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ABSTRACT

In the next-generation wireless network, user profiles such as
the location, the velocity (both speed and direction), and the re-
source requirements of the mobile device can be accurately de-
termined and maintained by the network on a per-user basis.
We investigate the design of a differentiated-services architecture
which exploits user profiles to maximize the network efficiency
and which supports differentiated services classes, each with dif-
ferent Quality-of-Service (QoS) guarantees. In this paper, we pro-
vide implementation detajls of such an architecture for the Third-
Generation Partnership Project (3GPP) network. The key under-
lying primitive of the architecture is the use of user profiles to
perform advance resousce reservation in target cells of the wire-
less cellular network. We identify the design tradeoffs and present
performance results for an architecture consisting of two service
classes, namely (1) a higher-cost profiled service with higher QoS,
and (2) a lower-cost non-profiled service with best-effort QoS.
Ouwr analysis indicates that a significant decrease in the dropping
probability! — and, hence, higher QoS — can be guaranteed to
users who subscribe to the profiled service. We examine the trade-
offs associated with some of the key system parameters including
the reservation distance and the reservation granularity, and we
determine their values which maximize the improvement in the
dropping probability for atl users.

L INTRODUCTION

The next-generation wireless network [1], [2], [3] will support
a rich set of multimedia applications similar to those available in
wired networks. To achieve the goal of providing high-quality
multimedia services to anyone, anywhere, and at any time [4],
network designers will need to implement new techniques that
can suppott Quality of Service (QoS) while accounting for lim-
ited bandwidth and for the delay and error characteristics of the
wireless network [5]. To support and guarantee QoS, the next-
generation wireless network must implement a differentiated-
services architecture. This architecture would contain multiple
service levels, each with a different QoS guarantee.

The mobility pattern of a user has a high degree of predictabil-
ity due to temporal and spatial locality. Temporal locality refers
to the fact that a mobile user typically takes predictable routes,
which implies that a user will typically cross the same set of cells
at predictable times in a wireless cellular network. For instance,
a mobile user will typically follow the same path to work in the
morning, and the reverse routg back home in the c{fcning. Spatial

! Dropping probability is the probability that an admitted call fails due to an
unsuccessful handoff. o
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locality refers to the fact that user mobility is constrained along
pathways and highways which results in a mobile user crossing
the cells in an ordered sequence determined by the manner in
which these pathways intersect the cellular coverage area.

The real-time and aggregate values of a user's mobility and
resource requirements are known as the “user profile”. The
goal of our study is to investigate the design and implementa-
tion of a user-profile-based differentiated-services architecture for
the next-generation wireless network. Specific implementation
details have been provided for the Third-Generation Partnership
Project (3GPP) [3] cellular network architecture, but should trans-

" late easily to most other wireless architectures as well. We have

studied the performance benefits of our proposed approach in a
network with two types of users - (1} profiled users who subscribe
to a higher-cost profiled service which guarantees higher QoS and
(2) regular (non-profiled) users who receive best-effort service.
We observe that the network provides improved QoS to profiled
users by significantly reducing their dropping probability through
advanced reservation of cell resources along the path predicted
by the user profile. There are optimal values of the reservation
distance (which is the distance prior to a cell crossing when the
reservation is attempted) and the reservation granularity (which is
related to the frequency of the re-atternpts when a reservation at-
tempt fails) which result in the maximal improvement in dropping
probability.

II. EXISTING AND EMERGING NETWORK
"INFRASTRUCTURE

Figure 1 shows the components of a cellutar network architec-
ture?, In this section, we will only dwell upon those components
that relate directly to our architectural implementation. For an in-
depth description of this architecture, the reader is referred to [3].

Wireless service providers are rapidly shifting focus from sim-
ple voice services to mobile LoCation Services (LCS) {6], [7]
which utilize a user’s position information to provide localized
and personalized services. In this extended cellular architecture,
the Gateway Mobile Location Center (GMLC) is responsible for
interfacing with the external world, i.e., with the LCS clients who
request the mobile’s position. The Serving Mobile Location Cen-
ter {SMLC) determines the geographical coordinates of the mo-
bile, and the potential error. in accordance with the quality re-
quested from the GMLC and the capability of the mobile. The
Location Measurement Unit (LMU) helps the SMLC take syn-
chronization measurements, Its key function is to determine the

2We have chosen the 3GPP network architecture for our examples, but the con-

cepts outlined in this investigation should translate casily to other wireless cellular
architectures as well.
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Fig. 1. Network elements needed to support profile-based channel reservation.
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location of a mobile and convert it into meaningful coordinates
X.,Y. The LMUs can either be integrated into the Base Transceiver
Station (BTS) or be independently distributed across the network.

I11. USER PROFILE AND USER PROFILE REGISTER

We introduce an architectural component called the User Pro-
file Register (UPR) which is a database similar to Home Location
Register (HLR) and Visitor Location Register (VLR) [3]. The
UPR contains user-profile information which can be queried for
by the wireless network to provide differentiated services to its
customers. A user profile consists of mobility patterns and ser-
vices accessed by the mobile user, tabulated against the time of
the day and the day of the week. It contains pointers to net-
work elements which cah provide real-time values of the user’s
location and velocity information, A UPR should have interfaces
to external information.sources — such as network information
databases, described later — to aid in QoS management. The
components of the UPR are outlined below.

« User Location Interface: This is a logical interface to devices
such as the SMLC and the LMUs which can provide real-time
user location values to the UPR. )

« User Velocity Interface: This logical interface will query the
network element responsible for real-time velocity estimation of a
mabile user [8}, [9].

+ User Path Table (UPT): This table is an ordered list of the
most probable paths a mobile user could traverse at any given
time on any day of the week. A mobile path is a list of Cell-IDs,
< ¢1,C3,-.-Cx, >, which a mobile user traverses. This path could
contain a number of hot-spots, which is defined as a collection of
cells within a geographical region where the mobile-user popula-
tion density is very high, e.g., greater than a pre-defined threshold.
City downtown regions, train stations, airports, or residential areas
represent typical hot-spots. Hot-spots could be dynamic in nature,
and can change depending upon the time of the day, traffic condi-
tions and special events. The user could make a call and terminate

it at any point along this path. If all the cells in a mobile user’s

path are contained within a single hot-spot, the path is considered
internal to the hot-spot, and does not appear in the UPT. The UPT
can either be specified by the user before usage, or it could be'built
up statistically, by prioritizing the paths that the user takes more
often. )

« User Resource Table (URT): This table is an ordered list of
resources (services) a mobile user uses at any given time on any
day of the week. As with the UPT, the URT can either be user-
specified or it could be statistically constructed over time by tally-
ing the services being accessed by the user.

« Interfaces to External Information Systems: This entry con-
tains variables obtained from external information systems such
as network architecture databases or GPS and Global Informa-
tion Services (GIS) devices. For example, network architecture
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Fig. 2. Illustration of PARMA.

databases could supply informnation about cell layout and sizes.
GPS and GIS devices could supply real-time changes in hot-spot
definitions.

IV. USER-PROFILE-BASED
DIFFERENTIATED-SERVICES ARCHITECTURE

In order to implement a differentiated-services architecture in
a wireless network, the following two key components should be
designed, namely (1) a call-admission-control algorithm and (2}
a call QoS control framework. In this work, we mainly focus on a
call QoS contro! framework, which is a set of algorithms and poli-
cies that perform resource management in the cellular network and
that attempt to guarantee the required QoS to the users admitted
into the network. User-profile-based call QoS control algorithms
utilize the statistical profiles of the mobile user to manage and
control the network resources in order to guarantee the negotiated
QoS.

For this study, we have considered two classes of service, for
two types of users — (1) profiled users who subscribe to the pro-
filing service, expect better QoS, and hence pay more, and (2)
non-profiled users who pay less and expect a “best-effort” ser-
vice from the network. Below, we outline our user-profile-based
resource-management algorithm.

A. PARMA: Profile-Assisted Resource-Managemeni Algorithm

Figure 2 shows a part of the trajectory of a user commuting
from the Arden Town suburb to Riehards Boulevard, near down-
town Sacramento. The steps a cellular network would take to
reserve resources for a profiled user are outlined below; these
steps form our profile-assisted resource resource-management al-
gorithm (PARMA).

1. When a mobile user is close to a cell boundary, the network
would consult its subscriber database to find out whether the user
is a profiled customer.

2. If the user does not subscribe to the profiling service, then she
travels to Point A and attempts a handoff to Cell 2. If there are no
channels available in Cell 2 at this handoff instant, the user gets
dropped. ' '

3. If the user is a profiled customer, the network consults the UPR
and extracts the user's resource reguirements from the URT. For
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the purpose of this discussion, let us assume that the top-most
entry in the URT for this part of the mobile’s path is voice services,
and hence would simply need a channel reservation in the target
cell.

4. The network tries to predict the target cell, based on the UPT
and the current location and velocity of the mobile,

S. The network would then attempt to reserve a channel in ad-
vance for the user in Cell 2 when the user is at a distance r4 from
the cell boundary, where ry is known as the reservation distance.
6. If the reservation attempt succeeds, the user is handed off
to Cell 2 on the reserved channel at Point A. If the reservation
fails, the network re-attempts the reservation every r (reserva-
tion granuiarity) distance apart, till the reservation succeeds or till
a handoff takes place at Point A,

7. If the reservation is unsuccessful till Point A (cven after several
attempts), then the user session gets dropped. By allowing mul-
tiple reservation attempts, the dropping probability of a profiled
user can be substantially reduced.

As mentioned in Step 1, PARMA is initiated when the mobile
user is close to a cell boundary. There are two key approaches
to proximity evaluation, and both approaches are conceptually
equivalent. One approach uses the signal strengths provided by
a mobile for the purpose of a handoff decision, to estimate prox-
imity and also the target BTS. As an alternative, the network could
utilize the user’s velocity (speed and direction), match it against
the user trajectory in the UPR, and therefore deduce proximity in-
formation. In our study, we choose the first approach to measure
a user’s proximity to a cell boundary.

Though we have considered channel reservation to highlighit
our algorithm, PARMA is much broader in scope. Any user-
specific resource, such as the browser cache [10] for mobile
browsers, session and state information for data connections, ap-
plication proxy states for thin clients running on mobile devices,

- as defined in the URT for the profiled user, can be allocated for in
the target cell. :

V. DESIGN AND IMPLEMENTATION ISSUES

We can leverage the location-measurement infrastructure de-
scribed in Section 1I for obtaining current updates to the position
of a profiled user. Furthermore, we have to modnfy some of the
network elements to support PARMA,

« The SMLC should be modified to store a short history of the
mobile’s position instead of storing just the current position. The
size of this history depends on the accuracy of the path-prediction
atgorithm.

« The UPR database should be implemented to include the profile
tables and real-time values for each mobile user in her home area.
Each UPR should also be able to accept and incorporate updates to
user profiles available from the Mobile Switching Center (MSC).
« Logical interfaces should exist between the UPR and external
information databases and systems, such as the HLR, network
architecture databases, the LMUs, and the SMLC. The HLR in-
terface would aid the UPR in gathering subscription information
about a user. Network architecture databases would provide in-
formation on hot-spot definitions and celiular layouts. LMUs and
the SMLC would provide current location mformauon and would
assist in user-velocity estimation.
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Fig. 3. Message Sequence Chart for PARMA.

« The software in the MSC should be enhanced to statistically
update the UPT and the URT as described in Section III. The
MSC should be able to make comections to the user profile de-
pending upon the success or failure of the user-profile-based path-
prediction process and the services which the user has accessed,
by increasing the “rank” of successfully predicted paths and re-
source requiremnents in the UPT and URT, respectively. The MSC
should then provide this feedback to the UPR database.

Figure 3 shows the message sequence chart for PARMA. In cur-
rent netwarks, a mobile device periodically sends a list of BTSs
and their signal strengths to the current BTS for the purpose of
a handoff, using a SigralStrengthList message. We can mod-
ify the BTS software to trigger a PrediciTargerCell signal to the
MSC whenever the signal strength of another BTS comes within
a trigger threshold (St} of the signal from the current BTS, We
study the impact of this threshold on network performance in Sec-
tion VIL

On receiving the PredictTargetCell signal, the MSC sends out a
GetLocation message to the SMLC requesting the past few-coor-
dinates (positiona} history) of the mobile user. The SMLC replies

" using SendLocationList. For performing path prediction, the MSC

also requires the UPT and the current velocity of the user. It also
requires the URT for gauging the resource requirements of the
mobile in the target cell. The GetProfile and SendProfileList mes-
sages accomplish this task. The MSC now performs path pre-
diction and informs the most probable target BTS through Allo-
cateResource 10 reserve resources for the mobile depending on
the most probable services accessed by the customer. After hand-
off, the new BTS sends a HandoffStatus to the MSC. The MSC
checks this new cell’s Cell-ID to confirm correctness of the target
cell. HandoffStatus also verifies whether the resource reservation
was sufficient. Finally, the MSC updates the UPT and the URT at
the UPR based on these status results.

Though we have shown nine messages for implementing
PARMA (see Figure 3), the overheads are minimal as most
messages can be piggy-backed on existing signals, as described
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in [11]. The additional signals in PARMA include the PredictTar-
getCell and UpdateTable messages. Given the, relatively small
overhead in executing the path-prediction algorithm at the MSC,
PARMA should be quite lightweight.

There are several issues to consider when implementing
PARMA in a wireless network [11]. When implementing such
a network architecture, the network designer could utilize a user’s
speed to dynamicaily determine the iength of the reservation gran-
ularity, and hence could fine-tune the number of reservation at-
tempts. By using direction information coupled with the net-
work’s information of cell boundaries, PARMA can employ tech-
niques such as hysteresis and signal thresholds to reduce unwanted
reservation re-attempts. The designer could utilize an available
macrocell tier to temporarily “hold” the session (and resources)

of a profiled user on an unsuccessful reservation attempt, while”

PARMA keeps re-attempting the reservation requests in future
target microcells. Since intra-hot-spot paths are more difficult to
predict as compared to inter-hot-spot paths [11], the designer may
opt to employ path prediction for the latter, while switching over
to velocity-estimation algorithms and location-measurement tech-
nologies for estimating intra-hot-spot target cells. For the lack of
space, we have barely skimmed the surface of many of the design
issues that a network architect would face.

VI. A QUANTITATIVE ANALYSIS

We have simulated a single-tier cellular network architecture,
whose modeling parameters, along with their default values, have
been discussed below. The primary resource accessed by cellu-
lar users in this network are channels, There are a limited to-
tal number of channels, C {400}, available to the network with a
static reuse pattern with a reuse distance ratio of R{2} [12]. We
assume that new-calls arrivals into the network follow a Poisson
distribution with parameter A{0.025} calls/sec. Call-holding time
is assumed to follow an expohential distribution with a mean of
1/1{120} seconds. We employ a hexagonal cell structure with a
cell radius of ¢{0.5} km. We model a limited user population of
7{10000} users at any given time in the network, out of which
a fraction p{G.5} of the users are profiled. We assume a circular
hot-spot with a radius of A{3} km. Each user can be plotted as the
co-ordinate (p, §), where p is uniform between 0 and k, and & is
uniform between 0 and 2. The user density thus obtained closely
approximates the characteristics of a hot-spot. There are H{3}
hot-spots in the region covered by the network. We assume that
each user has a different direction of movement (D) and speed
(V{25 — 40mph}) which is chosen uniformly between a specified
speed range. For the purpose of this study, we assume that we can
accurately predict a user’s trajectory at every given point in time.

We have studied the Improvement in Dropping Probability, -y,
defined as the reduction in dropping probability of a profiled user
as compared to a non-profiled user. If Py, is the dropping prob-
ability for profiled users and Fyy, is the dropping probability for
non-profiled users, then +y is defined as: v = &%;ﬁi * 100%

VIL. RESULTS AND DISCUSSION

Figure 4 shows the improvement in dropping probability, -,
experienced by profiled users as the new-call arrival rate is. in-
creased from 0.005 calls/sec to 0.05 calls/sec for C = 300 and
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C = 400 channels. At the left extreme of the figure, when A is
small (e.g., when A = 0.005 calls/sec), the load to the network is
very light. Hence, very few handoff attempts of both profiled and
non-profiled users get dropped resulting in a small . At the other
extreme, when A is large (e.g., when A = 0.05 calis/sec in this
example), the network load is high. A significant number of the
channel-reservation requests for profiled users get blocked. This
causes the dropping probability for both non-profiled and profiled
users to be close to each other, again resulting in a small v. When
the network load is moderate, the profiled users obtain the most
benefit from channel reservation. The dropping probability for
non-profiled users increases {11], while the dropping probability
for profiled users flattens out, benefiting from the reservations.
This results in a substantial improvement in dropping probability,
with a peak occurring at A = 0.025 calls/sec (for C = 400 chan-
nels), when we observe an improvement of 37%, For C' = 300
channels, v peaks at 34% for A = 0.02 calls/sec.

Figure 5 shows the dependencé of -y on the reservation distance,
r4. It should be pointed out that the region of the figure where
r¢ > 0.3 is not practical, since the network should not start re-
serving channels for a profiled user when that user is half a cell
radius away from the cell boundary, and hence has not been shown
in the figure. We observe that the there is an optimal value of 74
(at r4 = 0.2 km) which results in the maximum improvement in
dropping probability. When 74 is small (e.g., at rg = 0.05 km),
the reservation attempts are made too close to the cell boundary.
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Hence, there is not enough time to recover from a failed reserva-
tion attempt before the handoff occurs. Therefore, the dropping
probabilities of non-profiled and profiled users differ by a smali
margin resulting in a small v. When ry is too large (e.g., at 0.25
km and beyond), the channel-holding time of profiled users is in-
flated by a large amount which causes the overall load in a cell
to increase. This results in large dropping probabilities for both
profiled and non-profiled users. Thus, we observe a small im-
provement in the dropping probability.

Figure 6 shows the variation in ~ with respect to the reserva-
tion granularity, ry. Again, we observe an optimal value of r,
(ry = 0.01 for C' = 400} which results in the maximum improve-
ment in dropping probability. The reason for this optimality is
very similar to the one presented above. If we keep r, smatll, the
network makes a large number of reservation attempts on behalf of
the profiled user. Though this should improve the dropping prob-
ability of profiled users, a very small value of r, results in higher
load to a cell, and hence a large dropping probability for non-
profiled as well as profiled users. This results in a small - as can
be seen in the left region of the Figure 6. When r, is Jarge, there
are not enough reservation re-attempts for profiled users. Hence,
there is very little difference in droppmg probabxlmes between
non-profiled and profiled users.

VII. CONCLUSION

With the continuing deployment of intelligent network com-
ponents, it is becoming easier to collect and maintain accuraie
real-time data on the location, the velocity, and the resource re-
quirements of a mobile user. These dara can be used to de-
velop user profiles, and they can also be aggregated to develop
mobility and resource-requirement patterns of users in a region.
We have made the following contributions in this work: (1) We
have described the design and implementation of a scheme, called
PARMA, which utilizes user profiles to provide better QoS to mo-
bile users in a wireless network. Specific implementation details
have been proposed for the 3GPP network architecture, though the
concepts would be broadly applicable to most wireless network ar-
chitectures. (2) There are numerous challenges and design issues
in implementing such a scheme for the next-generation wircless
networks, and we attempt to resolve some of these design issues.
(3) Through detailed simulation, we have studied the benefit of

‘[12] 1. Katzela and M. Naghshineh,

user profiles in improving the QoS of cellular customers. We have
studied a resource-allocation scheme using the concept of reserva-
tion distance and reservation granularity. We have shown that this
concept can produce significant improvement in dropping proba-
bility of profiled users over their non-profiled counterparts. We
showed that there are optimal values of the reservation distance
and the reservation granularity parameters which result in maxi-
mal improvement in dropping probability.
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