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Abstract—Network monitoring is an integral part of any net-
work management system. In order to ensure end-to-end service
quality stated in service level agreements (SLAs), managers of a
service provider network need to gather quality-of-service (QoS)
measurements from multiple nodes in the network. For a large net-
work with over thousands of flows with end-to-end SLAs, the infor-
mation exchanged between network nodes and a central network
management system (NMS) could be substantial.

In this work, we propose a mechanism called aggregation
and refinement based monitoring (ARM) to reduce the amount
of information exchange. ARM is a generic mechanism that
can be configured to run with different objectives, including
threshold-based, rank-based and percentile-based. The mech-
anism enables the NMS to collect data from network nodes
using a dynamic QoS data aggregation/refinement technique,
and to process these information differently depending on its
measurement objective.

Our simulation results show that for these various objectives, the
selective refinement process is able to validate SLAs quickly, is an
order of magnitude more efficient than a simple polling scheme,
and performs well across a wide range of traffic loads.

Index Terms—Aggregation, monitoring, network management,
refinement, service level agreement, validation.

I. INTRODUCTION

T HE MONITORING of end-to-end quality-of-service
(QoS) is increasingly critical to Internet service providers

(ISPs). QoS guarantee has become a highly desirable feature
in Internet service offering. An ISP must collect QoS statistics
through monitoring to convince its customers that it has met the
QoS guarantees stated in respective service level agreements
(SLAs). It is also important for a service provider to constantly
monitor network status in order to detect/predict QoS violation
and to drive network control.

The needs of constant QoS monitoring is even more apparent
in measurement-based approaches to resource provisioning
[7]. Traditionally, ISPs have been over-provisioning resources
to meet their service level agreements with customers, an
approach that is not cost effective. Recent works on resource
allocation [10] and [6] that build on both deterministic and
statistical models have yielded interesting results. Nevertheless,
the provision based on these results is still conservative. On
the other hand, a measurement-based approach starts from a
roughly-estimated provisioning. It then adapts to changes in
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resource needs based on constant interactions between mea-
surement and provisioning adjustment. A timely, efficient QoS
monitoring is, thus, the key to a successful measurement-based
approach to ensuring QoS offering.

One of the challenges in monitoring is the collection of mea-
surement data, in particular, when managing a large network
with many customer flows. The kind of flows of interest in this
paper, called SLA flows, is between any two end points in an
ISP network, and is an aggregated traffic governed by an SLA.
SLA flows are long lasting; once an SLA flow is admitted, the
flow usually stays up for an extended period of time. For an
ISP managing a network consisting of a large number (100)
of network devices and a large number (1000) of flows per
device, the amount of information collected and processed can
be substantial.

This paper describes a scalable and efficient framework
for a central network management system (NMS) of an ISP
to collect QoS measurement data from network devices for
SLA validation. In accordance with network management
terminologies, we refer to the object that collects and sends
measurement data at each router as anagent. We also use
the terms NMS andmanager interchangeably. Each agent
collects QoS data of SLA flows on a per-hop basis, and the
NMS is responsible for assembling the per-hop data it receives
from agents to determine the end-to-end QoS of each flow. In
this paper, the QoS parameters of interest areend-to-end packet
lossandqueuing delay.

The proposed monitoring approach, called aggregation and
refinement based monitoringARM , deals with three different
monitoring objectives. With athreshold-basedobjective,
all flows with QoS parameters exceeding (or below) some
thresholds are to be identified. For example, the manager
may want to identify all SLA flows with end-to-end packet
loss exceeding 1%. With arank-basedobjective, the top th
flows with respect to some QoS parameters are to be identified.
For example, the manager may want to identify the ten SLA
flows with the highest end-to-end packet loss. Finally, with
a percentile-basedobjective, the th percentile of a QoS
parameter is to be identified. For example, the manager may
want to determine the 98th percentile of end-to-end queuing
delay of all SLA flows. We believe that these three objectives
provide answers to an important subset of the questions asked
by a NMS.

Data aggregationis a technique to control the overhead
of data exchange. By aggregation we mean that each agent
first partitions the set of flows it governs into a small number
of groups, then uses a value range (minimumand maximum
values) to approximate the QoS values of the flows in each
group. In order for the manager to properly extract information
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from aggregated data, it must figure out, for each value range,
the corresponding group of flows that the range is associated
with. To group flows as dynamically as possible (to generate
a close approximation) and yet not to explicitly identify flows
in each group (to minimize data exchange overhead) is a main
challenge.

The design of theARM framework is based on the following
two observations: implicit conveying of group membership
through shared configuration; and selective refinement based
on monitoring objectives.

First, the manager has the route for each individual SLA flow
since these flows are typically traffic engineered based on tech-
nology such as multiprotocol label switching (MPLS) [13]. As
a result, the manager also knows all the SLA flows each agent
is monitoring. With these shared configuration, and using the
same ordering scheme, such as the lexicographical order of flow
identifiers, the manager and agents can refer to a group of flows
by using the index and length from the list of sorted SLA flows
instead of enumerating the flow identifiers of interest. This ob-
servation motivates the proposed data aggregation scheme pre-
sented in Section III-D.

The second observation is that, in order to validate many QoS
guarantees, the manager only needs fairly good QoS estimates
from a small number of flows. This observation motivates the
objective-dependent selective refinement strategies. Details are
presented in Section IV.

Note that the reduction of data exchange overhead between
NMS and agents comes at the cost of additional aggregation
computation by agents at network devices. Given that modern
routers are beginning to provide hardware-assisted packet ac-
counting and have large processing capabilities, this appears to
be a reasonable tradeoff.

We conducted extensive simulations to study the perfor-
mance ofARM in terms of monitoring overhead reduction.
In particular, we studied its performance using different
monitoring objectives and under various network load, and
aggregation granularity.

The monitoring algorithm proposed here is independent of
other SLA management mechanisms, such as admission control
and bandwidth/buffer allocation schemes. The aggregation and
refinement are also independent of the QoS parameter being
monitored; the NMS maintains its responsibility for interpreting
the data end-to-end.

This document is organized as follows. Section II discusses
related work. Section III presents our monitoring framework,
ARM , followed by the description of objective-dependent re-
finement strategies in Section IV. Section V explains the simu-
lation setup and results. Concluding remarks are in Section VI.

II. RELATED WORK

Much effort on network monitoring has been devoted to
provide a unified monitoring framework including common
protocols for fetching management information, syntax for
defining monitoring information and management information.
The most popular protocols for network monitoring are the
IETF simple network management protocol (SNMP) [1],
[2] and the ISO common management information protocol

(CMIP). Many management information bases (MIBs) have
been defined, including the remote network monitoring man-
agement information base (RMON MIB) [14], [15]. RMON
provides significant expansion in SNMP functionality, in-
cluding support for off-line operations, more sophisticated data
processing and multiple managers. A drawback with these
MIBs is that the MIB data tend to be fairly low level and
focus on counters for hardware statistics and errors. A recent
development is the definition of a MIB module for performance
management of service level agreements (SLA) [16].

In a large network where the amount of management infor-
mation available is enormous, the collection and processing of
these information become the bottleneck. A common approach
to reducing monitoring overhead is to vary the polling frequen-
cies based on the state and characteristics of variables being
monitored. References [5], [8], and [17] present different ap-
proaches to how the polling frequencies can be varied. However,
no data aggregation is performed, which limits the overhead re-
duction achievable.

In [9], the amount of information to be collected is reduced
by only collecting information that is required to satisfy the ob-
jective of monitoring. For example, if the end-to-end delay of
a specific path is required, then only performance data of delay
along the specific path will be collected. An inference engine
is used to map a request to the individual measurement com-
ponents. In [3], an instantiation ofARM using threshold-based
objective is presented and evaluated. This paper presents a much
more powerfulARM framework with a generic algorithm that
can be applied to multiple QoS monitoring objectives.

End-to-end measurements per SLA flow is ideal for deciding
if a flow meets its SLA. A large scale end-to-end measurement
of packet dynamics over the Internet can be found in [11]. A
discussion of using operation and management (OAM) cells to
measure end-to-end performance over a ATM network can be
found in [4]. While such measurements are appropriate for de-
termining the end-to-end QoS, there are two potential problems.
First, the number of measurements taken is equal to the number
of flows with SLA and may not be scalable for a large network.
In addition, when problems are detected, locating the problem-
atic links is not straightforward. Additional measurements in the
core of the network are still needed. It is precisely these prob-
lems that motivated our work.

Finally, the IETF IP performance metrics (IPPM) working
group has attempted to develop a set of standard metrics that can
be applied to the quality, performance, and reliability of Internet
delivery services. For more details, refer to [12].

III. T HE ARM FRAMEWORK

This section describes the proposed monitoring mecha-
nism—ARM . We first state the assumptions for our study and
then outline the QoS measures of interests for SLA flows.
After that, we present the framework, discussing howARM
incorporates a novel aggregation technique for exchanging
measurement data, how the NMS interprets the aggregated
data, how the refinement takes place, and when the algorithm
terminates. The details of objective-dependent refinement
strategies will follow in Section IV.
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A. Assumptions

As mentioned in Section I, theARM framework assumes
that SLA flows are long lasting, and for QoS reasons the route
for each flow is traffic engineered based on technology such
as MPLS. The NMS is aware of the route for each individual
SLA flow. Changes on such shared information occur at a much
slower time scale than that of monitoring sessions.ARM also
assumes that NMS and each agent maintain the same ordering
view of SLA flow identifiers.

We assume that each router can collect packet delay, defined
as the time difference between a packet entering and leaving the
router. With the current technology, a router can compute this
time difference by tagging all incoming packets with a 16-bit
timestamp with 1 ms resolution. Such a timestamp allows packet
delay for up to 65 s, which should be sufficient for most, if not
all, reasonable router performance. Note that this also assumes
that the clocks on the interface cards are synchronized to within
1 ms. If a 16-bit timestamp is too expensive, a 8-bit timestamp
with 2 ms resolution is another option. For simplicity, we as-
sume zero transmission delay between routers.

We also assume that the per-flow packet arrival count, packet
departure count, and packet drop count are all readily available
at each router.

Monitoring sessions are performed periodically (or on
demand). During each monitoring session the NMS gathers
per-hop QoS data and validates all SLAs. In order to detect
and correct SLA violations in time, the interval between
periodically performed monitoring sessions should be smaller
than the SLA measuring period.

The agent at each router maintains accumulated QoS values
over time. However, during each monitoring session, the agent
uses the same value recorded at the beginning of the session
for reporting throughout the refinement process. In general each
session duration is short enough that it is reasonable to assume
the accumulated QoS values are relatively stable within each
session.

B. QoS Measures for SLA Flows

Typical parameters of an SLA for a flowinclude: average
throughput ( ); end-to-end packet loss ratio ( );
and average end-to-end packet delay ( ). Out of these
three parameters, our work has centered around the loss ratio

and the delay . We assume that the policing
at the edge can enforce the average throughput .

The routers in an ISP network collect measurements of SLA
flows passing through them. The router at hopof an SLA flow

collects its local measurements:

• Loss Ratio packet drop count of flow at
hop /packet arrival count of flow at hop ;

• Average Delay total packet delay sum of
flow at hop /packet departure count of flowat hop .

Given the local loss ratio and average delay measurements,
and , of an SLA flow at each hop ,

the NMS approximates flow ’s end-to-end measurements
as follows:

(1)

Fig. 1. Execution flow.

(2)

Note that (1) is a good conservative approximation when loss
ratio at each router is small. The NMS can calculate
the end-to-end loss ratio based on a more precise equation, but
that does not affect how the framework operates. The NMS can
also add a constant amount to (2) to account for transmission
delay between routers.

C. Execution Flow and Functional Components

ARM addresses the scalability and overhead issues in for-
warding local measurements to the NMS for end-to-end SLA
validation. Fig. 1 shows the execution flow ofARM . In each
monitoring session:

1) Each agent computes and forwards an aggregation of
local measurements to the manager;

2) The manager processes the aggregated data to decide if
the measurement objective has been met;

3) While the measurement objective is still not metdo;
4) The manager requests, and the agents respond with re-

fined aggregated data;
5) The manager rechecks the measurement objective based

on the refined data.
ARM consists of three major components: dynamic data ag-

gregation, objective validation, and selective refinement. It uses
the data aggregation in Steps 1) and 4), the objective validation
procedure in Steps 2) and 5), and the selective refinement in
Step 4). Every iteration of the agents sending in aggregated data
followed by the NMS processing the data is called around. A
monitoring session could continue for several refinement rounds
until the manager meets its measurement objectives and termi-
nates the session. The following subsections discuss the com-
ponents in detail. Without loss of generality, the discussion is
based on a QoS parameter(which could be either loss ratio or
average delay).

D. Data Aggregation

A naive approach to monitoring the performance of SLA
flows is for the NMS to collect performance measurements
of each flow from every network device. While this simple
polling scheme may be reasonable for a small network, it is
inefficient, not scalable, and can cause severe overload as well
as congestion at the NMS during each monitoring session.
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An enhancement to the simple polling scheme is a simple
threshold scheme in which each agent only reports the mea-
surements of flows whose QoS values exceed some thresholds.
The problem with such a scheme is the difficulties in selecting
the appropriate thresholds dynamically. Setting the threshold
too low can easily degenerate it into a simple polling scheme.
Setting the threshold too high can cause important data to be
overlooked. Worse yet, there is no easy solution to breaking
end-to-end QoS requirements into reasonable per-hop threshold
at each device. In addition, in times of congestion, information
overload can still occur.

The challenge in data aggregation is the tradeoff between data
exchange overhead and quality of approximation. We have ex-
amined several grouping strategies. One way is to statically as-
sign flows to groups. There is no additional overhead in con-
veying group membership information at each monitoring ses-
sion. However, without proper means to predict performance
similarity among flows, the static group assignment yields poor
approximation. A second approach is to let each agent group
flows dynamically based on their QoS values and notify the
manger each group’s membership along with the aggregated
data. Though this approach provides good approximation, the
overhead of conveying such membership is now in the same
order as that of conveying individual flow data, which defeats
the purpose of data aggregation.

ARM uses a data aggregation technique based oncurve ap-
proximationusingsegments. The basic idea is to visualize the set
of per-flow values at each router as a curve, of which the flow
identifiers in ascending order is theaxis and the value is the

axis. The agent at the router then uses a series of bounded seg-
ments to approximate a curve. Each segment signifies a group of
flows. The upper and lower bound values of each segment repre-
sent the maximum and minimumvalue of the flows included
in the segment. We use three values to encode each segment,
the upper bound , the lower bound , and the width (i.e.,
the number of flows in the segment). As discussed in Section I,
since the NMS and each agent share the same ordering view,
a sequence of segment width is sufficient to convey the flows
contained in each segment.

ARM uses a segment merging algorithm to generate the curve
approximation. In the beginning of a data aggregation session,
the algorithm makes each individualvalue a segment. Next,
the algorithm merges selective adjacent segments to form bigger
segments. In order to decide which adjacent segments to merge,
we compute between two adjacent seg-
ments, which represents the increase in uncertainly if segments

and are merged. Adjacent segments with the smallest
difference are merged. The merging process terminates when a
desirable number of segments remain.

When two adjacent segmentsand are merged,
the resulting segment carries the encoding

, , and
. We define

(3)

as the increase in area due to merging, the smaller the better.

Segment Merging Algorithm

Input Parameters: a list of data
points, an initial aggregation threshold

, and the maximum number of segments

1 Initialize a series of segments,
where each segment corresponds to 1
data point.
The upper and lower bound of each seg-
ment is the data point itself, and the
segment length is 1.

2 Merge adjacent segments and if
. Let be the number of

segments remaining.
3 while do
4 Select a segment such that

is the smallest;
5 Merge segment and and subtract

by one.

Fig. 2(a) shows a graphical representation of applying our
segment merging algorithm to a set of 140 values. Thein
this case is 8.

When a network is in normal operating conditions, many
flows would have similar loss ratio or average delay. Step 2
merges those data points that areclose enoughin the initial
phase to make the algorithm more efficient. The thresholdde-
termines what is considered close enough. For example, flows
with difference in packet loss smaller than may be con-
sidered close enough.

Note that this algorithm limits the number of output segments
to be at most . In general, the larger the is, the better the
data approximation, though at the cost of additional overhead.
A proper choice of should balance both the data exchange
overhead as well as the number of iterations needed to complete
a session.

In forwarding the list of segments to the manager, each agent
uses a triplet to represent a segment. Theand
are still upper and lower bounds of QoS values. The, on the
other hand, is the rightmost flow identifier in the segment, which
not only defines the segment boundary but also serves as the
segment identifier.

E. Objective Validation

Once the manager receives a series of segments forvalues
from each agent, it must retrieve local QoS values, calculate
end-to-end measures, and then validate them against monitoring
objectives.

Retrieving local value of each flow from a series of seg-
ments is straightforward. Note that the segment series sent by
each agent to the manager approximates a curve, of which the
flow identifier is the axis and the value is the axis. The
manager knows exactly the set of flows passing through each
agent and the flow identifiers. Hence, the manager knows the
index of the axis. With a triplet for each segment,
the manager can compute from left to right along theaxis the
upper and lower boundvalues of each flow reported in a seg-
ment series.
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(a)

(b)

Fig. 2. Example of data aggregation and refinement in ARM.

Calculating end-to-endmeasures then follows. By applying
(1) or (2), first on the per-hop upper bound and then on the
per-hop lower bound, the manager derives the upper and lower
bound of the estimated end-to-endvalue for each SLA flow.

We proposed three types of objectives, namely:threshold-
based, rank-basedand percentile-based. With the calculated
upper and lower bounds on end-to-endvalue for each flow,
the NMS then proceeds to validate monitoring objectives. For
the threshold-based objectives, it checks the boundedvalue
against the threshold. For the rank-based and percentile-based
objectives, it tries to rank the flows according to their bounded

values.
The bounded value of some flows may be too loose to help

the NMS generate a definite answer. For example, for some
flows the threshold may be between the upper and lower bounds.
Ranking flows could also be difficult when the bounds of a
number of flows overlap. In such cases the NMS must decide
which flows need tighter bounds (i.e., refinement) on their
values.

The approaches to selecting flows for refinement are depen-
dent on the types of monitoring objectives. Section IV discusses
selection strategies in details. What matters here is that at the
end of selection, the NMS identifies a set of flows that require
further refinement.

F. Selective Refinement

The purpose of our selective refinement approach is to refine
thecoarsenetwork status pictures that the manager constructed
based on reported segment series. As long as there are flows
that need refinement, the manager must selectively ask agents
to refine reported segments.

Again, to minimize data exchange overhead between the
NMS and agents,ARM requires that the manager can only ask
each agent for refining up to entities, where the entities
could be either flows or segments. When the number of flows
that need refinement is less than , the NMS can easily
just poll the corresponding agents for the exactvalue of those
flows. Otherwise, the NMS must select not more than
segments for refinement. Note that through the refinement
rounds in each monitoring session, the NMS and each agent
maintain a consistent up-to-date view of segment series.

Manager Selective Request Algorithm

Input Parameters: a list of flows in
the current round that need refinement,
the parameter , and the current seg-
ment series

1 if then
2 Poll the agent for the exact value

of flows in ;
3 else
4 Let be the

set of segments in each of which
contains at least one flow in ,

;
5 Ask the agent to refine the segments

in some set , where if
.

The strategies for choosing from in Step 5 vary. We
pick the first segments of in our experiments when

. Other strategies could be, for instance, the segments
in that contain the most flows in need of refinement, or the
segments that have the widest range ofvalues. Note that if

, then the manager does not poll the corresponding
agent.

When the manager does polling in Step 2, the agent simply
replies with the exact values for the flows listed in .
Otherwise, the agent performs the following algorithm to refine
the requested segments.

Agent Selective Refinement Algorithm

Input Parameters: a list of segments
in the current segment series to be re-
fined, and the maximum number of new
segments to be reported at round

1 Use heuristics to select a number
for refining segment into
new segments, where , and

;
2 Apply Segment Merging Algorithm to ob-

tain a set of new segments ;

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:53 from IEEE Xplore.  Restrictions apply.



682 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

3 Add a triplet to a reply
message for each newly created segment

;
4 Send the reply message to the manager.

The heuristics in choosing in Step 1 tries to strike a balance
between maximum increases in total number of segments (so
that some flows can get a best approximation quickly) and fair
distribution of refinement to all segments (so that more flows
can get some value refinement).

For example, assume that a series hassegments, all need
refinement. Furthermore, assume that an agent is due to send
back triplets in reply. Should the agent choose to evenly
allocate two to each existing segment, then the manager gets a
new series of segments, with a moderate refinement on each
flow value. However, should the agent choose to refine only one
existing segment, assume it is possible, then after receiving
triplets from the agent the manager now has an updated series
of new segments plus existing segments (with no
refinement) for a total of segments.

The allocation of is performed as follow. Initially,
. If , we randomly decrease someso as to

comply with the restriction that . In this process,
is set to zero (i.e., no refinement on segment), if it is reduced

to less than two. On the other hand, if , we
randomly increase some till the sum equals .

Fig. 2(b) shows the result (of 15 segments total) after refining
the first segment in Fig. 2(a) into eight additional segments. Ob-
serve that in order to reconstruct therefinedsegment series, the
manager only needs the eight triplets ,
from an agent.

Since we use a triplet to encode each segment, there is in-
trinsic 50% overhead if we have to report each data point as a
segment versus a (flow_id, value) pair.

Corollary 1: Let the number of flows to be reported by an
agent be and the maximum number of segments reported at
each round be . In the worst case,ARM needs
rounds to complete a session, and the total overhead is

.
The worst case occurs when we evenly divideto all seg-

ments that need refinement. Thus, in each refinement round an
agent can only refine existing segments (breaking them
each into two segments) for a total increase of segments
in the updated series each round. The agent can reportseg-
ments in the initial round. Hence, at round, the updated seg-
ment series would have seg-
ments. For a complete accurate data on each flow,ARM needs

rounds for be at least . Since the over-
head each agent encounters in a round is, the total overhead
is therefore .

When , ARM finishes in one round, and the over-
head is compared with of a naive method that reports
(flow_id, value) pairs directly. As becomes smaller, not only
ARM needs more rounds to complete a session, the worst case
overhead approaches . However, as we will illustrate in
Section V, our experimental results show thatARM performs
much better on average.

IV. OBJECTIVE-DEPENDENT SELECTION

STRATEGIES FORREFINEMENT

This section describes how the NMS determines, based on
monitoring objectives, which flows it needs refined QoS values.
In the discussions, and de-
note, respectively, the upper and lower bound values of a
QoS parameter (loss or delay) calculated at round for
SLA flow . A key observation through the refinement
rounds in a monitoring session is that the upper bound is
always monotonic nonincreasing and the lower bound is
always monotonic nondecreasing for each flow. That is,

and
.

A. Threshold-Based Objective

A threshold-based monitoring objective often aims at
detecting flows that have violated their end-to-end QoS
agreements.

At each round , exists if
. The manager acts in one

of the following five cases listed under two broad categories:

• exists, then
— Case I: . Flow has violated

its QoS. The manager must take immediate actions
to ease the problem.

— Case II: . Flow is fine for
now.

• does not exist, that is, some of the re-
ported values for flow are SLA bounds, then

— Case III:
. The manager cannot infer any-

thing definitely in this case.
— Case VI: . Flow is defi-

nitely in violation of its SLA.
— Case V: . Flow is fine for

now.
In cases II and V, depending on how close it is to a violation,

the manager may choose to take some actions such as rerouting
the flow. In general, since the manager has per-hop information,
it can spot problems at some hops even when the end-to-end
measure is fine.

As the objective is to detect possible SLA violations, the
only set of flows that require further investigation are those in
Case III.

A simple example with 16 SLA flows over two tandem links
will be used to illustrate how threshold-based objective works.
Figs. 3 and 4 depict the segment data that agents at the first and
second hop sent to the manager. Fig. 5 reflects the calculated
end-to-end QoS values that the manager maintains. In the ex-
ample, the number of segments reported by each agent at round

, , is set to a fixed value of four for all. The QoS values
are generated randomly using an exponential distribution with
mean 3.

The first three columns of Figs. 3 and 4 show the flow
identifiers, the QoS values measured, and the segments sent
to the manager by the agents on the first hop and second hop,
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Fig. 3. Aggregation and selective refinement hop 1.

Fig. 4. Aggregation and selective refinement hop 2.

respectively, in round 1. Similarly, the first three columns
of Fig. 5 show the flow identifiers, the actual end-to-end
QoS (computed as the sum of the values on hop 1 and
hop 2 using the values along column two), and the QoS
approximation after round 1.

In this example, the objective is to find all flows with
end-to-end QoS greater than 10. According to the data in
column three of Fig. 5, the QoS value of Flow 5 is obviously
above 10 since the minimum value is 12.628. Similarly, flows
with upper bound below 10 do not need further refinement.
The Case III flows are flow 6, 7, 8, and 9. As a result, the
manager requested for the agent on hop 1 to refine the segment
[9, 0.791, 4.865] and the agent on hop 2 to refine the
segment [12, 0.654, 6.654]. After receiving the new (finer)
segments in round 2, the only Case III flow is flow 6
(cf. Fig. 5, col. 4). A third round to refine the segment
[7, 4.245, 5.958] on link 2 is required to determine that flow 6 has
a QoS value below 10.

B. Rank-Based Objective

Rank-based objectives identify thetop-ranked flows based
on some QoS values, for example, theflows with the longest
average delay. In stating the objective, instead of definingas
a single value, a range will be used. Let ( ) represents
the range. The NMS considers the objective met when it can
identify the top flows, where .

At round , let the NMS sorts the entire set of flows it is
monitoring based on their end-to-end upper bound ofvalues
to generate an ordered list of flows.

Definition 1: Let be the flow that exhibits theth largest
upper bound of QoS parameterin round in the ordered list.
Let and be the upper and lower bound end-to-end
values of the flow in position at round .

Since
and , a flow ranks
higher than a flow if for any ,

.
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Fig. 5. Manager’s view of end-to-end QoS.

The approach to validating rank-based objective is to break
the ordered set of flows into several distinct subset of flows
such that flows in one subset is always ranked lower or higher
than flows in a different subset. More precisely, if a set of flows

is divided into ordered subsets , , and
be the number of flows in , then the first flows

belong to , the next flows belong to , etc. We name each
boundary position in the list adelimiter index. For example,
is a delimiter index which ends the block of , so is
which ends the block of . The task of validating a rank-based
objective for QoS now becomes searching for a delimiter index
at position such that .

Note that through the refinement rounds in each monitoring
session, a flow may not occupy the same position in the or-
dered list due to changes in .

Definition 2: The delimiter index exists if in round
, . The set of flows delimited by

, denoted , is the set .
Theorem 1: If exists, than exists, and

.
These delimiter indexes exhibit a nice property stated in

Theorem 1, which greatly helps the refinement steps. Simply,
once the manager identifies a delimiter index in round

, then the flows in will always be ranked higher than
any other flow in all subsequent refinement rounds.
That is, when , the top flows must at least include
all the flows in . Hence, the manager can concentrate
on requesting refinements on flows not in . See Appendix
for the proof of Theorem 1.

Each monitoring session of a rank-based objective works in
the following way. In each round, the NMS calculates upper
and lower bound end-to-end QoS values and sorts the flows ac-
cording to their upper bound QoS values. It then searches de-
limiter indexes based on the ordered list. At each round, if

, such that , then is the set of flows that
meet the objective, and the session terminates. Otherwise, there
is a pair of consecutive delimiter indexes and such that

. Clearly, the NMS needs refined data on

the set of flows ( ) in order to identify more delimiter
indexes between positionsand in the subsequent rounds and
to meet the termination condition.

A further optimization is performed since can be much
larger than . Due to the limited number of segments per re-
finement, it is more efficient to focus on flows closer to the
target rank. Define a slack factor , .
For each round, let the number of flows to be refined equal to
min flows. These flows are selected starting
from the flow right after . At least one flow must be refined
to ensure progress.

The same setup used to illustrate threshold-based objective in
Section IV-A is used to illustrate rank-based objective. The ob-
jective is to find flows with the three largest QoS values.
is set to 0.3. From column three of Fig. 5, there are only two
delimiter indexes after round 1, and . Flow 5
is rank one, the flow with the largest QoS value. In round 2,
the manager requested refinement for flows 6 to 10, the flows
with the next five largest . Similarly, in round
3, flows 6, 7, 9, 11,m and 12 are refined. Finally, at the end of
round 3, the ordered list based on upper bound values is [5, 9,
7, 6, 1, 2, 3, 4, 11, 12, 13, 14, 15, 16, 10, 8]. Three more flow
delimiter indexes are identified, , , and .
Flows 5, 9, and 7 can now be easily identified as the 3 flows
with the largest value. The NMS needs not know the exact or-
dering of the rest of flows.

C. Percentile-Based Objective

We consider two kinds of percentile-based monitoring objec-
tives in our study. One is to validate the QoS value of some per-
centile of flows, such as “Do of flows in the network have
loss ratio less then a value?” The monitoring terminates when
the NMS can decide either of loss ratio upper bounds are
less than (the statement is true) or of loss ratio
lower bounds are greater than(the statement is false).

The second kind is to find the QoS value of theth percentile
flow in the network accurate to within a specific range. The
NMS should report that the th percentile flow exhibits a QoS
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value , where the gap between the upper and lower bounds of
is sufficiently small.

Note that rank-based objective is different from percentile-
based objective in that the former looks for the list of topth
flows while the later looks for a bounded QoS value.

Let be the flow position corresponding to the target
percentile . For example, if there are 1000 flows, and the target
is the 98th percentile, then .

To address percentile-based objectives, the NMS sorts the en-
tire set of flows twice to generate two separate lists: one is based
on their upper bound values; the other, their lower bound values.
In Section IV-B, we refer to theth flow and its upper bound
value in the upper-bound ordered list at the roundas and

. Here we add the notations that for the lower-bound ordered
list the th flow and its lower bound value at round are
and , respectively.

Let be the th largest exact end-to-endvalue. Theorem 2
provides a nice property to relate the two ordered lists of QoS
values. In successive refinement rounds, Theorem 2 states that
the gap between and shrinks and eventually converges
toward the exact QoS value of theth flow, . Note that
and need not be the same flow at round. Consequently,
for all and , .

Theorem 2: For any , ,
.

With Theorem 2, the task of dealing with percentile-based
objectives is straightforward. For the first kind of percentile-
based objectives, the NMS checks at roundthe QoS values
at the position .

• Case I: . The objective is validated.
• Case II: . The objective has failed.

• Case III: . The verdict is still out. A flow
should be refined in the next round if .

For the second percentile-based objective, the NMS first de-
termines if the gap between and is sufficiently small.
If an objective requires a tighter bound, the NMS searches a pair
of consecutive delimiter indexes, and , as described in
Section IV-B for monitoring rank based objectives, such that

. The set of flows include the flow
that should eventually end up at positionthrough refinement

rounds. The NMS also knows that whichever flowis, its
value is bounded by and . Hence, it can request refine-
ment on all flows in except those flows such that
either or .

Again, the same setup is used to illustrate percentile-based
objective. The objective here is to find out if the QoS value
of the third-highest flow is above or below ten. At the end of
round 1, from column three of Fig. 5, all flowssuch that
ranges do not include ten are eliminated and the third-highest
flow has QoS value between 2.045 and 11.519. Flows that re-
quired refinement are flow 6 to 9. Data obtained in round 2
(column eight of Fig. 5) narrows the range to between 7.542 and
10.823. Data from round 3 (column nine of Fig. 5) determines
that the third-highest flow has the QoS value 9.237. Notice that
using Theorem 2, this conclusion can be drawn without getting
a smaller range for flow 9, which is between 3.533 and 9.404.

Fig. 6. Simulation network topology.

V. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed algo-
rithm in monitoring the service performance of a network with
QoS guarantees, we conducted extensive experiments in a sim-
ulated network domain. The result reported in this section ad-
dresses the following issues:

• the advantage of using the proposed monitoring algorithm
in terms of overhead reduction;

• the tradeoff between overload and iteration time;
• the effect of changing , where is the maximum

number of new segments each agent reports at round
(cf. the Agent Selective Refinement Algorithm).

Only results for threshold-based and rank-based measure-
ments are presented.

A. Testbed Setup

The experiments were carried out over a randomly generated
30 nodes topology shown in Fig. 6.

The topology is organized as a single three level hierarchy.
The highest level is the core routers consisting of nodes 0, 1,
and 2. The next level routers are nodes 6, 7, 12, 15, 16, 20, 23,
24, and 28. The rest are edge routers.

All links are duplex. The one-way bandwidth of each link
depends on the type of routers it connects at both ends. It is
20 Mb/s for links connecting two core routers, 15 Mb/s for ones
between a core and a next level router, and 10 Mb/s for the rest.

All experiments are performed using ns-2. An on–off model
is used to generate traffic with different average rate and burst
size. Leaky bucket is used for policing at the edge routers. Input
traffic is selected from the four classes listed in Table I, which
shows the leaky bucket parameters associated with each traffic
class used in the simulations. All flows in the simulation have
the same SLA, which allows average end-to-end delay of 150 ms
and loss ratio of 0.02. Within the network, packets are scheduled
using the first-in-first-out (FIFO) discipline.

There is a local network management agent on each router.
A centralized network manager collects aggregated data from
these agents. For simplicity, in our simulation we placed a
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TABLE I
TRAFFIC PARAMETERS FOR THEFOUR CLASSESUSED IN THESIMULATIONS

management link between each node and the central network
manager. Loss ratio and average delay were collected at each
network node and samples of the statistics were reported to
the manager periodically based on the algorithm presented in
Sections III and IV.

B. Random Load Generator

We developed a random load generator to generate network
traffic with various loading conditions. The load generator
mimics admission control procedures in practice. It runs a flow
generation loop. For each iteration in the loop, it randomly
selects two edge routers as the source-destination pair for a
flow, and selects traffic class for the flow. The generator then
attempts to “admit” the flow by securing its resources (in this
case,averagebandwidth) along its route.

To create overload situations on some number of links, flows
are admitted even when there is insufficient link bandwidth
along portion of the path. Nevertheless, a list of links that have
been “over-subscribed” is maintained. The flow generation
loop terminates when the number of admitted flows is at least

and the number of over-subscribed links is more than.
The above steps result in reasonable traffic pattern variations,

but only within a range of overload conditions. In order to gen-
erate a wide range of network load, where the number of flows
violating their SLAs varies from none to almost the entire set
of flows, admission control is performed changing theoverload
factor of each link. A link is now “over-subscribed” if the total
average throughput of flows admitted is less than or equal to the
product of overload factor and link bandwidth.

The overload factor reflects how willingly an ISP wants to
risk SLA violations. The smaller the factor, the more conserva-
tive the admission control is, and the lesser SLA violations the
network may observe.

We set and for all traffic loads generated in
our experiments. The overload factor is varied from 0.5 to 1.5.

C. Comparison of Monitoring Performance Using
Threshold-Based Objective

The performance of our threshold-based monitoring scheme
is compared with two centralized off-line schemes which are
expected to perform well. In both schemes, it is assumed that
all flow status are known by a singlevirtual management agent
and this virtual agent only sends to the network manager data re-
lating to flows with SLA violations. Inscheme-1, for each flow
with SLA violation the virtual agent sends to the manager QoS
data of the flow collected at all hops. Inscheme-2, instead of
sending data collected at all hops for those flows with SLA vio-
lations, only sufficient information is sent such that the manager
can confirm their violation status. That is, if there are 3 hops
and a significant loss is occurring only on a single congested

link, then only the loss ratio on that link is sent. This is the min-
imum information required to identify a SLA violation without
resorting to some form of aggregation.

Comparison is based on the total count of all data items sent
from the agents to the manager. Each data item, regardless of
its type, has a count of one. For the idealized schemes, each
update consists of two data items, one for the flow identifier
and the other for the measured value. ForARM , the overhead
for one update is three (maximum value, minimum value, and
flow identifier). In addition, a minimum overhead of two data
items is incurred in allARM message exchanges to indicate the
number of delay and loss updates.

Let be the set of flows with loss violation in a session, and
be the set of flows with delay violation in the same session.

• For scheme-1, the count per session is
, where is the hop count of flow.

• For scheme-2, the count per session is
where is the minimum number of

hops to decide if violation occurs in flow.
• ForARM , the count per session is

where
number of rounds, number of links, and, for each
link in round , number of new loss segments,

number of new delay segments, number
of loss polling updates, and number of delay
polling updates.

For comparison, a simple polling approach requires a total
count of , where is the entire set of flows,
and is the hop count of flow. Each entry consists of the
two pairs (flow_id, loss value) and (flow_id, delay value). Note
that if the manager and agents share the sorted list of flows, as
we have assumed forARM , a better polling approach will be
to send only the sorted QoS data without flow identifiers. Nev-
ertheless, it will only change the normalized values reported in
our experimental results, but not the relative measures between
ARM and the other two idealized schemes.

All experiments ran for 100-s simulation time excluding a five
seconds warmup time. The performance of various algorithms
are evaluated by running each algorithm 50 times using different
traffic loads generated by the random load generator. The min-
imum number of flows in an experiment is 1000, the maximum
is 1864 and the average is 1306. The minimum total data item
count using simple polling in an experiment is 12 944, the max-
imum is 25 868 and the average is 18 344.

In the first experiment, the parameter is fixed at 16 for the
entire simulation run. is fixed at 32 for all experiments.

The measurement overhead of all three schemes are normal-
ized by dividing the monitoring data item count by the total
count required in a simple polling approach. That is, if the count
for simple polling is 1000 and the count forARM is 100, the
normalized overhead forARM is .

Fig. 7 shows the performance of scheme-1, scheme-2 and
ARM relative to that of scheme-1 for the same traffic load. The

axis is the normalized scheme-1 overhead, and theaxis is
the respective normalized overhead of scheme-1, scheme-2, and
ARM . The choice of scheme-1 normalized overhead for the
axis serves as an indication of the number of SLA violations
in the network, though the relationship is not exact because the
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(a)

(b)

Fig. 7. Performance comparison between scheme-1, scheme-2, and ARM.

monitoring overhead also depends on the number of hops the
flows go through. To make the data easier to read, for each
scheme we display only the mean value of the data within each
0.05 segment along theaxis. In other words, the value depicted
at corresponds to the mean of all values collected
within the segment to . As an example, in Fig. 7(a) the
set of traffic loads that generates average normalized overhead
between to using scheme-1 generates average normal-
ized overhead of 0.09 usingARM with .

When there is no SLA violation,ARM incurred a minimum
normalized overhead of 0.02, whereas, scheme-1 and scheme-2
have no overhead. However, as the number of SLA violations
increases, normalized overhead forARM increases slowly and
performs better than scheme-1 for normalized overhead larger
than 0.06. Beyond normalized overhead of 0.15,ARM performs
even better than scheme-2. This may come as a surprise since
scheme-1 and scheme-2 are highly optimized schemes with very
low redundant information exchanged. The difference is that in
these two cases, exact values are exchanged. On the other hand,
ARM provides only bounds on these values and can, thus, ag-
gregate many values into a single segment. Another advantage
of ARM is that as the number of violations increases, the nor-
malized overhead does not increase linearly with the number of

(a)

(b)

Fig. 8. Comparison of scheme-1, scheme-2, and ARM forN = 4; 16; 64,
and 128.

violations. It is due to the fact that once the lower bound of the
QoS values violates the SLA, the computation can terminate and
there is no need to obtain the actual values.

Fig. 7(b) shows the average number of iterations it takes
beforeARM terminates using the sameaxis segments and

axis averages. When the number of violations is small,
it takes much longer to detect all violations because it is
harder to aggregate values and a much finer picture of the
network is needed before SLA validation can be completed.
However, as the number of violations increases, it becomes
easier to detect violations as aggregation ofsimilar values
becomes more common.

Fig. 8(a) shows the improvement ofARM over scheme-1 and
Fig. 8(b) shows the improvement ofARM over scheme-2 for
set to 4, 16, 64, and 128. Fig. 9(a) shows the average number of
rounds for set to 4, 16, 64, and 128. In these experiments,

is fixed during a single simulation run. The same segment
size of 0.05 is used on theaxis, so is the segment mean value
on the axis.

Fig. 8(a) and (b) show that the overhead incurred byARM in-
creases with . This is because when is large, the number
of measurements collected in each round may be much more
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(a)

(b)

Fig. 9. Performance of ARM and dynamic ARM forN = 4; 16; 64, and
128.

than what is needed. The extent of such excessive measurement
increases as gets larger. The average overhead incurred when

is about twice the amount of overhead incurred when
. A smaller is more efficient. On the other hand,

when is too small, the amount of new information collected
in each round may be too little and many rounds are needed
before the algorithm can terminate. In Fig. 9(a), the average
number of rounds required when is about ten times
that required when . A larger can, thus, lead to
much shorter termination time.

The tradeoff in our scheme is between data collection
overhead and termination time. Fig. 9(b) shows a plot of the
normalized overhead vs. number of round for various values of

that clearly illustrates this tradeoff. The figure indicates that
decreasing decreases the basic overhead of the algorithm
but at the same time increases the number of rounds it takes
for the algorithm to converge. On the other hand, increasing

to 128 keeps the number of rounds to a very small value
but increases the normalized overhead. In addition, since
more data are sent in a single cycle, a larger increases
the load at the network manager. Thus, should not be set
beyond some threshold in order to avoid degeneratingARM
into a simple polling scheme.

D. Comparison of Monitoring Performance Using Rank-Based
Objective

In this section, the experiments focus on two issues:

• How does the performance of rank-basedARM scale with
load?

• How does the performance of rank-basedARM vary with
the slack parameter?

In all the results shown in this section, each point corresponds
to an experimental run and the dotted line corresponds to the
average value for ten runs. The objective in each experiment is
to find the top flows with the largest loss and delay measure,
where is any value between 5 to 20.

Fig. 10(a) shows the normalized overhead of rank-based
ARM with the overload factor varies from 0.7 to 1.4. The slack
factor is set to 0.1. Therefore, in each round, only ten flows
closest to the first delimiter is refined. The segment size,, is
set to 32.

The result shows that the normalized monitoring overhead
increases as the load increases, though the overhead ofARM
is still significantly lower than simple polling. As the load in-
creases, the number of flows with high loss and delay measure
also increases making it harder to differentiate the topflows.
Unlike the threshold-based objective, at very high load, the nor-
malized overhead keeps increasing.

Figs. 10(b) and 11(a) show the impact of varying the slack
parameter from 0.01 to 1.0.

With a very small value of 0.01, only a small number
of flows are refined per round and the result is lower overhead
but may result in longer termination time. When is set to
1.0, the entire set of the eligible flows is passed to the selective
refinement process.

The sudden increase in termination time in Fig. 11(a) is due
to the number of flows that required refinement per round ex-
ceeding the number of the segment added each round. In
Fig. 11(b), when a larger of 64 is used, the sudden increase
in termination time occurred at a large value.

From the result shown, a slack factor of 0.1 to 0.2 seems to
have the best tradeoff between overhead and termination speed.

E. Summary of Results

The results in the section can be summarized as follows:

• ARM is very efficient and performs well over a wide range
of traffic load. In Section V-C,ARM is shown to perform
better than scheme-1 and scheme-2 in most cases except
where the number of violations is very low. This is true for
all shown.

• A small reduces the normalized overhead but increases
the number of round required. The reverse is also true.

• The effect of the slack factor in Section V-D is
similar to that of , the maximum segment size per
refinement. The difference is that is specific to the
rank-based objective and takes into account the rank of
the flows after sorting. On the other hand, is objective
independent.

Before concluding this section, it is important to point out
that while the performance ofARM is fairly robust over a
wide range of traffic load, the quantitative result ofARM may
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(a)

(b)

Fig. 10. Performance of rank-based monitoring.

change if the total number of flows in the network changes
by more than an order of magnitude. Hence, whileARM
allows significant portion of the monitoring process to be
automated, in order to optimize the performance, the value
of still requires some tuning depending on the number of
flows in the network.

VI. CONCLUSION

We have presented a generic monitoring framework,ARM ,
to address the scalability in monitoring network QoS that can
be configured to run with different objectives. The monitoring
is based on hop-by-hop measurement of QoS values, aiming at
deriving qualitative status of flows and links that can quickly
builds up a coarse picture of the network status that can be re-
fined as required. With a dynamic data aggregation technique
and an iterative refinement process, the proposed framework,
ARM , achieved substantial reduction in overhead and scaled
well over a wide range of traffic loads.

Two future directions are of immediate interests to us. We
plan to look at the monitoring issues with routers that employ
more sophisticated queuing mechanisms such as weighted
fair queuing (WFQ) or support differentiated services. We
also plan to look into ways of using the monitoring results

(a)

(b)

Fig. 11. Termination time of rank-based monitoring with overload factor=

1:1:

to trigger management actions. In particular, we can easily
extendARM to identify not only flows that violate their SLAs,
but also those that receive significantly better services than
what their SLA stated. Based on such a monitoring tool we
plan to develop an SLA management application to adjust
provisioning among these flows. After all, it is a provider’s
best interest to utilize available resources to satisfy as many
SLA flows as possible.

APPENDIX

PROOFS

To prove Theorem 1, we present an interesting property
about the curve representing the sorted upper bound QoS
values. Lemma 1 says that the curve can only move downwards
across the entire domain, regardless the shuffling of flow orders
in refinement rounds.

Lemma 1: .
Proof: We prove it by cases.

• Case I: and are the same flow. Since for every
flow , , we have

.
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• Case II: was , where . That is,
. Again, due to the monotonic nonincreasing property

of upper bound values, . Hence,
.

• Case III: was , where . That is,
. For to move down to theth flow in the sorted

list of round , some flow , , must have be-

come , . Moreover,
for the same monotonic nonincreasing property. Since,

, . Similarly, since ,
. We now have

.

Theorem 1: If exists, than exists, and
.

Proof: We prove for . Once the proof is
in place, induction takes its own course for any . By
Lemma 1, we have . For every flow , by

Definition 2 .
Hence,

.

Let be the set of flows . Since the
upper bound of flow in round is greater than ,

. Therefore, . However, since the cardinality
of both sets are the same (), we have . Because

for every flow

, we conclude that exists, and is .
We can also prove a lemma about the curve representing the

sorted lower bound QoS values. Lemma 2 says that the curve
can only move upwards across the entire domain.

Lemma 2: .
Proof: Prove by cases similar to that for proving Lemma

1. We omit details.
Theorem 2: For any , ,

.
Proof: It simply follows Lemma 1 and Lemma 2.
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