as well as connection parameters. Both the
I/O identity and the connection parameters like
necessary interfaces and throughput requirements can
be efficiently assigned in combination with the MR-
PCIM. It will be possible to discover conceivable
destination I/O capabilities before movement takes
place. This is possible without interference to running
environments. Even a running server isn’t required to
get the I/O capabilities of a server connected to a MR
switch. All this can make movements of virtualized
System Images (SI) in the data center more reliable
and flexible with respect to the related I/O.

5.2 Flexible Assignment of I/O

In today’s server environment the I/O is fixed

assigned to each server due to the physical placement
of PCIe Controllers in the corresponding server I/O
slots. The amount of available I/O slots and the type
(FC,LAN,SAS etc.) of IO also defines possible use-
cases for that server. Because I/O-Slots are expensive
in terms of necessary space, power and money, the
amount of available slots is therefore limited. As a
consequence the customers need to decide very early
in his decision process for what purpose the dedicated
server will be used. Changes over lifetime are difficult
and cause significant service effort. There is of course
still some flexibility coming along with available PCIe
slots but especially for small servers with one or two
PCIe slots it is rather stiff than flexible.
With the MR-IOV model it will be simple for the
customer to add or remove I/O devices (FC, LAN,
SAS etc.) to each connected server based on what the
application requires. The server I/O capability itself
isn’t any longer limited by the local available I/O slots
and local plugged I/O controller. Of course the
principal I/O potential of a server defined by the

chipset and the amount of CPU’s memory etc.
remains.

5.3 Flexible and Remote Administration

Unlike today’s I/O administration the MR-IOV

approach allows flexible reaction on I/O problems like
bottlenecks, broken connections etc. Each I/O
connection to each server can be administrated
without the need to handle physical PCI-cards in the
data center. The administrator will simply be able to
manage I/O connections from his desk. If the
application runs in throughput limitations or another
type of I/O will be needed, an administrator may
assign further interface devices just by doing a few
mouse clicks.

5.4 Redundancy and Services Concepts

Redundancy in the current rack server

environment is quite expensive. You have to double
the amount of necessary I/O controllers for each I/O
type. That might be impossible due to PCIe-Slots
limitations. The MR-IOV approach will allow
redundancy via a shared PCIe connection.
Furthermore the MR-IOV redundancy concept
requires one VF as spare VF on a second controller
only. This will save power and PCIe controllers.

Due to the MR-IOV redundancy concept,
controller function faults will not require immediate
service. It will be acceptable to delay service to next
business day because the application can run with the
redundant interface. Even if the complete throughput
is required it can be smoothly redirected to another,
e.g. spare PCIe controller to allow running the
application with full speed.
.
5.5 Controller Savings and I/O
consolidation.

One prerequisite for effective MR-IOV usage

model is the over provisioning of I/O throughput
coming along with the newest I/O controllers like
10GbE or future 40/100GbE and 4/8 or future 16 Gb
FC. This over provisioning inspires to think about I/O
controller sharing. In today’s blade environment we
typically see over provisioning in ratio of 6:1 or 4:1
between I/O switch downlink ports and uplink ports.
Depending on the I/O type Ethernet, FC, SAS etc. we
may see larger over provisioning ratios.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 17

5.6 Expected acceptance of MR-IOV

Precondition for MR-IOV to be accepted by the

industry will be the availability of SR-IOV and MR-
IOV capable devices. Nearly all PCIe controller
vendors are developing SR-IOV devices. Looking at
OS and VMM implementation effort to adopt MR-
IOV, around 90% of the job will be SR-IOV related.
Because nearly every PCIe controller vendor is going
to provide SR-IOV capable devices in 2008 we expect
that OS vendors like Microsoft, Sun or the Linux
community will integrate necessary drivers in 2009.

We also think that several PCIe controller vendors
will recognize the potential coming along with the
MR-IOV approach. Even if vendors fear that the PCIe
device savings due to the MR-IOV approach will harm
profit, it might be realized also, that the MR-IOV
approach will ensure a future for the PCIe endpoint
business at all.

Finally, the amount of possible savings in power
consumption and controller costs as well as an
immediate integration of MR-IOV respective I/O
management into data-center management tools will
be key factors for a successful acceptance of MR-IOV
by the industry.

6. Link Collection

http://www.pcisig.com/home
http://www.xensource.com/overview/Pages/overview.a
spx
http://www.vmware.com/vinfrastructure/
http://www.intel.com/technology/platformtechnology/
virtualization/index.htm

Disclaimer: All hardware and software names used
are trade names or trademarks of their respective
manufacturers.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 18

http://www.pcisig.com/home
http://www.xensource.com/overview/Pages/overview.a
http://www.vmware.com/vinfrastructure/
http://www.intel.com/technology/platformtechnology/

Hardware Virtualization Exploiting Dynamically Reconfigurable Architectures

Jens Hagemeyer, Mario Porrmann
Heinz Nixdorf Institute

System and Circuit Technology
University of Paderborn, Germany

{jenze, porrmann}@hni.uni-paderborn.de

Markus Koester
Department of Computing

Imperial College London, United Kingdom
mkoester@doc.ic.ac.uk

Abstract

Integrating dynamically reconfigurable hardware into
single or multi-computer environments poses specific re-
quirements to the system designer and to the programmer,
to facilitate high usability and efficiency of these heteroge-
neous systems. In this paper, virtualization methods are an-
alyzed in respect to reconfigurable hardware. Techniques
are described that combine various FPGAs to one large
virtual FPGA including the possibility of dynamically re-
configuring only parts of the virtual FPGA as well as parts
of single FPGAs. Partially changing the system architec-
ture during run-time requires novel design flows and design
methodologies. Appropriate approaches and implementa-
tions are sketched in this paper.

1 Introduction

In this paper we will analyze the benefits and the require-
ments when integrating dynamically reconfigurable hard-
ware into today’s computing environments with respect to
virtualization. Operating system virtualization provides the
illusion of many virtual machines (VM), each running its
own operating system [1, 2]. Therefore, the available re-
sources are shared between the various VMs, giving each
operating system virtually exclusive access to the hardware
infrastructure. Depending on the requirements of the OS
and on the priority of the virtual machine (or the executed
applications) different views concerning the available hard-
ware can be offered to the operating system. This implies
resources like CPU time, memory, and I/O (I/O virtualiza-
tion). In addition to providing access to shared resources,
virtualization is also used to combine distributed resources,
like storage systems, to one large storage system that is eas-
ier to maintain and offers superior performance and relia-
bility.

Reconfigurable hardware can be used to support the vir-
tualization approaches described above. In [20] a Xilinx

Virtex II Pro FPGA (field-programmable gate array), which
includes reconfigurable resources and two PowerPC proces-
sors, is used to support I/O virtualization. Hardware and
software mechanisms are analyzed, that enable concurrent
direct network access by operating systems running within
a virtual machine. The virtual machine monitor (VMM) of-
fers each VM a virtual network interface that is multiplexed
onto a physical network interface card. By utilizing addi-
tional hardware support for virtualization, the authors show
a significant performance improvement compared to a pure
software solution. With the growing need for virtualiza-
tion solutions also the need for hardware support increases.
Here, FPGAs can offer flexible solutions that can be easily
adapted to new requirements. In today’s scenarios FPGAs
are typically used as a low-cost alternative to ASIC (ap-
plication specific integrated circuit) implementations. But
FPGAs offer a much higher potential – a lot of research in
the reconfigurable computing area focuses on dynamic re-
configuration, i. e., the change of hardware (typically FPGA
implementations) during run-time [3, 10, 19].

Dynamically reconfigurable hardware can efficiently
support virtualization environments by adapting to chang-
ing operating conditions. Depending on the actual system
state the same reconfigurable hardware can assist I/O or net-
work virtualization at one time and accelerate an operat-
ing system or an application at another time. Additionally,
due to the inherent parallelism of FPGAs, various hard-
ware accelerators can operate concurrently without affect-
ing one another. Therefore, the integration of FPGAs into
today’s computing environments can offer significant im-
provements in performance for virtualization, for the oper-
ating system, and for the application. Unfortunately, the
integration of FPGAs comes with additional development
cost; efficient implementations typically require an in-depth
understanding of system architectures and of hardware de-
velopment. This is especially true for the utilization of dy-
namic reconfiguration. Therefore, the main challenge is to
efficiently utilize the dynamically reconfigurable resources
and to offer easy to use frameworks that assist the developer

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 19

and that offer transparent access to the additional resources
for the end-user application.

In this paper, we will focus on the efficient utilization
of dynamically reconfigurable hardware. The new concepts
can be used to improve the performance of virtualization
environments as well as of applications – nevertheless they
require additional virtualization effort. The rest of this pa-
per is organized as follows. Section 2 gives an overview
of hardware virtualization in respect to dynamically recon-
figurable FPGAs. In Section 3 principles for the design of
Multi-FPGA systems are discussed. This approach is de-
tailed in Section 4 by adding the opportunity to partially
reconfigure each FPGA in the system for optimum resource
utilization. Finally, Section 5 discusses available high-level
software tools and Section 6 concludes the paper.

2 Hardware Virtualization

In respect to dynamically reconfigurable hardware vir-
tualization is typically associated with the execution of a
large application on a hardware platform with insufficient
available resources. Like virtual memory the virtual hard-
ware is able to execute the application by time-multiplexing
the available resources. The application is split into smaller
parts that are executed sequentially on the hardware. In [17]
this approach is referred to as temporal partitioning. Es-
pecially in embedded applications that have to cope with
limited resources this is a very promising methodology to
reduce cost and power.

Today’s FPGAs have become quite large, offering the
opportunity to operate different applications (hardware
tasks) in parallel. These hardware tasks can be used to assist
the virtualization environment, the operating system or as
hardware accelerators for the end-user application. There-
fore, an environment is required, that offers the opportu-
nity to load hardware tasks on the FPGA, remove them
and load new tasks during run-time. Like in software, the
hardware tasks come with different requirements concern-
ing reconfigurable resources (comparable to CPU usage),
memory and I/O. Here, a hardware abstraction is required
that manages the available resources – typically this is im-
plemented in a reconfiguration manager. The reconfigura-
tion manager decides where to place a hardware task on the
FPGA, depending on the specific requirements and on the
current device utilization. Comparable to I/O virtualization
each hardware task has to be able to access the shared ex-
ternal interfaces of the FPGA. An important prerequisite for
such an implementation is a homogeneous communication
infrastructure on the FPGA, enabling communication inde-
pendently from the location of the hardware task.

Although today’s FPGAs are quite large, users often
want to combine several devices to form one large vir-
tual FPGA. Comparable to storage virtualization, concepts

are required that efficiently map the application onto the
FPGAs, taking into account, e. g., the diversity in commu-
nication bandwidth and latency between the devices. Ide-
ally, the user does not recognize at all, where his applica-
tion is located. It can be implemented completely in soft-
ware, accelerated by one or more accelerators located on
currently available reconfigurable resources in the system,
or it is completely realized in hardware. For the virtualiza-
tion environment this implies additional management effort,
especially when dealing with hardware and software tasks
with varying priority or with real-time requirements. In the
following sections architectural aspects are detailed that are
required to establish dynamically reconfigurable systems.
A special focus is on the communication infrastructure –
first for Multi-FPGA systems and subsequently for Single-
FPGA environments.

3 Multi-FPGA Virtualization

A common scenario in hardware virtualization is the use
of multiple FPGAs to execute one or more tasks. The main
reasons for using virtualization are to map big tasks trans-
parently to more than one FPGA and to eliminate the need
to know which FPGAs in a given environment are actually
used to execute a task. This chapter focuses on the foun-
dation to build such a Multi-FPGA environment that can
be used for Multi-FPGA virtualization later on. One of the
most important aspects in the design of Multi-FPGA sys-
tems is communication. This includes the links between the
FPGAs as well as the host coupling, witch defines how the
FPGAs are connected to the rest of the system, e. g., to ex-
ternal CPUs in term of bandwidth and latency.

A typical mechanism to connect FPGAs to the host sys-
tem is the utilization of a peripheral bus system like PCI-X
or PCIe. However, it is also possible to connect an FPGA
directly to the processor bus of the System, to use network
connections like Ethernet, or even USB. All these possibili-
ties have different assets and drawbacks. Figure 1 shows an
example of a Multi-FPGA system, including FPGAs that
are directly connected to the Front-Side-Bus of the Host
(FSB, shown as red arrows in Figure 1). The direct con-
nection to the FSB offers the highest bandwidth and lowest
latency when communicating with other CPUs or with the
system memory. However, due to space restrictions, typi-
cally only a single FPGA per CPU socket can be attached
in such a manner. This FPGA is tightly coupled to the host
system, but not to other FPGAs in the system.

FPGAs that are build on dedicated cards, e. g., a periph-
eral card attached to PCIe, can be connected to each other
using dedicated, high-speed point-to-point connections be-
cause more than one FPGA (typical three to six) can be
placed on the same board. However, the connection to the
host system has to utilize a peripheral bus system like PCIe,

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 20

FPGA FPGA FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA FPGA FPGA

Host-Backbone (e. g. GBit-Ethernet)

FPGA to FPGA Communication (e.g. Serial High-Speed Interconnect)

Host to FPGA-Board Connection (e.g. PCIe 8x)

Host Backbone (e.g. GBit Ethernet)

Host-PC Host-PC Host-PCHost-PC
with FPGA

CPU

FPGA

MEM

Host Communication System (e.g. Front Side Bus)

CPU

FPGA

MEM

Host-PC
with FPGA

Figure 1. Overview over an example Multi-FPGA system

(shown as gray arrows in Figure 1), introducing additional
delay and lower bandwidth compared to the FSB-based so-
lution. To offer a solution for direct FPGA-to-FPGA com-
munication between FPGAs connected to the processor bus
and those located on peripheral cards, or between FPGAs
located on different peripheral cards, high-speed serial con-
nections can be used. High-speed serial interfaces enable
copper-based high-speed connections for long range com-
munication (typically 1 m), while normal LVDS connec-
tions are limited to short distances (typically up to 15 cm).
High-speed serial links (shown as blue arrows in Figure 1)

typically offer a medium bandwidth, low latency connec-
tion between FPGAs on different boards or platforms. In
Table 1 an overview of typical connections for FPGA-to-
FPGA and Host-to-FPGA communication is given. In this
example, the high-speed serial interface is realized by four
Rocket-IO interfaces, operating in parallel.

In the overview in Figure 1, a matrix topology was cho-
sen as an example for the FPGA-to-FPGA communication.
It is also possible to use other communication topologies,
e. g., a 4D-hypercube, utilizing 16 FPGAs. More FPGAs
can be added to the hypercube by utilizing additional con-

Type Bandwidth Latency Signaling Duplex

FP
G

A
-t

o-
FP

G
A On-PCB Connection 80 GBit/s 10 ns LVDS Half-Duplex(64 LVDS Connections)

Rocket-IO 26 GBit/s 100 - 200 ns LVDS/Aurora Full-Duplex(Link util. 4 x 6,5 GBit/s)

H
os

t-
to

-F
PG

A

FSB 68 GBit/s 120 ns AGTL+ Half-Duplex(FSB 1066 - Socket 604)
PCIe 8x 16 GBit/s 1-2 μs LVDS/PCIe Full-Duplex(PCIe Version 1.1)
Ethernet 1 GBit/s 100 μs PAM-5 Full-Duplex(1000Base-T)

USB 0,48 GBit/s 1 ms LVDS/USB Half-Duplex(USB 2.0 High-Speed)

Table 1. Comparison of different FPGA-to-FPGA and Host-to-FPGA connection systems

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 21

nections, which are typically available between FPGAs lo-
cated on the same board.

4 Single-FPGA Virtualization

In Multi-FPGA systems, a single FPGA is often consid-
ered as an atomic unit, that will be reconfigured completely
if a reconfiguration takes place. A more generic solution
is to configure only parts of an FPGA by using principles
of partial reconfiguration. Using such techniques, the basic
communication infrastructure for an application will stay
the same, while hardware tasks, which are often called hard-
ware modules in this context, will be placed somewhere
in the cluster. To allow the placement of a given module
at multiple positions on multiple FPGAs, homogeneity of
the dynamically reconfigurable area is a major requirement.
In this chapter, partitioning schemes for partially reconfig-
urable systems will be discussed and task placement tech-
niques are introduced, which are required to place a hard-
ware module in the environment. Finally, the special re-
quirements of communication infrastructures in partially re-
configurable systems are discussed.

4.1 Partitioning

A partially reconfigurable system is composed of static
components and dynamic components. Static components
are the parts of the system that are always present, like
the reconfiguration manager or the memory controller. Dy-
namic components are represented by hardware modules,
e. g., accelerators for cryptography, for complex arithmetic,
and for packet processing. Dynamic components are loaded
at run-time by means of partial reconfiguration. Based
on [25], a partially reconfigurable system can be partitioned
as follows:

Base Region: The base region describes the area of the
FPGA that is configured once at the initialization of the sys-

tem. The configuration of the base region is not changed at
run-time and can therefore be considered as pseudo-static.
All static components of the system are located in the base
region.

Partially Reconfigurable Region (PR Region): In con-
trast to the base region, the PR region is used for run-time
reconfiguration. All dynamic system components are
located in a PR region. A partially reconfigurable system
can be composed of one or several separated PR regions.

Reconfigurable Tile: The PR region is composed of one or
more individually reconfigurable tiles. A reconfigurable tile
is the smallest partially reconfigurable unit. With respect to
FPGAs it typically consists of several logic cells.

Partial Reconfiguration Module (PR Module): A partial
reconfiguration module represents the implementation of a
dynamic system component. It can be considered as a hard-
ware module or hardware task in the context of partially re-
configurable architectures. PR modules can be placed and
removed at run-time according to the needs of the applica-
tion. The placement is done by reconfiguring suitable con-
tiguous free tiles with the configuration data of the module.

In the simplest case, a single tile covers the whole area of
the PR region. The corresponding modules can only consist
of a single tile. As a consequence, the maximum number of
modules that can be placed and executed at the same time is
equal to the total number of PR regions. The advantage of
this approach is that at run-time the placement of a module
is done by simply selecting any suitable free PR region to
place the module in. Implementations using this approach
are presented, e. g., in [5, 24, 26]. However, the main dis-
advantage of this approach is the low resource utilization,
since even small modules occupy a complete PR region.
Furthermore, the size of a module is limited by the size of
the tile.

To avoid these limitations, the PR region can be parti-
tioned into multiple tiles as shown in Figure 2. A module is

Free
Cell

Allocated
Cell

Base
Region

PR Region Tile PR Module

(a) 1D-Approach (b) Multi-1D-Approach (c) 2D-Approach

Figure 2. Overview of possible partitioning schemes for dynamically reconfigurable hardware.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 22

no longer composed of a single tile, but of a group of con-
tiguous tiles. Placing a module is equivalent to searching
an area with as much contiguous free tiles as needed by the
module (cf. Section 4.4). The number and sizes of the tiles
and the arrangement within a PR region can be realized as
described in the following approaches:

1D-Partitioning: In the 1D-approach shown in Figure 2(a)
the height of the tiles is equal to the height of the PR region.
The width of the tiles must be chosen according to the target
FPGA. For Virtex-FPGAs, a commonly selected width is
four CLB columns (cf. [12]). The tiles are arranged side-
by-side and a requested module can be placed at positions
with a sufficient number of free contiguous tiles.

Multi-1D-Partitioning: If the PR region is large, the as-
pect ratios of small modules in a 1D-partitioning can lead
to an inefficient internal routing of the modules. Therefore,
in the multi-1D-partitioning shown in Figure 2(b) the PR re-
gion is partitioned into equally sized subregions. Each sub-
region is again partitioned into multiple tiles as described
earlier in the 1D-approach. The height of the tile corre-
sponds to the height of a subregion. A requested module
can be placed in one of the subregions at any position with
a sufficient number of free contiguous tiles.

The multi-1D-partitioning is especially suitable for FPGAs
with column-based partial reconfigurability, such as the Xil-
inx Virtex-4/5 devices, where the smallest partially recon-
figurable unit is a configuration frame that consists of sev-
eral vertically arranged logic cells. According to these de-
vices, the height of a subregion is typically set to multiples
of the height of a configuration frame.

2D-Partitioning: In the 2D-partitioning the PR region is
partitioned into horizontally and vertically arranged tiles, as
shown in Figure 2(c). A module is represented by a rectan-
gularly-shaped group of tiles. In contrast to the multi-1D-
partitioning, the height of a module is no longer defined by
the height of the PR region. When generating a module, the
area and the aspect ratio can be optimized according to the
internal routing of the module. While the placement of a
module is restricted to a one-dimensional search of free re-
sources in the 1D-approach, the online-placement of a mod-
ule in the 2D-approach requires a much more complex two-
dimensional search.

In addition to the partitioning of the FPGA, the concept of
partial reconfiguration requires a suitable communication
infrastructure for interconnecting the PR modules and the
base region. The communication infrastructure should not
introduce any further heterogeneity in the system to main-
tain the flexibility of placement by preserving the number
of feasible positions of the modules.

4.2 On-Chip Communication

When building an on-chip communication infrastructure
for a partially reconfigurable system, it is necessary to de-
fine dedicated communication points, so that every partial
reconfiguration module can connect to the communication
infrastructure in the same way. To realize this, so called bus
macros are used. Bus macros are pre-placed and pre-routed
hard-macros (called Native Macro Component (NMC) in
the Xilinx flow [26]) placed at a pre-defined positions.

Basically, two types of bus macros (aka hard macros)
can be distinguished. The link macro (see Figure 3) acts
only as a link between the base region (aka static region)
and a reconfigurable tile. Alternatively, as depicted in Fig-
ure 4, a macro can be embedded in the reconfigurable area,
connecting multiple reconfigurable tiles with each other and
with the base region. Link macros are typically utilized in
simple partially reconfigurable system, commonly used in
embedded systems with a small number of reconfigurable
tiles. Embedded macros, however, offer more flexibility for
complex partially reconfigurable systems in large FPGAs or
in Multi-FPGA systems.

An example implementation using embedded macros is
shown in Figure 5. The figure shows the base region utilized
by different static components, the communication macro,
and two PR modules (hardware accelerators for AES-based
decryption and floating-point multiplication) placed in the
PR Region. While the use of an embedded macro has the
disadvantages of a higher complexity during development,
an important advantage of embedded macros is the possi-
bility to put functionality that is required for the communi-
cation infrastructure into the embedded macro. An example
is the integration of the address decoder into the commu-
nication infrastructure realized by an embedded macro. In
contrast, typical link macros are just routing channels, wast-
ing the occupied FPGA resources as route-through nodes.
Furthermore, embedded macros can be used for every pos-
sible partitioning of a partially reconfigurable system, while
link macros are restricted to setups where at least one side

Figure 3. Example of a link macro implemen-
tation.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 23

Figure 4. Example of an embedded macro im-
plementation.

of a reconfigurable tile is adjacent to the base region. With
respect to the homogeneity of the communication infras-
tructure, the use of embedded macros offers an advantage,
because the routing of dedicated signals often destroys the
homogeneity of a partially reconfigurable region when us-
ing link macros. The development of embedded macros is
described in detail in [7] and [6].

bus manager

E-WB to local bus bridge

local bus to E-WB bridge

communication macro

T
il
e

1

(T
y
p
e

A
)

B
a
s
e

R
e
g
io

n

T
il
e

2

(T
y
p
e

B
)

T
il
e

3

(T
y
p
e

B
)

T
il
e

4

(T
y
p
e

B
)

T
il
e

5

(T
y
p
e

A
)

T
il
e

6

(T
y
p
e

B
)

T
il
e

7

(T
y
p
e

B
)

T
il
e

8

(T
y
p
e

B
)

T
il
e

9

(T
y
p
e

A
)

T
il
e

1
0

(T
y
p
e

A
)

T
il
e

1
1

(T
y
p
e

B
)

T
il
e

1
2

(T
y
p
e

B
)

T
il
e

1
3

(T
y
p
e

B
)

T
il
e

1
4

(T
y
p
e

A
)

T
il
e

1
5

(T
y
p
e

B
)

T
il
e

1
6

(T
y
p
e

B
)

PR Module (aes_decrypt) PR Module (f_mult)

Figure 5. On-Chip communication infrastruc-
ture of a Virtex-2 XC2V4000-4 FPGA.

4.3 IO-Virtualization

The term “IO-Virtualization” refers to various method-
ologies in different contexts. In the context of a partially
reconfigurable system on a single FPGA, some PR mod-
ules may require dedicated IO-connections, e. g., for control
of external components that need direct control signals like
analog-digital converters (ADCs). In general, a dedicated
connection is a connection that is required exclusively by a
PR module, and cannot be shared with other PR modules,
like e. g. the data signals of a bus connection are shared be-
tween all PR modules. In the context of IO-Virtualization,
the main problem is to ensure that a module connects to the
correct IOs when it is placed somewhere in the reconfig-
urable area. As an additional constraint, the homogeneity
of the reconfigurable area must be preserved. The problem
can be generalized to a dedicated signal problem, as ded-
icated signals not only exist for IO-connections, but in al-
most every communication infrastructure, that require ded-
icated control signals like enable signals. One solution to
implement a dedicated signal in a homogeneous communi-
cation structure is to use some registers, which never change
their initial value, in combination with some decoding logic.
Details to this a approach and alternatives are described in
[7] and [8].

Another, more specific solution is the use of a multi-
plexer block in the base region to connect a partial recon-
figurable module with the correct IO. For an efficient im-
plementation of the multiplexer block, it is possible to use
techniques exploiting partial reconfiguration as well. As the
connections in the multiplexer block just need to be changed
when a reconfiguration takes place, it is possible to imple-
ment the multiplexer block itself as a (very small) dedicated
reconfigurable module and add the necessary configuration
information to the reconfiguration bitstream. Using this ap-
proach, there is no additional routing delay introduced by
the multiplexer block, because only routing resources of the
FPGA are used for implementation of the multiplexer block.
No additional logic resources are required.

In another context, IO-Virtualization refers to connec-
tions between FPGAs that are used to create a communi-
cation infrastructure to build one big, virtual FPGA. As al-
ready mentioned in Section 3, different types of connec-
tions can be used to implement such communication struc-
tures. The communication links can be used exclusively by
one hardware task of the complete design mapped to the
big, virtual FPGA, or, as in most cases, shared (e. g., time-
multiplexed) by many hardware tasks. One principle differ-
ence between the different types of links is the exact knowl-
edge about the link delay at design time. Some examples of
possible connections are:

Direct Connection: Using a direct connection, e. g., an on-
PCB connection, is the simplest case of inter-FPGA connec-

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 24

tion. The delay of the line is determined only by the number
of pipeline stages in the FPGAs. This simplest case can be
handled by semi-automatic Multi-FPGA partitioning tools
like Synplicity Certify [[22]].

Serial High-Speed Connection: A serial high-speed con-
nection has no deterministic delay. Since the effective delay
of a high-speed serial connection depends on the phase rela-
tionship and the lock behavior of the integrated PLLs (Phase
Locked Loop), it will vary between every new startup syn-
chronization of the high-speed serial connection, which is
required, e. g., at system startup or after reset. It is possi-
ble to implement additional buffer mechanisms to circum-
vent those problems and to achieve a deterministic delay
at design time. However, this will slightly increase the to-
tal delay of the connection. Another possibility is to use a
data-driven architecture, which does not need deterministic
delays at design time.

Bus Connection: A bus connection in general cannot offer
a deterministic delay, because the arbitration will cause a
delay that depends on the current bus load. However, when
implementing a special protocol, e. g., a time-slot based
protocol on a bus-like communication infrastructure, it is
possible to achieve a deterministic communication delay.

4.4 Task Placement

The partitioning of the FPGA (cf. Section 4.1) and the
development of a suitable on-chip communication infras-
tructure (cf. Section 4.2) are important steps in the design
of a partially reconfigurable system. One of the major chal-
lenges with respect to the run-time behavior of a partially
reconfigurable system, is the placement of hardware tasks
in the partial reconfiguration region, which has some simi-
larities to the memory allocation problem of software tasks
in an operating system. Essentially, the problem is about
finding a reasonable amount of free resources to map the
task to. Software tasks utilize the resource memory to store
control and application data, while hardware tasks utilize
the resource memory to store configuration data. But there
are some differences that are briefly described in the follow-
ing.

One major difference is the fact that hardware tasks can-
not be subdivided into smaller fragments. The resources
need to be available in one contiguous block. Therefore,
a concept equivalent to virtual memory cannot be applied.
Although the FPGA itself is a fine-grained reconfigurable
architecture, the reconfigurable tiles can be considered as
coarse-grained partially reconfigurable units. The upper
bound for the number of feasible positions for a PR module
is the number reconfigurable tiles. Moreover, the PR region
can be composed of various types of tiles, e. g., tiles con-
sisting of logic cells only and tiles consisting of logic cells

and Block RAM (cf. Figure 5). The diversity of tiles fur-
ther restricts the placement of hardware tasks to those po-
sitions, where the same arrangement of the required types
of tiles occurs. Additionally, the placement may be subject
to application-dependent constraints. E. g., if the requested
task needs to communicate to one or more functional depen-
dent tasks without exceeding a certain latency, then the re-
quested task needs to be placed within a given range around
its dependent tasks to meet the latency constraint. Espe-
cially, in application with data streams, such as video filters,
this latency constraint might be relevant for the placement.

Depending on the given reconfigurable region, tasks can
also be placed in two dimensions, while the memory allo-
cation problem in context with software tasks has a one-
dimensional search space. But the coarse-grained partial
reconfigurability and the additional application-dependent
constraints restrict the placement of a task to a few feasible
positions. The search space for the placement of a hard-
ware task is therefore significantly smaller than compared
to the memory allocation problem in context with software
tasks. In the example shown in Figure 5 the partially recon-
figurable region consists of 16 tiles only.

In general, the placement of hardware tasks can be clas-
sified into online-placement and offline-placement. Offline-
placement denotes the case that the starting and execution
time of each hardware task is known at design-time. Here,
the placement problem is equivalent to a three-dimensional
binpacking problem that can be solved offline by integer lin-
ear programming as described, e. g., in [4]. The area of a
hardware task takes two dimensions, while the third dimen-
sion denotes the execution time. The execution time of a
task can be derived, if the input data size and the process-
ing time is known. Possible examples are filters for digital
images of a given size.

The placement needs to be done online, if the starting
times of the tasks, i. e., the moments the tasks are requested
to be placed, are unknown at design-time. In particular,
the starting times of the tasks are unknown in applications
with event-driven reconfiguration. An example for an event-
driven reconfiguration is a task that is requested to be placed
after another task with an unknown execution time is fin-
ished, or a task that is requested to be placed on demand
by the user. In any application with event-driven reconfig-
uration, the placement is an online-optimization problem,
which basically depends on the currently configured hard-
ware tasks. The type of the online-optimization problem is
related to the type of the hardware tasks. If the execution
times of the tasks are given, the placement is equivalent to
a three-dimensional online binpacking problem and can be
solved by heuristics as described in [21]. If the execution
times of the tasks are unknown, the problem size decreases
to a two-dimensional online binpacking problem. A suit-
able solution for this kind of task placement is presented

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 25

in [13]. This work also considers the placement for hetero-
geneous reconfigurable architectures with various types of
reconfigurable tiles.

If a hardware task is requested to be placed, but there
are not enough contiguous free resources to accommodate
the requested task, then there are different possibilities to
handle this unplaceable task. In the simplest case, the task
placement can be rejected. This is suitable for systems,
where the task can be alternatively executed as a software
task, such as described in [18]. Another possibility is to
delay the placement of the task until another task has fin-
ished its execution and can be removed to free a reasonable
amount of resources. This kind of delayed placement is dis-
cussed in [21]. Instead of waiting for the end of an execu-
tion, the currently configured tasks can also be rearranged
aiming to create a block of contiguous free resources to ac-
commodate the requested task. This concept is known as
defragmentation. The required mechanisms to relocate a
hardware task at run-time and defragmentation algorithms
aiming to minimize the reconfiguration overhead are de-
scribed in [14].

5 Design Flow

To use a system like the one displayed in Figure 1, an
appropriate design flow is needed. This design flow should
be able to deal with the mapping of one application to mul-
tiple FPGAs as well as with the special issues arising from
the use of partial reconfiguration. In Figure 6, the abstract
view of a typical design flow for dynamically reconfigurable
hardware/software systems is shown. Basically, there are
two starting points in the design flow. One is the design of
the basic hardware architecture that runs the hardware tasks,
and, as its counterpart, the design of the operating system.
The second starting point is the application or a set of appli-
cations that are mapped on the virtual FPGA, on the CPU,
or on both.

During the mapping of the application, the first step is
HW/SW partitioning. Depending on the available specifica-
tion of the application, coding in hardware description lan-
guages like VHDL or Verilog may be required for the hard-
ware tasks and, e. g., C-code is generated for the software
tasks. Additionally, novel tools can be utilized that enable C
to hardware compilation. Depending on the used C to hard-
ware compiler, it may be necessary to use annotated C code
like Handle-C or System-C. Alternatively, VHDL compil-
ers like the Mitrion SDK [16] or Impulse C [9] can be used
with native C code. However, the efficiency of the retrieved
hardware implementation (in terms of performance and re-
source requirements) is very application dependent, when
using C to hardware compilers. Therefore, the developer
has to trade off design-time against performance. As an al-
ternative, the developer can start with domain-specific tools

Application/AlgorithmSystem Architecture

HW/SW PartitioningOS HW Architecture

C to HW

VHDLMatlabEDK C CodeVHDLC Code

INDRA CompilerCompiler

H d

p

S f H d

p

S fHardware
Enviroment

Software
Enviroment

Hardware
Tasks

Software
Tasks

Figure 6. Design flow for dynamically recon-
figurable hardware/software systems

like MATLAB/Simulink. Synplify DSP [23] or Xilinx Sys-
tem Generator [27] extend the established framework and
are able to generate hardware descriptions based on abstract
simulation models. These tools rely on optimized libraries
with generic elements that are parametrized during hard-
ware generation.

The basic hardware architecture needed for a partially
reconfigurable system, including the interfaces to other
FPGAs, the base system, and the on-chip communication
infrastructure is typically described in VHDL. To shorten
the development time, a design tool for embedded systems,
like the Xilinx Embedded Development Kit (EDK), can be
used. The software part of the system, i. e., the software
tasks as well as the operating system, are compiled using
appropriate cross-compilers for the processor-types in the
system. All VHDL descriptions and netlists are handled by
the INDRA design flow, which is described next.

The INDRA design flow (integrated design flow for re-
configurable architectures) is depicted in Figure 7. The de-
scription of the base system of the design, supplied by the
HW-architecture development process, is used as the static
part of the system. The area that is used for the static com-
ponents is also referred to as the base region. The given
information of the system components is used in the layout
and floorplanning step to determine the required resources.
The number of resources for the static components does not
change at run-time. Thus, it can be derived directly from
the netlists or from the synthesis of the HDL specifications.
In contrast to the static components the dynamic compo-
nents are allocated at run-time. Since dynamic components
share the resources of the partially reconfigurable region,
the number of necessary resources depends on module pa-

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 26

PARTITIONING

HDL / Netlists,

Schedule

LAYOUT /

FLOORPLANNING

Architectural Partitioning,

Communication Macro

COMMUNICATION

MACRO GENERATION

IMPLEMENTATION OF

STATIC HW

IMPLEMENTATION OF

DYNAMIC HW

Initial Design,
Template for

dynamic Components

BITSTREAM GENERATION

Initial / Partial

Bitstreams

Partial Designs

Top

Level

Stat.

Komp.
Mod.

A

Stat.

Komp.
Mod.

B

stat.

Comp.

X-CMG

dyn.
Comp.

A

dyn.
Comp.

B

SARA

MiDesires
(make_module)

MiDesires
(make_bitstream)

MiDesires
(make_bitstream)

Schedule

MiDesires
(make_initial)

ArchGen

Top

Level

PR

Region

Base Region

Figure 7. Overview of the INDRA design flow

rameters, such as the sizes and the execution times of the
modules, and on how many modules are allocated at the
same time. For a given schedule, the size of the partially re-
configurable region can be tested by using the simulation
framework for reconfigurable architectures (SARA) [10].
Besides the partitioning, SARA can be used to select a
placement algorithm for finding positions of the PR mod-
ules at run-time. Based on the simulation results a suitable
FPGA and placement algorithm is selected. In the architec-
ture generation (ArchGen) step the system is partitioned and
the areas for the base region and for the partially reconfig-
urable region are defined. Synthesis of the base region and
of the PR modules is performed based on the system par-
titioning. Depending on the size of the modules, which is
obtained from synthesis estimation, and on the inherent het-
erogeneity of the FPGA, INDRA automatically determines
the steps required for the synthesis of the PR modules.

After the architecture generation step, all requirements
for the needed communication infrastructure are specified.
The communication infrastructure for a dynamically recon-
figurable system, which supports flexible module placement

and module relocation at run-time, requires being homoge-
neous. Homogeneity implies that the individually reconfig-
urable tiles are connected by the same routing resources.
Thus, modules cannot only be placed at one dedicated po-
sition, but at any position with sufficient free contiguous
tiles. To generate a homogeneous communication infras-
tructure, X-CMG [7] has been developed. X-CMG features
a multilevel, primitive-based communication macro genera-
tion approach. To build a homogeneous communication in-
frastructure, X-CMG offers primitives for different classes
of signals. The primitives can be used to implement shared
signals and dedicated signals as discussed in [8]. Shared
signals are used to transmit data and address information,
while control and arbitration is realized with dedicated sig-
nals.

All previously described steps are managed by the sys-
tem designer and are part of the INDRA front-end. The fol-
lowing steps aim at generating the bitstreams for the base
region and the partially reconfigurable region. These steps
are realized by MiDesires (Module implementation design
flow for reconfigurable systems), which describes the back-
end of INDRA. It is based on the current Xilinx JTRS flow
as presented in [15]. MiDesires is not only an interface to
the Xilinx tools, as it provides additional features like sav-
ing and loading the current state of the design flow. Addi-
tionally, it automates required steps during the module syn-
thesis such as the adaptation of UCF files and resolving of
dependencies. Furthermore, it directly changes parts of the
Xilinx design flow by modifying internal PAR settings ac-
cordingly and integrates mechanisms for module relocation
as presented in [11].

6 Conclusions

In this paper, various alternatives for the integration of
dynamically reconfigurable hardware into today’s comput-
ing environments have been presented. On the one hand,
reconfigurable hardware can be efficiently utilized to sup-
port IO virtualization or operating system virtualization. On
the other hand, virtualization methodologies are required to
enable or enhance the capabilities of dynamically reconfig-
urable hardware. Virtualization can be applied on single
FPGAs, e. g., for resource sharing and time-multiplexing.
But it can also be used to combine multiple devices to one
large virtual FPGA, e. g., for ASIC prototyping.

In order to apply the proposed concepts, several require-
ments need to be met at design-time and at run-time. In
the single-FPGA approach the device is partitioned into a
static and a dynamic part. A homogeneous communication
infrastructure is presented, that allows most flexible place-
ment. The proposed concepts can be applied to any FPGA
supporting partial reconfiguration. Currently, these are the
Xilinx devices of all Virtex families. At run-time, the tasks

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 27

are placed depending on the actual system state and on the
system requirements. In multi-FPGA environments, spe-
cial care has to be taken when designing the communica-
tion infrastructure between the FPGAs as well as between
the FPGAs and the host systems. Bandwidth and latencies
vary by several orders of magnitude depending on the im-
plemented infrastructure. At run-time, an efficient partition-
ing has to assure the efficient utilization of the proposed het-
erogeneous system. A combination of many, to some extend
proprietary tools is required to design, program and operate
these systems. The proposed design-flow INDRA serves as
a starting point for the integration of the complete workflow
into one framework.

References

[1] K. Adams and O. Agesen. A comparison of software and
hardware techniques for x86 virtualization. In ASPLOS-
XII: Proc. of the 12th Int. Conf. on Architectural support for
programming languages and operating systems, pages 2–13,
New York, NY, USA, 2006. ACM.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In SOSP ’03: Proc. of the nine-
teenth ACM symposium on Operating systems principles,
pages 164–177, New York, NY, USA, 2003. ACM.

[3] K. Compton and S. Hauck. Reconfigurable computing:
A survey of systems and software. ACM Comput. Surv.,
34(2):171–210, 2002.

[4] K. Danne and S. Stühmeier. Off-line placement of tasks onto
reconfigurable hardware considering geometrical task vari-
ants. In Proc. of Int. Embedded Systems Symposium 2005
(IESS), 15–17 2005.

[5] F. Ferrandi, M. D. Santambrogio, and D. Sciuto. A design
methodology for dynamic reconfiguration: The caronte ar-
chitecture. In Proc. of the 19th Int. Parallel and Distributed
Processing Symposium (IPDPS). IEEE Computer Society,
2005.

[6] J. Hagemeyer, B. Kettelhoit, M. Koester, and M. Porrmann.
A Design Methhodology for Communication Infrastructures
on partially reconfigurable FPGAs. In 17th Int. Conf. on
Field Programmable Logic and Applications (FPL2007),
pages 331–338, 27 - 29 Aug. 2007.

[7] J. Hagemeyer, B. Kettelhoit, M. Koester, and M. Porrmann.
Design of homogeneous communication infrastructures for
partially reconfigurable fpgas. In Proc. of the Int. Conf.
on Engineering of Reconfigurable Systems and Algorithms
(ERSA ’07). CSREA Press, 2007.

[8] J. Hagemeyer, B. Kettelhoit, and M. Porrmann. Dedicated
module access in dynamically reconfigurable systems. In
Proc. of the 20th Int. Parallel and Distributed Processing
Symposium (IPDPS), 2006.

[9] Impulse Accelerated Technologies. Impulse CoDeveloper
C-to-FPGA Tools, 2007.

[10] H. Kalte, B. Kettelhoit, M. Koester, M. Porrmann, and
U. Rückert. A system approach for partially reconfigurable

architectures. Int. Journal of Embedded Systems, 1:274–290,
2005.

[11] H. Kalte, G. Lee, M. Porrmann, and U. Rückert. REPLICA:
A bitstream manipulation filter for module relocation in par-
tial reconfigurable systems. In Proc. of the 19th Int. Parallel
and Distributed Processing Symposium, 2005.

[12] H. Kalte, M. Porrmann, and U. Rückert. System-on-
programmable-chip approach enabling online fine-grained
1D-placement. In 11th Reconfigurable Architectures Work-
shop, 2004.

[13] M. Koester, H. Kalte, and M. Porrmann. Task placement
for heterogeneous reconfigurable architectures. In Proc. of
the IEEE 2005 Conf. on Field-Programmable Technology
(FPT’05), pages 43–50. IEEE Computer Society, 2005.

[14] M. Koester, H. Kalte, M. Porrmann, and U. Rückert. Defrag-
mentation algorithms for partially reconfigurable hardware.
VLSI-SoC: From Systems to Silicon, IFIP Int. Federation for
Information Processing Series, pages 41–53, 2007.

[15] P. Lysaght, B. Blodget, J. Mason, B. Bridgford, and
J. Young. Enhanced Architectures, Design Methodologies
and CAD Tools for dynamic reconfiguration of XILINX
FPGAs. In 16th Int. Conf. on Field Programmable Logic
and Applications (FPL2006), pages 12–17, 2006.

[16] Mitrionics Inc. Mitrion Product Brief, 2007.
[17] C. Plessl and M. Platzner. Virtualization of hardware - intro-

duction and survey. In Proc. of the Int. Conf. on Engineer-
ing of Reconfigurable Systems and Algorithms (ERSA ’04),
pages 63–69. CSREA Press, 2004.

[18] F. J. Rammig, M. Götz, T. Heimfarth, P. Janacik, and
S. Oberthür. Real-time operating systems for self-
coordinating embedded systems. In Proc. of the 9th IEEE
Int. Symposium on Object and component-oriented Real-
time distributed Computing (ISORC 2006), Gyeongju, Ko-
rea, 24 - 26 Apr. 2006.

[19] P. Sedcole, B. Blodget, J. Anderson, P. Lysaght, and
T. Becker. Modular partial reconfiguration in Virtex FPGAs.
In 15th Int. Conf. on Field Programmable Logic and Appli-
cations (FPL2005), pages 211–216, 24 - 26 Aug. 2005.

[20] J. Shafer, D. Carr, A. Menon, S. Rixner, A. L. Cox,
W. Zwaenepoel, and P. Willmann. Concurrent direct net-
work access for virtual machine monitors. In HPCA ’07:
Proc. of the 2007 IEEE 13th Int. Symposium on High Perfor-
mance Computer Architecture, pages 306–317, Washington,
DC, USA, 2007. IEEE Computer Society.

[21] C. Steiger, H. Walder, and M. Platzner. Operating systems
for reconfigurable embedded platforms: Online scheduling
of real-time tasks. IEEE Trans. Computers, 53(11):1393–
1407, 2004.

[22] Synplicity Inc. Certify Datasheet, 2007.
[23] Synplicity Inc. Synplify DSP Datasheet, 2007.
[24] M. Ullmann, M. Hübner, B. Grimm, and J. Becker. An

FPGA run-time system for dynamical on-demand reconfig-
uration. In Proc. of the 18th Int. Parallel and Distributed
Processing Symposium, 2004.

[25] Xilinx. Early access partial reconfiguration user guide. In
UG208, 2006.

[26] Xilinx Inc. Application notes 290. Two flows for partial
re-configuration: Module based or small bit manipulations,
2002.

[27] Xilinx Inc. System Generator for DSP User Guide, 2007.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 28

Cost Saving and Flexibility - Virtualization is changing the IT landscape

Christoph Dobroschke
Advanced Micro Devices (UK) Ltd
Christoph.Dobroschke@amd.com

Abstract

As organizations increase their reliance on information technology to meet critical business objectives, IT must
continually deploy new computers to implement, maintain and grow services rapidly. Unfortunately, the traditional
approach to provisioning x86 systems has given rise to server sprawl and a number of significant challenges, rising
costs, poor return on investment, increased management complexity and reduced efficiency. This situation has put
great pressure on IT budgets and schedules, leading many organizations to search for a solution that can help them
sustain rapid growth while reducing operating costs. Virtualization technology is now emerging as a key tool for
several of these issues. This presentation will give an overview of the current IT landscape, business segments
where virtualization is already rolling out and an outlook of where we anticipate virtualization technology playing a
major role in the future. It will also discuss current and upcoming technologies enabling various forms of
virtualization:

1. Current IT challenges
2. How virtualization technology can help ease the pain
3. Market segments that are driving the adoption of virtualization
4. Example business cases
5. Hardware extensions to support virtualization
6. Trends and upcoming technologies

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 29

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 30

Netzwerk-Virtualisierung

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 31

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 32

A Network Virtualisation Concept based on the
Ambient Networks SATO System

M. Stiemerling+*, X. Fu*, and M. Brunner+

+NEC Europe Ltd., NEC Laboratories Europe
*University of Göttingen, Institute for Computer Science

{stiemerling, fu}@cs.uni-goettingen.de, brunner@nw.neclab.eu

Abstract

Network virtualization can be one way of fixing
the shortcomings of today’s Internet but also open
the venue for new, unforeseen applications. In this
extended abstract, we present a novel approach for
network virtualisation based on the Service-Aware
Transport Overlay (SATO) concept of Ambient
Networks. SATOs introduce on-demand overlay
creation and new interfaces to ease applications to
use overlays.

1 Introduction
Internet applications often assume the end-to-

end connectivity for their operations. While this
might be true in some areas of the Internet, it is not
true for the overall Internet. Many applications
today need to take care of network-specific
behaviour, such as broken end-to-end connectivity
(e.g. NAT), directionality of communication (e.g.
IP firewall), congestion control/avoidance
(important for real time applications), and different
network layer addressing schemes (IPv4 vs. IPv6).
This challenges applications in multiple ways, for
example, in terms of interface usage (necessity to
deal with different TCP/IP sockets), taking care of
middlebox behaviour. The result is on one hand
complex applications that are error prone with
respect to a variety of network behaviour and
determination of network behaviour. On the other
hand, some applications possibly cannot be
deployed or are delayed in deployment, as the due
to the constraints of the underlying network. For
instance, deployment of SIP-based services took a
long time due to the network limitations in terms of
NATs and the “unusual” behaviour of unbundled
SIP signalling and the transport of media.

One way to address this issue is aiming at a
clean slate Internet [11], believing in a forthcoming
evolution of the Internet towards a clean end-to-end
architecture (e.g. IPv6, [12]). Another approach is
to introduce short-term patches, for example,
revamping every real time application with ICE
NAT traversal techniques [13]. Also a typical short-

term response of application developers is to create
their own specific overlay system. These overlay
systems are made for a single, or very limited
range, purpose and not suitable for other purposes.
Examples for this are Skype for voice/video calls
[14], Joost for IPTV [15], and MBONE for
multicast [16]. However, we do not believe that any
of these strategies is the key to solve application’s
needs for an easier to use of the current Internet and
beyond. A clean slate of the Internet is not possible
as the installed base of IP devices is too large and
the Internet community always runs on the
assumption that there is no flag day for changing
fundamental parts anymore. The Internet evolves
on the assumption of gradually deployment of new
functions, e.g., IPv6 is available in many operating
systems but not in the Internet core.

All these increase the need for applications to be
aware of the network behaviour and to deal with the
network mainly on their own. Introducing new
patches are usually not simplifying the way in
which a network can be used by applications. For
instance, introducing IPv6 required changing
applications (e.g., a new socket interface) and
operational considerations when using IPv6 (e.g.
DNS returns an IPv6 address but the querying host
is IPv4 only). [2] refers to this process of an
evolving the Internet with more features and
patches as the ossification of the Internet.

One way to offload applications from this
burden is to introduce the concept of network
virtualization, as proposed in [1], i.e., offering an
abstraction to higher layers from the real network.
[2] describes adding network processing functions,
based router hardware add-ons, to boost network
virtualization and [3] describes the software-base
X-Bone concepts for deploying virtual networks.

Based on these ideas of dynamically deploying
overlays and network side processing support, we
propose a new approach combining these two
aspects. This overlay technique includes usage of
network side processing elements system beyond
pure routing and automatic adaptation to network
changes. The proposed system introduces a new
network interface between overlay nodes to control
the overlay and argues for a new system interface
between applications and the host network stack.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 33

The work presented is based on the Service-
Aware Transport Overlays (SATO, [6]) of the
Ambient Networks Phase 2 project [17].

2 Service-Aware Transport
Overlays

2.1 Overview

The main objective of the Service-aware
Adaptive Transport Overlay (SATO) concept,
proposed in [6] and extended in [7], is to design a
generalised overlay system structure, which is able
to realise overlay networks on demand. More
specifically, it introduces a uniform overlay
infrastructure to support multiple applications and
to provide them with useful functionalities realised
inside the network paths, thus providing an
abstraction from the underlying network. Part of the
SATO system is the Ambient Service Interface
(ASI), which provides an abstract network interface
to applications.

SATO aims to provide a flexible and
customisable transport services to the application
layer by using overlay networks on top of any type
of transport or network layer connectivity. The
individual overlay instances, i.e., SATOs, enable
the flexible configuration of virtual networks
consisting of SATO Overlay Nodes (SON). The
overlay network topologies are responding to the
application requirements and can enable point-to-
point, point-to-multipoint and multipoint-to-
multipoint services. SATOs are created upon
application request and application needs, they are
set-up on and torn down on demand. The SATO
concept allows the transparent inclusion of
network-side data processing elements (SATO
Ports) in the end-to-end transport path between
peers. These SATO-Ports can provide network side
processing functions, such as, but not limited to,
overlay routing, media adaptation, etc. To
accommodate changes in the underlying network,
SATOs adapt as a consequence of SON joining or
leaving the virtual network or due to changes in the
network environment or conditions.

For each requested service, a new SATO is
created. This SATO is self-contained and logically
does not interfere with any other existing or future
SATOs. Service requests must be issued per SATO
and they can contain necessary parameters, such as
required bandwidth, delay, jitter, etc, or just express
a rough service class, e.g., signalling or real-time
media.

2.2 Architecture

The core of the SATO system are the SATO
Overlay Nodes (SON) that participate in the SATO
system by providing their network and computing
resources to other nodes. A SON can be any kind of

Internet device, starting from a mobile phone to
fixed PC in an office. A SON can be part of any
number of SATO instances, providing different
services to different applications.

Figure 1 SATO Overlay Node Design

Within a SON there are different building
blocks, as shown in Figure 1. The Overlay
Management (OM) is in charge of operating the
SATO system, i.e., receiving requests from
applications for setup through the control plane
interface, maintaining existing SATOs and tearing
down of SATO. The OM is fully distributed
amongst participating overlay nodes. Applications
can request a SATO service through the SATO
control plane interface. The OM interface (OM IF)
is used by the OM to communicate with other OMs
on other nodes. The OM of the SATO system is
aware of the service requested by the application
and about the network conditions in which the
service is operated (the so-called service logic).

Each SON is part of the SATO lookup service,
which is typically a distributed hash table (DHT),
but not limited to, e.g., a centralised lookup service
approach could also be chosen for a deployment of
SATO. The lookup service and the OM
communicate with each other using the interface 3.
This lookup service is used to store information
required for operating the SATO system and
information required for running the applications.
The OM is primarily using the lookup service to
store information about available processing
functions, such as packet relays, and their location
in the network, i.e., the IP addresses/NodeIDs.

The processing function block that hosts the
SATO-Ports provides the real functionality of the
SATO system. A SATO-Port provides an arbitrary
processing functionality, for example, MPEG
transcoders, voice-codec transcoders, peer-to-peer
SIP proxies, or overlay routers (called virtual router
in [2]). SATO-Ports have one external interface to
the application, which is the SATO data plane
interface in Figure 1. Interface 2, called SATO
network interface, is connecting the SATO-Ports to
the network stack of the SON and thus to other
SATO-Ports. The control of the SATO-Port by the
OM is provided by interface 1. The SATO system

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 34

is able to include SATO-Ports on the fly into
existing SATO instances, or when setting up a new
SATO. Whenever a processing function is needed
(this is decided by the OM when constructing or
adapting the overlay) a search in the lookup service
is performed for the type of SATO-Port required.

3 Network Virtualization
Network virtualization follows the same

principle as any known computer virtualization
technology, such as virtual memory, virtual hard
disk, virtual screens, etc. It is always an abstraction
from a real resource, hiding the underlying
complexity (cf. [1]). But even if virtualization is an
integral part of today’s computing technology
(which is close to communication technology), it is
still lacking a counterpart in the Internet
architecture. Current proposals discuss possible
virtualization techniques (e.g. [3]) on top if the
Internet, but do not consider how this can be
integrated in the architecture.

Network virtualization as an integral part of the
future Internet has been proposed by, for instance
by GENI [8]and [9] on the architectural level. We
propose to add overlay techniques as means of
network virtualization to the Internet architecture.
The overlay system is not introduced together with
one new IP host to IP host interface and an
enhanced application to network stack interface.

3.1 SATO for Network

Virtualization

Section 2.1 defines SATO as a generic overlay
system that is not bound to a specific networking
application, but generic enough to be reusable by
many networking applications. This generic
approach also allows building a network
virtualization system. The very base of the SATO
system is the NodeID architecture [4], which
extends the Host Identity Protocol [5] by adding
IPv4 to IPv6 support and a new routing architecture
based on cryptographic identifiers. The NodeID is
used as it provides cryptographic node identifiers,
by-default encryption between nodes and an
abstraction from the IP level. This first level of
abstraction is shown as NodeID level in Figure 2.
The NodeID level hides underlying Network
Address Translator (NAT) middleboxes and ensure
virtual links from peer-to-peer, or peer to
SATOPort.

Figure 2: Abstraction Level of SATOs

The next level of abstraction is the SATO level
in Figure 2. The SATO level is abstracting from
the NodeID level to built the overlay topology. The
SATO level is the only visible layer to applications
requesting a virtual network. This virtual network,
for example, can provide an IPv6 network on top of
an IPv4 network. Applications using this virtual
network would only be able to see a subset of the
SATOPorts (a virtual IPv6 router in this case) as
part of the network infrastructure. Other
SATOPorts (SATOPort 2, e.g. traffic shaper, in
Figure 2) stay invisible to the applications.

3.2 Network Interface

The deployment of overlay networks used for
network virtualization, for example the 6BONE
[10], requires manual configuration and network
management. Adding now network virtualization to
the Internet raises the need for coordinating these
efforts. Network virtualization would be an on
demand service, such as TCP connections are
today, but with more network elements involved
(e.g., virtual routers). This demands a control
instance between participating nodes.

The SATO system is already offering on-
demand network virtualization, together with a
network control interface, i.e., the overlay
management interface (OM IF, cf. Section 2.2).
This interface allows coordination amongst
participating nodes of the overlays and control of
the overlays and can be used for this purpose.

3.3 Host Interface

The SATO system has the notion of the Ambient
Service Interface (ASI). The intention of the ASI is
to offer a more enhanced application to network
stack interface, i.e., host interface. However, the
ASI as such is currently not well defined and
underspecified. We propose to extend the scope of
the ASI to support network virtualization
techniques on the control and data plane. This
would allow applications to directly use a virtual
network without the requirement for
implementation hacks, such as for example,
intercepting packets with firewall rules or kernel
drivers.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 35

4 Conclusion
This extended abstract sketches the vision of

network virtualization as service-specific on-
demand overlay networks with network side
processing elements. We have proposed the SATO
system as one possible exploration tool in the area
of network virtualization but we are fully aware that
this is not the ultimate solution to general field of
network virtualization. The SATO system, with
NodeID, the new network interface, and the
enhanced host interface is work in progress. The
proposed approach is intended to raise further
questions about the direction of network
virtualization as part of Internet architecture and if
overlays are the right answer to this challenge.

5 References
[1] L. Peterson, S. Shenker and J. Turner,

Overcoming the Internet Impasse through
Virtualization, Hotnets 2004.

[2] J. Turner and D. Taylor, Diversifying the
Internet, Proceedings of Globecom 2005.

[3] J. Touch, Y. Wang, L. Eggert, , and G. Finn, A
Virtual Internet Architecture, ACM
SIGCOMM Workshop on Future Directions in
Network Architecture, 2003. Karlsruhe,
Germany.

[4] A Node Identity Internetworking Architecture.
Bengt Ahlgren, Jari Arkko, Lars Eggert and
Jarno Rajahalme. Proc. 9th IEEE Global
Internet Symposium (GI 2006), Barcelona,
Spain, April 28-29, 2006.

[5] R. Moskowitz and P. Nikander, Host Identity
Protocol (HIP) Architecture, RFC 4423, May
2006.

[6] Ambient Networks Deliverable: “System
Design of SATO & ASI”, website
http://www.ambient-
networks.org/Files/deliverables/D12-
F.1_PU.pdf, December 2007.

[7] M. Stiemerling and M. Brunner, A Peer-to-
Peer SIP System based on Service-Aware
Transport Overlays, VoIP Themenheft, Praxis
in der Kommunikationstechnik, October 2007.

[8] Larry Peterson, Tom Anderson, Dan
Blumenthal, Dean Casey, David Clark,
Deborah Estrin, Joe Evans, Dipankar
Raychaudhuri, Mike Reiter, Jennifer Rexford,
Scott Shenker, and John Wroclawski, "GENI
design principles," in IEEE Computer,
September 2006.

[9] Stephan Baucke, Ibtissam El Khayat, Ralf
Keller, Norbert Niebert, Flexible Architecture
for the Future Internet, Joint EuroFGI and ITG
Workshop on "Visions of Future Generation
Networks", Würzburg, Germany, July 2007.

[10]http://go6.net/ipv6-6bone/6bone_hookup.html,
December 2007.

[11]http://cleanslate.stanford.edu/, December
2007.

[12]S. Deering and R. Hinden, Internet Protocol,
Version 6, RFC 2460, December 1998.

[13]J. Rosenberg, Interactive Connectivity
Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for
Offer/Answer Protocols, Internet draft (work in
progress) draft-ietf-mmusic-ice-19, October
2007.

[14]Skype, http://www.skype.org, December 2007.

[15]Joost, http://www.joost.org, December 2007.

[16]MBONE, http://www-
mice.cs.ucl.ac.uk/multimedia/projects/mice/mb
one_review.html, December 2007.

[17]http://www.ambient-networks.org/ , December
2007.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 36

Flexible Architecture for the Future Internet based on Virtual Networks

Yasir Zaki, Carmelita Görg (Universität Bremen),
Stephan Baucke, Norbert Niebert (Ericsson)

The Internet's simple model of equally sharing bandwidth and packet processing resources is becoming a
burden because some traffic profiles cannot be fully supported in an all-IP network. Resource guarantees
obtained from the virtualization of physical networking resources offer the possibility of handling different
profiles in parallel with the impression of mutual isolation. "Hypervisor techniques" for virtualization exist
already, but the challenge is to understand the "slicing" of resources in a global networking context: The
operations necessary to assemble virtual resources into end-to-end solutions must be defined and
implemented in a distributed way. It should be possible, for example, for an operator to easily build, deploy
and operate for customers a virtual network with performance guarantees. Isolation and assembly of
independent network resources are two aspects of virtualization which is a key technique for drawing up a
methodology to create a family of interoperable networks. The approach should encompass the
virtualization of a broad variety of network resources, in particular including radio resources and wireless
access systems

The new FP7 project 4WARD has started to explore the possibilities of the new networking paradigm. This
contribution will discuss the implications with respect to the architecture, the virtualisation of resources,
and the provisioning and management of Virtual Networks.

Management of Virtual Networks

Provisioning of Virtual Networks
(on-demand instantiation of virtual networks)

Substrate

Virtualized
 Substrate

Virtual
NetworkVirtual

Network

Virtualization of Resources
(partitioning of physical infrastructure into “slices”)

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 37

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 38

HPC-Virtualisierung und Grids

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 39

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 40

Efficient High Performance computing using Virtualisation

Stefan Boettger
KIP Heidelberg

Volker Lindenstruth
KIP Heidelberg

Udo Kebschull
KIP Heidelberg

E-mail: boettger@kip.uni-heidelberg.de

Abstract

Usually, high performance computing aims for a
maximum peak performance. However, a more reason-
able measure is efficiency in terms of performance per
unit of power or even computation results per node life-
time. In contrast to approaches like Blue Gene, we aim
for a commodity hardware based cluster, which runs
applications for both on-line and off-line processing of
data gathered at the Alice-Experiment of CERN. Dur-
ing on-line operation times, we often encounter idle
periods on certain nodes, where an off-line job could
be processed until the next on-line data arrives. Since
factors like depreciation, license fees and power con-
sumption affect the total cost of ownership for a com-
puting facility it is reasonable to run the system at
nearly 100% load all the time. Running different jobs
simultaneously on a native basis requires compatible in-
stallation set-ups on the computing nodes. However,
many applications require different operating systems,
libraries and set-ups, which normally are not compat-
ible for installation on a single system. We therefore
propose an approach based on node virtualisation in or-
der to gain higher efficiency by keeping the cluster load
as high as possible. Such a virtualisation approach also
improves the usage of the cluster resources even during
backup/maintenance cycles and finally, we save com-
puting time by checkpointing and migrating of virtual
servers for downtime periods. Already computed re-
sults will not be lost if a running virtualized instance is
suspended and resumed later, possibly on another node.
Our experiments show that we need less time and power
for the same number of computed results.

1. Introduction

Scientific computing requires powerful hardware for
the operating platform, which is costly in acquisition
and maintenance. Therefore, for the assessment of
such computing facilities, not only does peak perfor-

mance have to be considered, but all costs which are
subsumed under the term TCO (Total Cost of Owner-
ship). Factors like depreciation, license fees and power
consumption play an important role for computer hard-
ware. Since license fees and depreciation are fixed on
a per hardware/software item base it is desirable to
exploit the available resources as much as possible,
avoiding any downtimes or periods with low resource
usage. Power consumption however is not fixed and
dependant on the usage scheme of the hardware. For
us a reasonable measure for the efficiency of a com-
puter systems is the number of computed results per
power consumption and hardware lifetime. In this pa-
per we will propose a way of how to maximise this
measure for the HLT cluster of the ALICE experiment
at CERN, the ALICE Experiment aims to study the
quark-gluon-plasma which presumably was present in
the first nanoseconds after the big bang [12]. Both on-
line and off-line physics data will be processed at the
HLT cluster.

The attempt to use cluster hardware most efficiently,
thus maximising the load of all nodes involved is not
new. Job schedulers are the common way of obtaining
high load on all cluster nodes. Apart from the theo-
retical boundaries in obtaining the best possible distri-
bution of jobs to nodes, a satisfying average load is of-
ten not achieved in practice. For parallel applications
the inter-process communication may cause the pro-
cesses to underutilise the CPU, highly prioritised ap-
plications may prevent other applications from running
on that node to ensure Quality of Service and applica-
tions may be compiled for different hardware/software
environments and therefore not ready for usage on the
same node. In dedicated clusters, like on-line clusters,
applications run often, which not appropriate to run
with job schedulers, since they do not comply with the
requirements made by the schedulers, e.g. library us-
age or MPI programming style, or they use their own
paradigm of distributing computations.

At the HLT cluster we want to achieve high clus-
ter usage by utilising periods with low cluster load to

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 41

run off-line physics applications by using server virtu-
alisation. Since HLT is an on-line cluster which uses
specialised hardware to receive data from the ALICE
detectors and processes these in real-time a responsi-
ble distributed application needs to utilise all resources
available. However during such detector-runs there are
certain intervals with little or no data arriving at the
HLT. We will use these periods to run grid off-line jobs,
additionally we will run off-line jobs in maintenance
cycles between different runs. Since these jobs are not
based on a parallel programming model such as MPI
they have no latency boundaries and therefore they are
perfectly appropriate for being processed during small
time slots. By using server virtualisation we obtain
the opportunity to run different applications with a
clean separation of their environments. By checkpoint-
ing virtual machines we are able to save computing
time and we will show that for our proposed setup we
are able to compute more results per time and power
consumption.

2. Related Work

For our purposes we need to have the ability to
run an on-line application with highest priority, i.e.
with all resources dedicated to that application. Ap-
proaches like Condor [2], LSF [3], NOW [4], SGE [6] try
to remove, i.e. either stop or checkpoint and migrate
lower prioritised jobs whenever the main application
demands more resources. Stopping jobs in our environ-
ment would most certainly mean that no jobs can be
finished at all, since the time-slots offered for off-line
computations are smaller than the average job com-
putation time. Checkpointing and migration in these
approaches requires support for these features imple-
mented by the job-application or the operating system,
which is not true or feasible for our case. In ISF [1] and
LL [5] it is proposed to have different priority classes
associated to jobs to ensure the Quality of Service of
the main application by modifying the kernel process
scheduler. However this cannot deal with the problem
of applications needing different runtime-environments
(e.g. OS). Additionally uncleanly programmed low-
priority jobs may interfere with other applications and
affect system stability.

3. Background

The HLT cluster serves as High-Level-Trigger for
the Alice-Experiment at CERN. It receives data fom
all detectors involved in the experiment, processes
these, calculates track-data and sends the results to

the data-acquisition (DAQ).). All this is done dur-
ing the runtime of the experiment. The HLT clus-
ter currently consists of 100 nodes (AMD DualCore
and QuadCore Opteron at 1.8GHz, 8GB RAM), 90
of which are being used for computations and 10 for
infrastructure purposes. In 2009 the cluster will be
extended up to 900 nodes with newer machines, us-
ing 8 or more cores per processor. Current intercon-
nect technology is gigabit ethernet, Quadrics or In-
finiband high performance interconnects are currently
being evaluated and will be commissioned in our clus-
ter in the near future. All nodes are equipped with
specialised remote-management cards based on FPGA
technology. Those CHARM (Cluster Health and Re-
mote Management [13]) cards have their own operat-
ing system (Linux derivate) and give the remote ad-
ministrator full access to the host by exporting the
keyboard and VGA. All computing nodes additionally
have a PCI-Card (RORC - Read-Out-Receiver-Card
[12]) based on a FPGA which is connected to the de-
tector via optical fibers and does pre-processing on the
received data. The host computers run Ubuntu Linux.
There a dedicated, distributed application (PubSub-
Framework [7]) will do all necessary computations and
initiate the send-back to the DAQ after tracks have
been found. Currently the experiment is in its final test
period with a starting date scheduled to may 2008. We
expect to have a peak data-rate of 800MB/s per node
(30GB/s in total) when the experiment is running. To
cope with this amount of data all cluster ressources
have to be dedicated to the responsible application to
meet the time-critical requirements in calculating the
track-data.

A single run of the experiment is supposed to last
24/7 for long periods (several weeks). There will
be maintenance weeks between single runs. For a
single run the data rate received by the HLT Clus-
ter and thereby the load generated on cluster-side
is not constant. Due to a special schedule which
determines the way how and when particles are in-
serted into the LHC (Large Hadron Collider - the
CERN particle accelerator) there will be phases at
runtime where no data arrives at the HLT Clus-
ter. The data rate arriving at the HLT is a func-
tion of the beam rate, mainly determined by the
(yet variable) factors like fill length and turnaround
time. A probable scenario is shown in figure
1.

Our goal is to utilise the inter-runtime as well as the
inner-runtime gaps for data processing with a non time-
critical application. Since HLT is a scientific physics
cluster we will run the Alice Grid Framework (ALiEN)
which does off-line track reconstruction. ALiEN dis-

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 42

Figure 1. Data Rate Curve for Run Time

tributes its jobs to more than 30 clusters worldwide.
At cluster-side a classical Job-Scheduler is required for
distributing the non-parallel jobs to the nodes. Though
theoretically runable on any linux OS, the current im-
plementation is not usable on our native operating sys-
tem Ubuntu. The average time needed to process a job
is 8 hours [9]. So the expected gaps will not be long
enough to compute a whole job.

Therefore we use server virtualisation to make best
use of the available timing, os and application con-
straints.

4. Our Approach

The cluster was designed as a special-purpose clus-
ter, so most of the time the PubSub-Framework will
run and process detector data. For inter-run periods
we will run off-line ALiEN jobs. Since ALiEN re-
quires a Scientific Linux (SL) installation, we set up
a VMware virtualised server on each of our computing
nodes, equipped with SL as operating system and SGE
(Sun Grid Engine) clients. This way we can also use
inner-run gaps, which would not have been an option if
we provided a dual-boot environment for multiple OS
on the native host. To enable the use of the inner-run
gaps we have to deal with the problem, that ALiEN
does not provide checkpointing and the expected gaps
are shorter than the average computation time of a job.
We circumvent this problem by using the checkpointing
/ suspend feature of VMware. Since the change of the
data-rate is predictable, the virtual machine (VM) is
suspended and if necessary migrated to another node or
simply resumed on the original host later. ALiEN does

not support checkpointing by design, i.e. jobs which
do not send a heartbeat signal once every 2 hours will
be regarded as failed. Due to that fact the VMs which
would have to be suspended for more than two hours
will be moved on one hand to a special node called vm-
host and resumed there for a short time, long enough
to send the required heartbeat signal. Once another
inner-run gap is due, the VM will be migrated back
and resumed. On the other hand VMs can be reniced
to use lowest processor affinity, just being able to send
the heartbeat signal required to keep their jobs alive.
Of course the proposed migration strategy is also appli-
cable for maintenance actions which normally are done
during the maintenance cycles between two single runs.
In such a case even hardware pieces can be exchanged
without loosing any computed results.

In figure 2 the comparable scenarios are shown with
respect to expected power consumption and computed
results (CR) for one period of the run-time and a rep-
resentative part of the off-line time. The hatched area
represents the number of computed results in both con-
figurations. Our expectation is to compute the same
number of results in less time with less power con-
sumption in the virtualised scenario. To verify this
we ran tests how virtualisation slows down computa-
tions, how power consumption behaves for different
load scenarios and how parameters like time needed
for resume/suspend of virtual machines affect overall
efficiency.

Since on-line data processing does not differ we
assume the number of results computed and power
consumption to be the same for both configurations.
Power consumption and number of results for pure

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 43

Figure 3. Power Consumption Computation Nodes

Figure 4. WebGUI for ALiEN JOB Processing

inner-run gaps and inter-run gaps depend on the load
produced on a host and the computation efficiency of
the nativ/virtualised environment. For testing this
we ran two different kind of physics applications, one

(app1) doing cluster-finding on raw event data, which
causes high I/O load and the other one (app2) doing
data compression which is more CPU-affine. The re-
sults are shown in table 1. It is obvious that both for

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 44

I/O and CPU-affine load the virtualisation is about 10
percent slower than calculations on a native host.

The power consumption has been measured for both
applications and environments as well as for the on-line
data processing. Additionally the power consumption
for standby and idle mode (with/without PowerNow
[10] as well as for a synthetic stress test involving both
heavy I/O and CPU load have been measured. Results
are shown in figure 3.

The difference between the power consumption in
on-line computations and off-line computations lies in
the nature of the tested applications. While the on-line
application operates on all CPU cores available, the
tested physics application for off-line mode only use two
CPU cores. No significant differences in the power con-
sumption for the tested applications running natively
or in a vm could be found. Obviously an idle node

Figure 2. Power Consumption and Computed
Results(CR) for Virtual vs. Nativ Scenario

Table 1. Computation Times for two Physics
Applications

Exec t in sec
VM Nativ

app1 with high I/O Load 2156 1959
app2 with high CPU Load 3585 3164

requires less power than a fully utilised one, especially
when AMD PowerNow technology is activated. De-
spite this observation the efficiency measure proposed
by us still shows our approach to be feasible:

efficiency measure em = CR/(t ∗ P),
with CR = 1 for app2 we get:

emvirtual =
1CR

3585s ∗ 185W

=
1CR

663225Ws

emnativ =
1CR

3164s ∗ 189W + 3585s ∗ 111W

=
1CR

995931Ws

emvirtual

emnativ
=

995931
663225

= 1.501

However this calculation is based on the assumption,
that once the data rate drops during run-time, imme-
diately the vm starts off-line computations and vice
versa. Practically this is influenced by the time needed
to resume, suspend and/or migrate a virtual machine.
The following values for these processes were measured
for off-line VMs having 3GB of RAM and 8GB HD:

Suspend: 114 s (vmware process finished)
+ 72 s (kjournald follow-up processing)

Resume: 113 s (till host is visible to batch scheduler)
Migrate: 308 s

The corrected efficiency calculations still show an
advantage of our virtualised server configuration:

emvirtual =
1CR

(3585s + 114s + 113s + 2 ∗ 308s) ∗ 189W

=
1CR

836892Ws

emnativ =
1CR

(3164s ∗ 189W + (3585s + 743s) ∗ 111W)

=
1CR

1089504Ws

emvirtual

emnativ
=

1089504
836892

= 1.301

Another aspect to be taken into account is the au-
tomisation of the whole process of suspending and re-
suming of virtual machines. In the current state of
the experiment the schedule of test runs and mainte-
nance phases is not a fixed one but subject to frequent

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 45

changes due to debugging and commissioning of all ex-
periment detectors. So currently we suspend/resume
the VMs manually, i.e. in a scripted way. For the
first time when the experiment begins we will continue
this and orientate at the given schedule. Currently we
are working on automizing this by using the SysMES
Monitoring and Management Framework [11] to mon-
itor the data rate and other parameters indicating a
appropriate moment for a vmware resume or suspend.
This framework will then automatically take care of
suspending, resuming and migrating the virtual ma-
chines according to predefined rules.

Picture 4 shows a web-based gui provided by ALiEN
which is used to observe the state of the off-line job
computations, in this particular case it shows the state
of the HLT cluster.

5. Conclusion

In this paper we shown how to maximise the HLT
cluster usage by using virtualisation technology. Server
virtualisation not only gives us the opportunity to run
incompatible applications on the same physical hosts,
but also to benefit from small gaps during an on-line
computation. We showed an example on a single host
how the introduced efficiency measure proves our ap-
proach to be correct, i.e. we can compute more results
per unit of power and time using server virtualisation.

References

[1] Gary Stiehr, Roger D. Chamberlain, Improving
Cluster Performance through Intelligent Processor
Sharing , Proc. of Workshop on System Management
Tools for Large-Scale Parallel Systems, April 2006

[2] Litzkow, M., Livny, M., Mutka, M., Condor A
Hunter of Idle Workstations, Proc. Intl Conf. on Dis-
tributed Computing Systems. June 1988, pp. 104-11

[3] Zhou S., Zheng, X., Wang, J., Delisle, P., Utopia: a
Load Sharing Facility for Large, Heterogeneous Dis-
tributed Computer Systems, SPE, 23(12). 1993, pp.
1305-1336.

[4] Arpaci, R. H., et al., The Interaction of Parallel and
Sequential Workloads on a Network of Workstations,
SIGMETRICS. May 1995, pp. 267-278.

[5] Ryu, K. D. and Hollingsworth, J. K., Unobtrusive-
ness and Efficiency in Idle Cycle Stealing for PC
Grids, in Proc. 18th Intl Parallel and Distributed
Processing Symposium. April 2004.

[6] Sun grid engine (sge): A cluster resource manager.
http://gridengine.sunsource.net/

[7] T. M. Steinbeck et al.,A Control Software for the
ALICE High Level Trigger, , Proceedings of the
Computing in High Energy Physics 2004 (CHEP04),
Interlaken

[8] Dieter Rhrich, From the Big Bang to massive data
flow: parallel computing in high energy physics
experiments, University Bergen, Lecture Notes in
Computing Science, Proceedings of the PARA2000
conference, June 2000

[9] The ALiEN GRID: http://monalisa.cern.ch

[10] AMD PowerNow Technology
http://www.amd.com/us-en/assets/content type/
DownloadableAssets/Power Now2.pdf

[11] The SysMES framework: http://wiki.kip.uni-
heidelberg.de/ti/SysMES/index.php/Main Page

[12] Torsten Alt et al., An FPGA based Preprocessor
for the ALICE High-Level-Trigger, DPG Tagung ,
Gieen, Sektion HK (Hadronen und Kerne), 2007

[13] Ralf Panse et al., Hardwarebasiertes Computer
Cluster Kontroll- und Administrationssystem, DPG
Tagung , Gieen, Sektion HK (Hadronen und Kerne),
2007

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 46

Distributed Load Balancing in Heterogeneous Peer-to-Peer Networks for Web
Computing Libraries∗

Joachim Gehweiler, Gunnar Schomaker
Heinz Nixdorf Institute and

Computer Science Department
University of Paderborn, Germany

{joge,pinsel}@upb.de

Abstract

In this work we present a novel architecture for dis-
tributed computing in a peer-to-peer network. In partic-
ular, we realize the Paderborn University BSP-based Web
Computing Library (PUBWCL), which formerly used a cen-
tralized client-server architecture for scheduling and load
balancing, as a pure peer-to-peer system. By using dis-
tributed heterogeneous hash tables (DHHT), our architec-
ture features scheduling and load balancing of tightly cou-
pled, massively parallel algorithms in the bulk-synchronous
(BSP) style with a minimal number of migrations.

Furthermore, our architecture is capable of heteroge-
neous BSP programs whereas the former version of PUB-
WCL could only handle homogeneous BSP programs.

1. Introduction

Joining the intrinsic features of distributed hash tables
like scaleability and consistency with job scheduling in the
area of distributed computing, we present a novel architec-
ture for distributed load balancing in a peer-to-peer web
computing library. We start by giving a brief overview of
both the fields consistent hashing and distributed comput-
ing.

1.1. Consistent Hashing

Consistent hashing aka distributed hash tables (DHT) is
universally applicable to many areas of distributed comput-
ing. In many systems like web-server farms, peer-to-peer
networks or storage area networks aka SANs a fair distri-
bution of dynamic sets of data among a dynamic set S of

∗Partially supported by DFG-SFB 376 “Massively Parallel Computa-
tion”, by the EU within IST-2004-15964 (AEOLUS). c©IEEE 2006

servers or nodes is of tremendous importance, where fair-
ness means that even if the system changes its configuration,
each server should be burdened with the same work load.
Additionally, in case of joining or leaving servers, the num-
ber of necessary steps to preserve the data distribution e.g.
in SANs should be minimal, thus necessary replacements
only have an impact on involved data. The idea and notion
of consistent hashing was introduced by Karger et. al. [10].
Originally it was used to distribute web sites among servers
distributed around the globe relieving hot spots in the Inter-
net. Later it became very popular in peer-to-peer networks
like CAN [13], Chord [19], Pastry [5], Tapestry [9], and
many more. The artificial restriction of uniformity of each
j ∈ S in [10] was reworked in [3] and extended to a dy-
namic set of heterogeneous servers. In their case the storage
capacity c(j) was used as a heterogeneous attribute for each
j ∈ S. Their approach was not as elegant as the original
consistent hashing, because the coverage of the hash range
M = [0, 1) used for data assignment was not guaranteed. A
more general approach is the weighted consistent hashing
or distributed heterogeneous hash tables aka DHHT. It is
strongly related to the original version of consistent hashing
presented in [10]. The authors have introduced two tech-
niques, the linear method, and the logarithmic method, in
particular see Section 3 or [15]. Both methods work basi-
cally the same and guarantee beneath coverage of M a fair
data distribution with respect to the weights of the nodes,
which reflect their heterogeneous capabilities. In contrast
to other heterogeneous approaches the DHHT strategies are
offering potentials for realizing several important features
like fault-tolerance, data or process migration, access paral-
lelism engendered by disjoint server selection, to be sensi-
tive to variations in server performance over time, and many
more. All mentioned features are essential for a reliable ar-
chitecture that uses DHT for distributed computing.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 47

1.2. Distributed Computing

There are several approaches geared to utilize the unused
computation power on the many PCs distributed all over the
world, e.g. distributed computing project [4], Great Inter-
net Mersenne Prime Search (GIMPS) [8], or Search for Ex-
traterrestrial Intelligence [18]. A common characteristic of
most of these approaches is that the computational problem
to be solved has to be divided into many small subprob-
lems by a central server; clients on all the participating PCs
download a subproblem, solve it, send the results back to
the server, and continue with the next subproblem. Since
there is no direct communication between the clients, only
independent subproblems can be solved by the clients in
parallel. The Paderborn University BSP-based Web Com-
puting Library (PUBWCL) removes this restriction; in par-
ticular, it allows to execute tightly coupled, massively paral-
lel algorithms in the bulk-synchronous (BSP) style on PCs
distributed over the internet. PUBWCL is written in Java to
guarantee a high level of security and to be platform inde-
pendent.

1.3. Our Contribution

We present an architecture to replace PUBWCL’s central
server by a peer-to-peer arcitecture. Scheduling and migra-
tion of the processes are performed by dint of DHHT. We
also extend PUBWCL to deal with heterogeneous BSP pro-
grams, and furthermore, we picture a way to increase pro-
cess fault tolerance.

1.4. Organization of Paper

The rest of this paper is organized as follows: In Sections
2 and 3, we give an overview of the Paderborn University
BSP-based Web Computing Library and the DHHT model.
In Section 4, we present our architecture to realize PUB-
WCL as a pure peer-to-peer system. Section 5 concludes
this paper.

2. The Paderborn University BSP-based Web
Computing Library

Before describing a web computing library aka WCL and
especially the Paderborn University BSP-based Web Com-
puting Library aka PUBWCL, we provide some information
on the underlying parallel computation model as well as on
technical aspects of migration – one of the key features of
the web computing library.

2.1. The BSP Model

In order to simplify the development of parallel al-
gorithms, Leslie G. Valiant has introduced the Bulk-
Synchronous Parallel (BSP) model [21] which forms a
bridge between the hardware to use and the software to de-
velop. It gives the developer an abstract view of the tech-
nical structure and the communication features of the hard-
ware to use (e. g. a parallel computer, a cluster of worksta-
tions or a set of PCs interconnected by the internet).

A BSP computer is defined as a set of processors with
local memory, interconnected by a communication mecha-
nism (e. g. a network or shared memory, see Fig. 1) capa-
ble of point-to-point communication, and a barrier synchro-
nization mechanism.

Figure 1: BSP computer

A BSP program consists of a set of BSP processes and a
sequence of supersteps – time intervals bounded by the bar-
rier synchronization. Within a superstep each process per-
forms local computations and sends messages to other pro-
cesses; afterwards it indicates by calling the sync method
that it is ready for the barrier synchronization. When all
processes have invoked the sync method and all messages
are delivered, the next superstep begins and the messages
sent during the previous superstep can be accessed by its
recipients. Fig. 2 illustrates this.

2.2. Thread Migration in Java

Complex algorithms often require much computation
power, because they run for a long time, even on paral-
lel computers. This leads to the following problem: If a
conscripted PC owner, whose unused computation power
is shared, needs these resources again, BSP processes run-
ning on that machine will need more time to complete the
current superstep and may delay the execution of the whole
BSP program due to the barrier synchronization, see Fig. 2.
Eventually, the execution time of a parallel program can be
significantly improved, if it is possible to migrate such pro-
cesses at run-time to other hosts with currently more avail-
able computation power.

From the operating system’s viewpoint, BSP processes
are threads, so we need to migrate Java threads. This can
be accomplished in three ways: modification of the Java

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 48

Figure 2: Delayed synchronization

Virtual Machine (VM) [11], bytecode transformations [14,
20], or sourcecode transformations [17, 6].

Inside PUBWCL we use JavaGo RMI [17, 7] which is an
implementation of the sourcecode transformation approach
and extends the Java programming language with some fea-
tures. This extended language is translated into Java source-
code by the JavaGo compiler jgoc, using the unfolding tech-
nique described in [17]. Since the original implementation
of JavaGo is not fully compatible with the Java RMI stan-
dard, we use our own adapted version JavaGo RMI.

2.3. The PUBWCL Architecture

Basically people can join the PUBWCL system, by in-
stalling a client, which enables them to donate unused com-
putation power and to run their own parallel programs.

PUBWCL is a hybrid peer-to-peer system: The execu-
tion of parallel programs is carried out on peer-to-peer ba-
sis, i. e., among the clients assigned to a task. Administra-
tive tasks (e. g. user management) and the scheduling (i. e.
assignment of clients and selection of appropriate migra-
tion targets) are performed on client-server-basis. Clients
in private subnets connect to the PUBWCL system via the
proxy component, see Fig. 3. Though a permanent internet

Figure 3: The architecture of PUBWCL.

connection is required, changes of dynamically assigned IP
addresses can be handled. This is accomplished by using

Global Unique Identifiers (GUIDs) to unambiguously iden-
tify the clients: when logging in, each client is assigned a
GUID by the server. This GUID can be resolved into the
client’s current IP address and port.

If users want to execute their own parallel programs, they
must be registered PUBWCL users (for donating unused
computation power, it is sufficient to use the guest login).
To run a BSP program, it has to be copied into a special di-
rectory specified in the configuration file. Afterwards one
has to define the name of the program and enter the re-
quested number of parallel processes into a dialog form.
The server then assigns the task to a set of clients and sends

Figure 4: BSP programs in PUBWCL.

a list of these clients to the user’s client (cf. Fig. 4). From
now on, the execution of the parallel program is supervised
by the user’s client. On each of the assigned clients a PUB-
WCL runtime environment is started and the user’s parallel
program is obtained via dynamic code downloading. The
output of the parallel program and, possibly, error messages
including stack traces are forwarded to the user’s client.

All processes of parallel programs are executed in an
own PUBWCL runtime environment in a separate process,
so that it is possible to cleanly abort single parallel pro-
cesses (e. g. in case of an user program error).

Details on the internals of the library as well as a config-
uration guide can be found in [12] or [2].

3. Distributed Heterogeneous Hash Tables

In the area of distributed computing in heterogeneous
cluster networks many tasks are similar to such one can find
in a SAN or a peer-to-peer network. Especially the distri-
bution of processes and their location information equals to
the data distribution and allocation in SANs or peer-to-peer
networks. For SANs some consistent hashing based meth-
ods are available, but only the DHHT seems reasonable for
us to be adopted to this application area. For easier compre-
hension we give an explanation of the scheme and point out
important features needed for our distributed computation
approach.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 49

10

Storage Devices

Data

rdrs

H(d,s)

Figure 5: DHHT, the Linear Method

3.1. DHHT and Data Assignment

DHHT is a heterogeneous generalization of the Consis-
tent Hashing introduced by Karger et. al. [10]. It uses
similar techniques to map a dynamic set of documents D to
a dynamic set of servers S. In particular the basic assign-
ment principle of documents to servers differs, but is also
done via a random like hash function h : {S ∪ D} �→ M ,
where M = [0, 1) is interpreted as an unit ring. Further-
more the server set S in the original approach consists of
homogeneous servers, whereas the new method [15] over-
comes this restriction by adding to each s ∈ S a weight ws

that corresponds to the nodes capability, e.g. in the area of
SAN the storage capacity c(s) of servers. This extension
allows the DHHT approach to solve the following problem.

Definition 1 The Heterogeneous Distribution Problem:
Given a dynamic set of servers S = {s1, · · · , sn}, a weight-
ing function w : S �→ R

+, and a dynamic set of doc-
uments D = {d1, · · · , dm}. Find a mapping function
fS,w : D �→ S with following properties:

• Simplicity: fS,w uses S, w, d as input and is calculated
without the knowledge of D \ {d}

• Fairness: each server gets a comparative portion
of data with respect to its weight: ∀u, v ∈ S,
|f−1

S,w(v)|/w(v) ≈ |f−1
S,w(u)|/w(u), where f−1

S,w(s) :=
{d ∈ D | fS,w(d) = s}

• Consistency: minimal data reallocation steps to pre-
serve fairness, if |S| or ws changes.

As mentioned before, the DHHT approach offers two dif-
ferent schemes, the linear and the logarithmic method; the
different properties are discussed in [15]. In the following
we enumerate the main steps to assign a document to S.

1. ∀s ∈ S, determine a position rs = h(s)

2. For d ∈ D determine the position rd = h(d)

3. Compute the height of d at rd, H(d, s), for each s.
In case of the linear method use H(d, s) = ((rd − rs)
mod 1)/ws, for the logarithmic method use H(d, s) =
−ln(1−((rd−rs) mod 1))/ws, where a mod 1 :=
a −
a�.

4. Assign d to s if H(d, s) is minimal for d at rd.

An example for a decomposition of M and the assignment
of responsibilities for servers based on H(d, s) is illustrated
in Fig. 5. One can see the correlation of server capacities
and the lengths of their appropriate subintervals.

Finally some remarks: First, the runtime for document
assignment can be improved by determining the decom-
position of M after step 1, and results in a sorted list of
subintervals of M and their appropriate nodes. This leads to
O(ln |S|) lookup time for data and node insertions. Second,
one can use different hash functions for servers and docu-
ments. Third, DHHT can also be used for homogeneous
servers and heterogeneous documents, by exchanging the
rules of S and D, so the dynamic set D is heterogeneous
regarding an attribute like sizes of d ∈ D.

3.2. Enhanced Model Features

In advance to other approaches like [10, 3], the DHHT
approach and its methods provide useful and non overhead
causing benefits for SANs or peer-to-peer systems like:

Guaranteed Coverage: If the mapping range M is inter-
preted as an unit ring, |S| ≥ 1, and the nodes are pictured
as continuous functions, coverage of M via S for document
assignment is guaranteed. So there exists always a node s′

that defines the minimal height H(d, s′) at rd after s has left
the system. So the redistribution of data, stored on a leaving
node s, is solved by moving the data from s to the set S′ of
nodes that will define the minimum hight instead of s.

10 rs
t

Figure 6: Fading out in four steps

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 50

Selfscaling Model: An other feature of DHHT is inde-
pendency of the weighting of nodes. The weights reflect
the capabilites of the nodes and can be chosen arbitrarily
large within the same unit and without knowledge all other
weights in the system. Finally the data distribution is pre-
served and still fair as long as the minimum constraint based
on H(d, s) is satisfied.

Capability fading during runtime: This feature is given
by the coverage and the self scaling property. If the ca-
pability of a node decreases or increases, the weight and
thus the picture of the function in the model changes, see
Fig. 6. This has an impact on the height of the intersection
points with other functions of nodes and results for them
into smaller or bigger subintervals which define their re-
sponsibilities during the assignment. This also means if all
nodes change their weights by the same factor at the same
time, nothing will happen at all. Furthermore, continuously
changing the weight of a single node s over time predefines
the amount of storage that must be moved and avoids peak
load on servers in S′ ∪ {s} or within the network.

3.3. Heterogeneity and Parallelism

A crucial problem within the consistent hashing scheme
is that distributed elements are mostly sequentially accessi-
ble only or parallel accessible with high probability. This
problem is inherited from hash-functions and is explainable
as follows. If for instance a parallelism via p different nodes
is wanted and additionally a balanced behavior of the sys-
tem, the distribution tasks via has function gets more com-
plicated. If a document d is placed via hash-function, it will
be stored on the same node unless the responsible node or
the system changes, because the value that maps d into M
will never change. Thus for parallelism or redundancy p
multiple IDs are needed and to be stored for each document
or its distributed segments. Nevertheless, using these mul-
tiple IDs might lead to p places consisting of less than p
nodes. To overcome this a selection of independent nodes
must be guaranteed without additional costs. So a solution
might place p equal nodes at one position rs within M , but
this would destroy the whole dynamic and furthermore it
would inherit all negative attributes from huge raid systems.

So lets consider how this can be done by DHHT. A doc-
ument can be distributed on disjoint places by applying the
following strategy (cp. Fig. 7). Primarily determine the po-
sition rd of d, then choose the first p nodes given by the in-
creasing order of nodes by using the minimum of the func-
tion H(d, s) at rd. Finally store p copies or a p-wise frag-
mentation of d along these nodes. Nevertheless this strategy
does not optimize the parallel access time for a document
unless the bandwidth of nodes is neglected and the frag-
mentation of d is uniform.

Therefore we present a distribution scheme by apply-

10

Figure 7: Distinct placement using p=3

ing DHHT and results from [16], but in difference to [16]
with reduced parallelism which was introduced to picture a
closed form of an optimal multi parameter access scheme
for minimizing parallel access time. The parameters were
server bandwidths b(s), server capacities c(s), document
sizes c(d), and their popularity value p(d). They defined
virtual servers Vi, where each server consists of a paral-
lel capacity based on the bandwidth of physically inde-
pendent disks, see Fig. 8. The first virtual server V1 was
ascertained by t1, that denotes the first time point where
∃j ∈ S : t1·b(j) = c(j). Thus the capacity of V1 is c(V1) =∑n

j=1 b(j) · t1 including n = |S1| disks. The following vir-
tual disks and their capacities are constructed analogously,
but sequentially with less disks and only remaining capac-
ities c(Vi) =

∑n+1−i
j=1 b(j) · (ti − ti−1) : t0 = 0, j ∈ Si.

This results in n virtual servers with different potentials in
capacity and parallelism. At least the capacity allocation for
a document d on disk j belonging to Vi if stored there arises
from the capacity distribution within Vi and is determined
by alloc(j, d) = c(d) · b(j)·(ti−ti−1)

c(Vi)
= c(d) · c(j)

c(Vi)
. For

further details how popularity comes into touch see [16].
We now modify this concepts and restrict the number of

virtual servers to m � n and use the first m time points
resulting in V = {V1, . . . , Vm}, where Vm gathers the
remaining unassigned capacities. This leads to m virtual
servers, where |Si|− |Si−1| determines the number of inde-
pendent disks from Vi to Vi+1. Now for each Vi we built a

V1 V2 V3

t

Documents sorted
according to p(d)

d1
d2

d4
d3

d5 d6

|d6|

P
op

ul
ar

ity

sorted

Virtual Server Utilization S1

S2

S3

c(V'1) c(V'2) c(V'3)

| s'3 |

t1

Figure 8: Parallel utilization of S and D

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 51

DHHT model consisting of |Si| nodes and a weight for each
node j ∈ Si defined by wj = ci(j) = b(j) · (ti − ti−1).
The assignment of a document to its initial position in M is
done as described before in Section 3.1.

The second change restricts the parallelism for document
assignment. Instead of distributing d over Si disks, a subset
Sp

i ⊆ Si : p = |Sp
i | << |Si| is used and constructed via

the disjoint placement strategy described in Fig. 7. So d is
distributed among the first p nodes where d is segmented in
the same fashion as described before in alloc(j, d), but by
replacing c(Vi) with

∑p
i=1 ci(j) in the denominator. This

leads to an assignment of d on p << Si physical disks
improving parallel access. This follows directly from the
results in [16].

Summarizing all this leads to m− 1 servers, where each
server is restricted by the maximum number of independent
disks and their capacities, which are defined by their band-
widths. Eventually, documents are assigned, using paral-
lelism p, in heterogeneous portions to improve their parallel
access time. Finally, one virtual server remains, utilizing
the rest capacity.

4. Architecture

PUBWCL’s features scheduling, migration, and fault tol-
erance are provided by dint of the central server. When the
number of PUBWCL clients grows, this single point of fail-
ure can also become a bottle neck. Thus, it is convincing to
realize PUBWCL as a pure peer-to-peer system. In the fol-
lowing Sections, we describe the current state of PUBWCL
and explain how this goal can be attained.

4.1. Preconditions

We assume that, in a web computing environment, we
can only utilize donated computation power, i.e., the capac-
ity left over by the local users of the particular computers.
Of course this computation power is continually fluctuating,
but in [1] we have shown by an empirical evaluation that
these fluctuations typically follow some continuous pattern
for some time. More precisely, when we accepted a factor
of up to 1.6 in the deviation of the availiable computation
power, over 97% of the donated computation power was
provided in form of contiguous time intervals with durations
ranging from half an hour up to several hours. On most of
the examined computers the average duration of these time
intervals was four hours or even much longer.

As a web computing environment is not only heteroge-
neous with respect to the currently donated computation
power, but also with regard to hardware and operating sys-
tem, the unused computation power on different comput-
ers cannot be compared directly, because the amount of
memory, for example, affects the number of processes that

can be efficiently executed concurrently. Thus, we need a
platform-independent way to measure the provided compu-
tation power:

Definition 2 An average unit thread (AUT) is a work pack-
age for benchmarking, consisting of operations that are typ-
ical for BSP programs in Java, for example integer and
floating point arithmetic, memory allocation, object cre-
ation and serialization. An AUT does also consume a typi-
cal amount of memory.

Thus, the available computation power on computer i can
be expressed by the number of AUTs, ai ∈ R

+, that can be
completed within some given time limit t1 ∈ R

+.
Let t′i ∈ R

+ denote the execution duration of one AUT
on computer i. Then we define σi : R

+ → R
+ with

σi(x) �→ x · t′i which yields the total execution duration
of x AUTs executed sequentielly utilizing all the available
computation power. Similarly, we define πi : R

+ → R
+

for parallel execution. For all x up to some pi ≥ 1,
σi(x) = πi(x) holds, whereas for x > pi, we will have
σi(x) < πi(x) due to insufficient memory or increased con-
text switching overhead in the parallel case. We denote with
pi the maximum number of parallel executions of AUTs
on computer i without any impact on the execution time
of each AUT on i.

4.2. Scheduling

Initially we derive the following constraint from the BSP
program properties: Since all BSP processes are synchro-
nized after each superstep, we can reduce the scheduling
problem for a BSP program with n supersteps to n sub-
problems, namely scheduling within a superstep.

The scheduling (called “initial distribution” in [1]) and
load balancing algorithms presented in [1] can only handle
homogeneous BSP programs. We will now drop this restric-
tion and allow heterogeneous tasks, where the expected exe-
cution time of a BSP process j is expressed by the hardness

V3V1 V2 t

Elements sorted according to their rank
determined from priority

t1
t2

t4t3
t5 t6ra

nk
in

g

sorted

Virtual Node Utilization
m = 5 < n = 6

p1

p2

p3

p4

V'1=23.1 [aut] V'2=8.8 ...V'3 V'4

V4

...

Figure 9: Peer utilization for BSP programs and AUT benchmark

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 52

factor hj ∈ R
+ which is obtained by comparing the process

to an AUT. First, as described before, we can characterize
the computation power of a peer i ∈ S by the parameters
ti and pi. Second, we define a number of m classes to dif-
ferentiate the importance of processes compared to other
processes in execution, and we assume that the number of
peers in the system is 2m = |S|. We use these parameters
by applying and adapting the model we have described in
Section 3.3. Thereby we utilize the peers in m virtual sys-
tems Vj , where V1 consists of all peers. Then we determine
the time t1, where the first peer has computed all its AUTs.
Depending on the time ti, that each peer needs to compute
an AUT, peers are participating at the virtual system V1 with
a weight wi = t1/ti.

In difference to the model described before, we do not
reduce the system by only one peer, but by a set of peers
P1, where |P1| = 1

m · 2m. The members of P1 are all peers
given by t1, and the remaining ones up to |P1| are taken
from the descendingly sorted list over all peers using ti as
sorting parameter. The virtual system V2 is now constructed
with the remaining 2m − V1 peers in the same manner, but
with the weighting function wi = t2−t1

ti
. This is done m

times to create all virtual systems, compare Fig. 9. Now
we can construct m independent DHHT models for each
Vj with the according weights from peers, as determined
before. Thus a process is scheduled on a system Vj if its
priority is equal to j.

Within such a virtual system Vj , a BSP program j, that
consists of p independent processes, choses a random posi-
tion rj via the hash function. The peer that defines the lower
envelope at rj determines c · p, c ≥ 1, minima at the same
position and chooses the p best fitting peers for accomplish-
ing the parallel program. The resulting set of peers is not
necessarily consisting of the fastest peers found. It depends
on the current load of the chosen peers, that means how
many AUT slots are free and which choice leads to the ex-
pected minimal parallel execution time. How this could be
done is not discussed in this work. In addition it is allowed
and can occur that no process is computed on the peer that
defines the minimum at rj , but this peer has to store the dis-
tribution information about the program and its processes
even if it does not compute any process.

4.3. Migration

When utilizing the unused computation power in a web
computing environment, one has to deal with unpredictable
fluctuations of the available computation power on the sin-
gle computers. Especially in a set of tightly coupled paral-
lel processes, a single process receiving little computation
power can slow down the whole application. PUBWCL re-
acts on this by migrating such “slow” BSP processes.

The problem of migration is to determine which pro-

cesses are candidates for migrating and to preserve the lo-
cation information and the fairness for the other peers. Us-
ing the DHHT model to schedule BSP processes, we can
use the previously described feature called fading which is
illustrated in Fig. 6. This feature allows us to adjust the ca-
pacities of peers if necessary at certain steps or online. A
BSP process or its program distribution information is in-
volved in a migration phase if the responsible node changes
its weight. By knowing the weights of all other peers and
the hash functions in the system or at least knowing the
set of peers and their current weights, which defines the
lower envelope for the current interval responsibilities of
the peers, a peer can compute the potential successor for
each process. The migration decision now depends only on
the economy or costs for the migration. This means if the
migration time plus reinitiating the process is less than the
remaining computation time on the current peer, a migration
is reasonable. It should be noted here that, independently of
the migration decision for processes, the distribution infor-
mation of a program has to migrate always, but needs not
necessarily be deleted at the initial peer.

4.4. Fault Tolerance

It in order to increase fault tolerance, PUBWCL creates
a backup of the execution state of each process of a task dur-
ing every barrier synchronizaton. These backups are stored
locally as well as on other nodes so that the execution state
at the most recent barrier synchronization can be restored if
some PUBWCL clients crash or leave the network.

Work is in progress to realize an extension of PUBWCL
which allows redundant execution of BSP processes, i. e.,
processes are started redundantly, but only the results of the
fastest one are committed whereas the remaining processes
are aborted when the first one completes. This will signifi-
cantly improve fault tolerance.

To realize fault tolerance the modified DHHT model of-
fers two opportunities. The first one is more resource in-
tensive and simply multiplies each process by a redundancy
factor r. Thus a task containing a number of p processes
allocates along its random position r · p nodes and initiates
each process r times. If a process on a peer is completed,
the peer can determine the position of its copies and ter-
minate them to deallocate the computation resources. This
leads to an r times failure safe system. The second oppor-
tunity is less resource intensive, but only safe against inten-
sive migration costs and not against unexpectedly leaving
peers. The idea is derived from the observation one can get
from the fading feature. The probability for a process p to
be a migration candidate is bigger, if its height at rp deter-
mined during the allocation phase is greater than many (or
all) other processes. It should be noted that processes with
such a height are typically nearer at the intersection point’s

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 53

x-coordinate and thus to neighbouring peers. So if there
are spare resources left to compute a number of processes
r times redundantly, processes initiated under such condi-
tions seems to be good candidates for multiple initiation.
So the process initiations should be done where rp deter-
mines the peer p1 that defines the 1st minimum and peer
p2 that defines the 2nd minimum, and so on, until the pro-
cess is initiated r times. Which strategy the system should
use, could depend on the experiences made by measuring
the impact of unexpectedly leaving and joining peers.

5. Conclusion

We have presented an peer-to-peer architecture to re-
place the prior centralized client-server architecture of the
PUBWCL. It provides scheduling, migration, and fault tol-
erance for processes and its meta-information by using
DHHT, which features simplicity, fairness, and consistency
and thereby guarantees low communication costs among the
peers, a fair schedule among tasks themselves as well as
among processes of each task, and a minimal number of
migrations to rebalance the load on changes in the avail-
able computation power of participating nodes. Further-
more this architecture is capable of heterogeneous BSP pro-
grams, whereas the former version of PUBWCL could only
handle homogeneous BSP programs.

In order to evaluate the speed-up by load balancing and
to compare the scalability of this approach with the client-
server architecture, implementation work is in progress and
results might be available and published soon.

References

[1] O. Bonorden, J. Gehweiler, and F. Meyer auf der Heide.
Load balancing strategies in a web computing environ-
ment. In Proceeedings of International Conference on Par-
allel Processing and Applied Mathematics (PPAM), Poznan,
Poland, September 2005.

[2] O. Bonorden, J. Gehweiler, and F. Meyer auf der Heide.
A web computing environment for parallel algorithms in
Java. In Proceeedings of International Conference on Par-
allel Processing and Applied Mathematics (PPAM), Poznan,
Poland, September 2005.

[3] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact,
adaptive placement schemes for non-uniform distribution re-
quirements. In Proc. of the 14th ACM Symposium on Paral-
lel Algorithms and Architectures (SPAA), pages 53–62, Win-
nipeg, Manitoba, Canada, 11 - 13 Aug. 2002.

[4] The first general purpose distributed computing project,
1997.

[5] P. Druschel and A. Rowstron. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In R. Guerraoui, editor, Middleware 2001, IFIP/ACM
International Conference on Distributed Systems Platforms

Heidelberg, Germany, November 12-16, 2001, Proceedings,
volume 2218 of Lecture Notes in Computer Science, pages
329–350. Springer, 2001.

[6] S. Fünfrocken. Transparent migration of Java-based mobile
agents. In Mobile Agents, pages 26–37, 1998.

[7] J. Gehweiler. JavaGo RMI.
[8] Great internet mersenne prime search (GIMPS).
[9] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Dis-

tributed object location in a dynamic network. In Proceed-
ings of the 14th Annual ACM Symposium on Parallel AL-
gorithms and Architectures (SPAA-02), pages 41–52, New
York, Aug. 10–13 2002. ACM Press.

[10] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In Proceedings of the Twenty-Ninth An-
nual ACM Symposium on Theory of Computing, pages 654–
663, El Paso, Texas, 4–6 May 1997.

[11] M. J. M. Ma, C.-L. Wang, and F. C. M. Lau. Delta execu-
tion: A preemptive Java thread migration mechanism. Clus-
ter Computing, 3(2):83–94, 2000.

[12] The Paderborn University BSP-based Web Computing Li-
brary (PUBWCL).

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Computer Communication Review, volume 31, pages 161–
172. Dept. of Elec. Eng. and Comp. Sci., University of Cal-
ifornia, Berkeley, 2001.

[14] T. Sakamoto, T. Sekiguchi, and A. Yonezawa. Bytecode
transformation for portable thread migration in Java. In
ASA/MA, pages 16–28, 2000.

[15] C. Schindelhauer and G. Schomaker. Weighted distributed
hash tables. In Proc. of the 17th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), 2005.

[16] C. Schindelhauer and G. Schomaker. SAN optimal multi
parameter access scheme. In Proceedings of the 5th Inter-
national Conference on Networking, Apr. 2006.

[17] T. Sekiguchi, H. Masuhara, and A. Yonezawa. A simple
extension of Java language for controllable transparent mi-
gration and its portable implementation. In Coordination
Models and Languages, pages 211–226, 1999.

[18] Search for extraterrestrial intelligence (SETI at home).
[19] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. In R. Guerin, editor, Proceedings
of the ACM SIGCOMM 2001 Conference (SIGCOMM-01),
volume 31, 4 of Computer Communication Review, pages
149–160, New York, Aug. 27–31 2001. ACM Press.

[20] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen,
and P. Verbaeten. Portable support for transparent thread
migration in Java. In ASA/MA 2000: Proceedings of the
Second International Symposium on Agent Systems and Ap-
plications and Fourth International Symposium on Mobile
Agents, pages 29–43, London, UK, 2000. Springer-Verlag.

[21] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 54

Increasing Fault Tolerance by
introducing Virtual Execution Environments∗

Dominic Battré and Matthias Hovestadt
and Odej Kao

Technical University of Berlin, Germany
{battre,maho,okao}@cs.tu-berlin.de

Axel Keller and Kerstin Voss
Paderborn Center for Parallel Computing

University of Paderborn, Germany
{kel,kerstinv}@upb.de

Abstract

Commercial Grids demand for contractually fixed lev-
els of quality of service, expressed by means of Ser-
vice Level Agreements (SLAs). The EC-funded project
HPC4U developed transparent fault tolerance mecha-
nisms allowing to comply with negotiated SLAs also
in case of resource failures, providing checkpointing
of also parallel applications and the migration over the
Grid. This paper describes the concept of virtual execu-
tion environments for increasing the number of poten-
tial migration targets.

Introduction
Grid computing started under the merely technical question
of how to provide access to distributed high performance
compute resources. Thanks to countless projects and ini-
tiatives, funded by national and international bodies world-
wide, Grid systems have significantly evolved meanwhile,
making Grid technology adoptable in a large variety of us-
age scenarios. However, Grids are currently primarily used
in the academic domain, where universities are pooling their
high performance resources to Grid infrastructures and re-
searchers are using these resources for executing applica-
tions like simulations.

Currently the Grid is on the verge of entering the com-
mercial domain. Companies like IBM, Hewlett Packard,
and Microsoft have recognized the potential of Grid Com-
puting, investing noticeable efforts on research and the sup-
port of research communities. Already in 2003 the European
Commission (EC) convened a group of experts to clarify the
demands of future Grid systems and which properties and
capabilities are missing in current existing Grid infrastruc-
tures. Their work resulted in the idea of the Next Generation
Grid (NGG) (Priol & Snelling 2003; Jeffery (edt.) 2004;
De Roure (edt.) 2006). This work clearly identified that
guaranteed provision of reliability, transparency, and Qual-
ity of Service (QoS) is an important demand for successfully
commercialize future Grid systems. In particular, commer-

∗This work has been partially supported by the EU within the
6th Framework Programme under contract IST-031772 ”Advanced
Risk Assessment and Management for Trustable Grids” (Assess-
Grid) and IST-511531 ”Highly Predictable Cluster for Internet-
Grids” (HPC4U).

cial users will not use a Grid system for computing busi-
ness critical jobs if it is operating on the best-effort approach
only.

The EC-funded project BEinGrid (Business Experiments
in Grid (BeInGrid), EU-funded Project) aims at fostering
the commercial uptake of the Grid. BEinGrid encompasses
numerous business experiments, where Grid technology is
to be introduced to specific business domains. Some of these
experiments actually reached the goal of proving the benefit
of applying Grid technology for commercial customers, pro-
viding a contractually fixed level of Quality of Service. For
describing such obligations and expectations within a busi-
ness relationship between a service provider and a service
consumer, a Service Level Agreement (SLA) is a powerful
instrument (Sahai et al. 2002), specifying the QoS require-
ment profile of a job. At the Grid middleware layer many
research activities already focus on integrating SLA func-
tionality.

Modern resource management systems (RMS) are work-
ing on the best-effort approach, not giving any guaran-
tees on job completion to the user. Since these RMS
are offering their resources to Grid systems, Grid middle-
ware has only limited means in fulfilling all terms of ne-
gotiated SLAs. For closing this gap between the require-
ments of SLA-enabled Grid middleware and the capabilities
of RMS, HPC4U (Highly Predictable Cluster for Internet-
Grids (HPC4U)) started working on an SLA-aware RMS,
utilizing the mechanisms of process-, storage- and network-
subsystems for realizing application-transparent fault toler-
ance. The RMS OpenCCS has been selected as a central
component of the HPC4U project, since the planning based
nature of OpenCCS seemed to be well-suited for realizing
SLA-awareness. Within the project all features required for
SLA-awareness and SLA-compliance have been developed,
e. g. an SLA-aware scheduler, mechanisms for transparent
checkpointing of parallel applications, or the negotiation of
new SLAs.

For increasing the level of fault tolerance, the HPC4U
system has been enabled to migrate checkpointed jobs be-
tween cluster systems, i. e., between cluster systems within
the same administrative domain or even to arbitrary cluster
resources within the Grid. Prior to such a migration process,
the remote cluster system has to agree on all terms of the job
that is to be migrated. This ensures that the job will be com-

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 55

pleted as agreed with the service customer. Since all fault
tolerance mechanisms are transparent, the customer will not
notice that the job has been completed on a remote cluster
system.

However, it is not possible to use arbitrary cluster re-
sources for resuming the checkpointed job. Since the job
has been started and checkpointed in the context of a spe-
cific execution environment, the remote resource has to be
compatible to this execution environment. These compati-
bility demands regard high level requirements like proces-
sor architecture and operating system, but also low level as-
pects like availability and version of libraries. In HPC4U
all these demands have been expressed within a compati-
bility profile, which is part of the SLA negotiation process
with the remote cluster resource. Even if this compatibil-
ity profile significantly increases the chance of successfully
resuming checkpointed jobs on remote cluster systems, it
also significantly reduces the number of potential migration
targets. Even large heterogeneous Grid systems only have
a very small number of compatible resources which can be
used as potential migration targets. The number of available
migration targets is even smaller, since the remote cluster
system has to agree on all other terms of the SLA, e. g. the
compliance with deadlines.

Obviously increasing the number of compatible resources
would also increase the number of potential migration tar-
gets, thus increasing the level of fault tolerance. For achiev-
ing this goal, we introduce the instrument of virtual execu-
tion environments, which are then established at the com-
pute resources, ensuring the compatibility of the compute
resource with the migrated job.

In this paper, we will first highlight the architecture of the
HPC4U cluster system and the demands on compatibility.
The main part will then describe the instrument of virtual
environments. The paper ends with an overview about re-
lated work and a short conclusion.

HPC4U Architecture
The HPC4U cluster middleware consists of multiple ele-
ments, i. e., the SLA-aware resource management system
and the main building blocks for ensuring a high level of
fault tolerance: process checkpointing, storage snapshot and
virtualization, and network failover. In an exceptional situa-
tion, e. g. the outage of hardware resources, the HPC4U sys-
tem uses its FT (Fault Tolerance) mechanisms to assure the
completion of a job. This means that the Metacluster soft-
ware enables checkpoint/restart (and migration) of a running
process, so that jobs can be restarted from the last check-
point on a spare resource. But only considering the check-
point process could cause inconsistencies at restart because
the checkpoint’s data and job’s data can be at a different
stage as a running job continues to write data on files af-
ter the checkpoint. Therefore, the system has to maintain
consistency between checkpoints’ data and job’s data. This
process has also to be supported by the network subsystem,
e. g. regarding in-transit network packets.

The results of HPC4U are a mix of open source and pro-
prietary software embedded in three outcomes (cf. Figure
1) (Heine, Hovestadt, & Kao 2004). The SLA-aware and

Grid-enabled Resource Management System includes SLA
negotiation, multi-site SLA-aware scheduling, security and
interfaces for storage, checkpointing, and networking sup-
port. It is available for multiple platforms and distributed as
open source. The second HPC4U outcome is a vertically in-
tegrated commercial product with proprietary Linux-specific
developments for storage, networking, and checkpointing.
This outcome demonstrates the entire, ready-to-use HPC4U
functionality (job checkpointing, migration, and restart) for
Grids based on Linux architectures. It is obvious that pro-
viding an agreed level of Quality of Service and Fault Tol-
erance requires broad interaction between all components of
the HPC4U system. The third outcome also depicts a ver-
tically integrated system, but consisting of non-commercial
components only. Compared to the commercial system this
system has significant functionality drawbacks but can be
easily evaluated without the need of obtaining any licenses.

Without loss of generality we assume that a user from
somewhere in the Grid wants to compute a job and connects
to an HPC4U system for negotiating on a Service Level
Agreement. Usually, a user would not connect directly to an
HPC4U system, but uses his local Grid middleware interface
for finding suitable resources for his request. Matchmak-
ing mechanisms on the level of Grid middleware compare
requirements with published information about available re-
sources. Hence, Grid middleware mechanisms offer inter-
mediary services. However, from the point of view of an
HPC4U system, it makes no difference if a user or some Grid
middleware element starts a service negotiation request.

The cluster middleware system consists of three indepen-
dent layers:
• At the upper layer, the system provides an interface,

which can be used by Grid middleware systems to nego-
tiate on Service Level Agreements. This interface applies
to standard protocols used in Grid middleware ensuring
interoperability with other projects.

• At the middle layer, an SLA-aware resource management
system using the upper layer interface, negotiating with
customers on SLAs. It also assures the compliance with
these agreed SLAs at runtime. This does not only imply
the monitoring of internal resources, but also the utiliza-
tion of appropriate mechanisms to realize fault tolerance
in case of resource outages.

• At the lower layer are the subsystems of HPC4U. Offering
specific APIs, each of these subsystems provides special
mechanisms for fault tolerance on process-, network- or
storage-level. Since all interfaces within the HPC4U sys-
tem are published, each component can be replaced with
arbitrary third-party products, as long as these products
provide compliant interfaces.

Compatibility Profile
The SLA-aware resource management system uses process
checkpoints for various purposes. Beside the compensation
of local resource outages by intra-cluster migration, a check-
point may also be transferred to remote systems. Kernel-
level checkpointing systems allow the checkpointing of ar-
bitrary applications without the need of prior relinking or

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 56

Alternative Solution Alternative SolutionAlternative Solution

HPC4U Grid-enabled, SLA-aware Resource Management System:

� SLA Negotiation
� SLA-aware Scheduling
� Monitoring
� Support of Checkpointing and Migration
� Security

Interface to
Storage

Storage
Solution

Interface to
Checkpointing

Checkpointing
Solution

Interface to
Network

Networking
Solution

Outcome 1
(Open Source)

Outcome 2
(Commercial)

Interface to
Grid Middleware

Outcome 3
(Non-Comm.)

Alternative Solution Alternative SolutionAlternative Solution

HPC4U Grid-enabled, SLA-aware Resource Management System:

� SLA Negotiation
� SLA-aware Scheduling
� Monitoring
� Support of Checkpointing and Migration
� Security

Interface to
Storage

Storage
Solution

Interface to
Checkpointing

Checkpointing
Solution

Interface to
Network

Networking
Solution

Outcome 1
(Open Source)

Outcome 2
(Commercial)

Interface to
Grid Middleware

Outcome 3
(Non-Comm.)

Figure 1: Outcomes of the HPC4U project

recompiling. When focusing on commercial users, who ex-
ecute proprietary applications, this is necessary as relinking
or recompiling is not be possible in most cases. This flexi-
bility and transparency on the other hand has the drawback
of a high degree of system dependence.

In contrast to application level checkpointing, a kernel-
level checkpointed process can not be restarted on arbitrary
target systems. Beside high level characteristics like operat-
ing system or processor type, the target machine even has to
be compatible in regard of versions of installed libraries and
tools. If restarting a checkpointed job on an incompatible
resource, the job would directly crash at best. In the worst
case, the application would resume its computation, but re-
turn incorrect results. In this case the RMS would assume
that the application restarted successfully, returning incor-
rect results back to the customer.

An obvious way to face this situation and ensure a suc-
cessful restart on the target machine is to request identical
machines. At this, the hardware of a suitable target machine
must be identical to the source machine. The same holds for
the software installation. Both machines have to have iden-
tical operating systems with identical upgrade levels (e. g.
RedHat AS4, Upgrade 4).

Even if this strict demand solves the problem of compati-
bility very efficiently, it reduces the number of eligible target
systems in a migration process close to zero. If looking to
resource information catalogues in the Grid, a broad vari-
ety of different systems becomes apparent. Even if some
of these systems would be able to resume the checkpointed
application, this strict demand on equality would disqualify
them.

For enhancing the number of potential migration targets
while ensuring their compatibility, the compatibility profile
is introduced. This profile is an instrument for describing

the application’s requirements on the target machine, so that
the restart can be successful.

The compatibility profile holds information regarding the
general demands on the target resource. The most funda-
mental requirement on the target machine is regarding its
internal architecture and system properties. These demands
are not specific to the used checkpointing system, but arise
from the execution environment. Furthermore, the operating
system installed on a compute node forms the fundament for
the application execution, e. g. the execution within a Linux
operating system.

All Kernel-level checkpointing solutions have their gen-
eral functionality in common. By intercepting specific sys-
tem calls they allow to generate a process image of a run-
ning application. Despite the fact that these solutions differ
in their particular functionality profiles, it is not possible to
exchange checkpoint datasets between them. Therefore it is
necessary to have the same checkpointing solution available
on the target machine that was used to generate the check-
point. Hence, the checkpointing system is also part of the
compatibility profile.

Beside operating system, checkpointing system and pro-
cessor architecture, a broad variety of other system proper-
ties is essential for a successful restart of the application,
e. g. sufficient amount of main memory as well as storage
capacity. Also hardware demands like the availability of
a specific network interconnect, or software demands like
special purpose applications, libraries, or licenses are part of
the customer agreed SLA. The SLA may also demand for
the availability of a specific filesystem type. In this case,
also the filesystem must be available on the target machine.

The concept of libraries is known in almost all operating
systems. Instead of demanding each application developer
to write the same core functions again and again, these func-

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 57

tions are provided by means of libraries. The operating sys-
tem itself is offering system services over system libraries.
By linking his application against these libraries, this the
programmer is able to use these functionalities easily.

Static libraries are linked to the application and part of the
resulting binary. This way, the user does not have to ensure
the availability on the system where he plans to execute the
binary. However, static linking results in significant waste of
space, both storage and memory. Furthermore this type of li-
brary complicates system maintenance. On updating a given
library (e. g. due to a security problem or programming bug),
all applications using this library have to be relinked.

Shared libraries in contrast are only loaded once into the
system memory. On application start, the availability of the
library is checked by a loader service. This loader verifies
the version of the library, sets entry addresses, and maps the
memory of the library to the virtual memory segment of the
application.

Dynamic loading further improves the concept of a shared
library. It allows the application to dynamically load and
unload a library at runtime. Beside performance increase at
start time, this method also has the advantage that applica-
tions can start even if specific libraries are not available on
that system and not crucial for program execution.

From the checkpoint compatibility point of view, dynamic
loading is a serious issue, because libraries are not necessar-
ily placed at the same position in memory at each restart.
If a checkpoint is resumed in an environment where these
libraries are loaded to different memory addresses, the ap-
plication would access the wrong memory segments at run-
time.

Currently available checkpointing solutions are solving
this problem by saving the address of these libraries to the
checkpoint dataset file. If restarting the application on a re-
mote system, the system checks the addresses of these li-
braries. If necessary, it then reloads the library and maps
the addresses for the restarted application. However, this
method requires the library to be installed at the same po-
sition (i. e., directory path) and in the same version. Due
to this reason it is important to add information about the
required libraries to the compatibility profile.

In the Linux operating system libraries are stored
having their version in their filename. The library
can be found under its major version number due to
a link from the real library name to the virtual li-
brary name, which only holds the major version in its
name (e. g.libcap.so.1 -> libcap.so.1.10, or
libnetsnmp.so.5 -> libnetsnmp.so.5.1.2).

Changes in the patch version usually do not refer to
changes in the functions, so that programs running with ver-
sion 5.1.2 should also restart with 5.1.1. Minor version
changes signal a change in functions, which is backwards
compatible to older versions, so that 1.10 should not be
restarted with 1.9.

However, it has to be distinguished between loaded and
unloaded libraries at this point. If a library has been loaded,
the loader service of the operating system mapped all ad-
dresses according to the particular library version. Since
this address mapping information is part of the checkpoint

dataset, the job would also use the same information at
restart.

Even minimal differences in the code of a library has ef-
fect on the memory size of that function. The result is that
address mapping tables are different between two patch ver-
sions. If the job restarts with an address mapping table, that
does not match with the installed library, this would cause
an incorrect behavior at runtime.

Therefore the checkpointing profile has to distinguish be-
tween loaded and unloaded libraries.

• For unloaded libraries it is sufficient to query for a com-
patible library version.

• For loaded libraries it is mandatory that the identical ver-
sion is available on the migration target system.

The resource management system can retrieve the library
related information about a running job by analyzing the ap-
plication and checking the list of loaded libraries at check-
point time. According to this list of libraries the RMS is then
able to check the version numbers of the libraries, adding ei-
ther the full version or solely the major version number to
the compatibility profile.

Virtual Execution Environments
The previous section underlined the difficulties of retriev-
ing compatible resources for migration within Grid systems.
Only if the target resource matches the compatibility profile,
the checkpointed job may be migrated.

It is common practise that Grid resources are operated un-
der a decentralized autonomy of local resource providers.
Hence, local administrators decide on the operating system
to be installed on compute resources. Moreover, is is the
responsibility of local resource administrators to install up-
dates, e. g. applying available patches to the local compute
node environment. This local autonomy is the root cause of
the difficulty of finding compatible resources. Since each
difference in the operating system patchlevel impacts the
compatibility for the migration process, it would be benefi-
cial to have commonly accepted and available execution en-
vironments, guaranteeing the compatibility regarding paths
and libraries.

This goal can be achieved by using virtualization technol-
ogy on the compute resources. Instead of executing applica-
tions directly on a compute node, a virtual system is started
first. Within this virtual system arbitrary operating systems
can be started. The application then is started within this vir-
tual system environment. This way, it is possible to start the
application within a well-defined system environment.

The central component of this new infrastructure is a cen-
tral system image repository, holding system images of dif-
ferent operating systems, e. g. commonly used Linux dis-
tributions in different versions and different patchlevels (cf.
figure 2). Each of these images has a unique ID. The con-
tents of this image repository can be published within the
Grid using well established mechanisms like resource in-
formation catalogues. Since these information services are
public, not only a single provider is able to access the con-
tents, but all Grid stakeholders.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 58

Figure 2: Virtual System Repository

Already at SLA negotiation time, the service customer
now has the opportunity to specify a system image to be es-
tablished at execution time, instead of the current practise of
not knowing if the job will be executed on an up-to-date De-
bian system or an outdated SuSE. Hence, the customer can
test his job in the specified environment by establishing the
image from the system image repository locally, being sure
that the job will succeed and return the expected results.

Providers will typically only support a subset of images
from the image repository, e. g. images of distributions that
are known by the system administrators, or that have proven
to run stable on the compute resources. Providers are free
in the selection of supported system images, which are then
published in the Grid resource information catalogue.

At level of Grid middleware the customer requested vir-
tual system ID has to be matched against the provider sup-
ported characteristics of their resources, like it is already
common practise with all other system parameters like num-
ber of nodes or amount of main memory. Hence, currently
existing matching mechanisms, e. g. used by Grid broker
systems, can be used for also matching the virtual system
IDs.

If a provider agrees on an SLA specifying a virtual sys-
tem image ID, it has to establish the specified system image
at runtime on the compute node and then execute the user
job within the specified environment. If the customer did
not specify any image ID, the provider may choose a default
virtual system to be executed on the compute node. In this
case, the customer does not have any knowledge about the
system that is used for executing his job, but this only corre-
sponds to the current situation.

At runtime, the virtual system is then established on the
compute node, so that all job checkpoints can be executed
in a well defined and well known environment. Hence, all
dependencies of the checkpointed job on the system envi-
ronment are known, since the system has been executed in
the specified virtual environment.

This is particularly beneficial for the migration process,
since it is no longer mandatory to generate a compatibil-
ity profile, as explained in the previous section. Instead
of querying for libraries or library versions, the resource

provider is able to query for resources that can execute the
particular virtual system ID. Hence, instead of describing
requirements on a compatible environment, now the com-
patible environment can be requested directly.

This virtual system ID is part of the SLA negotiation pro-
cess of the source and the target resource provider, which
is providing the migration target resources. If the target re-
source provider agrees on the SLA, it agrees on establishing
the specified virtual system on the compute node at runtime,
where the checkpointed job is to be resumed. This mecha-
nism also applies to all further migration operations of this
job, e. g. if the new resource provider again has to query the
Grid for backup resources due to resource failures.

Related Work
The worldwide research in Grid computing resulted in nu-
merous different Grid packages. Beside many commodity
Grid systems, general purpose toolkits exist such as Uni-
core (UNICORE Forum e.V.) or Globus (Globus Alliance:
Globus Toolkit). Although Globus represents the de-facto
standard for Grid toolkits, all these systems have proprietary
designs and interfaces. To ensure future interoperability of
Grid systems as well as the opportunity to customize instal-
lations, the OGSA (Open Grid Services Architecture) work-
ing group within the OGF aims to develop the architecture
for an open Grid infrastructure (GGF Open Grid Services
Architecture Working Group (OGSA WG) 2003).

In (Jeffery (edt.) 2004), important requirements for the
Next Generation Grid (NGG) were described. Among those
needs, one of the major goals is to support resource-sharing
in virtual organizations all over the world. Thus attract-
ing commercial users to use the Grid, to develop Grid en-
abled applications, and to offer their resources in the Grid.
Mandatory prerequisites are flexibility, transparency, relia-
bility, and the application of SLAs to guarantee a negotiated
QoS level.

An architecture that supports the co-allocation of multi-
ple resource types, such as processors and network band-
width, was presented in (Foster et al. 1999). The Globus
Architecture for Reservation and Allocation (GARA) pro-
vides ”wrapper” functions to enhance a local RMS not ca-
pable of supporting advance reservations with this function-
ality. This is an important step towards an integrated QoS
aware resource management. In our paper, this approach is
enhanced by SLA and monitoring facilities. These enhance-
ments are needed in order to guarantee the compliance with
all accepted SLAs. This means, it has to be ensured that the
system works as expected at any time, not only at the time a
reservation is made. The GARA component of Globus cur-
rently does neither support the definition of SLAs or mal-
leable reservations, nor does it support resilience mecha-
nisms to handle resource outages or failures.

The requirements and procedures of a protocol for nego-
tiating SLAs were described in SNAP (Czajkowski et al.
2002). However, the important issue of how to map, im-
plement, and assure those SLAs during the whole lifetime
of a request on the RMS layer remains to be solved. This
issue is also addressed by the architecture presented in this
paper.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 59

The Grid community has identified the need for a stan-
dard for SLA description and negotiation. This led to the
development of WS-Agreement/-Negotiation (Andrieux et
al. 2004).

The usage of virtualization technology at provider level
within resource management systems has been described in
(Fallenbeck et al. 2006). Here the Xen virtual machine mon-
itor is used for increasing system utilization and response
time of a cluster system operated with the Sun Grid Engine
resource management system. Long running sequential jobs
are executed in a virtualized environment and suspended
for executing short running parallel jobs. This work under-
lined the general applicability of virtualization technology
on compute nodes, but did neither address fault tolerance
nor the execution of parallel applications within virtual en-
vironments.

Conclusion

SLA-awareness is a mandatory prerequisite if the commer-
cial user should be attracted to use Grid environments. Since
SLA-awareness does not only focus on the negotiation of
new SLA but also on their fulfillment, mechanisms for pro-
viding SLA-compliant service also in the case of resource
failures are required. The EC-funded project HCP4U aims
at providing an application-transparent and software-only
solution of such an SLA-aware RMS, demanding for reli-
ability and fault tolerance. The HPC4U system already al-
lows the Grid user to negotiate on new SLAs, which will
be realized by means like process-, network,- and storage-
checkpointing.

Migrating checkpoint datasets over the Grid to remote
cluster resources particularly implies requirements on the
compatibility of source and target resource. Only if the tar-
get resource matches the source resource to a large extend,
the checkpoint will be able to resume successfully. For de-
scribing all these requirements, the HPC4U introduced the
compatibility profile. At migration time, the system has to
query for target resources matching the terms of this profile.

Due to these fine grained requirements the number of
matching resources is fairly small even in large heteroge-
neous Grid systems. Introducing virtual execution environ-
ments on the compute nodes allows to address the question
of resource compatibility in a novel way. Instead of describ-
ing the requirements of a compatible environment, the com-
patible environment itself is established on a compute re-
source at resume time of a checkpointed job.

The mechanisms presented in this paper preserve the lo-
cal autonomy of resource administrators, who still can de-
cide which virtual system should be supported. Moreover
already available resource querying mechanisms within the
Grid can be used for finding resource providers supporting a
specific virtual execution environment. The implementation
of virtual execution environments is subject of current work,
using the resource management system OpenCCS and the
Xen virtual machine monitor.

References
Andrieux, A.; Czajkowski, K.; Dan, A.; Keahey,
K.; Ludwig, H.; Nakata, T.; Pruyne, J.; Rofrano, J.;
Tuecke, S.; and Xu, M. 2004. Web Services Agree-
ment Specification (WS-Agreement). http://www.
gridforum.org/Meetings/GGF11/Documents/
draft-ggf-graap-agreement.pdf.
Business Experiments in Grid (BEinGrid), EU-funded
Project. http://www.beingrid.eu.
Czajkowski, K.; Foster, I.; Kesselman, C.; Sander, V.;
and S.Tuecke. 2002. SNAP: A Protocol for Nego-
tiating Service Level Agreements and Coordinating Re-
source Management in Distributed Systems. In D.G. Feit-
elson, L. Rudolph, U. S. E., ed., Job Scheduling Strategies
for Parallel Processing, 8th InternationalWorkshop, Edin-
burgh,.
De Roure (edt.), D. 2006. Future for European Grids:
GRIDs and Service Oriented Knowledge Utilities. Techni-
cal report, Expert Group Report for the European Commis-
sion, Brussel.
Fallenbeck, N.; Picht, H.-J.; Smith, M.; and Freisleben,
B. 2006. Xen and the Art of Cluster Scheduling. In Sec-
ond International Workshop on Virtualization Technology
in Distributed Computing (VTDC 2006).
Foster, I.; Kesselman, C.; Lee, C.; Lindell, B.; Nahrstedt,
K.; and Roy, A. 1999. A Distributed Resource Manage-
ment Architecture that Supports Advance Reservations and
Co-Allocation. In 7th International Workshop on Quality
of Service (IWQoS), London, UK.
GGF Open Grid Services Architecture Working Group
(OGSA WG). 2003. Open Grid Services Architecture:
A Roadmap.
Globus Alliance: Globus Toolkit. http://www.
globus.org.
Heine, F.; Hovestadt, M.; and Kao, O. 2004. HPC4U:
Providing Highly Predictable and SLA-aware Clusters for
the Next Generation Grid. In 4th Cracow Grid Workshop,
Cracow, Poland.
Highly Predictable Cluster for Internet-Grids (HPC4U),
EU-funded project IST-511531. http://www.hpc4u.
org.
Jeffery (edt.), K. 2004. Next Generation Grids 2: Require-
ments and Options for European Grids Research 2005-
2010 and Beyond. ftp://ftp.cordis.lu/pub/
ist/docs/ngg2_eg_final.pdf.
Priol, T., and Snelling, D. 2003. Next Genera-
tion Grids: European Grids Research 2005-2010.
ftp://ftp.cordis.lu/pub/ist/docs/ngg_
eg_final.pdf.
Sahai, A.; Graupner, S.; Machiraju, V.; and van Moorsel,
A. 2002. Specifying and Monitoring Guarantees in Com-
mercial Grids through SLA. Technical Report HPL-2002-
324, Internet Systems and Storage Laboratory, HP Labora-
tories Palo Alto.
UNICORE Forum e.V. http://www.unicore.org.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 60

From CIM to GLUE: Translate Resource Information of Virtual Machines to
Computational Grids

Lizhe Wang Marcel Kunze Jie Tao

Institute for Scientific Computing (IWR), Research Center Karlsruhe (FZK)
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

{Lizhe.Wang, Marcel.Kunze, Jie Tao}@iwr.fzk.de

Abstract

Distributed virtual machines can help to build scalable,
manageable and efficient Grid infrastructures. The work
proposed in this paper focuses on information management
for virtual machine based Grid systems. Resource informa-
tion from popular virtual machine products, e.g., Xen and
VMware, is organized in CIM schema. The Grid computing
community, on the other hand, in general employs another
information schema, such as GLUE. To manage virtual ma-
chine resources for Grid computing, efficient information
transfer of virtual machine resource to Grid high level ser-
vices is required. In the paper an information service is
built to retrieve resource information of virtual machines,
and translate CIM based information to Grid information
defined in GLUE schema. The resource information is fi-
nally transferred to high level Grid services, for example
Web interface access for users. We argue that the imple-
mentation is the first attempt of organizing virtual machine
information for Grid computing. The work is implemented
in a test bed and shown with example usage.

1. Introduction

Grid computing technology [12] offers promising solu-
tions for parallel and distributed computing. It can provide
reliable, collaborative and secure access to remote compu-
tational resources as well as distributed data and scientific
instruments.

A virtual machine is a computing platform that creates a
virtualized layer between the computing hardware and the
application. This paper is devoted to discuss a Grid work-
flow system on distributed virtual machines. There are ad-
vantages of using virtual machines, like on demand creation
and customization, performance isolation, legacy software
support and ease of management.

Virtual machine based Grid systems are characterized by
some special features, which bring research challenges for
deploying, monitoring and operating the system:

• Site autonomy
In the virtual machine based Grid system, the host-
ing resources, which run a Virtual Machine Monitor
(VMM) and support multiple virtual machines, are
commonly owned and controlled by different institutes
or organizations at different sites. Users may expect
to meet different resource management policies during
the creation and manipulation of virtual machines.

• Hierarchy
A virtual machine based Grid system is hierarchical
in nature. It contains several levels, virtual machine
level, hosting resource level and the user access point,
i.e., Grid portal.

• Heterogeneity
A virtual machine based Grid system includes hetero-
geneous hosting resources, virtual machine technolo-
gies (e.g., Xen, VMWare) as well as programming in-
terfaces.

• Large scale distribution
Computer centers and data centers frequently employ
virtual machines and build Grid infrastructures across
geographically distributed sites.

In a virtual machine based Grid system, some specific
requirements demand attention for the information service:

• Efficient delivery of resource information from virtual
machines to clients in the hierarchical Grid environ-
ment;

• Information services should be scalable and robust
with regard to dynamic startup/shutdown of virtual
machines;

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 61

• The information collector which runs inside in the vir-
tual machine should be lightweight, portable and man-
ageable.

• Information from popular VMM such as Xen and
VMware which is defined by the CIM schema should
be translated to higher level Grid services and user ac-
cess.

This work implements an information collector, a trans-
lator and an information provider for VMware virtual ma-
chines and builds a Grid information service which can re-
trieve resource information from the information provider.
The work is to our knowledge the first prototype of an in-
formation service for a virtual machine based Grid system,
which can translate CIM based virtual machine information
into Grid information defined in GLUE schema.

The paper is organized as follows: related work is in-
vestigated in Section 2; Section 3 give an overview on the
design and implementation of the information service. Sec-
tion 4, Section 5 and Section 6 detail the implementation
of components in the information service: the information
collector, the translator, and the information provider. In
Section 7 test results are presented and discussed. Section 8
concludes the paper and points out future work.

2. Related work

Since several years the Grid computing research com-
munity shows interest for virtual machines and virtual en-
vironments. The typical Virtual Machine Monitor (VMM)
or hypervisor setup includes Xen VMM [2], VMware
server/ESX server [27], and User Mode Linux [16]. In gen-
eral, users can benefit from the virtualization techniques in
the following aspects:

• On demand creation and customization
Users can create a customized virtual machine, which
can provide customized resource allocation for users,
e.g., OS, memory, storage, etc.

• Performance isolation
Virtual machines can guarantee the performance for
users and applications. Users of virtual machine could
expect a dedicated computing environment, which is
hard to find in multiple-user computing servers.

• Legacy software support
Customized virtual machines which are compatible
with legacy binary applications can be created. Users
from specific engine domains can find it very desir-
able and promising since some legacy libraries could
be supported.

• Easy management
Users in general should only access computing servers
with restricted user privilege. It is thus difficult to pro-
cess the work such as compilation, installation, config-
uration of desirable computing environment for users.
Virtual machines on the contrary, could offer users
with “root” access of the allocated virtual machine.
Therefore application domains could manage their en-
vironments in their own interest.

The Globus alliance recently implemented the concept
of virtual workspace [15] which allows a Grid client to de-
fine an environment in terms of its requirements, manage it,
and then deploy the environment on the Grid. The imple-
mentation is based on Globus Toolkit 4 (GT4) and it only
supports Xen VMM. Some other research work also fo-
cuses on deploying computing systems or test beds with vir-
tual machines, for example, virtualization of batch queue-
ing system [3], GridBuilder [4], using virtual machine as
Grid gateway [5], multi-site MPI platform with Xen virtual
machine [24], migration of virtual machines in MAN/WAN
[26].

Other researchers try to build virtualized middleware for
clusters and distributed systems. Xen Grid Engine [9] fol-
lows an approach to create dynamic virtual cluster partitions
using para-virtualization techniques. The work presented
in [19] builds virtual clusters and virtualized distirbuted in-
frastructures. The In-VIGO [1] project aims to build vir-
tulization middleware for computational Grids. In-VIGO
provides a distributed environment where multiple applica-
tion instances can coexist in virtual or physical resources
such that clients are unaware of the complexity inherent to
Grid computing.

Various advances have been made in field of virtual net-
work. Violin [19]employs user-level communication indi-
rection between the virtual machines and the underlying in-
frastructure. The In-VIGO system implements Wide-Area
Overlays of Virtual Workstations (WOWs) by creating vir-
tual IP networks on top of P2P overlays. While the Violin
and the In-VIGO implementations are based on user-level
overlay networks, VNET [23] is realized in both user-level
and kernel level: host kernel-level devices are created to
tunnel network traffic.

Another important topic is the performance analysis of
virtual machines or virtual environments. The Xen group
has published a performance evaluation and comparison be-
tween several popular VMMs concerning the performance
overhead in different scenarios [17]. Other research efforts
refer to virtual machine based systems, i.e., performance of
para- and paene- virtualized systems [20], performance en-
hancement of SMP clusters with virtual machines [22].

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 62

VMVMVMVM

hosting resourcehosting resource

VMVMVMVMVMVM

hosting resource

Site

Figure 1. Hierarchy of the virtual machine
based Grid system

3. System Overview

We propose a system model to describe a distributed, hi-
erarchical, heterogeneous virtual machine based Grid sys-
tem. The system architecture has been described hierarchi-
cally (see also Fig. 1):

• Grid level
The target Grid system contains multiple geographi-
cally distributed sites, which could be computer cen-
ters, data centers, universities, and research institutes.
On the Grid level, each site is represented and accessed
via an access point. In other words, users can submit
jobs to some computing centers and get their resource
information via the access point.

• Site level
Each site provides a number of physical resources, for
instance, cluster, PVP, and MPP. Resources in each site
are connected with LAN and can support multiple vir-
tual machines.

• Virtual machine level
Grid users can demand virtual machines on hosting re-

sources, submit jobs to virtual machines, monitor their
jobs and the guest systems.

The information service consists of an information col-
lector in virtual machine, the client of information collec-
tor, and information translator and an information provider
in the access point, and the aggregated Globus index ser-
vice. The information collector which runs inside a vir-
tual machine is used to retrieve resource information for
the information provider. Information collector clients get
results from information collectors, the information trans-
lators change CIM information to GLUE information and
information providers for Globus MDS 4 (Monitoring and
Discovery System) organize the resource information from
information collectors in predefined XML schema, which
are aggregated into the Globus index service. The Web-
MDS can be configured as a graphical user interface based
on the Globus index service (see also Fig. 2).

Service aggregation

VMVM

VMM

 collector

 information

VM
......

site

hosting resourcehosting resource

WebMDSCommand Line Service client

 provider

 information

collector client

 translator

 information

 provider

 information

 information

 Globus Index

 provider

 information
......

point

access

Figure 2. Overview of the information service

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 63

4. Information Collector

The information collector is a light weight software,
which resides inside a virtual machine and collects resource
information. In the current implementation, we programm
on VMWare ESX server APIs and build information collec-
tor on VMware virtual machines.

VMware ESX server is a commercial virtualization
product of VMware Inc. Common Information Model
(CIM) [6] is defined as an international standard by the
Distributed Management Task Force (DMTF) [11]. The
VMware ESX server together with CIM SDK provides a
CIM-compliant object model for virtual machines and their
related storage devices. Fig. 3 shows a typical configuration
environment of VMware ESX server. The virtual machine
contains a virtual disk that resides as a virtual disk file on a
storage area network.

storage array

VMware ESX server

 disk

virtual

 FC HBA

VM
LUN

virtual

disk file

Figure 3. Sample environment of VMware
ESX server

The SMI-S (Storage Management Initiative Specifica-
tion) schema for the sample VMware ESX server environ-
ment is shown using UML in Fig. 4. ESXComputerSys-
tem is the kernel object of the system. It associates VM,
VirtualDisk and FC HBA&LUN1 with HostedDependency,
HostedStoragePool and SystemDevice relationships respec-
tively. VM is associated with VirtualDisk with ArchiCon-
nection relationship. The latter is associated with FC
HBA&LUN in ConcreteComponent relationship.

The pegasus CIMOM (CIM Object Manager) [7] is
deployed on the VMware ESX server. The information
provider at the access point works as CIM client and com-
municates with pegasus CIMOM to retrieve information
from virtual machines and their associated storage. The
information provider complies with SMI-S profile [21]
and transports CIM XML over HTTP/HTTPS to pegasus
CIMOM (see also Fig. 5).

We implement the client side codes which communicate
with pegasus CIMOM server on the basis of VMware ESX

1Fibre Channel Host Bus Adaptor & Logical Unit Number

ConcreteComponent

VirtualDisk ESXComputerSystem

 FC HBA & LUN

VM

HostedDependency

SystemDevice

HostedStoragePool ArchiveConnection

Figure 4. CIM schema for VMware ESX server

HTTP/HTTPS

provider

information Pegasus

CIMOM

 VMware ESX server

Figure 5. CIMON for VMware ESX server

server APIs. The communication between the client and pe-
gasus CIMOM server is based on HTTP/HTTPs or TCP/IP
protocols. The client side codes, together with informa-
tion translator and information provider, reside in the access
point of the site.

5 Information Translator

5.1 CIM schema for virtual machine in-
formation

The CIM (Common Information Model) schema [6],
which is a standard created by DMTF (Distributed Manage-
ment Task Force) provides a common definition of manage-
ment information for systems, networks, applications and
services. CIM is a conceptual information model for de-
scribing computing and business entities in enterprize envi-
ronments. The fundamental goals of CIM are common def-
initions that enable vendors to exchange semantically rich
management information between wide varieties of sys-
tems.

The VMware CIM SDK provides a CIM interface for
developers building management applications. With the
VMware CIM SDK, developers can use CIM-compliant ap-
plications to explore the virtual machines on ESX Server,
along with associated storage resources.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 64

5.2 Grid information schema and informa-
tion service

Various types of resources which are shared on computa-
tional Grids should be described in a precise and systematic
manner. The Grid resources are thus able to be discovered
for subsequent management or use.

The GLUE (Grid Laboratory Uniform Environment)
schema [13] represents an abstract model for Grid resources
and mappings to concrete schemas that can be used by in-
formation services within Grids. The underlying idea of the
schema therefore is to provide an information model that
can be used to exchange pieces of information among dif-
ferent knowledge domains and virtual organizations [14].
The GLUE schema is widely used in production Grid such
as EGEE [10], OSG [18] and Teragrid [25].

The GLUE schema is defined in UML diagrams (1.3
version) or XML (1.2 version). The GLUE schema de-
fines so called core entities, such as Site, Service,
ComputingElement and StorageElement. The re-
lations between core entities are represented in concept
level, such as objects and properties.

An Grid information service provides information about
a Grid infrastructure that consists of a wide variety of
Grid resources. Grid information is thereafter used
for various Grid operations, such as resource discov-
ery/monitoring/accounting and job submission/execution.

In our production Grid environment, the Globus index
service is used for the Grid level information service. The
Grid index service can collect information and publish the
information to clients. The Grid index service can also
register to each other in a hierarchical fashion in order
to aggregate data at several levels. The Aggregator
Framework of Globus index service is used to build ser-
vices that collect and aggregate data. For example, we build
an information provider from virtual machines and provide
information to the Aggregator Framework.

5.3 Translation of CIM information to
GLUE information

The virtual machine information is organized as a CIM
schema. In production computational Grids, resource in-
formation is defined by GLUE schema. The information
provider therefore needs to translate the CIM information
into GLUE information, then marshes the data into GLUE
XML file.

There are mainly two technical problems to translate
CIM information to GLUE information:

• The GLUE schema does not contain virtual machine
concept.

• CIM schema and GLUE schema make their own rep-
resentation at different levels. It is thus impossible

Figure 6. Extended GLUE schema

to make a direct mapping of CIM schema to GLUE
schema.

The GLUE schema has been extended accordingly to
support virtual machine concept. A VirtualMachine class
is created by inheriting Host class in the GLUE schema.
Several attributes and operations are included in Virtual-
Machine classes to represent virtual machine concepts.
Figure 6 shows the extended GLUE schema.

The GLUE schema is represented in various high level
formats, such as XML schema and UML class diagram.
The CIM schema, on the other hand, provides an object
oriented format. The CIM schema shipped by VMware is
represented in Java classes. Thus there is no direct mapping
from CIM schema to GLUE schema. We first generated
Java classes from GLUE schema. The Java Architecture
for XML Binding (JAXB) provides a fast and convenient
way to bind an XML schema to Java representations. With
the JAXB compiler and binding tools, Java binding classes
could be automatically generated from GLUE schema. In
the binding classes, CIM GLUE classes (Pegasus CIMON
APIs) are invoked and virtual machine information is gen-
erated. The information is thereafter marshaled to GLUE

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 65

XML data.

6 Information Provider

An information provider has been programmed to call
the information collector client and the translator automati-
cally and read the GLUE XML file to the Globus Aggrega-
tor Framework.

It is also required to configure Globus Aggregator
Framework to enable the information provider for Globus
index service, for example, registering the information
provider to the back-end of Globus index service, map-
ping the information provider in the deployment file of
the Globus index service and configure the schedule to
run the information provider. Therefore GLUE XML data
could be automatically generated and provided to Globus
Aggregator Framework. The Grid index service
could provide resource information from virtual machines
to higher Grid services, for example, WebMDS [28] or be
accessed from the Globus Toolkit command line.

7 Test results

7.1 Test bed

The actual test bed is configured as shown in Fig. 7.
Blade10, Blade11 and Lizhe3 are hosting resources which
are installed with VMware ESX server and VMware server.
VM1, VM2 and VM3 are virtual machines backed by
the hosting resources that form the virtual machine pool.
Lizhe2 is the access point for the virtual machine pool (see
also Tab. 2).

7.2 Test results

The access point runs an information provider to retrieve
information from VM1/VM3 and VM2 via VMware ESX
server. The information provider collects the resource in-
formation and organizes it with GLUE schema (shown in
Tab. 1)

blade10

VM3VM2VM1

virtual machine pool

lizhe2lizhe3blade11

Figure 7. Test bed

The information provider thus furnishes the organized
information to the Aggregator Framework of Globus

Toolkit. Users can retrieve the information with client
programs of Globus index service or browse the infor-
mation via WebMDS. Fig. 8 shows the resource informa-
tion retrieved from virtual machine pool with WebMDS on
Lizhe2. These results justify the correct operation of the
prototype implemented on the test bed.

Figure 8. Resource information from virtual
machines

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 66

Table 1. Virtual machine information in GLUE schema
< V irtualMachineInformation >

. . .
< V irtualMachine >

< itemname = ”Hostname”value = ”IWR − LIZHE − V M2.fzk.de”/ >
< itemname = ”BIOS UUID”value = ”564ddc04− d598 − 5abd− b318 − 92f58810c7bc”/ >
< itemname = ”Guest OS”value = ”Suse Linux Enterprise Server”/ >
< itemname = ”Power state”value = ”powered off”/ >
< itemname = ”Storagepool”value = ”iwrcgblade11”/ >
. . .

< /V irtualMachine >
. . .

< /V irtualMachineInformation >

VMware ESX server

GLUE

XML filetranslator

Information

JAXB binding

Pegasus CIMON

Globus Aggregator Framework

Information Provider

Globus Index Service

XML schema
GLUE

Figure 9. Implementation of virtual machine information provider

Table 2. Test bed summary
Resource Name Resource Type Software installed
Blade9 IBM BladeCenter HS20 VMWare ESX server

2× Intel c© XeonTM CPU 3.00 GHz
Blade11 IBM BladeCenter LS20 VMware ESX server

2×AMD OpteronTM Processor 250, 2.8 GHz
IWR-Lizhe3 Linux Workstation VMware server

1× AMD AthlonTM 64 Processor 3500 +
IWR-Lizhe2 Linux Workstation Globus Toolkit 4

1×Intel c© Pentium M Processor 1.5GHz
VM1, VM2, VM3 Virtual Machine Scientific Linux 3.0.6

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 67

8 Conclusion and Future work

Virtual machines are widely accepted in computer cen-
ters to support various applications. This paper implements
an information service of virtual machine pools for Grid
computing. The information service can monitor virtual
machines backed by popular VMM, such as VMware ESX
server. We argue our contributions are

• building an efficient information service for retrieving
virtual machines, and

• translating CIM based virtual machine information to
Grid information defined in GLUE schema.

This is the first attempt of bridging the gap between indus-
try information standard and production Grid information
standard.

The prototype of the implementation will be developed
and tested in large scale Grid system, e.g. D-Grid test
bed [8]. The performance such as scalability and robust-
ness should be considered for further implementation.

References

[1] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo,
J. Fortes, I. Krsul, A. Matsunaga, M. Tsugawa,
J. Zhang, M. Zhao, L. Zhu, and X. Zhu. From Vir-
tualized Resources to Virtual Computing Grids: the
In-VIGO System. Future Generation Computing Sys-
tems, 21(6):896–909, June 2005.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the Art of Virtualization . In Proceedings of
the 19th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 164–177, New York, USA, Oct
2003. ACM Press.

[3] V. Buege, Y. Kemp, M. Kunze, O. Oberst, and
G. Quast. Virtualizing a Batch Queueing System at
a University Grid Center. Proceeding of Workshop on
XEN in HPC Cluster and Grid Computing Environ-
ments (XHPC), LNCS, 4331:Italy, 397-406 2006.

[4] S. Childs, B. Coghlan, and J. McCandless. Grid-
Builder: A Tool for Creating Virtual Grid Testbeds.
In Proceedings of 2nd IEEE Conference on eScience
and Grid computing (e-Science), pages 77–77, Ams-
terdam, Netherlands, Dec. 2006. IEEE Computer So-
ciety.

[5] S. Childs, B. Coghlan, D. O’Callaghan, G. Quigley,
and J. Walsh. A Single-computer Grid Gateway Using

Virtual Machines. In Proceedings of the 19th Interna-
tional Conference on Advanced Information Network-
ing and Applications, pages 310 –315, Washington,
DC, USA, 2005. IEEE Computer Society.

[6] Common Information Model (CIM).
http://www.dmtf.org/standards/cim/, 2005.

[7] Pegasus CIMOM. http://www.openpegasus.org.

[8] D-Grid project.
http://www.d-grid.org.

[9] N. Fallenbeck, H. J. Picht, M. Smith, and
B. Freisleben. Xen and the art of cluster scheduling.
In Proc. of 1st International Workshop on Virtual-
ization Technology in Distributed Computing, USA,
Nov. 2006. IEEE Computer Society.

[10] Enabling Grids for E-sciencE (EGEE).
http://www.eu-egee.org/.

[11] Dsitributed Management Task Force.
http://www.dmtf.org.

[12] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Philosophy of the Grid: An Open Grid Services Archi-
tecture for Distributed Systems Integration. Technical
report, Open Grid Service Infrastructure Workgroup,
Global Grid Forum, 2002.

[13] Open Grid Forum Glue Schema Working Group. Glue
schema v1.3, Jan 2006.

[14] Open Grid Forum Grid Interoperation Now Commu-
nity Group. Experiences from interoperation scenarios
in production grids, Feb. 2007.

[15] K. Keahey, I. Foster, T. Freeman, X. Zhang, and
D. Galron. Virtual Workspaces in the Grid. Proceed-
ings 11th International Euro-Par Conference, LNCS,
3648:421–431, 2005.

[16] User Mode Linux. http://user-mode-
linux.sourceforge.net.

[17] University of Cambridge Computer Laboratory.
Performance comparison of vmms.
available from http://www.cl.cam.ac.uk/research/srg/netos/
xen/performance.html, July 2006.

[18] Open Science Grid (OSG).
http://www.opensciencegrid.org/, 2007.

[19] P. Ruth, X. Jiang, D. Xu, and S. Goasguen. Towards
Virtual Distributed Environments in a Shared Infrus-
tructure. IEEE Computer, 38(5):63–69, 2005.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 68

[20] S. Soltesz, M. E. Fiuczynski, L. Peterson, M. Mc-
Cabe, and J. Matthews. Virtual Doppelganger: On the
Performance, Isolation, and Scalability of Para- and
Paene- Virtualized Systems.
available from http://www.cs.princeton.edu/�mef/research/
paenevirtualization.pdf, Nov. 2005.

[21] Storage Management Initiative Specification.
http://www.snia.org/smi/tech activities/smi spec pr/spec.

[22] P. Strazdins, R. Alexander, and D. Barr. Performance
Enhancement of SMP Clusters with Multiple Network
Interfaces Using Virtualization. Proceeding of Work-
shop on XEN in HPC Cluster and Grid Computing En-
vironments (XHPC), LNCS, 4331:452–463, 2006.

[23] Ananth I. Sundararaj and Peter A. Dinda. Towards
virtual networks for virtual machine grid computing.
In Virtual Machine Research and Technology Sympo-
sium, pages 177–190, 2004.

[24] M. Tatezono, N. Maruyama, and S.Matsuoka. Mak-
ing Wide-Area, Multi-Site MPI Feasible Using Xen
VM. Proceeding of Workshop on XEN in HPC Cluster
and Grid Computing Environments (XHPC), LNCS,
4331:387–396, 2006.

[25] Teragrid. http://www.teragrid.org/, 2007.

[26] F. Travostino, P. Daspit, L. Gommans, C. Jog,
C. de Laat, J. Mambretti, I. Monga, B. van Oude-
naarde, S. Raghunath, and P. Wang. Seamless Live
Migration of Virtual Machines over the MAN/WAN.
Future Generations Computer Systems, 22:901–907,
2006.

[27] VMware virtualization products.
http://www.vmware.com.

[28] WebMDS.
http://www.globus.org/toolkit/docs/4.0/info/webmds.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 69

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 70

Virtualization of Grid Services in D-Grid

F. Kulla, M. Kunze
Institut für Wissenschaftliches Rechnen, Forschungszentrum Karlsruhe

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
{Fabian.Kulla, Marcel.Kunze}@iwr.fzk.de

Abstract

Grid services need to be operated in a reliable and
scalable way in order to guarantee round the clock
access to resources for a widely distributed user
community. Virtualization techniques seem to be well
suited to set up highly available automated systems.
Bringing both worlds together, this paper discusses an
implementation to run virtualized Grid services for the
German D-Grid infrastructure.

1. Introduction

The D-Grid initiative aims to build the foundation for a
sustainable Grid infrastructure in Germany [1]. The D-
Grid integration project works on the provisioning of
generic Grid middleware components and the operation
of common sustainable Grid services for the D-Grid
communities (Fig. 1).

Fig.1: D-Grid community projects are supported by
the integration project that supports generic Grid
middleware and Grid services.

The middleware architecture is based on three
independent flavours: Globus Toolkit [2], gLite [3] and
Unicore [4]. The generic layer requires not only the
operation of middleware specific services like resource
broker, scheduler or resource monitor but as well the
implementation of gateways to route requests between

the different Grid worlds and translate the
corresponding information.

Fig.2: The D-Grid middleware architecture builds on
Globus Toolkit, gLite and Unicore.

It is the task of Forschungszentrum Karlsruhe to
host the numerous basic Grid services in the D-Grid
integration project and deliver reliable operations. The
usual procedure for robust operation foresees to host
services on individual servers in order to isolate the
individual tasks and in addition have less interference
during the configuration of e.g. network ports and
software libraries. This procedure, however, needs a
considerable amount of resources that are very often
underutilized as the individual services may not be
constantly on high load. In addition, service availability
problems arise in the case of server maintenance or
server downtime. This is a serious issue as the basic
Grid services are essential for all Grid applications and
have to be operated round the clock in a widely
distributed environment. It is thus mandatory to
guarantee high availability and to be able to define and
monitor service level agreements.

Nutz

Applicati

on
Develop

ment

GAT API

Data
/

Resource

s

High-
level
Grid

Services

Basic
Grid

Services

Distributed
Data

Network
Infrastructu

LCG/gLite

Globus 4.0.1

Accounting
Billing

Scheduling
Workflow

Data
management

Security

Pl
ug

UNICOR
E

Distributed
Compute

Resources

GridSphere

Monitoring

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 71

2. Virtual Infrastructure

In order to solve the problems mentioned above we
decided to use virtual machines to implement the Grid
services and perform all operations based on a generic
virtual infrastructure. An analysis of requirements was
performed taking into account the following aspects:

 Management tools
 Resource pooling
 Provisioning of machines
 Service level definition
 Template libraries
 Snapshots and backup
 Live migration of machines
 Monitoring capabilities
 Virtual LAN to access machines remotely
 Virtual SMP to support multi-core
 Virtual memory efficiency

The evaluation was done in view of the establishment
of a high availability solution that allows to group
resources in resource pools.

We evaluated three different virtualization solutions:
Microsoft Virtualserver [5], VMware Virtual
Infrastructure [6], and Citrix XenServer [7]. The
various products come with different management
capabilities, and are architected in a multi-tier
structure: There is usually a bulk of physical servers to
host the virtual machines and a management server that
coordinates the resource pools and takes care of
resource usage. The steering and control is performed
on a further level either using a dedicated console or by
use of a Web interface.

Considering the requirements the decision was to set up
a high availability cluster on the basis of IBM
BladeCenter, bundled with VMware Virtual
Infrastructure (see Fig. 3). The cluster consists of two
identical BladeCenter systems, each equipped with 7
quad-core blades HS21 with 16 GB RAM that are
installed in two geographically separated data centres
on the campus of Forschungszentrum Karlsruhe. The
storage pools contain around 10 TeraBytes disk space
and have been realized using a distributed setup in a
common storage area network (SAN). Special care has
been taken to implement all features and network
connections to allow for redundancy and smart
failover. The network components in Figure 3 are
coloured light blue. Every blade server has four
network interfaces which are operated in active
teaming mode in order to gain performance and fault

tolerance. Two of them are connected to one switch
and the others are connected to the second switch. The
uplink ports of these switches are connected to
different backbone switches in a way that network
failures can be compensated. All resources like storage,
CPU cycles, memory, networking bandwidth are
organized in resource pools, independent of their
location, and can dynamically be assigned to the virtual
machines hosting the Grid services.

Fig. 3: Virtual infrastructure: High availability cluster,
distributed over two data centres (IWR and OKD). All
management information is maintained in a SQL
database. Virtual machine snapshots are backed up in
a TSM tape library.

A high availability cluster has been arranged to host the
nearly 50 Grid service machines in a way such that half
of the resources are located in each data centre. The
corresponding management services are run on the
basis of the VirtualCenter management server and
console. It is worthwhile to mention that we
implemented the management server itself as a virtual
machine inside the high availability cluster in order to
gain reliability. This in-band solution is feasible as the
server only takes care of planning and monitoring
tasks; the operations are executed by the ESX blades
autonomously by high availability agents. It can thus be
guaranteed that missing virtual machines are restarted
even in absence of the management server.

Virtual machines are backed up to a TSM tape service
on user demand or in a fully automated rule based
fashion using Vizioncore vRanger [8]. The backup
works with virtual machine snapshots that are taken on-
line. These snapshots are gathered on a dedicated
Windows blade server from where they are moved to a
tape library.

High Availability Cluster

vcs vm vm

BC_H2 (OKD)

ESX-
Host

ESX-
Host

BC_H1 (IWR)

ESX-
Host

ESX-
Host

Blade-
server

H1S H1S

Blade-
server

H2S H2S

Blade-
server

Blade-
server

MS
SQL

VCDB

MS
SQL-
Server

SA

D-
Grid

User

Data

VCS- Ressourcepool

vm vm

Ressourcepool
Backup-
Server
(TSM)

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 72

As the resources are always accessed through the
virtualization layer, it is possible to define service
levels to be monitored in the VirtualCenter console. In
order to maintain service levels, the management server
automatically moves the virtual machines across the
physical layer depending on a load balancing
mechanism. In case of system or firmware upgrades
individual physical hosts can enter maintenance mode.
They are drained without implications for the virtual
machine operation, as the load can be moved to other
active resources in the cluster. Similarly, additional
blade capacity can be dynamically added to the cluster
in case of performance bottlenecks. In case of a sudden
system or power failure in one of the computer centres
the missing services are supposed to automatically
restart using the remaining resources.

The virtual machine storage is partitioned out of the
common SAN storage pools by definition of LUNs that
are mounted as SCSI devices at each blade. The
VMware virtual machines file system (VMFS) safely
grants concurrent and efficient access to the disks even
in larger installations. The system allows for migration
of machine storage from one LUN to the other during
operation. This feature enables replacement of storage
systems without any downtime.

Fig.4 shows a snapshot of the VirtualCenter
management console with the virtual machines
deployed for D-Grid.

Fig.4: Management console of the high availability
cluster hosting the D-Grid virtual machines. Shown is
the main window with tabs to navigate to different
views. Left pane: Resource and machine overview.
Lower right: Monitoring of the service levels as
delivered by the high availability cluster.

The authentication scheme to manage the virtual
servers is based on Microsoft Active Directory. Using

VirtualCenter, roles like administrator, user, developer
etc. can be defined and all settings are maintained in a
SQL database. According to the specific roles
management operations can be allowed or forbidden on
the basis of fine-grained resource access rules. This
security feature is essential for running common
resource pools in a multi-domain environment and has
to be compared to the Xen world where each
management activity requires superuser privileges.

3. Discussion

The system described above is in reliable operation
since more than a year. From our practical experience
there is lot of added value from virtualization as
compared to a static server setup. The most important
point is that virtualization eases the way to data centre
automation through the concept of resource pool
management. The main advantages are:

 Rapid deployment of virtual servers
 Automated load balancing
 Automated failover
 Performance guarantees
 Snapshots of systems
 Support of legacy systems

In total we observe an increased flexibility to satisfy
customer requirements at a lower cost, as we have less
maintenance effort due to the standardized and fault
tolerant physical environment. However, one has to
take into account that there is additional effort to
maintain the virtualization layer and that there is a need
to install high-quality infrastructure on the physical
layer (e.g. SAN, multi-core servers with maximum
memory).

The server consolidation leads to a better utilization of
the hardware and thus decreases energy consumption
considerably. The consolidation factor is in the range
of 5 to 20 virtual machines per physical server blade,
depending on the actual load. In times of low
utilization, machines may be concentrated on a few
blades and empty blades switched off in order to lower
energy consumption. In case of a need, the system is
able to re-activate blades automatically by Wake-On-
LAN calls in order to increase the capacity of the pool.

An additional set of machines has been arranged in a
testing pool at lower service levels. Furthermore, the
virtual infrastructure had also been used at the same
time to host another 50 virtual machines to train the
140 students during the week of GridKa school 2007

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 73

[9]. The training courses used Thin Clients hooked up
to the virtual machines, a concept that actually seems
very promising for reasons of flexibility and economy
[10]. On the other hand the use of virtual networks
allows virtual machines to reside in the subnet of
distant users, opening the virtual floor to as well
support application specific areas. Dedicated hardware
in remote institutes could thus be supplemented by
compute power out of the centralized common resource
pool.

It is our observation that the performance penalties
through the virtualization layer are in the order of 5%
only and thus almost negligible. Developers have even
reported a higher performance as compared to their
local PC based workstations. This is due to the better
I/O service levels that can be arranged in the SAN
based storage and an easy to deliver larger RAM
allocation.

Taking snapshots of systems is of great benefit for
developers, as they can return to a specific point of
their work at any time. Arbitrary system changes can be
accepted or withdrawn with just a mouse-click.

Of special value is the support of legacy systems: It
allows us to maintain 32 bit applications on actual 64
bit hardware. This enabled us to easily migrate elder
middleware components to the most recent powerful
multi-core blade systems without major problems.

4. Outlook

It is envisaged to considerably increase the blade
capacity by further 10 chassis for D-Grid (some 1200
cores). These blades will be equipped with Infiniband
interconnect and will serve as a resource for high
performance parallel computing. Besides VMware
Virtual Infrastructure we envisage to use OpenSource
Xen to implement and manage virtual systems. Another
area of current activities is the evaluation of storage
virtualization solutions to make better use of storage
devices and for instance allow for thin provisioning of
capacity.

The high availability concepts described in this

paper are as well interesting for delivery of high quality
in-house services. We intend to deploy another high
availability cluster over a distance of 12 km between
Forschungszentrum Karlsruhe and Karlsruhe
University as a foundation for the services to be
delivered to the newly formed Karlsruhe Institute of
Technology (KIT).

10. References

[1] The D-Grid initiative, http://www.d-grid.de/
[2] The Globus Toolkit, http://www.globus.org/
[3] gLite, http://glite.web.cern.ch/glite/
[4] Unicore, http://www.unicore.eu/
[5] Microsoft Virtual Server,
 http://www.microsoft.com/windowsserversystem/virtualserver/
[6] VMware Virtual Infrastructure,
 http://www.vmware.com/products/vi/
[7] Citrix XenServer,
 http://www.citrixxenserver.com/Pages/default.aspx
[8] Vizioncore vRanger Pro, http://www.vizioncore.com/
[9] GridKa School 2007, http://gks07.fzk.de/
[10] C. Knermann, PC vs. Thin Client, 2007,
 http://it.umsicht.fraunhofer.de/PCvsTC/index_en.html

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 74

Management

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 75

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 76

Towards a Framework for the Autonomic Management of Virtualization-Based
Environments

Dan Marinescu and Reinhold Kroeger
Wiesbaden University of Applied Sciences

Distributed Systems Lab
Kurt-Schumacher-Ring 18, D-65197 Wiesbaden, Germany
{dan.marinescu,kroeger}@informatik.fh-wiesbaden.de

Abstract

Over the past years, virtualization has emerged again,
making its place in the data centers. However, data cen-
ters are already facing management problems due to the
increased system complexity. Virtualization increases this
complexity even more. To address these management prob-
lems, computing systems should be able to manage them-
selves. In this paper, we propose a modular framework
for the autonomic management of virtualization-based en-
vironments. This framework is virtualization-technology in-
dependent and permits plugging in various controller ap-
proaches.

1. Introduction

System virtualization is a technique first developed in the
mid 1960’s. It consists of an indirection layer that is in-
troduced between the hardware and the operating system,
called virtual machine monitor (VMM) or hypervisor. The
VMM partitions the hardware in logical units, called virtual
machines (VMs). Inside a VM, a so-called guest operating
system is running. The VMM controls and synchronizes
the access of guest OSs to hardware resources. As such, it
is possible to run multiple, possibly different OSs in parallel
on the same hardware. Although a flourishing technology
in the 1970’s, the 1980’s and 1990’s brought a drop in hard-
ware prices which meant that it was affordable to run one
application per computing system, and thus virtualization
was slowly forgotten [10]. Over the past years howvever,
virtualization has emerged again, nowadays being used on
both server (e.g. VMware ESX [19], Xen [23]) and desk-
top systems (e.g. VMWare Workstation [20], Virtual Box
[18]). The new paradigm states: one application per virtual
machine, several virtual machines per computing system.

The adoption of virtualization in the data center is tak-

ing place at a high pace. The possibility of consolidating
a bundle of under-utilized server boxes into one server sys-
tem is certainly one of the reasons. Besides server consol-
idation, it is the way maintenance and system management
are simplified that makes this technology attractive for sys-
tem administrators. However, virtualization does not reduce
the complexity of a system. In fact, having multiple virtual
machines running on top of several physical machines actu-
ally increases the overall system complexity. This matches
the theory of the ever increasing complexity of computing
systems, which will finally lead to systems which cannot
be managed by human experts (system administrators) any
more. However, such systems exist in the nature since mil-
lions of years. In [6], the authors proposed the human auto-
nomic nervous system (ANS) as an inspiration source. The
ANS manages low-level, yet vital body functions like heart
rate or body temperature without conscious control. Simi-
larly, computing systems should be able to manage them-
selves, based on some high-level goals defined by a hu-
man system administrator. The field of reseach that deals
with this kind of systems is called autonomic computing,
the essence of which is self-management. According to [6],
there are four aspects of self-management:

• self-configuration, the capability of computing sys-
tems to install and configure themselves

• self-optimization, the property of computing systems
to continuously seek to improve their operation

• self-healing, the property of computing systems to de-
tect, diagnose and repair local problems

• self-protection, the property of computing systems to
defend themselves in the face of a malicious attack or
cascading failures

For the purpose of this paper, we will mainly focus
on the self-optimization aspect for the management of

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 77

virtualization-based environments, assuming that quality-
of-service levels of the services, provided by the VMs, have
to be fulfilled [3].

Virtualization-based environments are a great area of
application for autonomic computing. On one hand, the
increased complexity caused by the use of virtualization
makes autonomic computing a necessity in large data cen-
ters. On the other hand, most of the server virtualization
technologies that currently exist provide management fea-
tures like the allocation of resources (memory, CPU shares
and others) at run-time and live migration of virtual ma-
chines [2]. These features are great control knobs (actua-
tors) that can be used for system self-optimization. Also
monitoring and debugging capabilities are enhanced by the
introduction of an indirection layer between the operating
system and the hardware. What is missing is an intelligent
controller that can take decisions based on the data gath-
ered through monitoring resulting in dynamically allocated
resources through the previously mentioned actuators. This
paper deals with aspects related to the development of such
an intelligent controller.

2. Related work and limitations

Various publications deal with the autonomic manage-
ment of virtual environments. Policy-based approaches
have been a popular way to manage computing systems, and
virtualization-based systems are no exception. In [12], the
authors present a system called VIOLION, which uses the
Xen hypervisor for virtualization. The system comprises
one monitor daemon per physical machine and one adapta-
tion manager. The adaptation manager uses the data gath-
ered by the monitor daemon to dictate virtual machine re-
source allocation. Another policy-based approach has been
published by Grit et al. [4]. Here, the authors use and extend
Shirako, a Java-based toolkit for resource leasing services,
to explore algorithmic challenges when using policies for
the adaptive hosting of virtual machines on computer clus-
ters.

Control theory has also been used to autonomically man-
age virtual environments. Zhang et al. [24] present a
control-theoretic model for VM adaptation, based on the
idea that the VMs are responsible for adjusting their demand
for resources, with respect to efficiency and fairness. In [9],
the authors use a feedback-control strategy to address dy-
namic resource allocation problems. The approach uses an
infrastructure based on Xen, RUBiS [11] and TPC-W [16].
Time series analysis can be used to forecast the behaviour
of a virtualization-based system. Bobroff et al. [1] present a
mechanism for the dynamic migration of virtual machines
based on the forecasted load. Menascè et al. [8] use an ap-
proach based on utility functions [21] for the dynamic CPU
allocation to virtual machines. The authors test their ap-

proach by means of simulations, using historical data.
These publications represent the first steps taken by the

research community to develop various strategies for an in-
telligent controller based on different control paradigms.
It is however hard to objectively evaluate these strategies.
The various publications use different architectures, per-
form different tests and some even only use historical data
and simulation to test how their strategies perform. In this
context, it is impossible to say that one approach performs
better than another, or that some approach is more adequate
in a specific situation than the other approaches. The main
reason for this is that automated management of VM en-
vironments is not mature yet but still in its infancy. We
argue that the only way to solve this problem is to design
a common framework for the development and evaluation
of autonomic computing strategies for virtualization-based
distributed environments.

3. Architecture of the framework

A framework for developing and evaluating autonomic
computing strategies for virtualization-based distributed en-
vironments must fulfill the following requirements:

1. Support for service level management

2. Separation of control algorithms from the management
framework

3. Support for different virtualization technologies

4. Support for a common evaluation mechanism

5. Scalability

(1) means that the framework should provide support
for managing services hosted in virtual machines. This in-
volves monitoring various QoS parameters and making sure
that these parameters conform to a certain Service Level
Objective (SLO).

(2) basically assures that the management framework is
responsible for dealing with aspects like monitoring and ex-
ecution of tasks, while a separate intelligent controller de-
fines management tasks based on gathered monitoring data.
As such, a framework should support different types of in-
telligent controllers by providing a generic controller inter-
face.

(3) requires the framework to support different virtu-
alization technologies (e.g. VMware ESX or Xen), trans-
parently for the controller. Thus, from a controller’s per-
spective, the framework is acting as an abstraction layer on
top of the virtualization technology. Generic interfaces for
monitoring and task execution should simplify plugging in
adapters for various virtualization technologies.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 78

Cluster of physical machines

VM Manager

VM

SL
Monitor

VM
Monitor

VM
Logic

Actuator

SLAs

VM

SL
Monitor

VM
Monitor

VM
Logic

Actuator

SLAs

VM Manager VM Manager

Actuator

Monitor

Cluster
Logic

VM

SL
Monitor

VM
Monitor

VM
Logic

Actuator

VM Manager

SLAs

VM

SL
Monitor

VM
Monitor

VM
Logic

Actuator

SLAs
Actuator Monitor

Physical Manager

VMM

ActuatorMonitor

Physical Manager

VMM

Cluster Manager

1 ������������ 1 ������������

1 ������������
- Service

requests/alarms requests/alarms

Figure 1. The architecture of the framework

(4) means that the framework has to support a consistent
mechanism for tracing and comparing management deci-
sions. Only this way different self-management approaches
can be evaluated against each other.

(5) states that the framework should be scalable with re-
spect to the number of physical and virtual machines that it
can manage. New physical or virtual machines dynamically
added to the cluster must be recognized by the framework.

Figure 1 depicts the design of our framework with re-
spect to the requirements discussed above. The framework
is used to manage a cluster of n physical machines, each
hosting a number between 0 and m virtual machines. Each
virtual machine has a VM Manager, each physical machine
has a Physical Manager and the entire cluster is managed
by one Cluster Manager.

The Physical Manager is the simplest component of the
framework. It’s job is to monitor the resource utilization
of the physical machine through its Monitor module. Be-
sides monitoring, the Physical Manager also executes com-
mands coming from the Cluster Manager through its Actu-
ator module. Both the Monitor and the Actuator modules
monitor respectively control the physical machine through
the VMM.

The VM Manager monitors parameters like CPU utiliza-
tion and available memory with respect to the virtual ma-
chine through the VM Monitor module. It also monitors
the service/application running inside the virtual machine
through the SL Monitor module. We assume that each vir-
tual machine hosts only one service, e.g. a web server, a

mail server or a database; we argue that this is common
practice in a server consolidation scenario. The two moni-
tors feed the gathered data to the VM Logic module, which
uses this data to determine whether the service is running
at the required parameters. If this is not the case, the VM
Logic tries to determine which of the VM’s resource is the
bottleneck (i.e. memory, CPU, etc.). When such a bottle-
neck is determined, the VM Manager uses the VM Actua-
tor module to request a larger amount of the resource that
causes the bottleneck from the Cluster Manager (i.e. request
more memory, a larger CPU share etc.).

The Cluster Manager has a global view of both avail-
able and allocated resources, generated using the data gath-
ered from the Physical Managers. The Cluster Logic mod-
ule uses this global view to determine how requests from
the VM Manager can be fulfilled. Thus, the Cluster Logic
module is actually what we previously referred to as the
intelligent controller. After a decision has been taken, the
Cluster Manager dictates commands to the Physical Man-
ager(s) through its Actuator module.

It can be easily observed that this framework fulfills the
previously defined requirements. First, the way that the
VM Manager is designed specifically addresses the service
running in the “managed” virtual machine. Various Clus-
ter Logic components that use different self-management
strategies can be easily plugged into the framework. Fur-
thermore, different virtualization technologies can be ad-
dressed by simply developing the necessary adapters for
each virtualization technology. It is possible to use stan-

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 79

VM Manager

Physical Machine

TPC-W
Load Generator

Physical
Manager

Virtual
Machine

TPC-W
Web App

Tomcat

Physical Machine

Physical
Manager

VM Manager

Physical Machine

Figure 2. The testbed

dard benchmarking tools to generate load for the services
running inside the virtual machines and then use the VM
Monitor component to evaluate how these services are per-
forming. This way, different intelligent controllers can be
evaluated with respect to how the services are performing
under various loads. Last, adding new physical and virtual
machines to the cluster can be done by simply registering
with the cluster manager.

4. Implementation

We have implemented a prototype of the framework in
Java using Xen as the virtualization technology. Our proto-
type implementation is based on the Self Manager Core that
has been developed in the Distributed Systems Lab of Wies-
baden University of Applied Sciences [15, 14]. The VM
Manager uses JMX [5] to monitor the parameters of a Xen-
based virtual machine (the VM Monitor component) and the
response times of an Apache Tomcat server running inside
the virtual machine (the SL Monitor component). The VM
Logic is implemented as an expert system and uses the data
from the SL Monitor and the VM Monitor to feed Jess [13],
a rule engine. The rule engine matches the data against a
rule set. We have developed a basic set of rules, which is
used by Jess to determine the bottlenecked resource when
the response times of the service are higher than a given
threshold. For the Physical Manager, an adapter has been

implemented that uses the Xen-API [22] to manage Xen-
based physical machines. This involves both monitoring
and dynamically allocating resources. Both the VM Man-
ager and the Physical Manager communicate with the Clus-
ter Manager using Java RMI. The Cluster Manager provides
support for plugging-in different Cluster Logic components
through a messaging interface. More implementation de-
tails can be found in [7].

We have tested the framework in a lab environment us-
ing a Java implementation of the TPC-W benchmarking
standard [17]. This testbed can be observed in Figure 2.
The TPC-W e-commerce application suite is hosted inside a
Tomcat server running on top of a virtual machine managed
by the VM Manager. Two physical machines are managed
by two different Physical Managers, with one of them host-
ing the virtual machine. The two Physical Managers, the
VM Manager and the Cluster Manager are hosted on a third
physical machine, which also hosts the TPC-W load gener-
ator. This machine is not part of the “under-management”
cluster. When the TPC-W load generator is started, the
VM Manager is able to observe a dramatic increase in the
response times of the Tomcat service and determines the
memory as being the bottleneck. After more memory is
given, the response times of the Tomcat service decrease up
to an acceptable level. This behaviour is shown in Figure
3 and proves that the VM Manager is able to successfully
determine the resource causing the bottleneck. Distributed

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 80

���������	
�	���
�	���
����
�	
�	������	����
���	����

�

��������

��������

��������

��������

���������

���������

�	�
�	�

�

�	�
�	�

�

�	�
�	�

�

�	�
�	�

�

�	�
�	�

�

�	�
�	�

�

�	�
�	�

�

�	�
�	�

�

�	�
�	�

�

�	�

	�

�

�	�

	�

�

����	���

��
��

�

�

���

�

���

�

���

��
�

	�
�

��
��

�� ���������
������

���������
����

������������
��!�#��$�����
��$�#�

Figure 3. Influence of available memory on SLO violations

tests including migrating a VM on a secong physical ma-
chine when necessary are currently underway.

5. Conclusion and outlook

In this paper, we have argued that virtualization-based
environments are an important application area for auto-
nomic computing, but still in its infancy at the moment. Fur-
thermore, it is hard to objectively evaluate the currently pub-
lished autonomic computing approaches for virtualization-
based environments. The main contribution of this paper
is the design of a framework for developing and evaluat-
ing autonomic computing strategies for virtualization-based
environments. Using this framework, different controller
strategies can be easily developed, plugged-in and evalu-
ated against each other. Our framework is not virtualization
technology-bound, instead adapters for various virtualiza-
tion technologies can be easily developed and plugged into
the framework.

We are currently working on different approaches for an
intelligent controller. We have discovered that our resource
allocation problem belongs to the family of knapsack prob-
lems. Knapsack problems are known to be NP-hard. This
means that we are dealing with an NP-hard optimization
problem. This is an important discovery, since it is com-
monly believed that, for NP-hard optimization problems, no
algorithm exists that finds an optimal solution in polynomial
time. As such, for our resource allocation problem, we can

either use heuristics or approximation algorithms. While
for the moment we are working on two different heuristic-
based algorithms, in the future we plan to design an intel-
ligent controller that uses an approximation algorithm and
thus has a guaranteed performance ratio. Details about the
design and evaluation of these controllers as a Cluster Logic
component in our framework will be made available in a fu-
ture publication.

References

[1] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of
virtual machines for managing sla violations. In Integrated
Network Management, 2007. IM ’07. 10th IFIP/IEEE Inter-
national Symposium on, pages 119–128, 2007.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. In Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI), pages 273–286, Boston, MA, May 2005.

[3] M. Debusmann, M. Schmid, and R. Kroeger. Model-Driven
Self-Management of Legacy Applications. In L. Kutvonen
and N. Alonistioti, editors, 5th IFIP International Confer-
ence on Distributed Applications and Interoperable Systems
(DAIS 2005), Athens, Greece, June 2005, pages 56–67. IFIP,
Springer, June 2005.

[4] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. Virtual
machine hosting for networked clusters: Building the foun-
dations for autonomic orchestration.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 81

[5] Java Management Extensions. http://java.sun.
com/javase/technologies/core/mntr-mgmt/
javamanagement/ Last visited 11.12.2007.

[6] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36:41–50, 2003.

[7] D. Marinescu. Design and evaluation of self-management
approaches for virtual machine-based environments. Mas-
ter’s thesis, Wiesbaden University of Applied Sciences,
DCSM, February 2008.

[8] D. A. Menasce and M. N. Bennani. Autonomic virtualized
environments. In ICAS ’06: Proceedings of the Interna-
tional Conference on Autonomic and Autonomous Systems,
page 28, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[9] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-
hal, A. Merchant, and K. Salem. Adaptive control of virtu-
alized resources in utility computing environments. In Eu-
roSys ’07: Proceedings of the 2007 conference on EuroSys,
pages 289–302, New York, NY, USA, 2007. ACM Press.

[10] M. Rosenblum and T. Garfinkel. Virtual machine monitors:
current technology and future trends. Computer, 38(5):39–
47, 2005.

[11] RUBiS. http://rubis.objectweb.org/ Last vis-
ited 11.12.2007.

[12] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen. Auto-
nomic live adaptation of virtual computational environments
in a multi-domain infrastructure. In Autonomic Computing,
2006. ICAC ’06. IEEE International Conference on, pages
5–14, 2006.

[13] Sandia National Laboratories. http://herzberg.ca.sandia.gov/
(Last visited 31.01.2008).

[14] M. Schmid. Ein Ansatz fuer das Service Level Management
in dynamischen Architekturen. In T. Braun, G. Carle, and
B. Stiller, editors, KiVS 2007 - Kommunikation in Verteil-
ten Systemen - Industriebeitraege, Kurzbeitraege und Work-
shops, pages 255–266. VDE Verlag, March 2007.

[15] M. Schmid and K. Geihs. Self-Organisation in the Context
of QoS Management in Service Oriented Architectures. In
K. Boudaoud, N. Nobelis, and T. Nebe, editors, Proceedings
of the 13th Annual Workshop of HP OpenView University
Association, Hosted by University of Nice at Cote d’Azur
May 21 - 24, 2006, pages 153–164, Stuttgart, May 2006.
Infonomics-Consulting.

[16] TPC-W. http://www.tpc.org/tpcw/ Last visited
11.12.2007.

[17] TPC-W Java Implementation. http://www.ece.
wisc.edu/∼pharm/tpcw.shtml Last visited
11.12.2007.

[18] Virtual Box. http://www.virtualbox.org/ Last
visited 11.12.2007.

[19] VMware ESX. http://www.vmware.com/
products/vi/esx/ Last visited 11.12.2007.

[20] VMware Workstation. http://www.vmware.com/
products/ws/ Last visited 11.12.2007.

[21] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility
functions in autonomic systems. In Autonomic Computing,
2004. Proceedings. International Conference on, pages 70–
77, 2004.

[22] The Xen API. http://wiki.xensource.com/
xenwiki/XenApi Last visited 11.12.2007.

[23] Xen Source. http://www.xensource.com/ Last vis-
ited 11.12.2007.

[24] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, and R. West.
Friendly virtual machines: leveraging a feedback-control
model for application adaptation. In VEE ’05: Proceedings
of the 1st ACM/USENIX international conference on Virtual
execution environments, pages 2–12, New York, NY, USA,
2005. ACM Press.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 82

Fault and Intrusion Tolerance
on the Basis of Virtual Machines ∗

Hans P. Reiser
LaSIGE

Universidade de Lisboa
Portugal

hans@di.fc.ul.pt

Rüdiger Kapitza
Informatik 4

University of Erlangen-Nürnberg
Germany

rrkapitz@cs.fau.de

Abstract

Fault and intrusion tolerance is an important paradigm for building
distributed systems that work in spite of accidental and malicious
faults. This paper discusses how to harness virtualization technol-
ogy for building such dependable systems. We show that virtual-
ization promotes a hybrid fault model that allows tolerating mali-
cious intrusions in application domains with little overhead. The
proposed architecture features mechanisms for supporting hetero-
geneity of the replicas. A hypervisor-based replication controller
achieves perpetual operation through periodic proactive recovery
of the replicas. Re-mapping of state storage between virtual ma-
chines speeds up the state transfer of a stateful replicated service.
Our VM-FIT prototype implements the core functionality of such
a virtualization-based replication architecture. We present some
performance measurements and close with a discussion of future
research directions.

1 Introduction

The ability to operate correctly in spite of the occurrence of acci-
dental and malicious faults is becoming an important requirement
of distributed applications. Intrusion tolerance [24] has become
popular as a paradigm for building systems that function correctly
in spite of intrusions. This paper discusses the use of virtualiza-
tion technology for the construction of fault and intrusion tolerant
systems.

Virtualization is an old technology that was introduced by IBM in
the 1960s [12]. Systems such as Xen [4] made this technology pop-
ular on standard PC hardware. Virtualization enables the execution
of multiple operating system instances simultaneously in isolated
environments on a single physical machine. While mostly being
used for issues related to resource management, virtualization can
also be used for constructing fault-tolerant systems. The aim of this
paper is to investigate to what extent modern virtualization tech-
nologies, such as the Xen hypervisor, can be used for constructing
dependable systems. We identify the following four main issues:

∗This work was partially supported by the EC through project IST-2004-27513
(CRUTIAL) and the Large-Scale Informatic Systems Laboratory (LaSIGE).

1. Virtualization technology provides isolation between applica-
tion domains, the hypervisor, and a privileged system domain.
This separation allows adopting a hybrid fault model that sup-
ports malicious intrusions within application domains (includ-
ing the operating system and middleware infrastructure) and a
crash-stop model in the isolated system domain.

2. Any virtualization technology provides core mechanisms for
the creation and destruction of domains. These mechanisms
can be harnessed for designing efficient proactive recovery
mechanisms. A timely periodic recovery can be triggered by
a recovery service in the isolated system domain. Creating a
new domain in parallel to the execution of the other applica-
tions permits a reduction of the downtime during recovery to
a minimum.

3. Virtualization technology simplifies the introduction of diver-
sity, as the replication logic (in a isolated system domain) can
have full control over what operating system and service vari-
ant to execute in the application domains.

4. Virtualization can also be applied to disk storage managed by
the hypervisor. Virtualized persistent state storage can be used
for efficiently re-mapping the state from one application do-
main to another, and thus allows the implementation of low-
cost state transfer strategies.

In the following section, we individually discuss these four aspects
of virtualization-based fault and intrusion tolerance. Several of
them have been implemented as part of our VM-FIT prototype,
which we describe and evaluate in Section 3. Section 4 gives a
brief overview of related work, and finally Section 5 concludes.

2 Virtualization-based Fault and Intrusion Toler-
ance

2.1 Hybrid Fault Model

One key mechanism of virtualization infrastructures such as the
Xen hypervisor is the provision of separation between domains. In
the ideal case, the hypervisor and a protected control domain are
fully isolated from one or more application domains that execute

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 83

services. In a hypervisor-based replication architecture, applica-
tion replicas are placed in isolated application domains, while the
replication logic resides in a separated system domain.

Virtualization-based replication allows using a hybrid fault model
that assumes Byzantine failures within application domains and
crash-stop failures within the hypervisor and the system domain
that contains the replication logic. In this model, the replication
controller can use majority voting to detect invalid results from
replicas. It is possible to tolerate up to f Byzantine faults using
a total number of only n = 2f + 1 replicas.

This number is less than the requirements of traditional intrusion-
tolerant replication systems, which typically need n = 3f +1 repli-
cas [8]. A reduction in the number of required replicas strongly
simplifies the provision of independent, heterogeneous implemen-
tation versions.

Our VM-FIT architecture [18,19] is a generic infrastructure for the
replication of network-based services on the basis of the Xen hy-
pervisor. VM-FIT uses the hypervisor technology to provide com-
munication and replication logic in a privileged domain, while the
actual service replicas are executed in isolated guest domains.

In the RESH (Redundant Execution on a Single Host) variant, VM-
FIT allows the redundant execution of a service on a single physical
host. In this variant, multiple application domains are used to de-
ploy replicas on a single host. This approach allows the toleration
of non-benign random faults in the replicas,such as undetected bit
errors in memory, as well as the toleration of software faults by
using N-version programming. The REMH (Redundant Execution
on Multiple Hosts) supports replication on multiple machines using
the same core architecture. The main difference to RESH is the in-
tegration of group communication facilities in the replication logic.
This variant allows tolerating full crashes of some of the replica
hosts, instead of tolerating faults only within a virtual domain.

2.2 Proactive Recovery

Traditional intrusion-tolerant systems [7,8,15] typically use Byzan-
tine fault tolerant replication algorithms, which are able to tolerate
a finite number of f faults in group of n replicas. However, these
systems face the problem that, given sufficient time, an adversary
might be able to compromise more than f replicas. Proactive re-
covery [9, 16] has been proposed as a solution to overcome this
limitation of intrusion-tolerant systems. The core idea is to period-
ically recover all replicas by reinitializing them from a secure base.
For example, a tamper-proof external hardware might be used for
rebooting the node from a secure code image. This approach re-
moves potential intrusions; as a result, the number of replica fail-
ures that the system can tolerate is limited only within a single re-
covery round, but is unlimited over the system lifetime.

Under the assumption of malicious faults, it is not possible to trig-
ger the recovery within service replicas, as an intruder can inhibit
the recovery of the replica. A classic approach is using dedicated
hardware that resets and reinitialises a replica periodically. Using
virtualization, the replication logic in a separated, intrusion-free
domain can be used as a trusted entity that is able to completely
re-initialise the replica domains, without requiring dedicated hard-
ware. The recovery operation initializes the complete replica (in-

cluding operating systems, middleware, and service instance) with
at “clean” state, securely obtaining the service state from other
replicas with a fault-tolerant state transfer protocol.

Proactive recovery, however, may reduce availability, as the recov-
ery of a replica reduces the number of available replicas (see also
Sousa et al. [21]). This disadvantage can be compensated by in-
creasing the number of replicas, but this not only increases hard-
ware costs and run-time costs, but also makes it more difficult to
maintain diversity of the replica implementations. A different ap-
proach is to try to minimize the time needed for recovery.

Virtualization technology can help building efficient proactive re-
covery infrastructures [18]. The hypervisor can be used to shut
down and restart a replica running in a virtual machine. In addi-
tion, the new replica instance can be started using an additional
virtual machine in parallel to the execution of the old replica. This
allows a substantial reduction of downtime during recovery, as the
boot process does not affect replica availability. After initialisation
of the new replica, the replication coordinator can shut down the
old replica and trigger the activation of the new one. This approach
has some impact on service performance, as the local resources
(such as CPU and memory) have to be shared between the replica
domains. But on the other hand it minimises the time of complete
replica unavailability to the time necessary for the coordinated state
transition form the old replica instance to the new one.

2.3 Diversity

Diversity of replicas is essential in intrusion tolerant systems in or-
der to avoid that an adversary can exploit the same vulnerability
multiple times within a short time interval. A virtualization-based
recovery mechanisms provides an ideal basis for introducing diver-
sity both in space and in time.

A hypervisor-based replication architecture allows a transparent
interception of the client–service interaction, independent of the
guest operating system, middleware, and service implementation.
As long as the assumption of deterministic behaviour is not vio-
lated, the service replicas may be completely heterogeneous, with
different operating systems, middleware, and service implementa-
tions.

On the one hand, this independence simplifies the use of heteroge-
neous versions in the application domains. There is no need to in-
tegrate the replication logic in each replica variant. Instead, a com-
mon replication mechanisms is implemented in the protected do-
main. The replica implementations still have to provide some pre-
requisites for replication, such as having deterministic behaviour
and supporting transformation of version-specific state representa-
tion in a common abstract state format.

On the other hand, hypervisor-based recovery can be used to pro-
vide diversity in time. For example, the operating system can be
changed in the new version, or internal configurations can be mod-
ified on each recovery reboot. Address space randomization is an-
other popular technique for obtaining diversity.

The provision of multiple deterministic versions of complex ap-
plications is not a trivial case. In the FOREVER project [1],
we plan to further investigate the introduction of diversity with a
virtualization-based recovery service.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 84

2.4 State Transfer

In a stateless replication system, the transition from an old to a new
replica version is almost instantaneous. In a stateful system, after
creating a new instance of operating system, middleware, and ser-
vice, the new replica needs to be initialized with the service state,
which requires a state transfer. The state transfer increases the time
that a replica is unavailable during proactive recovery, as request
execution has to be stopped during the creation of a state check-
point. Furthermore, the state transfer also affects service operation
by consuming network and CPU resources.

Virtualization technology can be used to enhance the state transfer
to the new replica. During a proactive recovery operation, having
both old and new replica running in parallel on a single machine
enables a simple and fast state copy in the case that the old replica
is not faulty; this fact can be verified by taking a distributed check-
point on the replicas and verifying the validity of the local state
using checksums. Only in the case of an invalid state, a more ex-
pensive remote state transfer is necessary.

State transfer must also cope with heterogeneity between replicas.
Heterogeneity is introduced by diversity. The transformation of
state into local replica-specific representations needs some support
from replica implementations. The generic state transfer mecha-
nisms must provide means to adapt the state accordingly, by inter-
acting with this application-level adaptation functionality. We are
currently investigating how the disk virtualization mechanisms of
the Xen hypervisor can be exploited in order to optimize the state
transfer on the basis of disk snapshots and disk remapping.

3 VM-FIT Prototype

The VM-FIT prototype [18, 19] supports hypervisor-based replica-
tion of network-based services. A replication controller in a privi-
leged domain intercepts client interaction with a replicated service,
handles communication with replicas and voting on replies, and
provides support for proactive recovery.

3.1 Architectural Overview

The VM-FIT prototype implements the basic system architecture
shown in Figure 1. Service replicas are executed in isolated do-
mains (Dom. Guest). The network interaction from client to the
service is handled by the replication manager in the system domain
(Dom. 0). The manager intercepts the client connection and dis-
tributes all requests to the replica group using the Spread group
communication system [2]. Each replica processes the client re-
quests and sends a reply to the node that accepted the client con-
nection. At this point, the replication manager selects the correct
reply for the client using majority voting.

The replication logic provides mechanisms for instantiating and ini-
tialising service replicas. For each replica variant, a disk image of
a Xen virtual machine with a preconfigured operating system and
middleware environment has to be provided. After domain initial-
isation, a state transfer from other replicas to the new domain is
triggered. In our prototype, we assume that a secure code basis for

Figure 1. VM-FIT basic replication architecture

the replica is available locally, and only the data state is required
to initialise the replica. We assume that the replication logic can
request an application-controlled serialisation of the state in an ab-
stract format.

The replication logic also offers support for proactive recovery. Un-
like other approaches, the hypervisor-based approach permits the
initialisation of the rejuvenated replica instance concurrent to the
execution of the old instance. The hypervisor is able to instantiate
a second Domain Guest on the same hosts. After initialisation, the
replication coordinator can shut down the old replica and trigger
the activation of the new one.

The state of the rejuvenated replica needs to be initialised on the
basis of a consistent checkpoint of all replicas. As replicas may be
subject to Byzantine faults and thus have an invalid state, the state
transfer has to be based on an majority agreement of all replicas.
The VM-FIT architecture uses the local state of the old replica ver-
sion on the same host. This state is transferred locally to the new
replica, combined with a verification of its validity on the basis of
checksums obtained from other replicas. Only if the local state is
invalid, a remote state transfer becomes necessary.

The checkpointing and state transfer are time-consuming opera-
tions. Furthermore, their duration depends on the state size. During
the checkpoint operation, a service is not accessible by clients; oth-
erwise, concurrent state-modifying operations might cause an in-
consistent checkpoint. Consequently, there is a trade-off between
service availability and safety gained by proactive recovery given
by the recovery frequency of replicas. To reduce the unavailability
of a service, while still providing the benefits offered by proactive
recovery, more than one replica could be recovered at a time. How-
ever, in previous systems with dedicated hardware for triggering
recovery, the number of replicas recovering in parallel is limited by
the fault assumption, as every recovering replica reduces the num-
ber of available nodes in a group and, consequently, the number of
tolerable faults.

The VM-FIT architecture is able to offer a parallel recovery of
all replicas simultaneously. If service replicas have to be recov-
ered, every node receives a checkpoint message and determines the
replica state. The replication logic receives this state and prepares a

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 85

shadow replica domain. This domain will later be used replace the
existing local replica instance and is initialised by the state transfer
operation. This approach reduces the downtime due to checkpoint-
ing to one checkpoint every recovery period.

3.2 Experimental Results

The current VM-FIT prototype uses the Xen 3.0.3 hypervisor and
Linux kernel 2.6.18 both for Domain 0 and for the replica domains.
In the following, we describe a few experiments that evaluate the
basic proactive recovery scheme, which have first been published
in [18]. The experiments examine the behaviour of the VM-FIT
proactive recovery architecture for replicating a service on a mod-
ern server machine (Sun X4200 server with two dual-core Opteron
CPUs at 2.4 GHz and 1 GBit/s switched Ethernet).

In the experiments, a single client on a separate machine sends re-
quests via a LAN network to the service host, which runs 3 replicas
of the same network-based service. The replicated service has a
very simple functionality: on each client request, it returns a local
request counter. It is a simple example of stateful service, which re-
quires a state transfer upon recovery (i.e., the initialization of a new
replica with the current counter value). As a performance metric,
we measure the number of client requests per second, obtained by
counting the number successful requests in 250ms intervals at the
client side; in addition we analyse the maximum round-trip time as
an indicator for the duration of temporary service unavailability.

We study four different configurations. The first configuration does
not use proactive recovery at all. The second configuration im-
plements a “traditional” recovery strategy; every 100s, a replica,
selected via a round-robin strategy, is shut down and restarted. A
distributed checkpoint of the application state is made before shut-
ting down a replica. This checkpoint ensures that the system can
initialize a replica with a correct state (validated by at least f + 1
replicas), even if a replica failure occurs concurrent to a recovery
operation. The third configuration uses the virtual recovery scheme
proposed in this paper: it first creates a new replica instance in a
new virtual machine, and then replaces the old instance in the group
with the new one. The last configuration uses the same basic idea,
but restarts all replicas simultaneously.

The recovery frequency (one recovery each 100s) was selected em-
pirically such that each recovery easily completes within this inter-
val. Typically, a full restart of a replica virtual machine takes less
than 50s on the slow machines, and less than 20s on the fast ma-
chines. In configuration 4, the recovery of all replicas is started ev-
ery 300s. This way, the frequency of recoveries per replica remains
the same (instead of recovering one out of three replicas every 100s,
all replicas are recovered every 300s).

Furthermore, the measurements include the simulation of malicious
replicas. Malicious replicas stop sending replies to the VM-FIT
replication manager (but continue accepting them on the network),
and furthermore perform mathematical computations that cause
high CPU load, in order to maximize the potential negative im-
pact on other virtual machines on the same host. Malicious failures
occur at time ti = 600s + i ∗ 400s, i = 0, 1, 2, . . . at node i mod 3.
This implies that the frequency of failures (1/400s) is lower than
that of complete recovery cycles (1/300s), consistent with the as-
sumptions we make.

100s..

400s

650s..

950s

1050s..

1350s

600s..

1800s

A 4547 4479 0 (-)

B 4502 3879 3726 3702

C 4086 4046 4112 4067

D 4169 3992 3960 3992

variant

time max.

RTT

45s

1s

<250ms

8

Table 1. Average performance (requests/s) and
worst-case RTT observed at the client on a multi-
CPU machine

The measurement in Figure 2 shows that, without proactive recov-
ery, there is no significant performance degradation after the first
replica fault. Due to the availability of multiple CPUs, each replica
can use a different CPU, and thus the faulty replica has (almost) no
negative impact on the other replicas. After the second replica fail-
ure, the service becomes unavailable. In variant (B), periodic recov-
ery works well in the absence of failures (t < 600s). The recover-
ing replica disconnects from the replica group, and thus the replica
manager has to forward requests only to the remaining nodes, re-
sulting again in a speed-up during recovery. A faulty node in paral-
lel to a replica recovery, however, causes periods of unavailability
(see markers on X-axis). In variant (C), there is no noticeable ser-
vice degradation during replica recovery. The only visible impact
are two short service interruptions, which occur at the beginning of
the creation of a new virtual machine and at the moment of state
transfer and transition from old to new replica. These interruptions
typically show system unavailability during a single 250ms mea-
surement interval only. Similar observations also hold for variant
(D).

Table 1 shows the average system performance in an interval
without failures (t = 100s . . . 400s), after the first failure (t =
650s . . . 400s), after the second failure (t = 1050s . . . 1350s) and
in a large interval with failures (t = 600s . . . 1800s). It can be ob-
served that the first recovery strategy (B) has almost no influence on
system throughput; variants (C) and (D) reduce the performance of
the service by 10% and 8%, respectively, during the period without
faults. With faulty replicas, the average throughput drops signif-
icantly in variant (B) due to the temporary service unavailability,
while it remains almost constant in the case of (C) and (D).

3.3 Discussion

The measurements demonstrate that the VM-FIT proactive recov-
ery schemes (C and D) are superior to the simple one (B). While
there is not much difference in the average throughput, the simple
scheme causes long periods of unavailability, which is undesirable
in practice. The unavailability could be compensated by increasing
the number of replicas. In practice, this would make implementa-
tion diversity more difficult (more different versions are needed).
Furthermore, in a virtual replication scenario on a single physical
host, adding another replica on that host would reduce the system
performance.

The experiments only considered replication a single physical ma-
chine. The same proactive recovery mechanisms can also be used
in VM-FIT for replication on multiple physical hosts. In this case,

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 86

(A) No recovery

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
h

r
o

u
g

h
p

u
t

[r
e

q
/s

]

(B) Simple Recovery

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

(C) VM-FIT Recovery RR

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [s]

T
h

r
o

u
g

h
p

u
t

[r
e
q

/s
]

(D) VM-FIT Recovery All

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [s]

Figure 2. Throughput measurements on multi-CPU machine

client requests are distributed to all nodes using totally ordered
group communication. The request distribution is the same for all
variants of proactive recovery and thus will not have much impact
on the relative performance. The main difference will be that there
is no impact of a recovering node on the other replicas.

In the prototype, no attempts towards formal verification of the
trusted component have been made. Indeed, the same operating
system, an off-the-shelf Linux distribution, is used for Domain 0
and Domain Guest. As a consequence, vulnerabilities at the operat-
ing system level are currently present in both domains. We expect,
however, that this is only a limitation of the early prototype. In fu-
ture work we plan to use a hardened Linux system as Domain 0, or
even use a minimalistic operating system that might permit formal
verification.

4 Related Work

Virtualization has become popular on standard PC hardware by sys-
tems such as Xen [4] and VMware [22]. Virtualization enables the
execution of multiple operating system instances simultaneously in
isolated environments on a single physical machine. The L4Ka mi-
crokernel also offers virtualization functionality [13]. In addition,
significant efforts towards a formal verification of the L4 kernel
have been made by other researchers [23]. These results provide an
excellent basis for justifying a hybrid fault model that assumes an
intrusion-free hypervisor and system domain.

While mostly being used for issues related to resource manage-
ment, virtualization has previously been applied for constructing
fault-tolerant systems. Bressoud and Schneider [5] demonstrated
the use of virtualization for lock-stepped replication of an applica-
tion on multiple hosts.

Besides such direct replication support, virtualization can also help
to encapsulate and avoid faults. The separation of system com-
ponents in isolated virtual machines reduces the impact of faulty
components on the remaining system [14]. Furthermore, the sep-
aration simplifies formal verification of components [23]. In this
paper, we do not focus on these matters in detail. However, such
solutions provide important mechanisms that help to further justify
the assumptions that we make on the isolation and correctness of a
trusted entity.

Using virtualization is also popular for intrusion detection and anal-
ysis. Several systems transparently inspect a guest operating sys-
tem from the hypervisor level [10, 11]. Such approaches are not
within the scope of this paper, but they are ideally suited to com-
plement our approach. Intrusion detection and analysis can be used
to detect and analyse potential intrusions, and thus help to pinpoint
and eliminate flaws in systems that could be exploited by attackers.

Several authors have previously used proactive recovery in Byzan-
tine fault tolerant systems [3, 6, 9, 16]. It is a technique that pe-
riodically refreshes nodes in order to remove potential intrusions.
The BFT protocol of Castro and Liskov [9] periodically creates sta-
ble checkpoints. The authors recognize that the efficiency of state

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 87

transfer is essential in proactive recovery systems; they propose a
solution that creates a hierarchical partition of the state in order to
minimize the amount of data to transfer.

Sousa et al. [21] specifically discuss the problem of reduced sys-
tem availability during proactive recovery of replicas. The authors
define requirements on the number of replicas that avoid potential
periods of unavailability given maximum numbers of simultane-
ously faulty and recovering replicas. Our approach instead reduces
the unavailability problem during recovery by performing most of
the initialization of a recovering replica in parallel to normal system
operation using an additional virtual machine.

In a recent publication, Silva et al. [20] use an approach similar to
ours for software rejuvenation. The main difference is that these
authors focus on recovering from error situations caused by “soft-
ware ageing”.

Ramasamy and Schunter [17] use combinatorial modelling to anal-
yse how the use of virtualization can affect system dependability.
Such a careful analysis allows a better judgement on the conditions
that are necessary to make a system such as VM-FIT more reliable
than non-replicated one.

5 Summary

This paper discussed the benefits that virtualization offers for con-
structing fault-tolerant systems. The most important benefits of
such an approach are the use of a hybrid fault model that allows
tolerating malicious intrusions with a minimum number of replicas;
the support for heterogeneous replicated applications, middleware
and operating systems on top of a hypervisor-based replication in-
frastructure; the support for efficient proactive recovery operations;
and the potential for optimized checkpointing and state transfer us-
ing virtualization mechanism.

References

[1] FOREVER: Fault/intrusiOn REmoVal through Evolution & Recov-
ery; http://forever.di.fc.ul.pt/.

[2] Y. Amir, C. Nita-Rotaru, J. Stanton, and G. Tsudik. Secure spread:
An integrated architecture for secure group communication. IEEE
Trans. on Dependable and Secure Computing, 02(3):248–261, 2005.

[3] B. Barak, A. Herzberg, D. Naor, and E. Shai. The proactive security
toolkit and applications. In CCS ’99: Proc. of the 6th ACM confer-
ence on Computer and communications security, pages 18–27, New
York, NY, USA, 1999. ACM Press.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtu-
alization. In SOSP ’03: Proc. of the nineteenth ACM symposium on
Operating systems principles, pages 164–177, New York, NY, USA,
2003. ACM Press.

[5] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault toler-
ance. ACM Trans. Comput. Syst., 14(1):80–107, 1996.

[6] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asyn-
chronous verifiable secret sharing and proactive cryptosystems. In
CCS ’02: Proc. of the 9th ACM conference on Computer and commu-
nications security, pages 88–97, New York, NY, USA, 2002. ACM
Press.

[7] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on
the internet. In Intl. Conf. on Dependable Systems and Networks,
pages 167–176, 2002.

[8] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In
OSDI ’99: Proc. of the 3rd Symp. on Operating Systems Design and
Implementation, pages 173–186. USENIX Association, 1999.

[9] M. Castro and B. Liskov. Proactive recovery in a byzantine-fault-
tolerant system. In 4th Symp. on Operating Systems Design and Im-
plementation (OSDI), San Diego, USA, Oct. 2000.

[10] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
ReVirt: enabling intrusion analysis through virtual-machine logging
and replay. SIGOPS Oper. Syst. Rev., 36(SI):211–224, 2002.

[11] T. Garfinkel and M. Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In Proc. Network and Dis-
tributed Systems Security Symposium, February 2003.

[12] R. P. Goldberg. Architecture of virtual machines. In Proc. of the
workshop on virtual computer systems, pages 74–112, New York,
NY, USA, 1973. ACM Press.

[13] J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb, B. Leslie, and
G. Heiser. Pre-virtualization: soft layering for virtual machines.
Technical Report 2006-15, Fakultät für Informatik, Universität Karl-
sruhe (TH), July 2006.

[14] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified de-
vice driver reuse and improved system dependability via virtual ma-
chines. In Proc. of the 6th Symposium on Operating Systems Design
and Implementation, San Francisco, CA, Dec. 2004.

[15] D. Malkhi and M. Reiter. Byzantine quorum systems. In STOC
’97: Proc. of the twenty-ninth annual ACM symposium on Theory of
computing, pages 569–578, New York, NY, USA, 1997. ACM Press.

[16] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks
(extended abstract). In PODC ’91: Proc. of the tenth annual ACM
symposium on Principles of distributed computing, pages 51–59,
New York, NY, USA, 1991. ACM Press.

[17] H. V. Ramasamy and M. Schunter. Architecting dependable systems
using virtualization. In Workshop on Architecting Dependable Sys-
tems: Supplemental Volume of the 2007 International Conference on
Dependable Systems and Networks (DSN-2007).

[18] H. P. Reiser and R. Kapitza. Hypervisor-based efficient proactive re-
covery. In Proc. of the 26th IEEE Symposium on Reliable Distributed
Systems - SRDS’07 (Oct 10-12, 2007, Beijing, China), pages 83–92,
2007.

[19] H. P. Reiser and R. Kapitza. VM-FIT: supporting intrusion tolerance
with virtualisation technology. In Proceedings of the 1st Workshop
on Recent Advances on Intrusion-Tolerant Systems (in conjunction
with Eurosys 2007, Lisbon, Portugal, March 23, 2007), pages 18–
22, 2007.

[20] L. M. Silva, J. Alonso, P. Silva, J. Torres, and A. Andrzejak. Us-
ing virtualization to improve software rejuvenation. In Proc. of the
6th IEEE Int. Symp. on Network Computing and Applications (NCA
2007), volume 00, pages 33–44. IEEE Computer Society, 2007.

[21] P. Sousa, N. F. Neves, P. Verissimo, and W. H. Sanders. Proactive re-
silience revisited: The delicate balance between resisting intrusions
and remaining available. In SRDS ’06: Proc. of the 25th IEEE Sym-
posium on Reliable Distributed Systems (SRDS’06), pages 71–82,
Washington, DC, USA, 2006. IEEE Computer Society.

[22] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O de-
vices on VMware workstation’s hosted virtual machine monitor. In
Proc. of the General Track: 2002 USENIX Annual Technical Con-
ference, pages 1–14, Berkeley, CA, USA, 2001.

[23] H. Tuch, G. Klein, and G. Heiser. Os verification — now! In
M. Seltzer, editor, Proc. 10th Workshop on Hot Topics in Operating
Systems (HotOS X), 2005.

[24] P. E. Verı́ssimo, N. F. Neves, and M. P. Correia. Intrusion-tolerant
architectures: Concepts and design. In Architecting Dependable Sys-
tems, volume Volume 2677/2003, pages 3–36. Springer Berlin / Hei-
delberg, 2003.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 88

Server Virtualization - basic building block for Dynamic IT

Karsten Beins
Fujitsu-Siemens Computers GmbH
Karsten.beins@fujitsu-siemens.com

Abstract

Virtualization on storage, network, server,
application and desktop layers can establish
abstractions which are highly beneficial for IT
infrastructure operation. This paper focuses on server
virtualization options, examining their maturity and
remaining challenges. The FlexFrame Infrastructure
approach of Fujitsu Siemens Computers is shown as an
example how to address the management complexity of
server virtualization. For Fujitsu Siemens Computers
server virtualization is a key technology to enable an
innovative transition towards a Dynamic Data Center.

1. Introduction

At a high level, virtualization is an intermediary
hardware or software layer that enables separation of
the logical view from the physical view to resources,
such as CPU, memory, disk, network, I/O connectivity.
Without virtualization every server, operating system
or application have to manage their dedicated physical
resources.

In a virtualized environment, the server, operating
system or application do not need to know the exact
physical implementation or version of a resource and
where the resource resides physically. Logical
resources that are presented in a virtualization layer
replace server’s, operating system’s or application’s
physical resources. The virtualization layer then
dynamically maps these logical resources to the target
physical resources.

Virtualization enables greater flexibility and
efficiency in resource assignment to a server, operating
system or application. Virtualization also allows the IT
department to separate deployment, life cycle
management and innovation decisions regarding server,
operating systems and application from those regarding
compute and storage devices. Virtualization technology
enables a paradigm-shift towards dynamic and
automated data centre operation.

2. Layers of Virtualization

Various virtualization techniques exist. They all
make their individual contributions to establish
abstractions on different layers in an IT infrastructure.
Applying a virtualization taxonomy (inspired by the
storage virtualization taxonomy definition of the
SNIA[2]) helps to differentiate those techniques in a
systematic way based on three orthogonal aspects (see
figure 1):

• What is created?
• Where is it done?
• How is it implemented?

Figure 1. Virtualization Taxonomy

Below we differentiate major virtualization techniques
at different layers (see figure 2) depending on the
functionality they create and characterize their “where”
and “how”. For the rest of this paper we will focus on
the first three server virtualization-related approaches.

(1) Application Virtualization:
At the application layer, preparations are made to
flexibly run application programs on different
instances of OS and servers, by programming
techniques which avoid tight binding to the
underlying OS and server hardware. This is either
accomplished directly by individual application
programming. Examples are the SAP business
suite and Oracle 10g database and application
servers.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 89

Alternatively, application containers provide the
runtime environment for applications. For those
containers a clean separation from the underlying
OS and server hardware is implemented, thereby
inheriting the desired capability to the contained
applications. Examples are applications running
on Java VMs, in Solaris zones and in Linux or
BSD jails.
In both cases multiple applications can run on the
same server, sharing its resources and the same OS
instance (that is, all applications must use the same
OS type and patch level). The container-based
approach provides a higher level of isolation
between different applications, by cleanly
separating the user mode execution contexts
including important system-wide name spaces,
such as the (root) file system. In addition some
container virtualizations provide resource
management per container. As a result multiple
applications can not directly affect each other’s
execution by accident or maliciously. However,
instability or resource issues at the kernel mode
execution affect all applications.

(2) Virtual Machines:
At the machine layer, special system software

emulates a server’s complete hardware / software
interface, thereby creating Virtual Machines (aka
Virtual Servers), which can be used (almost) like
the real servers with the same hardware / software
interface.

One or more Virtual Machines can run
simultaneously on the same physical computer by
sharing its real resources. As a key difference to
application virtualization, in every Virtual
Machine its own OS instance (guest OS) is
running,. This allows heterogeneous OS
deployments on the same real server and extends
the isolation between different applications to
include the kernel mode execution level, at the
price of higher execution efforts compared to
application virtualization.

Two major flavors of the emulation system
software can be distinguished: a) host OS-based, as
special application on top of a host OS, b)
Hypervisor-based, directly controlling the
underlying real computer hardware instead of an
OS.

(3) Server Virtual I/O Connectivity (LAN, SAN)
At the physical server layer abstractions for I/O

connectivity into Ethernet LANs and Fibre
Channel SANs are introduced to accomplish goals
like a) cable / switch consolidation and b)

transparent replacement / movement of a server
regarding its I/O identities (e.g. MAC addresses,
WWPN) to avoid expensive configuration changes
in the LAN and SAN switches. Such Virtual I/O
for physical servers must be seen as orthogonal to
the virtualized I/O implemented by Virtual
Machines.

(4) Storage Virtualization
At the storage layer many techniques exist to

provide OSes and applications the required access
services to storage objects like LUNs or files with
well defined service levels, but keeping
implementation aspects like RAID levels, multi
pathing, replication, backup, etc. transparent.

(5) Network Virtualization
At the network layer many techniques exist to

provide OSes and applications running on servers
the required connectivity services to other servers,
storage, clients, etc. with well defined service
levels, but keeping implementation aspects
transparent, such as routing, VLAN / VSAN
isolation, quality of service, etc..

(6) Desktop Virtualization
At the layer of clients a trend can be seen to use

virtualization techniques to replace traditional PC
installations by thinner client forms without a local
desktop installation. Instead, desktop software is
run in servers in the data center (“back-racking”),
communicating to the human interface components
of the client over the network (with protocols like
RDP etc.)

For desktop software execution in the data
centre all kinds server virtualization (see above)
are available. This may substantially reduce the
efforts of central desktop management in many
ways, e.g. desktop software deployment and
patching, backup / restore and security.

Figure 2. Virtualization Layers

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 90

3. Business benefits from Virtualization

Virtualization does not represent a business value by
itself, however, customers are highly interested to turn
delivered advanced technical capabilities like
abstraction, isolation, resource sharing, live migration,
etc. into business benefits like cost optimizations
(CAPEX, OPEX, TCO), higher Service Levels,
increased agility and greater flexibility. Main targets of
Server Virtualization approaches are:

• Server Consolidation:
Running multiple applications safely on the

same physical server can shift average server
utilization from very low to highly efficient and
substantially reduce the number of required servers
with resulting CAPEX and OPEX benefits.
Technology candidates are Application
Virtualization, Application Containers and Virtual
Machines.

• Hardware / Software Separation:
Virtual Machines create a homogeneous

hardware / software interface for virtual servers
that can be kept stable over a long period. By
using VMs, software solution stacks (application,
middleware, OS) can be managed separate from
the underlying hardware, enabling customers to
handle innovation decisions and life cycle
management for hardware and software
independent of each other and on independent
schedules. Customers appreciate new levels of
flexibility to reduce their hardware/ software
support matrix and to establish cleanly separated
organizational responsibilities for HW and SW
components in their data centre.

• Rapid Service Deployment:
Customers face the increasing challenge of

deploying new services more quickly, to deal with
new market demands / opportunities and
organizational changes. The overall time to deploy
an additional physical x86 server is typically 2-3
months; using VMs in virtualized environments
can drive this delay down to minutes. Technical
options are Application Containers and Virtual
Machines. An additional advantage of Virtual
Machines is the option to install pre-tested
Application / OS stacks as Virtual Appliances.
Thus Server Virtualization can substantially
improve business agility.

• Higher Service Levels (Availability, Performance):
Unlike physical machines Hypervisor-based

Virtual Machines can be live-migrated to another

physical server without interrupting the service
running in that VM. Live Migration can be
leveraged to evacuate unhealthy server hardware
for proactive maintenance before a crash occurs,
and also to react on changed resource demands by
moving that service to a server with more or less
compute power. Thus Server Virtualization
enables higher Service Levels in a cost-effective
way.

• Disaster Recovery:
To prepare for disaster many customers

establish remote disaster recovery sites, usually
including larger farms of servers and storage. In
the past the configuration of a disaster recovery
site had to be an exact replication of the primary
site, which is difficult to create and even more
difficult to maintain over time. As a result primary
and disaster recovery sites typically exist in a 1:1
relationship. For virtual server farms the identical
physical configuration requirement goes away. The
necessary virtual servers can be created on a
smaller server farm, which can also act as a shared
disaster recovery site for multiple primary sites.
Thus Server Virtualization can dramatically reduce
the CAPEX and OPEX of a disaster recovery site.

Virtualization technology selection decisions
depend on customer requirements like performance,
application isolation, OS version variety, etc. While it
makes sense to use the above virtualization forms
stand-alone, many of them can also be combined. Best
solutions results are often accomplished by
combination.

4. Challenges coming with Virtualization

Many server-related core virtualization technologies
are mature enough by now. Multiple commercial and
open source products exist, in particular for container-
based application virtualization and Hypervisors for
Virtual Machines. A majority of large and mid-size
companies have already made their own practical
experiences and are about ready for broader use even
for mission critical workloads.

A complete maturity assessment requires looking
also at remaining issues around server virtualization:
While server virtualization enables many benefits of
more dynamic and automated data centre operation, it
introduces new availability and complexity challenges
at the same time:
• In the future, hundreds of physical servers will turn

into thousands of virtual machines, running on a

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 91

smaller number of physical servers. Therefore
High Availability and Disaster Recovery become
more mandatory because many applications
become vulnerable to a single server hardware
failure. Traditional High Availability and Disaster
Recovery solutions exist but typically cause much
higher complexity and resulting CAPEX and
OPEX.

• Server Virtualization allows reduction of the
physical server count, suggesting a proportional
OPEX reduction. However, new tasks and
requirements increase the complexity and may eat
up the advantage of reduced server count:
o VMs must be managed in addition to physical

servers, creating yet another management
domain,

o VMs must migrate across physical servers
without compromising security,

o VMs must be backed-up in a more efficient
way to meet backup time windows.

Moreover, the introduction of Virtual Machine
Managers and Hypervisors is currently not satisfying
the customer’s hope to reduce the complexity of server-
OS-application support matrixes. Instead, customers
are confronted with a couple difficult selection
problems. Hypervisor offerings with different strengths
exist: ESX server from market leader VMware, various
commercialized derivates of Xen, and Microsoft
HyperV is announced for February 2008. While experts
expect a rapid functional, performance and robustness
convergence and subsequent commoditization of
Hypervisors, none of those vendors currently provides
support coverage for all relevant OS / ISV application
combinations. Therefore customers are forced to either
use multiple virtualization products concurrently in
their data centre or refrain from virtualized operation of
certain applications.

5. FlexFrame Infrastructure

Fujitsu Siemens Computers acknowledges and
addresses the above issues and customer pain points
with the “FlexFrame Infrastructure” platform. The
FlexFrame Infrastructure platform consists of a pre-
integrated product suite of x86 industry standard
servers and virtualization technologies for server I/O
and VMs under unified resource management software,
and integration and operation service offerings. This
platform is a very flexible infrastructure foundation for
key business applications in a service-oriented
architecture. The platform pre-integration promotes an
industrial development of such solutions.

With its common model-driven resource
management approach FlexFrame Infrastructure covers

• physical and virtual servers,
• multiple Hypervisors,
• physical server I/O virtualization,
• dynamic orchestration of physical and virtual

servers from resource pools,
• automated server high availability

o incl. server LAN / SAN connectivity
o based on N+1 or N+N redundancy
o transparent to OS and applications

• disaster recovery.

Servers are modeled (see figure 3) as aggregates of
(physical or virtual) processing resources, virtual SCSI
disk and tape resources, and internal and external
network connections, which in turn are modeled by
virtual Ethernet NICs connected to virtual Ethernet
switches.

Figure 3. Server Model

Such server configurations are stored as XML-
descriptions in a repository. Dynamic server
orchestration can then be triggered by GUI or API on
demand. Right at that point in time the required
resources are allocated from Processing Area Network
(PAN) resource pools (see figure 4). A PAN can be
sub-structured into Logical PANs (LPAN), to deal with
resource and administrative authority separation,
needed for example to server multiple end-customers in
the same data centre out of one global resource pool.

Figure 4. Processing Area Network

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 92

5. Virtualization in context of Fujitsu
Siemens Computers Dynamic Data Center
architecture

Fujitsu Siemens Computers look at Virtualization in
a broader context within the data centre infrastructure.
The Dynamic Data Center (DDC) [1] architecture (see
figure 5) from Fujitsu Siemens Computers describes an
IT architecture that targets a breakthrough compared to
existing paradigms. The focus of the DDC is on
services that are provided to end users and the Service
Level Agreements (SLAs) that define the quality of
provided services in terms of response times,
availability, etc. The demanded quality should be
offered at the lowest possible price (efficiency), and the
IT in question should be able to adapt rapidly to
changes in business processes (agility).

The DDC is therefore based on new hardware and
software architectures that enable greater efficiency
and agility, yet the appropriate high reliability. These
architectures are complemented by concepts for
integration into existing IT operations.

In dynamic IT infrastructures ideally every service
can run on any system and be relocated between
systems in a short time.

A first key step towards that vision is to break up
fixed bindings between services and dedicated
hardware. All hardware resources (e.g. storage, servers
or server components) are grouped in pools, from
which they can be dynamically allocated, orchestrated
and then assigned to services on demand. Resources
can be repurposed over time as required by changing
resource demand.

This leads to two desired transitions: replace
traditional silo-like application architectures by
dynamic and service oriented architectures, and make
configuration sizing to peak load unnecessary.

Virtualization plays an enabling role in this
paradigm change: it creates the necessary abstraction
between application software stacks and resources.
Servers and storage can be dynamically orchestrated
from resource pools but still behave like traditional
computers from the applications point of view, as
expected.

In the next step operations management of virtual
and real resources is largely automated. Resources are
automatically provided to services on the basis of
predefined policies. For example, if resources fail or
are in short supply, corrective actions can be initiated
full- or semi-automatically. Services support business
processes and come along with defined SLAs. Goal of
the policies is to ensure that SLAs can be kept
automatically.

Virtualization and Automation are complemented by
Accounting and Billing to charge the services
according to their dynamic resource usage.

Figure 5. Dynamic Data Center Architecture

10. References

[1] Fujitsu Siemens Computers, “The Architecture for
Flexible Enterprise IT Dynamic Data Center”,
http://www.fujitsu-
siemens.com/it_trends/dynamic_data_center/info/index.html,
Munich, 2007

[2]Bunn, F., Simpson, N., Peglar, R., Nagle, G., “Storage
Virtualization”, SNIA Technical Tutorial, 2003

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 93

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 94

Implementierungen

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 95

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 96

Virtualizing an IT Lab for Higher Education Teaching

Nils gentschen Felde, Tobias Lindinger
Munich Network Management Team

Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 Munich, Germany

{felde|lindinge}@mnm-team.org

Helmut Reiser
Munich Network Management Team

Leibniz Computing Centre
Boltzmannstr. 1, 85748 Garching, Germany

reiser@mnm-team.org

Abstract

In universities, a great amount of time is needed to man-
age and operate lab course IT infrastructures. Addition-
ally, university’s resources are occupied and teaching staff
is needed to supervise the attending students.

In this paper, we present a concept for planning and de-
ploying virtualized IT infrastructures (hosts and network)
for higher education purposes and show an implementation
including tool supported management of the virtual envi-
ronment. The management platform facilitates the admin-
istration of virtual machines by students and thus frees the
teaching staff from that duty. As a proof of concept, a num-
ber of different teaching environments used in a lab course
on IT security have been virtualized. The course is intended
for graduate students and poses high demands on the in-
frastructure, its availability and its performance, while se-
curity aspects have to be taken into account. Concluding
the paper, experiences made during two years of productive
use as well as updating the system to new releases of the
virtualization software are pointed out.

1 Introduction

The Ludwig-Maximilians-Universität München and the
Technische Universität München offer a practical course on
IT security for graduate students. In this context, multiple
workstations and servers are provided. Over time, defects
of hardware components occur more often, which demand
human interaction in order to ensure further operation of the
lab. Moreover, the infrastructure is only accessible during
certain days of the week and for a limited amount of time
due to the institute’s opening hours. As the course is at-
tended by students of two different universities located at
different places, the students’ time of travel is considerably
high as well. In order to improve the situation and save
valuable time of the teaching staff, the virtualization of the
whole lab course seems a suitable solution.

1.1 The Lab Course Use Case

The IT security lab course mainly deals with configura-
tion aspects of network components and IT services. Secu-
rity flaws are explained and the misuse of those illustrated
in experimentals using sniffers, portscanners, several hack-
ing tools and executing Denial of Service (DoS) attacks.
Securing networks, their components and IT services are
tasks students have to deal within the course. The course
has a maximum capacity of 40 students working together in
groups of two, each group having two computers at hand.
During the course, several different network topologies are
needed. Thus, a mechanism for simple and dynamic adap-
tion of the infrastructure is necessary.

1.2 Requirements

In the context of the practical lab course, four major re-
quirements have to be fulfilled while designing and imple-
menting the lab course infrastructure:

1. Security.
Due to the fact that the course deals with IT security,
one important factor while designing the virtual lab is
defined by IT security itself. Security aspects of the
underlying host system are a primary issue in order to
guarantee a highly available and secure course envi-
ronment. As some critical experiments like DoS at-
tacks and password cracking are carried out within the
course, the protection of the outer world is an impor-
tant fact as well, while access to the Internet is neces-
sary to download software components.

2. Transparency.
The virtualization must not be visible to the students.
No student needs to have any access to or knowledge
of the underlying physical hardware components. Stu-
dents don’t even have to know about the virtualization
in order to work with the components provided.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 97

3. Accessibility.
Access to the machines should be possible from any
workstation connected to the Internet, including both
console access and the use of graphical user environ-
ments in a secure manner with adequate performance
supporting small bandwidth Internet connections as
for example ISDN or even analog dial-up connections.
Besides, a large variety of operating systems used by
the students has to be supported in order to connect to
the lab. In particular, a minimum of Apple MAC OS,
Microsoft Windows and Linux/UNIX on the client side
should be usable, while the virtual machines them-
selves are based on Linux without exception.

4. Management.
Management aspects have to be separated into two ma-
jor dimensions:

(a) Management of the virtual lab infrastructure.
To ease the management of the virtual lab is
a major requirement, meaning that it has to be
comparatively easy to keep the lab up and run-
ning and to ensure a secure environment for the
experiments. This discipline is left to the teach-
ing staff and system administrators, as it only
deals with the hosting system itself and not with
the virtual workstations.

(b) Management of the virtual machines.
The management of the virtual workstations shall
be left to the students, releasing the teaching staff
and system administrators from that duty. It has
to be possible for all the students participating in
the course to manage their own virtual machines
in a comfortable way. In particular, they have
to be able to restart their machines if a problem
occurs, create snapshots as backups or even re-
install a clean system image in case of a major
misconfiguration. These operations should not
be allowed to be executed on foreign virtual ma-
chines related to other students.

1.3 Contribution of this Paper

This paper describes how to migrate an existing lab in-
frastructure to a virtual lab infrastructure taking security,
transparency, accessibility and management aspects into ac-
count. The implementation shown in section 4 contains
more than 40 virtual machines (also referred to as VMs) in-
cluding both workstations and servers, all of them having
multiple network interface cards, more than 20 virtualized
bridges, hubs or switches hosted by only one physical ma-
chine. Additionally, different network topologies are im-
plemented, having the opportunity to switch between them
dynamically using prebuilt scripts. The virtual machines are

L X V U

SPEC INT2000 (score)

L X V U

Linux build time (s)

L X V U

OSDB-OLTP (tup/s)

L X V U

SPEC WEB99 (score)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Benchmark suite running on Linux (L), Xen (X), VMware Workstation (V), and UML (U)

Figure 1. Virtualization benchmarks [7]

accessible using graphical desktop environments or secure
shells 24 hours a day. The usage of virtual private network
(VPN) technologies completes the implementation.

The remainder of the paper is structured as follows. First,
Xen is introduced in section 2 as it will be the virtualiza-
tion tool of choice for the implementation later on. Follow-
ing, the concept, implementation and deployment of the vir-
tual lab course is described and the fulfillment of the before
mentioned requirements is shown. Concluding the paper,
a short overview of the performance of the implementation
experienced in real life usage is given in section 5 and some
possible improvements and further work is pointed out in
section 6.

2 State of the Art and Related Work

Beside virtual machines, network components like
switches, hubs and firewalls as well as their connections
have to be virtualized. These facts raise some additional
requirements for the implementation of the virtual course
infrastructure. Extensive tests [4] which virtualization tech-
nique is suitable for our usecase have been carried out and
resulted in using Xen.

The next section introduces Xen as an example for host
virtualization as it was the fastest platform (see figure 1)
available when we started the project three years ago in
2005. Additionally, the network setups can be realized
using the techniques and components provided by Xen,
whereas User Mode Linux and VMware were too slow or
not able to create virtual instances of our network setups
due to the lack of several virtual components, in particular
hubs. Details related to the implementation can be seen in
section 4. Section 2.2 points out related work in the area of
virtual lab courses and concludes this section.

2.1 Xen

Xen [12] is a hypervisor that uses the para-virtualization
concept. Xen provides an interface which is very similar to

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 98

Figure 2. The Xen architecture [8]

the x86 architecture. In order to operate a guest system us-
ing Xen, some lines of code of the hosted operating system
have to be adapted in order to run using the Xen interface
instead of the underlying hardware (e.g. an x86 architec-
ture). Therefore, Xen is only used in combination with open
source operating systems as guests (in para-virtualization
mode) or technologies like Intel VT-x and AMD-V formally
known as Vanderpool and Pacifica.

Figure 2 depicts the layered model Xen implements. The
Xen Virtual Machine Monitor (VMM, also called the hyper-
visor) [9] introduces an additional layer on top of the hard-
ware of the host system. Via the Safe Hardware Interface
access to the hardware is granted. The VMM is responsible
for every component of the hosting system being accessed
by just one system at a time. For example, in case of a
CPU (multiprocessor systems are supported) every virtual
machine is bound to a Virtual CPU. If the virtual machine
becomes active that virtual processor is bound to a physical
CPU core by the VMM and provides the compute power
demanded by the VM.

On top of the VMM all the virtual machines – also called
domains – are executed. All domains are treated equally,
except the so-called domain0. This machine is privileged
and its job is to control and manage all the others (the so-
called domUs). Usually, but not necessarily, domain0 owns
access to all physically available hardware components via
the hypervisor. This is the reason why there are two differ-
ent versions of kernels for Xen Linux: One kernel includ-
ing drivers for the access to the physical hardware that is
appointed in domain0 and another kernel without this func-
tionality operated by the guest machines. Both versions can
be configured and recompiled manually to add additional
features. Frontend drivers for the access to virtual hardware
served by the Xen backend system should be included in
both versions.

To protect the system from illegal access, Xen makes use
of the ring concept of the x86 architecture. Rings – there
are four of them, but mostly only two of them are used –
represent different access layers. Ring zero represents the
kernel mode and ring three is known as the user mode. Xen
modifies this mapping as follows: The hypervisor operates
in ring zero and the operating system is shifted to ring one.
Consequently, the operating systems can be controlled by
the hypervisor. OS instances running in ring one are not
allowed to execute any privileged instruction on the proces-
sor. This is why the operating system has been modified
and runs some new functions called hypercalls instead of
prohibited systemcalls. Trying to pass a systemcall any-
how results in an exception thrown by the processor and is
handled by the hypervisor. This only holds true on 32 bit
systems, 64 bit systems behave differently.

2.2 Related Projects

Research in the area of virtualizing IT environments used
for educational purposes has already been carried out by
other groups of researchers. Mostly, the work focuses on
the simplification in creating lab infrastructures by booting
a number of virtual machines and connecting them to spe-
cial networks automatically. Usually, this is done according
to configuration files built by administrators in advance. Ex-
amples include MLN (My Linux Network) [2], VNL (Vir-
tual Networking Lab) [6] and VNUML (Virtual Network
User Mode Linux) [11].

The tools developed in these projects ease the process
of deploying virtual infrastructures. They also provide tool
support for this task, but they are lacking a concept of how
to transfer existing lab course infrastructures into virtual en-
vironments conveniently. Reconfiguration issues based on
easy to use configuration files for whole network setups,
as well as per user management interfaces for comfortable
and secure remote access to the virtual machines are out of
scope.

3 Basic Ideas & Concepts

The fulfillment of the requirements on the lab course in-
frastructure leads to some obvious attempts. This section
presents some ideas on how to conform to these require-
ments. Afterwards, an implementation of the concept de-
rived in this section is found in section 4.

1. Security.
To protect the host from attacks originated in VMs, it is
necessary to strictly separate the physical system from
the VMs. Therefore, the only point of access to the vir-
tual environment is delegated to a VM (the so-called

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 99

login server) directly bound to a physical network in-
terface connected to the Internet. In our case, Xen of-
fers a feature allowing the assignment of a physical
NIC to a VM exclusively. This feature is granted by
the hypervisor.

Using firewalls to prevent unauthorized access to the
virtual networks or the management system is a further
step towards securing the platform. As communication
between the virtual machines via the pre-configured
management network (see below) is unwanted, it is
prevented by firewall rules. Firewalls implemented
in the login server protect the login server from outer
world attacks. Also, connections to the Internet can be
filtered to prevent attacks from the lab harming foreign
resources located outside the lab.

2. Transparency.
Transparency is guaranteed by virtualizing every sin-
gle component used for the course environment. Ev-
ery workstation and every server (see figure 3) is vir-
tualized. Thus, nobody has access to or knowledge of
the underlying hardware which serves the infrastruc-
ture. This transparency adds additional security to the
system. If one of the components is compromised
successfully, only one virtual component could be in-
truded instead of the physical host. Besides, the host
itself can be secured by several security means and be
placed in a private network segment.

3. Accessibility.
In order to access the virtual network, a dedicated vir-
tual login server (see figure 3) is used. One of its vir-
tual network interfaces is directly connected to the In-
ternet, while another one connects to a management
network. It is either possible to tunnel any traffic
through the login server to the designated port on the
target machine (e.g. port 22 for SSH) or to connect
to the network using VPN technologies. In the latter
case, the login server acts as the security gateway and
the computer connecting to the VPN becomes part of
the management network and thus can access any vir-
tual machine.

4. Management.

(a) Scripts for booting the scenarios.
Scripts to start and stop virtualized scenarios are
used. The scripts include virtual machine config-
urations, the creation of network resources e.g.
hubs, switches and bridges and the correct wiring
of the components. In our case, the creation of
these scripts can be simplified using a feature
provided by Xen: Parameters can be given and

calculations can be performed in the configura-
tion file, which enables the administrators to cre-
ate virtual machines in a loop within a script. In-
dividual configuration settings of the virtual ma-
chines can be calculated in the configuration file
depending on the loop parameter.

(b) Management platform for student use.
A management platform is introduced in order to
enable the participants of the course to manage
their own virtual machines. The management in-
cludes rebooting, shutting down, backing up, re-
covering old snapshots and resetting a virtual ma-
chine to its initial state as a minimum subset of
features. A management interface operated by
the hosting system is mandatory for these tasks.
A management proxy in the context of the login
server grants remote access to the management
interface. Making use of reliable authentication
and authorization capabilities combined with en-
crypted data transfer ensures a secure operation
of the management platform.

Figure 3 illustrates the basic ideas of the concept this
work is based on. A main interest is to isolate the host-
ing system from the virtual infrastructure due to security
aspects.

To ensure the accessibility of the virtual machines, a ded-
icated management network has to be set up, complement-
ing the teaching network. This enables the users to connect
to their virtual machines, regardless any misconfiguration of
the interface cards connecting to the teaching network. In
order to access the management network, the login server
has to be used. A firewall running on this server allows re-
mote access to the VMs, e.g. using SSH tunneling or VPN
technologies. Remote logins on the gateway are not per-
mitted for security reasons, of course. Additionally, outgo-
ing traffic to the Internet can be masqueraded using NAT
router capabilities, providing Internet access for the teach-
ing network. Connections initiated by virtual machines to
the Internet and communication among virtual machines us-
ing the management network is not desired and thus not per-
mitted by restrictive firewall rule-sets.

Privileged access to the hosting system is needed in or-
der to manage the virtual machines. For this reason, a
management interface is introduced running on the host,
which is able to control the VMs (e.g. (re-)booting, shut-
ting down, backing up, recovering old snapshots, ...). To
reduce management interactions performed by the teaching
staff, a management proxy granting access to the manage-
ment interface is deployed on the login server. This proxy
passes connections originating from the Internet to the man-
agement tool transparently. This conserves transparency
and enhances security aspects, as using a direct manage-

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 100

eth3

SNAT

eth1

Virtual Login-Server

Physical Host

eth0

Server

eth1

VM VM

Management-Network

Internet

Teaching-Network
Private Network

Routing

eth0

eth1

virtual machine

physical NIC

firewall

virtual NIC

eth2

Management-
Interface

Management-
Proxy

virtual server
Firewall on
OSI Layer 2

Figure 3. Conceptual view

ment connection to the host would result in granting stu-
dents access to the host via HTTP and publishing the host’s
IP address. Of course, additional authentication and autho-
rization processes have to be established. Therefore, a cus-
tomized authentication handler on the web server that com-
pares the password given to the root password located in the
/etc/shadow file in a virtual machine is used. For this pur-
pose the image of a VM is mounted read-only by the web
server.

4 Deployment

Figure 4 illustrates the instantiation of the concept pre-
sented above for a lab course provided by the two univer-
sities. In this section, first the basis for the implementation
is described briefly, including the hardware of the hosting
server as well as the software chosen for the virtualization
process. Section 4.3 gives a detailed overview of the im-
plementation, before the upgrading process from Xen 2 to
Xen 3 is described in section 4.4.

4.1 Hardware Basis

At the beginning of the project, various tests [4, 5] have
been performed in order to figure out which kind of hard-

ware is necessary to virtualize the lab course shown in fig-
ure 4. The results have proven that no CPU bound bottle-
neck is suspected, but RAM seems crucial as 40 machines
for the student work and some additional servers should be
operated on one single host.

SuSE Linux filesystem images created by the YaST in-
staller including tools for development, the graphical desk-
top environment KDE and some free disk space for the stu-
dents’ work are about 3 GB of size. Those plus additional
disk space for backups have to be hosted on the server.
Therefore, a SATA RAID using RAID level 1 to ensure the
integrity of data is used.

The productive server is a Fujitsu-Siemens server with
two AMD Opteron processors (model number 246 at
2.0 GHz), 4 GB of RAM (as the initial setup is using Xen 2
and thus only supporting 32 bit environments) and about
400 GB of Soft-RAID storage (RAID level 1).

4.2 Software Basis

To implement the virtual lab, Xen was selected among
other virtualization tools. Its performance surpasses all
other tools that can be used to provide virtual machines
and network components when we started implementing the
project in 2005. Ian Pratt demonstrates the performance

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 101

����
���	�
�	��	�

����
���	�
�	��
	���

����
���	�
�	��	�

����
���	�
�	��
	�

����
���	�
�	��
	��

����
���	�
�	��
	��

����
���	�
�	��
	��

���

����
���	�
�	��
	��

����
���	�
�	��
	��

����
���	�
�	��
	��

����
���	�
�	��
	��

����
���	�
�	��
	��

���

����
���	�
�	��
	��

����
���	�
�	��
	
�

����
���	�
�	��
	

����
���	�
�	��
	
�

����
���	�
�	��
	
�

���

�������

����
���	�
�	��
	

����
���	�
�	��
	�

����
���	�
�	��
	�

����
���	�
�	��
	��

����
���	�
�	��
	��

����
���	�
�	��
	�� ���

����
���	�
�	��
	��

����
���	�
�	��
	��

����
���	�
�	��
	��

����
���	�
�	��
	��

����
���	�
�	��
	�� ���

����
���	�
�	��
	��

����
���	�
�	��
	��

����
���	�
�	��
	���

����
���	�
�	��
	���

����
���	�
�	��
	���

���

����
���	�
�	��
	���

����
���	�
�	��
	���

����
���	�
�	��
	�

����
���	�
�	��
	��

����
���	�
�	��
	��

���

����
���	�
�	��	�

����
���	�
�	��	�

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	�

����
���	�
�	��	�

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	�

����
���	�
�	��	�

����
���	�
�	��	

����
���	�
�	��	

����
���	�
�	��	�

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	�

����
���	�
�	��	�

����
���	�
�	��	������

���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��	��

����
���	�
�	��
	��

����
���	�
�	��
	���

����
���	�
�	��
	���

����
���	�
�	��
	���

����
���	�
�	��
	���

����
���	�
�	��
	��� ����

���	�
�	��
	���

���	�
�	��
	���

���	�
�	��
	��� ���	�
�	��
	���

��������

������� �������

�������� ��������

�������

�������

�������

�������

�������

������

�������������� ������� ������� �������������
 ������ �������

�������

������

�������

������

�������

�������

������
������� ������ �������������� ������� �������

�������

������

������

�������

�������

����
���	�
�	��	�

����
���	�
�	��	�

����
���	�
�	��
	�

����
���	�
�	��
	�

����
���	�
�	��
	�

����
���	�
�	��
	�

���
����

���	�
�	��
	�

�������

�������

�������

�������

�������

�������

�������	
�

���������

� !��������

��
�	
�

�	
��

	
�"
��

��
�	
�

�	
��

	
�

"�
�

��
�	
�

�	
��

	

�
"�
�

��
�	
�

�	
��

	
��
"�
�

���	�
�	��
	��"�� ���	�
�	��
	��"��

���	�
�	��
	�
"�����	�
�	��
	���"��

���	�
�	��
	���"��

Figure 4. One of the virtual network environments

of Xen compared to VMware Workstation and User Mode
Linux (UML) [7] in figure 1. The conclusion drawn in his
work is that Xen performs best by far and in fact is close to
a stand-alone Linux system.

Over and above this fact, Xen is very stable and imple-
ments a very powerful scheduling algorithm. As claimed by
the Xen developers, it is possible to attack one virtual ma-
chine using DoS techniques, while other machines running
on the same physical host are nearly not affected. As DoS
attacks are executed during the course by students, this is an
important fact which has been proven true.

4.3 Instantiation for the Lab Course

One of the scenarios used for the IT security lab course
is shown in figure 4. The implementation of which is based
on Xen version 2. This is due to the fact that Xen 3 did not
perform well considering stability in our tests. It was still
in beta stadium and thus the decision to deploy a version 2
system was made.

In this scenario, two switches, eight hubs, four servers,
40 student PCs and 94 network interface cards are needed.
The darker marked interconnections between the servers
and workstations depict the network topology used within
the course (the "teaching network"), while the lighter con-
nections represents the management network. The latter has
to be deployed in order to grant access to the student ma-
chines as described in section 3.

To facilitate the use of graphical applications, X may
be forwarded using SSH tunneling capabilities. This only
proves suitable in case of the students working at machines
with local area network connections to the system hosting
the virtual lab. Besides, FreeNX [3], a remote desktop so-
lution, is installed on every VM. FreeNX enables the ex-
port of the desktop environment in a very efficient manner.
In our tests, even old-fashioned analog dial-up connections
resulted in no overwhelming but acceptable performance.
Both possibilities to use graphical interfaces can be used in
combination with any of the two ways of connecting to the
lab, either SSH tunneling or the usage of OpenVPN.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 102

Figure 5. The management web interface

The possibility to access the interface of the Xen dae-
mon xend using a web server via a python module enables
the management of the virtual machines. Access control is
realized using a custom-made authentication handler writ-
ten in python. It compares any given password to the root
password set in the virtual machine that shall be managed.
Thus, access to both the virtual machine and the manage-
ment interface is granted using just one single password. In
this case, an apache web server in combination with the auth
module is used and any traffic is encrypted using SSL. Fig-
ure 5 shows a screenshot of the home-grown simple man-
agement interface developed and used for the virtual lab
course.

4.4 Upgrading from Xen 2 to Xen 3

New versions of SuSE Linux Enterprise Server do not
support Xen 2 any longer and the demand to keep the soft-
ware up to date is hard to satisfy. After operating the lab
based on Xen 2 for two terms, a migration to Xen 3 was
desired.

Some minor adoptions have to be made to the network
configuration files and the configuration files used to create
virtual machines. Both issues are more or less based on
syntactical changes in Xen 3, resulting in minor problems.

In contrast, the port of the custom-made management
tool to Xen 3 demands greater efforts because some in-
terfaces of xend have changed. As a result, a part of the
management tool has to be reimplemented using the new
interface. Afterwards, the virtual infrastructure is working

properly again.
Regarding the stability, both versions of Xen do not dif-

fer. Anyway, differences regarding the performance are ob-
vious. While Xen 2 is a bit faster in general, Xen 3 is more
powerful in accessing virtual disks using the new xvd (Xen
virtual block device) driver. Both symptoms can be eas-
ily observed, e.g. by installing or booting new virtual ma-
chines.

One additional feature of Xen 3 is the possibility to vir-
tualize Windows Workstation if suitable processors with the
Intel-VT or AMD-V command sets are used. Our security
course could thus be extended to Windows security issues
as well. At the moment no suitable server hardware is avali-
able so that the course’s focus lies on Linux. Anyway, the
concept shown above still holds for Windows or mixed sce-
narios. Only some implementation issues would have to be
adjusted as for example the current management platform
just supports authentication and authorization methods for
Linux VMs.

5 Experiences

Operating the virtual lab for four terms productively, no
major problems occurred up to now. No problems related
to stability are experienced, even critical actions like DoS
attacks and malformed network packets sent during the lab
course do not harm the infrastructure. Performance related
problems are not noticeable, although 44 virtual machines
are executed on one single physical host. Usually, load is
distributed evenly over the week. Just in case of special
events like tests or demonstrations that have to be passed as
a milestone during the course, load is high, but the perfor-
mance experienced by the end-user is still acceptable.

Compared to a native Linux machine a virtual Linux ma-
chine operated by Xen is insignificantly slower. Running
more than one virtual machine at the same time is even more
efficient. Due to intelligent scheduling algorithms, boot-
ing the virtual lab with all the virtual machines and services
takes about 12 minutes. Hence, one single virtual machine
needs about 16 seconds in average to start up into runlevel 5.

Network performance does not pose problems as well,
even though many students are using graphical desktop ses-
sions and all the traffic to the Internet is handled by only one
physical network interface card. The network itself does not
provide a bottleneck in the virtual lab. This also holds true
for the virtualized network components interconnecting the
machines among each other and providing the management
network. Actually, the virtual network components in some
cases show better performance than physical ones as they
are simulated by kernel operations of the underlying host
system.

The most important gain of the virtualization process is
the reduction of administration costs to about a sixth part

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 103

compared to the initial course setup. Up to six advisors have
been employed to manage and supervise the course and its
attendees. Now, this task is accomplished by just one stu-
dent advising the participants of the course regarding the
content. As the hosting system now is a reliable server sys-
tem, no disruptive incidents related to defects of hardware
occurred yet. This was a frequent case before the virtualiza-
tion of the lab and demanded a lot of in-time administrative
work. Virtualizing the lab course, the hardware issues have
been exchanged with the problem of managing VMs. Pro-
viding a management interface to students enabling reboots
of hanging machines, etc. releases the teaching staff and
shifts the efforts to the students while maintaining control.
Additionally, access to the lab is possible from every com-
puter connected to the Internet 24 hours a day. This leads to
a maximum of flexibility in time and place for the students,
especially as our lab course is offered at different universi-
ties.

6 Conclusion & Future Work

In this paper, a concept for a virtual IT infrastructure
for higher education teaching is introduced. Security as-
pects, transparent usage of and convenient access to the in-
frastructure, as well as the comfortable management of the
lab course are main requirements while designing the con-
cept. The deployment as a proof of concept using Xen is a
practical lab course dealing with IT security offered at the
two Munich universities.

In everyday use, the experiences are predominantly
good. The university’s premises for the lab course could
be released and valuable time of the teaching staff and ad-
ministrators could be saved. This is mainly due to the fact
that instead of managing several student PCs the manage-
ment of one much more reliable server system has to be
accomplished. The management of the virtual student PCs
is performed by the students themselves, providing them
with a web based management platform. In sum, this saved
about two thirds of the costs to run the course.

In future work, the virtualization of other practical lab
courses dealing with more technical content is considered.
In this context, the question to which technical detail virtu-
alization approaches seem applicable has to be answered.
However, the concept presented in this paper has estab-
lished a template for virtualizing other teaching environ-
ments.

Acknowledgment

The authors wish to thank the members of the Munich
Network Management (MNM) Team for helpful discus-
sions and valuable comments on previous versions of this

paper. The MNM Team founded by Prof. Dr. Heinz-Gerd
Hegering is a group of researchers of the University of Mu-
nich, the Munich University of Technology, the University
of Federal Armed Forces Munich and the Leibniz Super-
computing Centre of the Bavarian Academy of Sciences. Its
web server is located at http://www.mnm-team.org.

This paper was supported in part by the EC IST-
EMANICS Network of Excellence (#26854).

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. In SOSP ’03: Proceedings of
the nineteenth ACM symposium on Operating systems prin-
ciples, pages 164–177, New York, NY, USA, 2003. ACM
Press.

[2] K. Begnum, K. Koymans, A. Lrap, and J. Sechrest. Using
Virtual Machines in System Administration Education. In
Proceedings of 4th International System Administration and
Network Engineering Conference. System and Network En-
gineering, 2004.

[3] FreeNX Project. FreeNX. http://freenx.berlios.
de/.

[4] T. Lindinger. Machbarkeitsanalyse zur Virtualisierung
des IT–Sicherheit Praktikums. Technical report, Ludwig-
Maximilians-University of Munich, Oct. 2005.

[5] T. Lindinger. Virtualisierung einer Praktikumsinfrastruk-
tur zur Ausbildung im Bereich Sicherheit vernetzter Sys-
teme. Master’s thesis, Ludwig-Maximilians-University of
Munich, May 2006.

[6] S. Liu, W. Marti, and W. Zhao. Virtual Networking Lab
(VNL): its concepts and implementation. In Proceedings of
the 2001 American Society for Engineering Education An-
nual Connference and Exposition, Texas, USA, 2001. Amer-
ican Society for Engineering Education.

[7] I. Pratt. Performance of xen compared to na-
tive linux, vmware and user mode linux. http:
//www.cl.cam.ac.uk/Research/SRG/netos/
xen/performance.html, Dec. 2004.

[8] I. Pratt. Xen Status Report. University of Cambridge, Dec.
2005.

[9] University of Cambridge. Computer Laboratory - Xen vir-
tual machine monitor. http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/.

[10] University of Cambridge. XenoServers. http://www.
xenoservers.net/.

[11] Universität Koblenz. Virtual Network User Mode Linux.
http://www.uni-koblenz.de/~vnuml.

[12] XENSource. XenSource: Delivering the Power of Xen.
http://www.xensource.com/.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 104

Speichervirtualisierung

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 105

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 106

Storage Virtualisation, Basic Building Block for Dynamic IT

Simon Kastenmüller
Fujitsu Siemens Computers

Domagkstr. 28, 80807 München
Simon.Kastenmueller@fujitsu-siemens.com

Abstract

At a high level, virtualisation is an intermediary
hardware or software layer that separates the logical
view from the physical view to resources. Without
virtualisation each server, operating system or
application manages its dedicated physical resources.
In a virtualised environment, the server, operating
system or application do not need to know where the
resource resides physically. Logical resources that are
presented in a virtualisation layer replace server’s,
operating system’s or application’s physical resources.
The virtualisation layer then dynamically maps these
logical resources to the target physical resources,
thereby increasing the flexibility and efficiency in
resource assignment to a server, operating system or
application. Virtualisation allows the IT department to
separate decisions regarding server, operating systems
and application from compute and storage devices and
the associated management tasks.

Storage virtualisation can be realised in many
layers of an IT infrastructure. Storage includes all
layers beginning at storage arrays to storage network
to storage-related layers in servers.

Storage virtualisation falls in the following main
categories:

Storage array-based virtualisation (mainly
block-oriented access)
Virtualisation via NAS (mainly file-oriented
access)
Nearline virtualisation (also known as tape
virtualisation)
SAN fabric partitioning (virtual or logical
SAN) and NAS partitioning
LUN virtualisation via intelligent SAN switches
virtualisation functionality bound to fibre
channel switch ASICs
In-band virtualisation appliances
Server-based Volume Manager

Emerging technologies

Virtualisation via grid-based file system is
looked at as emerging technology

Not every virtualisation layer has to be in place and
not all combinations are possible due to restrictions in
the relevant support matrices or due to other reasons.
E.g. a connection needs not or in some cases even
must not go from a standard LUN trough a VSAN
trough ASIC-based virtualisation through a Volume
Manager.

1. Storage Virtualisation in the IT
Ecosystem

Storage Virtualisation has to be seen in a broader
context within the data center infrastructure. The
Dynamic Data Center (DDC) architecture from Fujitsu
Siemens Computers describes this IT architecture that
represents a breakthrough compared with existing
paradigms. The focus of the DDC is on services that
are provided to end users and the service level
agreements (SLAs) that define the quality of provided
services in terms of response times, availability, etc.
The demanded quality should be offered at as low a
price as possible (efficiency), and the IT in question
should be able to adapt rapidly to changes in business
processes (flexibility).

The DDC is therefore based on new hardware and
software architectures that enable greater efficiency
and flexibility, yet the very highest reliability. These
architectures are complemented by concepts for
integrating them in existing IT operations and running
them efficiently.

Dynamic IT infrastructures must be developed on
the basis of these new application architectures so that
across-the-board successes can be achieved in IT
efficiency and IT flexibility, yet stable operation is
maintained. Ideally, every service can run on any
system and be relocated between systems in a short
time. The first step in this is to divorce the services

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 107

from dedicated hardware platforms via virtualisation.
All hardware resources (servers and storage systems)
are grouped in pools, from which they can be used
flexibly as required. The traditional silo-like n-tier
architecture is replaced gradually by a DDC
architecture.

The operation of virtual and real resources is largely
automated: “IT manages IT”. If resources fail or are in
short supply, corrective actions are initiated
automatically by automation. Resources are
automatically provided to services on the basis of
predefined rules. These rules are based on the concrete
business processes and resulting agreements with the
users of the services and are specified in service level
agreements (SLAs). Ideally, the services are charged
according to degree of usage and required Quality of
Services.
2. Driving forces for Storage Virtualisation
The overall goal of Storage Virtualisation is improving
agility and Total Cost of Ownership (TCO). This can
be achieved in different dimension whereas the
different dimensions have interdependencies of some
kind. The most important dimensions are:

Better utilisation
Manage heterogeneity
New features on existing hardware

2.1. Better Utilisation
The first measure to improve utilisation is to provide
resources via resource pools. It is not mandatory to
work only with a single huge pool. In reality the
resource pool will be divided into more than one pool
according to the Service Level Requirements. In reality
we won’t see too many different resource pools. The
number will start with two and level out at five as the
differentiation between Service Level requirements
will be then to small.
Based on the resource pools the virtualisation layer can
then realise automatic load balancing. This will
increase overall utilisation as the space limit for
growth is defined once for the complete pool and not
for each LUN in the pool.
Different pools with different Service Level
agreements form the basis for autonomous transparent
storage tiering. The rule engine will be provided by the
integrated rule engine in an Information Lifecycle
Management concept (ILM). The maturity of the
integrations differs depending on the virtualisation
layers.
2.2. Manage heterogeneity
As the virtualisation layers hides the physical attributes
of the storage systems the storage systems behind the
virtualisation layer can be from different suppliers.
Most of the management will be done in the

virtualisation layer so that one management tool can
manage heterogeneous storage.
This applies also for technology refresh. In these cases
it is necessary to migrate data from old storage systems
(probably with a different architecture) to newer
storage systems. The virtualisation layer can hide these
differences and can transparently migrate data.
2.3. New features on existing hardware
Each storage system has some limitation e.g. maximal
number of LUNs, maximal numbers of SnapShots etc.
Modern storage virtualisation solutions not only
virtualise the LUN presentation but they offer all the
extended storage functionality such as SnapShots,
replication etc. By moving these functions from the
storage arrays into the storage virtualisation layer it
gets independent from the limitations of the storage
systems in the back-end. As a by-product these
functions will then work across heterogeneous storage
systems. On the other hand it does not make sense
using the extended storage functionality in the
virtualisation layer and in the back-end in parallel.
Therefore expensive functionality on existing storage
in the back-end may lose its value when moving this
functionality into the virtualisation layer.
3. Virtualisation layers
In the storage area we can identify many points where
virtualisation can take place. At SNIA we can find a
systematic view on these locations. SNIA
differentiated the following areas.

What is created
Where is it done
How is it implemented

3.1. What is created
This area falls into the following sub-blocks: “Block
virtualisation”, “Disk virtualisation”, “Tape, Tape
Drive, Tape Library Virtualisation”, “Filesystem / File
/ Record Virtualisation” and “Other Device
Virtualisation”. Most of these points are self
explanatory. Some parts such as “Object Storage
Devices” have to be linked to a sub-block. This could
be either “Disk Virtualisation” or “Other Device
Virtualisation”.
3.2. Where is it done
At a high level view SNIA differentiate between
“Host-based / Server-based Virtualisation”, “Network-
based Virtualisation” and “Storage Device / Storage
Subsystem Virtualisation”.
3.3. How is it implemented
Here we have only two blocks: “In-band
Virtualisation” and “Out-of-band Virtualisation”. With
the latest development we should add “Split Path
Virtualisation”.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 108

In-band Virtualisation means that the Virtualisation
layer sits in the data path. All I/O have to travel
through this layer. The main advantage is the single
point of virtualisation. On the other hand this can lead
to scalability issues. In the out-of band model the
virtualisation layer is outside the data path. The I/O
path stays as it was before. This model provides the
best performance but normally requires special drivers
in the host- / server systems. Split Path Virtualisation
makes use of intelligent switches. Redirection etc. is
done in the switches. The virtualisation management is
outside the switches. There is only a small additional
latency due to the redirection etc. in the switches. In
general this solutions scales as a normal switch
architecture would scale.
4. Storage virtualisation stack
This above mentioned SNIA Model gives an good
overlook but when we have a closer look we can
identify more virtualisation points.
Partitioning of hardware or software resources is also a
kind of virtualisation. Partitioning can be realised in
the storage arrays, in the tape libraries or on the
switches. Partitioning generates two or more separated
views which have separated resources on the same
basic hardware.
ILM in the box is another example of virtualisation.
The clients will see only one interface. However the
system will internally deploy different tiers for data
storage. The ILM level can be realised on block levels.
For instance the system will then move e.g. rarely
accessed blocks from one tier to another tier in the
same system. More common is the ILM in box for
arching systems. Complete files would then be
migrated from disk storage to tape storage in a
transparent way.
A next level is the so called spindle virtualisation.
Presenting LUNs (Logical Units) has been an
established technology for years. On top of the LUNs
we have the different RAID-levels. In this area we can
also position thin provisioning. This means that the
client sees more space than is actually physically
allocated. The physical allocation takes places when
the customer writes the first time into an area. The
advantage is that one can logically allocate the
maximum e.g. to a file system and there is no need to
expand the file system. On the other hand this needs
careful planning as over-allocation can happen.
In the next block towards the server network-based
virtualisation comes into play. This functionality is
already defined in the SNIA model.
A relatively new virtualisation layer is the host channel
adapter virtualisation. N-port ID virtualisation realises
many logical I/O channels between the switches and

the host / server systems. This can reduce especially
the number of up-links into the network as more than
one connection can be established on the up-links.
Going up in the storage virtualisation stack we have
the virtual volume manger. In principle it is the same
idea as with spindle virtualisation but on a higher level.
LUNs can be sliced or concatenated and volume
manager normally offer different RAID levels. Volume
manager can work on heterogeneous storage. Volume
manager normally have only the view of one host /
server system but this will change in future. Volume
manager implementations on different operating
systems differ substantially.
Grid-based file systems are on top of the virtualisation
layer. At the level of Grid-based file systems one can
differentiate between clustered file systems and
parallel file systems. Cluster file systems store the
metadata distributed on back-end storage whereas on
parallel file systems normally the metadata are
managed by special nodes (metadata server).
Partitioning, ILM in the box and spindle virtualisation
is realised in the storage systems itself. Storage
network-based virtualisation is either realised via
special appliances or it makes use of intelligent fibre
channel switches. Host channel adapter virtualisation,
volume managers are normally deployed on the host
systems. Grid based file systems consist of more than
one storage node. The physical storage is either direct
attached storage in the nodes or external storage which
attached via fibre channel or iSCSI.
5. Virtualisation pro and cons
5.1 Pros
In virtualised environments one can mix and match
different storage arrays. They can be from different
vendors. Virtualisation breaks the vendor lock-in in
this area. The storage can also incorporate storage with
different quality of services. The storage virtualisation
layer will then pool the different quality of service area
and provide this storage via different pools to the
users. If the higher functionality is moved into the
virtualisation layer then cheaper storage can be
deployed at the back-end. The virtualisation layer
provides a consistent feature set in heterogeneous
environments and a single point of administration to a
certain extent. In total this improves agility and TCO.
5.2. Cons
In mostly all implementations the virtualisation layer
introduces an additional management and monitoring
layer as the management of the storage can only
moved to the virtualisation layer to a certain extent.
Error diagnostics or physical extensions normally have
to be carried out in the storage systems itself. With in-
band implementations the scalability issue has to be

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 109

looked carefully. If out-of band virtualisations are
based on host-based agent then software dependencies
have to be considered which is harder to manage.
Split-path and in-band implementations have to be
considered as new storage systems. This requires
certification and qualification.
6. Block-level Virtualisation
At the block-level virtualisation one has to
differentiate between in-band, out-of-band and split-
path implementations. In-band virtualisation
implementations are normally based on appliances
which can even consist of standard server hardware.
As each and any I/O has to travel through this
appliance scalability is an issue. On standard server
hardware the bus systems will be most likely the
limiting factor. The out-of-band implementation does
not introduce new hardware into the data path.
Scalability should be the same as if there were no
virtualisation layer. The management of the
virtualisation layer will then be realised in a separated
instance outside the I/O-path. Array-based
virtualisation implementations are hard to classify into
these categories. At array-based implementation
heterogeneous storage or storage arrays are attached to
the array with the virtualisation layer.
Block-level virtualisation is not always completely
transparent. This should be discussed on the example
of thin provisioning. If the storage resource
management is only deployed on the host systems it
will see the total storage as available even if it is only
logically attached. Real benefits of thin provisioning
are only given if the application stack can work with
this feature (e.g. Autoextend with Oracle).
Block-level virtualisation differs substantially in the
enterprise and entry market. In the enterprise market
functionality and high availability are the dominating
factors. In the entry market many projects are faced
with integration issues. Customers seek for new base
functionality for existing old storage at low price
points.
7. File-level virtualisation
File-level virtualisation is mostly based on the NFS or
CIFS interface. Beneath the virtualisation layer file
servers or NAS systems form the basis. This
virtualisation is most successful in the high-end
segment. Transparent migration of files is the most
cited value proposition. First placement and load
balancing come next. Managing a Global Name Space
is a mandatory functionality for transparent migration,
load balancing, first placement etc. File-level
virtualisation supports consolidation, tiered storage and
provides a single point of management for
heterogeneous systems. In principle there exist two

different implementations. The file-level virtualisation
layer is either implemented as an appliance (often on
adjusted network switch hardware) or is a pure
software solution which manages an external Global
Name Space.
8. Nearline Virtualisation
The value proposition of nearline virtualisation is clear
and easy to understand not only in the mainframe area
but also for open systems. Nearline virtualisation is not
a nascent market. Nearline virtualisation is based on
proven technology. Fujitsu Siemens Computers’
CentricStor is a de-facto standard.
CentricStor is a powerful virtual magnetic tape
solution which enables fully integrated ‘disk-to-disk-
to-tape’ data backup for all corporate data.
CentricStor is implemented as a transparent
virtualization layer between mainframes, servers and
magnetic tape systems. CentricStor has a virtual
interface to the servers and so supports many servers,
operating systems and software programs for data
backup like no other solution.
With CentricStor, you can consolidate many magnetic
tape archives simultaneously and thereby reduce
overall running costs (TCO) because you need fewer
tapes, drives and magnetic tape systems. CentricStor
also dramatically shrinks the time windows required
for data backup and at the same time speeds the
recovery of data from business-critical applications.
Unlike conventional monolithic ‘virtual tape libraries’,
CentricStor is what is termed a ‘virtual tape appliance’
(VTA) which uses a flexible, modular CentricStor grid
architecture (CGA) and true magnetic tape
virtualization, also called ‘true tape virtualization’
(TTV).
CentricStor offers unprecedented scalability,
connectivity and data recovery following a system
crash, as well as a substantially reduced total cost of
ownership (TCO) in terms of data backup and restore,
business continuity, HSM and batch processes.
CentricStor also supports a wide range of service level
agreements (SLAs) which are necessary when an
organization wants or is required to align its data
storage with an information lifecycle management
(ILM) strategy.
All this makes CentricStor the only virtual magnetic
tape solution with which magnetic tape technology is
made suitable for ILM concepts.
9. Virtualisation on Grid-based file systems
Traditional storage areas consist of limited storage
processors. In most cases the array can be equipped
with two storage processors which form a high
availability cluster. This concept limits the throughput
as each I/O needs some resources on the storage

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 110

processors. Grid-based file systems however scale not
only in direction of capacity but also in the direction of
throughput. In theory Grid-based file systems don’t
have limitations in the number of nodes. In reality
there are of course limitations. The reasons are test
time, test resources, type of implementation as
clustered file system or parallel file system etc. The
communality between the implementations is that most
of them can run on standard server hardware. There
are many implementations on the market (in the range
of hundreds). Comparing the different implementations
is difficult as there are many requirement dimensions.
Following are some examples:

Scalability (# of nodes, single file system or
maximum number of files systems)
Virtual filers which can be easily moved
between nodes
Based on industry standard servers or on
special hardware
Type of interconnect between the nodes
Cluster RAID (wide stripping), RAID-level,
rebuild architecture in the case that one or
more disks fail
Software availability (snapshots, thin
provisioning, local / remote replication)
Management concepts / management
interfaces, dynamic expansion / reduction of
nodes
Front-end: Interfaces (NAS, iSCSI, FC)
Back-end: DAS or external storage.

10. Server & storage virtualisation
working together
The above discussed virtualisation stack shows the
most important virtualisation layers. In reality one will
make use of only a few selected virtualisation layers.
On the other hand we have the server virtualisation
which needs storage resources. Server and storage
virtualisation have to work together. Server and
storage virtualisation has also to work together with
network virtualisation but network virtualisation is not
covered in this paper. Following we explain some
examples where server and storage virtualisation work
together.
10.1. Blade servers
Normally each blade server needs storage (and
network) connection to the infrastructure. In a rack
with many hundreds of blade servers this lead to high
number of necessary ports on the edge switches. With
blade switches supporting the N-Port IP virtualisation
the necessary up-links to the edge switch can be
reduced as more than one logical connection can be
transported over a physical up-link.
10.2. Server virtualisation under VMware

The next point for improvement can be seen in the
storage addressing scheme in fibre channel and
VMware environments. Normally the ESX system
holds the World Wide Name (WWN). In the next
iteration of VMware together with N-Port ID
Virtualisation it will be possible that each guest system
will see its own WWN. This improves security so that
even more applications can be moved into virtualised
server and storage environments.
Working with VMware often means that the storage of
the guest systems is virtualised in the VMware File
System.
The first option for doing backup is running the
backup jobs in each guest system. The advantage is
that all the existing features can be used which can put
the applications into consistency states (transaction
consistency). On the other hand backups consume a lot
of resources and can only use such backup devices
which are supported by the ESX server.
Another option would be running the backup on the
ESX server. This option is very limited as the backup
software needs qualification by VMware.
To improve this situation VMware introduce the
Consolidated Backup (VCB) which can be carried out
from a separated backup server. The advantage is that
range of supported devices is much broader as on the
ESX server. Additional the method opens easy file by
file recovery especially in heterogeneous Windows
environments.
10.3. Provisioning
Dynamic Data Center solutions work with autonomic
cycles. Based on a storage pool the autonomic cycle
monitors the configuration, analyses status, adapts the
configuration based on rules and the information
which were gathered in the previous steps and executes
the necessary actions. Dynamics means that storage
space can be provisioned dynamically. For example if
in the autonomic deploys new / additional servers the
new servers needs storage accordingly. This process is
managed via provisioning. Normally complete LUNs
are provisioned by the autonomic cycle but this is not
limited to this. Another example would be CIFS or
NFS shares. Storage Virtualisation will help
dramatically to improve the flexibility as the entities
can be taken out of a storage pool even in
heterogeneous environments.
10.4. Transparent Migration
With the technology available today each
configuration has to face the problem of technology
refreshes. In traditional configurations this was
managed by unloading data from the old storage
system to backup media and afterwards loading the
data from the backup media to the new storage system.
The main disadvantage was that this needs exclusive

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 111

time windows during this time the application could
not work in update mode. With the increased
requirements these windows are no longer available.
Thanks to the virtualisation layers available today
these migration process can be done without
application interruption especially when the data
already have been put under the management of the
virtualisation layer. All further migration processes
will then run with no application interruption. One
example for this technology is CentricStor from Fujitsu
Siemens Computers. The “True Tape Virtualisation”
will shield the application layer completely from the
physical layer. Technology refreshes or in general term
“Migration” is no longer a SLA (Service Level
Agreement) issue.
11. Summary
Virtualisation via partitioning is the most transparent
approach and it is widely accepted

ILM in the box is an interesting approach but the
solutions on the market address special market
segments such as archiving. Maybe we will see more
solutions in future.

Presenting disks as LUNs has been an established
technology since years. The same is true for NAS
systems. In the area of LUN virtualisation there are
some extended features such as thin provisioning.

For block-level virtualisation a new battle will start for
split-path, in-band and array-based virtualisation.
Special segments are addressed with host-based
virtualisation especially in the high-end Unix-market.

Many projects in the entry segment for block-level
virtualisation are faced with integration of existing
storage (e.g. new live / features into old storage.

File-level virtualisation delivers interesting features for
transparent migration, load balancing or first
placement if it is implemented as in-band functionality.

Nearline virtualisation is an established market with
well understood ROI. Fujitsu Siemens Computers’
CentricStor is the market leading solution.

Using commodity hardware components in Grid-based
file system solutions is getting more and more
attractive. This emerging market will start in special
segments and enlarge into enterprise market.

OSD (Object Storage Devices) is a future market. In
principle controller hardware will provide enough
resources to realise OSD but this has to be integrated /
adjusted with I/O stack above which needs a lot of
work to be done.

All these virtualisation layers support the Dynamic
Data Center concept with its autonomic cycle.
Combining Server Virtualisation, Storage
Virtualisation and Dynamic Data Center concepts
helps customers to makes huge progress in the
direction of Service Oriented IT infrastructures.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 112

Storage Cluster Architectures ∗

André Brinkmann
University of Paderborn
brinkman@hni.upb.de

Sascha Effert
University of Paderborn

fermat@upb.de

Abstract

Storage clusters try to transfer the idea of cluster com-
puting into the storage domain and to scale capacity and
performance by simply adding new cluster components.
This paper presents the architecture of storage clusters and
presents analytical considerations on the scalability of stor-
age clusters and presents a storage cluster architecture
based on peer-to-peer computing. It is shown that stor-
age clusters are able to scale up to hundreds of servers and
clients. The storage cluster environment has been success-
fully implemented and tested on a Linux based HPC-cluster.
The measurement results presented in this paper demon-
strate the feasibility and scalability of this architecture.

1 Introduction

Cluster-based storage tries to transfer the idea of clus-
ter computing into the storage domain. A storage cluster is
based on a set of storage appliances, called storage bricks,
which work together closely and can be seen, from the out-
side, as a single, huge and fast storage system. The storage
bricks are managed by a storage cluster middleware that is
implemented as a software system managing the distributed
state information about the storage cluster [17].

A major distinction between storage clusters and con-
ventional storage architectures is that storage bricks are
assembled based on commodity server architectures, en-
abling cost-savings compared to dedicated architectures [3].
Therefore each storage brick does not only provide storage
capacity, but also computing and communication power.
The computing capabilities enable a storage brick to con-
tain a software management stack and to act as a storage
appliance. The software stack inside a storage brick is re-
sponsible for a seamless integration of the brick into the
cluster environment. Integrating a new storage brick there-
fore only involves the assignment to a storage resource pool,

∗This work has been partially supported by the EU within the 6th
Framework Programme under contract IST-511531 Highly Predictable
Cluster for Internet Grids (HPC4U).

all other administration tasks, like authentication or rights
management, are handled by the middleware. A character-
istic element of storage clusters is that adding new storage
bricks does not only increase storage capacity, but also the
performance of the entire cluster.

Storage bricks can either use directly attached storage or
networked storage as persistent storage. In the first case,
only an interconnection infrastructure between the nodes of
the storage cluster and to the client systems is necessary
to provide scalable storage. In the second case, the bricks
have to be connected to the networked storage systems over
a storage area network, inducing additional costs and com-
plexity, but also enabling the bricks to share storage devices
without communication between the bricks.

The idea of a storage cluster as a collection of smaller
components is closely related to storage virtualization and
has been implemented first in the Petal prototype [13]. The
main task of a storage cluster is to hide the complexity of
the underlying storage systems by using a block-based stor-
age virtualization environment or a distributed file system
[20] [16] [9]. An example for an academic storage clus-
ter is Ursa Minor, which provides access to objects instead
of files or blocks and which is able to change data encod-
ing and therefore performance and reliability of data ob-
jects based on attributes and access patterns [1]. The aim
of the Federated Array of Bricks (FAB) is to deliver enter-
prise properties from a set of storage bricks at a fraction of
the costs of an enterprise storage array [19]. The V:Drive
project is based on randomized data distribution schemes,
which are able to evenly spread data and accesses among
all participating bricks and offer fast reorganization in case
of failures or the integration of new bricks [6].

Storage clusters often use Ethernet as interconnection
technology to the clients and between the storage bricks. In
this paper we will focus on Internet SCSI (iSCSI) as inter-
connect protocol, which has been developed as an extension
of the SCSI protocol environment for TCP/IP based net-
works [22]. Additional block level storage protocols over
Ethernet are HyperSCSI, NBD, and ENBD [23][2]. It is of
course also possible to use high speed networks like Infini-
band or Myrinet as interconnect between the bricks or to the

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 113

clients.

Inside this paper we investigate the sub-class of stor-
age clusters where storage bricks use directly attached stor-
age devices as persistent storage with a block-level inter-
face. Furthermore, we assume that clients are not allowed to
load proprietary drivers to support access to these devices.
This is a key requirement for building open systems RAID-
System, which are offered by vendors like Equallogic or
LeftHand Networks [8].

The requirements concerning this storage cluster ar-
chitecture differ significantly from approaches like Petal,
where clients load an additional module that gives hints
about the data location, and it differs from Ursa Minor that
is based on the concept of object storage devices, where
accessing clients also know where to access data. The ar-
chitecture of the FAB-project is closely related to the archi-
tecture used inside this paper, but the publications do not
consider the influence of the interconnection network be-
tween the peers on scalability.

The performance of this sub-class of storage clusters
mainly depends on two different aspects: The ability to
evenly spread data blocks and requests to the data among
the storage bricks and the communication overhead be-
tween the peers. The communication between the peers is
especially important, if the hard disks are as fast as or even
faster then the communication links. This can occur if a set
of disks inside each storage brick is used as internal RAID
environment and the access pattern is sequential or if solid-
state disks are used as persistent storage. Communication
between peers is always necessary, if a peer needs to access
data that is stored on another peer.

After giving a introduction into the system architecture
and cost aspects in section 2, we analyze the influence of
inter-node communication on the scalability of the network
in section 3. The calculations are based on the assumption
that the interconnect is the bottleneck of the network and we
show that the internode-communication has got a significant
influence on the performance of a storage cluster.

The analytical results of this paper are complemented
by measurement results for scalable storage clusters in sec-
tion 4. The measurements have been performed on a high
performance computing (HPC) cluster environment under
Linux. Based on a storage cluster architecture that has been
composed from publicly available components and the clus-
ter volume manager V:Drive we show that the analytical re-
sults fit very well with reality. We will present the measure-
ment results for up to 24 cluster nodes and 24 client nodes
including data replication schemes. Part of this work has
been previously published in [3] and [4].

2 Technology

Standard server and interconnection architectures have
become powerful enough to compete with dedicated stor-
age architectures. Two important aspects of storage clus-
ter hardware are the interconnection network between the
nodes of the storage cluster and the connection between the
nodes and the persistent storage. From the software per-
spective, the most important performance challenge is to en-
sure an even balancing of the data request among the nodes.
Otherwise, peak demands can (and will) endanger system
scalability.

In the following, we will discuss the basic hardware and
software components of a storage cluster and their influence
on costs and performance. After presenting the overall sys-
tem architecture, we focus on technologies for building stor-
age clusters based on direct attached storage devices (DAS).
The scope of the section Cluster Interconnects is on inter-
connection technologies between the cluster nodes.

2.1 System Architecture

Storage clusters are built as peer-to-peer solutions, where
each peer / brick is a standard server system. Each client of
the storage cluster can be connected with an arbitrary stor-
age brick and each request can be served by every brick (see
Fig. 1). The connection between clients and storage cluster
is normally based on Gigabit Ethernet; interfaces can either
be a block level interface, like iSCSI, or a file interface like
NFS or CIFS. If the bricks are connected to the disks via a
storage area network (SAN) then the only communication
between the peers involves the exchange of meta informa-
tion. In our case, the bricks utilize their internal storage.
To ensure that each brick can access every data block, also
bulk data has to be exchanged between the peers. This data
exchange can be done via a dedicated high speed network,
like Infiniband or Myrinet, or in our case via less expensive
standard Ethernet connections.

As major software component, a virtualization layer has
to ensure that all bricks have got the same, consistent view
on the data. This virtualization can either be performed by
a block-level storage virtualization or by a distributed file
system. Standard server architectures are less reliable than
dedicated storage systems and the virtualization layer there-
fore has also to ensure that data is protected against the fail-
ure of one or more storage bricks.

2.2 Storage Interconnects

The different technologies for the interconnection of
server nodes and persistent storage can be distinguished in
two categories. Direct Attached Storage (DAS) describes

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 114

storage systems, which are directly connected with a sin-
gle server node. Opposed to DAS environments, the stor-
age systems inside a Storage Area Network (SAN) are con-
nected with the servers via a dedicated physical network.
In a SAN, a large number of servers can be connected with
the same physical storage systems. As we will see in sub-
section SAS and SAS-expander, the new serial SCSI tech-
nology is building a bridge between the concept of direct
attached storage and storage networks and tries to mix the
best properties of both approaches. In this paper we will
concentrate on ATA, SATA, SCSI, and SAS, which are used
as direct attached storage systems inside storage bricks. For
a description of SAN-storage systems, see e.g. [7].

ATA and SATA: The Advanced Technology Attachment
(ATA) standard defines a set of interfaces for the direct in-
terconnect between storage systems, like hard disks or CD-
ROMs, and computer systems. Besides the standard defini-
tion as ATA, the technology has also been named as Inte-
grated Drive Electronics (IDE) or Enhanced IDE (EIDE).
The name IDE and EIDE is pointing to the controllers,
which have been integrated into the storage systems.

To overcome the drawbacks of parallel ATA (PATA) at
higher frequencies and cable lengths and to enable higher
data throughput, Serial ATA (SATA) has been introduced
in 2003. The first generation of SATA interfaces supports
frequencies up to 1.5 GHz and uses a Low Voltage Dig-
ital Signalling (LVDS) scheme. Using differential signal
transmission, a signal change triggers both used wires to
change their voltage level at the same time, but with differ-
ent phases. LVDS is able to substantially reduce interfer-
ence liability and enables the increase of wire length to 1
m while simultaneously boosting the data transfer rate. Be-

Figure 1. Storage cluster architecture.

sides the 1.5 GBits/s standard, the 3 GBits/s standard and
corresponding storage devices are already available.

Important technical innovations of the standard are hot
swapping of storage devices and the introduction of Native
Command Queuing (NCQ). NCQ enables reordering of re-
quests inside the storage systems to increase data through-
put [11]. Furthermore, current SATA hard disks posses bet-
ter reliability and higher meantime between failures. The
integration of advanced error detection schemes, queuing
mechanisms and the elimination of jumpers enable the us-
age of SATA hard disks in web servers or in RAID environ-
ments [14].

SCSI and SAS: The Small Computer System Interface
(SCSI) is the eldest of the addressed storage interconnects.
Classical SCSI hard disks use a parallel interconnect for the
data transfer and distinguish between dedicated data and
control wires. The SCSI standard is able to address up to
4 (later 16) devices, which are connected in a daisy chain.

SCSI has become much more than a standard for host
bus adapters that can interconnect hard disks and computer
systems. The upper level defines a set of commands, while
lower levels define interconnect technologies. The inter-
connects range from classical, parallel SCSI to serial data
transfer technologies, like Fibre Channel, FireWire, Serial
Attached SCSI, and even to the iSCSI protocol, which en-
ables the transport of block oriented SCSI commands over
the Internet.

Serial Attached SCSI (SAS) starts to replace present par-
allel SCSI interfaces on the physical transmission layer.
Parallel SCSI reached its physical limits with the current
Ultra-320 SCSI standard and has to cope with similar prob-
lems such as parallel ATA interfaces. The changeover to
serial transmission technologies should overcome the prob-
lems of different signal transmission times on long wires
and of crosstalk at high transmission frequencies [21].

In contrast to parallel SCSI interfaces, SAS defines
point-to-point connections between devices with a connec-
tion speed of up to 3 GBit/s (net performance 300 MByte/s)
in each direction and for each physical interface. To en-
able redundant architectures, SAS envisions dual porting in
SAS hard disks, where each port has got a different address.
This means that each SAS hard disk has got two ports and
each port can be assigned to a different host bus adapter.
To overcome the limitations of a single host bus adapter,
SAS introduces the concept of fanout and edge expanders,
which are the foundation of SAS networks with up to 16256
SAS devices in a single environment. At most one fanout
expander is allowed in an environment [18].

Based on their simple interconnection topology and the
fact that each SAS port is only allowed to be interconnected
with a single SAS address at each point in time, SAS is not
classified as a storage area network. An interesting feature

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 115

of SAS controllers is that they support direct attachment of
native SAS hard disk as well as the integration of SATA
disks. The attachment of SAS hard disks to a SATA con-
troller is not possible.

Comparison of disk technologies: SATA and SAS de-
vices have inherited many properties of their ancestors ATA
and SCSI. E.g., many SATA devices are just IDE disks with
a new interconnection interface. The pricing of SATA de-
vices is therefore similar to the pricing of IDE disks (see
Fig. 2(a)). Requiring only a new interface chip, the costs
per GByte of a SATA disk differ only marginally from an
IDE disk of the same size. There are only very few devia-
tions from this behavior, where some SATA disk are priced
in a range between 2 Euro/GByte and 4 Euro/GByte1.

Examining Fig. 2(b) and Fig. 2(c) it becomes obvious
that these disks differ both in speed and reliability from
standard ATA devices. In both cases, former enterprise-
class SCSI hard disks have been redesigned with a new
SATA interface. Afterwards, these disks have been posi-
tioned between SATA and SCSI hard disks and are an inter-
esting alternative for building reliable disk environments.
Comparing SAS devices with SCSI and FC devices, it can
be observed that there is a significant price gap. SAS tech-
nology is still that new that SAS drives are getting a price
offset compared to standard enterprise class devices. It can
be foreseen that SAS devices will become comparable in
pricing with SCSI and FC devices over the next few years.

It is important to notice that the meantime between fail-
ure (MTBF) of ATA/SATA and SCSI/FC/SAS devices can
not be directly compared. Enterprise class disks are tested
under the assumption that they are accessed 24 hours a day,
ATA/SATA devices are assumed to be accessed only 25% of
the time. Increasing this on-time can lead to a significant de-
crease of the MTBF, leading to less reliable environments.

2.3 Cluster Interconnects

The nodes of a storage cluster, the storage bricks, can
be connected with each other via different network tech-
nologies. These interconnects between the nodes differ in
terms of bandwidth, latency, and cost. Nevertheless, the
scalability properties of a storage cluster are significantly
influenced by the physical properties of the interconnection
technology between the nodes.

From the perspective of the physical implementation of
the interconnection technologies, the different approaches
for cluster environments become more and more similar.
All technologies offer or will offer in the near future a band-
width of 10+ GBit/s. Differences can be seen on the proto-
col layer. Ethernet is closely related to the TCP/IP protocol

1All cost estimates inside this paper are from February 2007.

(a) Costs per GByte

(b) Costs vs. RPM

(c) Costs vs. MTBF

Figure 2. Cost comparison for different disk
technologies

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 116

Figure 3. Cost comparison of different server
configurations.

stack that is used in local area networks and in wide area
networks. Based on the protocol and software overhead of
the TCP/IP protocol, latencies of Ethernet interconnects are
still a magnitude higher than latencies of dedicated cluster
interconnects, like Myrinet or Infiniband.

2.4 Cost Scaling of Storage Clusters

Storage costs are composed from a variety of different
parts. Besides the investment into storage hardware, they
also include software, integration, management, and addi-
tional costs and can be distinguished into one-time costs
and recurrent costs . Besides the initial hardware costs, only
the initial software costs can be easily identified. Most out-
of-the-box environments, including pre-integrated storage
clusters, can be installed within a few hours from most ad-
ministrators. On the other side, building a storage cluster
based on open or closed source software for the first time
from scratch can take many weeks or even months before
the environment is ready to be used in a productive environ-
ment, leading to storage costs much higher than the initial
hardware costs. This would contradict one of the major ad-
vantages of storage cluster architectures, their simplicity in
design and scalability.

The costs of a storage cluster can be influenced by the
overall capacity, speed, and reliability of the environment.
Inside this paper, we only analyze Gigabit Ethernet based
server architectures from a single vendor, which are either
equipped with SAS or SATA devices.

Fig. 3 compares two different servers with a dedicated
iSCSI storage server. The price comparison shows the influ-
ence of the server price on the price per GByte of a storage
brick. Being equipped with complete server hardware, the

offset of the base system is much bigger than the price of the
hard disks themselves, forcing a storage brick to integrate as
much hard drives as possible. The 1U server is only able to
integrate 4 hard drives and therefore has to cope with high
costs for the processor, RAID controller, and cache RAM.
The influence of this offset becomes even higher if the in-
ternal HW RAID-controller uses one of the disks as parity
disk inside a local RAID group and therefore the usable ca-
pacity decreases by 25%. It is interesting to observe that
the dedicated iSCSI server has nearly the same costs per
GByte as a 2U server with 8 750 GByte disks, especially as
the dedicated iSCSI server, which can not be scaled up to
form to a storage cluster, is build up from standard server
hardware and the disk density has been increased to 15 hard
drives. This gives an insight into the cost calculation for
the storage software, which includes in this case snapshot
functionality and the iSCSI interface. More detailed exam-
inations of cost factors in storage cluster architectures can
be found in [3].

3 Communication Overhead between Peers

Scalability inside a storage cluster is bounded by a num-
ber of factors. Important aspects concerning the scalabil-
ity are the ability of the data distribution to balance data
and requests among the peers and the communication over-
head between the peers that is induced by the exchange of
data and information between the peers and the underly-
ing network technology. In this section we will focus on
communication between peers and we will assume that this
kind of communication is only necessary to exchange data
blocks and that only small amounts of metadata have to be
exchanged between peers. Furthermore we will assume in a
first step that the underlying data distribution scheme is able
to evenly distribute data among the peers, so that all peers
are able to participate according to their storage capacity
and performance. An even distribution of accesses can ei-
ther be achieved by striping the data over the peers or by
using a distributed hash function that randomly distributes
data over the peers [12] [6] [10].

Communication between two peers is necessary if a peer
needs to read or write data stored on another peer. Figure
1 depicts a typical read inside a storage cluster. A client is
connected to one storage brick inside the cluster that acts
as iSCSI target for this client. This storage brick will be
called master peer for this client in the following. In a first
step, the client sends a read request to its master peer. If the
master peer does not store the corresponding data block, it
has to forward the request to a peer in step 2. The peer reads
the data block from its cache or disk subsystem and returns
the data block in step 3 to the master peer. In a last step, the
master peer sends the resulting data block to the client.

This process does not only involve the forwarding of

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 117

control messages between the peers, but also the movement
of bulk data from the peer containing the data to the mas-
ter peer. This movement seems to be unnecessary, because
this data block could be (theoretically) sent directly from
the data source to the client. Unfortunately, this is not pos-
sible for iSCSI and other protocols, which are based on the
TCP/IP protocol. iSCSI requires for each communication to
build up a socket between an iSCSI initiator and an iSCSI
target. If the iSCSI- or TCP/IP-stack inside the client can
not be adapted to the demands of the storage cluster, it is
not possible to transparently move the target endpoint of
the socket connection without the use of an intelligent in-
termediate switch or server [15].

3.1 Analyzing the Expected Scalability

In a first step, we will analyze the expected scalability
of storage clusters. We will assume that the performance is
restricted by the interconnection network between the peers
and from the peers of the storage to the clients. This as-
sumption is valid for sequential access patterns as well as
for random access patterns on Flash RAM-based hard disks.
Furthermore, we will assume that each client is always con-
nected with exactly one peer and that the clients are evenly
distributed about the peers.

Assuming a fixed connection between a client and one
storage brick inside the storage cluster and a striped or ran-
domized data distribution scheme, the probability that an
access can not directly be served by the master peer of a
client growth linearly with the size of the storage cluster.
If the cluster contains n nodes, only 1/n-th of the requests
could be served directly from a master peer. The remaining
requests have to be forwarded from the master peer to peers
containing the correct information.

In the following we will analyze the impact of this be-
havior on the scalability of the storage cluster. The network
bandwidth that can be delivered from a single node system
to its clients will be denoted by b. In the optimal case, the
network bandwidth xn delivered from one storage brick in a
storage cluster with n nodes is equal to b and the total band-
width delivered by n peers is Btotal = n · xn = n · b. In a
real environment, we expect a behavior of type

B = f(n) · α · b (1)

as first order approximation, where f(n) is a function ex-
pressing the scalability depending on the number of nodes
n and α denotes a constant parallelization overhead (nearly)
independent of n. In the investigated case, the paralleliza-
tion overhead α is e.g. induced by a constant number of ad-
ditional communication rounds between the peers exchang-
ing requests.

Inside this extended abstract, we will consider the scala-
bility of m-out-of-n codes. These codes have the advantage

that the required redundancy to store data can become much
smaller than for pure data replication; e.g. parity RAID
with 4 data blocks and one parity block has an overhead of
only 25%, compared with an overhead of 100% for mirror-
ing with the same degree of data protection. This increase
in storage efficiency normally includes a decrease in per-
formance. The change of a sub-block requires that at least
two sub-blocks are being read and two sub-blocks are being
written to keep the parity block consistent. In the follow-
ing, we will denote (due to consistency reasons inside this
paper) the parameter n of the code as q and the parameter
m as w.

We will show that this increase in storage efficiency can
also be used to decrease network load if the environment
is able to write full stripes. In this case, the redundancy
blocks can be calculated without reading data from stor-
age and without straining network bandwidth. It is possi-
ble to calculate the usable bandwidth for writing data for
full-duplex connections as:

b = max
(

xn +
w

q
· n − 1

n
· xn,

w

q
· n − 1

n
· xn

)

⇒ xn =
q · n

(q + w) · n − w
· b (2)

where the first term of the max-function depicts incom-
ing communication and the second term outgoing commu-
nication from a storage node. Therefore, the overall band-
width scales according to

Btotal =
q · n2 · α · b

(q + w) · n − w
≈ q · n · α · b

(q + w)
(3)

If q is equal to w, the term describes full-duplex writes
without replication. If w = k ·q, the scaling becomes equiv-
alent to the scaling of a k-fold replication scheme.

4 Measurements

The aim of our measurements is to experimentally eval-
uate the influence of interconnection technologies on the
scalability of a storage cluster which is using direct attached
storage devices. The measurements have been performed
on a Linux computing cluster, so it has been possible to
scale up to a large number of storage bricks.

To outline the influence of interconnects on scalability,
we have used internal RAM disks to be able to abstract from
the influence of the used storage media. To overcome re-
sulting caching effects inside the client computers, we have
developed a virtual RAM disk that is able to consistently
store a defined part of the RAM disk address space in mem-
ory and just returns random blocks for the rest. Therefore

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 118

it becomes possible to write a consistent boot block on an
infinitely large RAM disk.

For each test, the adaption factor α has been calculated to
minimize the average quadratic deviation from the expected
results. If a test consist of p test runs for different numbers
of nodes, xi denotes the measured bandwidth for the i-th
test run and ξi denotes the expected bandwidth for the same
test, α is chosen in a way that it minimizes

p∑
i=1

(xi − α · ξi)
2 (4)

4.1 Test Environment

To test the scalability of the storage cluster, up to 24
storage brick nodes and up to 24 clients, each equipped
with two 1 GHz Pentium 3 CPUs and 512 MB RAM, have
been used. Each of the storage brick nodes has exported
a 1 TByte virtual RAM disk via iSCSI to all other nodes
inside the storage cluster. Each server has been running
RedHat Enterprise Linux AS 4 with a 2.6.9.42 kernel. The
nodes have been connected by a 100 MBit/s Ethernet Cisco
Catalyst 5509 switch that has been equipped with six WS-
X5234-RJ45 24 node expansion modules. The backplane of
the switch contains three busses, where each bus has a max-
imum throughput of 1.2 GBit/s. The maximum measured
performance of each bus segment is 900 MBit/s that can
only be observed for optimized communication patterns.
Even if the cluster is based on elder technology, the result-
ing effects also apply to recent storage clusters.

For the scalability tests, each client has been connected
to one node of the storage cluster. The physical (RAM)
disks of the brick nodes have been grouped in one single
storage pool. For each client node we have created two vir-
tual volumes from the storage pool which have been ex-
ported to the client node via iSCSI. The data of each virtual
volume has been scattered over all physical (RAM) disks of
the storage pool. For iSCSI-target mode, we have used the
iSCSI Enterprise Target version 0.4.12 driver. For iSCSI-
initiator mode, we have used the iSCSI-initiator module that
has been deployed with RedHat AS 4 and which is based on
a Linux-iSCSI(sfnet)-driver.

IOmeter has been used as benchmarking environment. It
consists of a set of agents for Linux, called dynamos, which
are working as load generator on the client computers. The
dynamos are managed by a server program on a Microsoft
Windows PC. If not mentioned otherwise, the maximum
number of outstanding IOs for each client has been set to
16, the access size has been set to 32 KByte, and the per-
formance has been measured for 5 minutes for sequential
writes after a ramp-up time of 30 seconds.

4.2 Measurement Results

Local Performance Many parallel solutions are able to
scale performance in the number of nodes of the environ-
ment from 2 to n nodes, but have to cope with a signifi-
cant parallelization overhead. This parallelization overhead
often leads to a performance decrease for smaller environ-
ments compared to a local solution. Besides the examined
overhead of the inter-node communication, this overhead
can be induced in our case e.g. by the virtualization layer or
network protocol stack.

In this section, measurement results for the performance
of a local solution will be presented, where both client and
server are on the same computer system. Furthermore we
investigate the influence of the virtualization layer and the
iSCSI-communication between one server and one client.
In all cases, two workers are accessing two volumes.

In the first case, the dynamo agents directly access the
virtual RAM disk on the same node. The maximum perfor-
mance of the RAM disk is a sequential read throughput of
360 MByte/s for 32 KByte blocks and it can deliver up to
11,429 32 KByte random I/Os per second. The sequential
write performance drops to 136 MByte/s. Both CPUs are
under significant load. The situation changes slightly when
a virtualization environment is put between the RAM disk
and the IOMeter agent. The sequential write throughput
drops to 120 MByte/s and the IO-rate drops by the factor
3/4. The reason is based on communication with the meta-
data appliance, which imposes additional delays for all first
accesses to new regions.

In the next case, the server has been connected via iSCSI
with a client computer. To directly measure the influence
of the iSCSI communication between two computers, the
server exports two virtual disk that only access the RAM
disk. The throughput for sequential write accesses is 10.02
MByte/s for a 100 MBit/s Ethernet connection. The ran-
dom I/O write performance is 313 I/Os per second or 9.78
MByte/s is nearly as fast as the sequential throughput. The
last test measures the case when the RAM disk is exported
as two virtual volumes. The sequential write performance
drops slightly to 9,1 MByte/s, while the random I/O write
performance decreases to 195 write I/Os. The decrease is
based on the communication with the metadata server.

Scalability using RAID 1 The next test series is based
on virtual RAM disks again and investigates the behavior
of storage clusters applying data replication (additional test
results, e.g. without data replication or for real disks are
given in the full version of this paper). The RAM disks of
all storage bricks are grouped inside a single storage pool.
Each virtual disk derived from the storage pool has got a ca-
pacity of 40 GByte and two virtual volumes are combined
to one mirror volume. Each client computer is again con-

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 119

0
10
20
30
40
50
60
70
80

1 2 4 8 16 24

M
B

yt
e/

s

Number of Storage Bricks

MB/s optimal MB/s measured MB/s optimal =0,69

Figure 4. Scalability of mirrored RAM disks.

nected with exactly one cluster node and imports two mirror
volumes. Therefore, 96 virtual volumes are set up for the 24
node test. Writes are send to both virtual volumes of a mir-
ror volume, reads are performed by an arbitrary of both (see
also [5]).

The measured performance for write tests only increases
according to Equation 3 by a factor 1/3. After scaling well
from two nodes to 16 nodes, the performance for 24 storage
nodes lacks behind the expected performance. This is based
on the deployed switch. The measured performance of 42
MByte/s produces additional, internal traffic of 56 MByte/s
between the three leaf boards, saturating the backplane with
an overall traffic of 790 MBit/s. The expected performance
of 52 MByte/s would already produce an overall traffic of
970 MBit/s on the backplane. Therefore, it is important to
consider the internal traffic between the peers that can be-
come much bigger than the external traffic. The factor α
has been set to 0.69 to minimize the error, neglecting the
test for 24 storage nodes2.

Scalability of RAID 5 The theoretical assumptions lead-
ing to Equation 3 promise that the network load can be sig-
nificantly reduced, compared to a k-replication of the data,
by using m-out-of-n codes. Based on a single server write
throughput of 9 MByte/s, this would theoretically lead to
a throughput of up to 100 MByte/s for a 24 nodes 4-out-
of-5 storage cluster, compared to a theoretical maximum
throughput of 73 MByte/s for a 24 nodes cluster that mirrors
data. Besides this expectations, the measured write perfor-
mance lags behind the expected performance and even be-
hind the measured performance for Mirroring.

The reason is the special handling of request inside the
iSCSI target driver inside the storage nodes. Each 32 KByte
write request is split into 4 KByte requests which are suc-
cessively handled by the underlying page cache layer and
block layer. Therefore, the first block of each stripe is han-
dled as a new stripe and requires to fetch the remaining

2The used iSCSI configuration producing the test results has not been
optimized and better results can be achieved which would lead to a higher
α-value.

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16 24

M
B

yt
e/

s

Number of Storage Bricks

MB/s optimal MB/s Read Stripe MB/s measured MB/s Read Stripe = 0.56

Figure 5. Scalability of RAID 5.

blocks of the stripe from the other peers to calculate the
new parity block, leading to additional 32 KByte of read re-
quests. Furthermore, 40 KByte of data have to be written
to the peers. This leads to the following calculation for the
used 4-out-of-5 code:

b = max
(

13 · n − 9
4 · n · xn,

9 · n − 9
4 · n xn

)

⇒ xn =
4 · n

13 · n − 9
· b (5)

and therefore the environment scales according to

Btotal =
4 · n2 · α · b
13 · n − 9

≈ 4 · n · α · b
13

(6)

Using an adaption constant α of 0.56 leads to a nearly
perfect approximation of the measured behavior. Again, the
24 node test requires too much communication to be able to
scale according to the predicted results.

5 Conclusions

Storage clusters start to become an interesting alternative
to standard storage architectures. Today, already a number
of storage vendors is offering different storage cluster al-
ternatives, starting from block based storage clusters up to
scalable file servers. In this paper, we have shown that the
hardware costs for a storage clusters are below or compa-
rable to dedicated entry-level storage architectures and still
an order below high-end storage systems.

As shown inside this paper, the interconnects can eas-
ily become the limiting performance factor for sequential
accesses, especially if data has to be replicated. Neverthe-
less, storage clusters are really able to scale performance in
the number of nodes. This performance increase is not only
based on a larger number of spindles, but also on more com-
munication interfaces and larger, aggregated caches. Sum-
marized, storage clusters are able to scale performance and
capacity while delivering a high degree of reliability and are
able to overcome limitations imposed by centralized storage
architectures.

11.-12. Februar 2008 / PC², Universität Paderborn 1. GI/ITG KuVS FG Virtualisierung

Seite 120

References

[1] M. Abd-El-Malek, W. Courtright, C. Cranor, et al. Ursa Mi-
nor: Versatile Cluster-based Storage. In Proceedings of the
4th USENIX Conference on File and Storage Technologies
(FAST), Feb. 2005.

[2] P. T. Breuer, A. M. Lopez, and A. G. Ares. The Network
Block Device. Linux Journal, 73, 2000.

[3] A. Brinkmann and S. Effert. Cost effectiveness of storage
grids and storage clusters. In 15th Euromicro Conference on
Parallel, Distributed and Network based Processing, pages
517–525, Naples, Italy, 2007.

[4] A. Brinkmann and S. Effert. Inter-node communication in
peer-to-peer storage clusters. In Proceedings of the 24th
IEEE Conference on Mass Storage Systems and Technolo-
gies (MSST), pages 257–262, San Diego, California, 2007.

[5] A. Brinkmann, S. Effert, M. Heidebuer, and M. Vodisek.
Distributed MD. In Proceedings of the 3rd International
Workshop on Storage Network Architecture and Parallel
I/Os (SNAPI), 2005.

[6] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact,
Adaptive Placement Schemes for Non-Uniform Distribution
Requirements. In Proceedings of the 14th ACM Symposium
on Parallel Algorithms and Architectures (SPAA), 2002.

[7] T. Clark. Designing Storage Area Networks. Addison-
Wesley, 2nd edition, 2003.

[8] Equallogic. PS Series - Intelligent iSCSI Storage Arrays.
Product Brochure, 2005.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[10] R. J. Honicky and E. L. Miller. Replication Under Scalable
Hashing: A Family of Algorithms for Scalable Decentral-
ized Data Distribution. In Proceedings of the 18th IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), 2004.

[11] A. Huffman and J. Clark. Native Command Queuing (NCQ).
Joint White Paper of Intel and Seagate, 2003.

[12] D. Karger, E. Lehman, T. Leighton, et al. Consistent Hash-
ing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web. In Proceed-
ings of the 29th ACM Symposium on Theory of Computing
(STOC), 1997.

[13] E. K. Lee and C. A. Thekkath. Petal: Distributed Virtual
Disks. In Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 1996.

[14] H. Mason, S. Peiffer, and H. Smith. SAS and SATA team up
for enterprise. SNS Europe, 6(3):28–30, 2006.

[15] V. Olaru and W. Tichy. On the Design and Performance
of Kernel-level TCP Connection Endpoint Migration in
Cluster-Based Servers. In Proceedings of the 5th IEEE In-
ternational Symposium on Cluster Computing and the Grid
(CCGrid), 2005.

[16] K. W. Preslan, A. P. Barry, J. Brassow, et al. Implementing
Journaling in a Linux Shared Disk File System. In Proceed-
ings of the 17th IEEE Conference on Mass Storage Systems
and Technologies (MSST), 2000.

[17] A. Rajasekar, M. Wan, R. Moore, and T. Guptil. Data Grids,
Collections and Grid Bricks. In Proceedings of the 20th
IEEE Conference on Mass Storage Systems and Technolo-
gies (MSST), 2003.

[18] Rancho SysTech Inc. RTSASR-12X 12-Port Serial Attached
SCSI (SAS) Edge Expander. White Paper, June 2005.

[19] Y. Saito, S. Frølund, A. C. Veitch, A. Merchant, and
S. Spence. FAB: building distributed enterprise disk arrays
from commodity components. In Proceedings of the 11th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
2004.

[20] F. B. Schmuck and R. L. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceedings of the
1st USENIX Conference on File and Storage Technologies
(FAST), 2002.

[21] Seagate Technologies. SCSI Inflection Point: The New Era
of Serial Attached SCSI. White Paper TP-528, June 2004.

[22] F. Tomonori and O. Masanori. Analysis of iSCSI Target
Software. In Proceedings of the 2nd International Workshop
on Storage Network Architecture and Parallel I/Os (SNAPI),
2004.

[23] W. Wang, H. Yeo, Y. Zhu, and T. Chong. Design and devel-
opment of Ethernet-based storage area network protocol. In
Proceedings of the 12th IEEE International Conference on
Networks (ICON), 2004.

1. GI/ITG KuVS FG Virtualisierung 11.-12. Februar 2008 / PC², Universität Paderborn

Seite 121

