
End-to-End Quality of Service Management for Distributed Real-time Embedded
Applications

Prakash Manghwani, Joseph Loyall, Praveen Sharma, Matthew Gillen, Jianming Ye
BBN Technologies, Cambridge, MA

{pmanghwa, jloyall, psharma, mgillen, jye}@bbn.com

This work has been supported by DARPA under contract numbers F33615-00-C-1694 and F33615-03-C-3317. Approved for Public Re-
lease, Distribution Unlimited.

Abstract

Many of the world’s most critical systems are distrib-
uted real-time embedded (DRE) systems, with mission-
critical quality of service (QoS) requirements. However,
because of their nature – heterogeneous nodes and links,
shared and constrained resources, and deployment in dy-
namic environments – providing QoS requires coordi-
nated QoS management throughout the system of multiple
end-to-end application streams competing for shared re-
sources. It requires dynamic resource allocation to these
end-to-end application streams based on potentially
changing mission requirements and shaping application
behaviors to effectively use the resources that are allo-
cated. In this paper, we describe the issues involved with
providing end-to-end QoS management in DRE systems,
an architecture we have designed to support system-wide
end-to-end QoS management, and a multi-UAV surveil-
lance and target tracking application we are using to
evaluate these technologies.

1. Introduction

In many of today’s computer applications, quality of
the service provided is as important as functionality, i.e.,
how well an application performs its function is as impor-
tant as what it does. Many of these applications are em-
bedded systems that control physical, chemical, biological,
or defense processes and devices in real-time. Increas-
ingly, these embedded systems are part of larger distrib-
uted real-time embedded (DRE) systems, such as military
combat or command and control systems, manufacturing
plant process systems, emergency response systems, and
telecommunications. DRE systems consist of

Multiple competing end-to-end streams of processing
and information;
Changing numbers and types of participants, with
changing roles and relative importances;

Heterogeneous, shared, and constrained resources.
Quality of Service (QoS) management is a key element

of the design and runtime behavior of DRE systems, but it
is often defined in terms of management of individual re-
sources, e.g., the admission control provided by network
management or CPU scheduling mechanisms or services.
While individual resource management is necessary, it is
not sufficient in DRE systems because:

There might be multiple, simultaneous bottlenecks (i.e.,
the most constrained resources) and the bottlenecks
might change over time;
Effective QoS management spans individual resources.
That is, the consumer of information determines the
QoS requirements, which might change over time,
while the information source (which might be remote
from the consumer and therefore using different re-
sources) and transport determine the quality and form
of information.
QoS management for DRE systems must therefore cap-

ture the QoS requirements from the mission requirements,
manage all the resources that could be bottlenecks, medi-
ate conflicting demands for resources, effectively utilize
allocated resources, and dynamically reallocate as condi-
tions change.

Under the DARPA Program Composition for Embed-
ded Systems (PCES) program, we have been developing
technologies to specify and enforce end-to-end QoS in
DRE systems. We have been evaluating this end-to-end
QoS management technology in the development of a me-
dium-scale, real-world capstone demonstration for the
PCES program, a multi-UAV surveillance and target
tracking application. The PCES capstone demonstration,
illustrated in Figure 1, involves coordinating multiple un-
manned aerial vehicles (UAVs) performing surveillance,
target tracking, and battle damage indication; a command
and control (C2) node providing theater battle manage-
ment; and a US Army ground-based weapon system [8].

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

In this paper, we describe the issues in, and our ap-
proach to providing, end-to-end QoS management. The
main contributions of the paper are

Figure 1. The PCES capstone demonstration
concept of operations includes multiple UAVs,
combat vehicles, and command centers

An architecture for providing end-to-end QoS man-
agement in DRE systems and an approach to realizing
this architecture by composition of QoS components.
An evaluation of the architecture and realization in a
representative real-world application, the PCES multi-
UAV surveillance and target tracking application.

2. Issues in Providing End-to-end QoS Man-
agement

Providing end-to-end QoS requires simultaneously
managing resources to effectively allocate them among
competing users and shaping application resource and data
usage to effectively utilize allocated resources throughout
the system. Which resources need to be managed; at what
points in time; and what constitutes effective usage de-
pends on the QoS and mission requirements and the re-
source availability at any instant in time during the sys-
tem’s operation. In other words, effective QoS manage-
ment relies on recognizing where bottlenecks exist at any
given point in time and effectively managing resources to
remove the bottlenecks; adapting application functionality
to compensate for the bottlenecks and meet system re-
quirements; or both.

Designing and implementing end-to-end QoS man-
agement into a system therefore requires building in the
control and flexibility to manage changes in resource
availability and mission requirements. Such a system must
include the following capabilities:

Coordinated monitoring, control, and management of
all resources that are potential bottlenecks during sys-
tem execution.
Capturing mission requirements and translating them
into policies for effective resource usage.
Dynamically adapting resource allocations and applica-
tion behavior.
Manageable resources include network bandwidth,

CPU, power, memory, and other, not so obvious, re-
sources such as screen real estate. In many cases, well de-
fined system context can constrain the set of resources that
must be managed to ensure end-to-end QoS. For example,
in the PCES capstone demonstration context illustrated in
Figure 1, we are initially concentrating on network band-
width and CPU resources, as these are the most likely bot-
tlenecks. Expanding the context, however, can also extend
the set of resources that must be considered. For example,
if the system context includes sensor nodes, motes, or
smaller UAV vehicles, then power and memory will need
to be considered. If the scenario includes dismounted sol-
diers or rescue personnel with handheld devices, then

screen real estate becomes a potential additional bottle-
neck. Finally, if the scenario expands to include many
more reconnaissance UAVs under control of a single or a
few command center personnel, then human perception
(i.e., the number of displays a person can simultaneously
observe and process) becomes a potential bottleneck.

While managing the resources at a bottleneck might be
sufficient at any given time, it is important to understand
the consequences of managing the resources only at a spe-
cific point. Eliminating a bottleneck by providing addi-
tional resources might simply expose a different bottle-
neck elsewhere that must also be managed. For example,
allocating more bandwidth (e.g., using bandwidth reserva-
tion, differentiated services, alternate paths, or reducing
the other load on the network) might simply expose that
there isn’t enough available CPU at a node along the end-
to-end path to process the now plentiful data.

Furthermore, shaping application or data usage to fit a
bottleneck can also have consequences that change, but do
not eliminate, the bottleneck. For example, an application
facing a constrained network can use data compression to
consume less bandwidth. However, in doing so the appli-
cation is consuming more CPU, which might or might not
be available.

So, while managing individual resources is a necessary
part of end-to-end QoS management, it is not sufficient.
We take an approach of providing end-to-end QoS man-
agement by combining the following:

Coordinated and dynamic management of all the im-
portant resources along the end-to-end path (i.e., those
resources that are, or could become, bottlenecks)
Cooperative allocation of resources among multiple
end-to-end streams based upon their participation in
system-wide mission requirements
Adaptive shaping of application behavior and resource
usage based upon resource allocation and the mission
requirements.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

This leads to the following three views of resource
management:

QoS
Mechanism

System Resource Manager

Mission goals,requirements, trade-offs

Local
Resource
Manager

Local
Resource
Manager

policy status policy status

QoS
Mechanism

QoS
Mechanism

QoS
Mechanism

control/
monitoring

control/
monitoring

Figure 2. High-level view of multi-layer resource
management.

Resource view. Resource specific mechanisms exist to
control access to a resource. They decide whether and
how a request for a resource allocation should be granted.
Typical CPU and network resource allocation is based on
priorities or on reservations. Resource allocation mecha-
nisms have little or no knowledge of the applications us-
ing them or their requirements, although some limited
information can be propagated to the resource level in the
form of relative priorities, reservation requests, etc. The
mechanisms, or resource-specific managers built upon
them (such as bandwidth brokers [3] or CPU brokers [5])
define the interfaces for establishing, changing, and ac-
cessing the policies attached to each resource.

Application view. An application view of resource
management involves acquiring whatever resources are
needed to meet the applications’ requirements and to
effectively utilize whatever resources are available to
them. If there are not enough resources available, then an
application needs to be flexible enough to adjust its
resource needs (with corresponding graceful degradation
of its functionality) or it will fail, e.g., throw an exception.
Applications greedily acquiring all the resources they need
does not scale in dynamic and severely resource con-
strained environments, but applications cooperating to
share resources requires sophisticated coordination and
control. Unless this is done carefully, this can lead to
static, brittle, or inefficient systems.

System view. At the system level, there is the knowl-
edge of the mission goals, the applications in the system,
and the available resources. This is also the level at which
there is an understanding of the relative importance of ap-
plications to mission goals, resource allocation strategies
for each goal, and the policies for mediating conflicting
application resource needs. This knowledge can be located
at a central point, such as in a knowledge base or at a
command and control node, distributed throughout the
system, or combinations of these.

It is necessary to combine the system, application and
resource views to effectively manage and provision end-
to-end QoS under varying conditions and changing re-
quirements. The system view determines effective alloca-
tions; applications choose how to effectively use their al-
locations; and resource mechanisms manage access to
shared and constrained resources.

3. An Architecture for System-Wide End-to-
end QoS Management

We have developed an architecture suitable for end-to-
end QoS management in DRE systems. It is a multi-layer

architecture with layers corresponding to the three views,
illustrated in a high-level view in Figure 2:

System layer – Captures the system-wide mission
requirements and establishes the policies for system-
wide resource allocation and cooperation among
participants (i.e., subsystems, nodes, or end-to-end
streams) in the system.
Local layer – Translates the policy into appropriate ac-
tions for individual end-to-end streams or participants
in the system.
Mechanism layer – Controls individual resources or in-
vokes QoS mechanisms.
This multi-layer approach is similar to the multi-layer

architecture we are using in other research efforts [2]. The
differences are in the specific instantiation of the elements
and the unique approach we take in PCES to encapsulate
functional and QoS elements as components and create the
system by composition of these components, described
later in this section.

3.1 Elements of the Multi-Layer QoS Manage-
ment

Figure 3 shows more details about the elements of QoS
management in our architecture, described in the follow-
ing paragraphs.

The System Resource Manager (SRM) is a supervisory
controller responsible for allocating resources among the
system participants. It is also responsible for disseminat-
ing system and mission wide policies to the local resource
managers. These policies include the resource allocation,
the relevant mission requirements and parameters, and
tradeoffs.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

The SRM needs a model of the shared re-
sources, the available resources at any given time,
the active participants in the system, and the mis-
sion requirements information in order to effec-
tively allocate the resources among, and determine
the policy for, the participants. This information is
stored in a System Repository, which is populated
with an initial model of the system and updated
with status information gathered at runtime.

A System Participant is a part of a distributed
system providing a service or performing a certain
function. This can be an individual application, an
end-to-end application stream, or a subsystem.
Associated with each system participant is a local
QoS management layer.

The Local Resource Manager (LRM) receives
the policy from the system resource manager and
translates it into local management and control ac-
tions. Its primary responsibility is to manage the
local resources consumed by an application and to
ensure that the correct behavior is chosen for the
mission requirements, local information, and allo-
cated resources. The LRM is associated with one
or more collocated participants, such as a single
application, all the applications on a single host, or
all the applications of a single stream. The LRM decides,
based on local information, the best way to use the re-
sources allocated to it so that it satisfies the requirements
and constraints passed to it as policy from the SRM. As
such, the LRM can provide fine-grained control, rapid re-
sponse, and adaptation within those constraints.

System Participant

Local Resource Manager

System Repository

Model of Shared
System Resources,
Participants

Mission goals,
requirements,
trade-offs

System Resource Manager

System
Participant

System
Participant

Policy Status Policy Status

Policy Status

Controller

Status

QoS

behavior

Resource

Control

QoS

behavior

QoS
mechanism/

manager

Status Control

QoS

behavior

Application
component

Status Adapt

QoS

behavior

Application
component

Status Adapt

QoS
Predictor

Configure

Constraints

QoS levels

Feedback

Figure 3. Elements of Multi-Layer QoS Management

The LRM is a feedback controller, using the mission
requirements, tradeoff information, and allocated re-
sources part of the policy provided to it to determine
which QoS behaviors (e.g., CPU management, network
management, data shaping, application adaptation) should
be employed, in what order, and to what degree. The LRM
also monitors the actual behaviors and adjusts as needed
to maintain the QoS level.

In order to determine which QoS behaviors to employ,
the LRM needs to predict the effect of employing each
QoS behavior and combination of QoS behaviors. In
Figure 3, we separately indicate the control and prediction
parts of the LRM, the former illustrated as a Controller
and the latter as a QoS Predictor. The effects of some QoS
behaviors can be determined analytically, e.g., the results
of cropping an image (i.e., the amount of data in the re-
sulting image) or reserving an amount of bandwidth (i.e.,
the amount of bandwidth available to the application).
Other behaviors have no analytical model (or less accurate
ones), e.g., some compression algorithms or setting a net-
work priority (the results of which are difficult to deter-
mine analytically without global knowledge of many other
external factors). With the former, the QoS predictor con-

tains the model, equation, or formula to predict the behav-
ior. With the latter, the QoS predictor is initialized with
experimental data produced in test runs, and updated at
runtime with more accurate monitored information.

The QoS mechanism layer consists of encapsulated
QoS behaviors that control and monitor the following:

Resources, such as memory, power, or CPU, which can
be monitored and controlled through knobs exposed by
the resource.
Specific QoS mechanisms, such as network reservation
or network priority services that expose interfaces to
resource monitoring and control; or QoS managers,
such as bandwidth brokers [3] or CPU brokers [5], that
provide higher level management abstractions.
Application or data adaptation, such as changing the
rate of tasks, algorithms or parameters of functional
routines, or shaping the data used or produced by ap-
plication components.
There is a layered, recursive pattern of resource man-

agement here, where each layer receives policy from the
layer above it and status from the layer beneath it, uses the
status and policy to make decisions, and then produces
policy or control information for the layer beneath it. In
the case of this paper, we define and instantiate three lay-
ers and illustrate them in a geographically distributed sys-
tem of embedded participants with a centralized authority,
i.e., a battlefield system with distributed UAVs and a
command and control center.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

3.2 Constructing End-to-End QoS Management
Using Qoskets and Qosket Components

In this section, we describe an approach to instantiating
the end-to-end QoS management capability we described
in the previous section by composing it from reusable QoS
management components.

In previous papers, we have discussed how QoS man-
agement cross-cuts the functionality of an application [4]
and how we encapsulate related code pertaining to a QoS
behavior into a reusable package of code, called a Qosket
[13]. The code encapsulated in a Qosket includes the fol-
lowing:

Code to monitor or measure levels of QoS or current
conditions in the system.

Code to control or influence QoS through QoS inter-
faces, knobs, mechanisms, or managers.

Code to decide the appropriate control, adaptation, or
reaction to invoke.

Additional code, such as functional routines, helper
functions, or library code, useful for QoS management.

Qoskets can be instantiated as sets of qosket compo-
nents [14] that can be assembled with the functional com-
ponents of an application to integrate QoS management
into a component-based distributed system. In many cases,
an individual Qosket is realized as many distributed qos-
ket components that perform the monitoring, decision
making, and control necessary at the right points in the
application.

Our approach is to instantiate the elements of our end-
to-end QoS management architecture as qosket compo-
nents so that they can be assembled with the functional
application, as illustrated in Figure 4. The SRM qosket
component includes decision making code to decide how
resources should be allocated among participants and
wrap that allocation into policy, with some monitoring
code to determine the number of current participants, the
amount and type of shared resources, and other informa-
tion affecting the policy decision, such as mission states,
requirements, and conditions.

The LRM qosket components include decision making
code to decide local actions based on the policy, monitor-
ing code to measure the effects of the QoS management,
and control code to adjust levels to satisfy the policy. The
LRM’s control code is typically limited to setting the
proper attributes on the QoS behavior qosket components
and invoking them in the proper order.

The assembly also includes as many QoS behavior
qosket components as necessary. In the example in Figure
4, we illustrate two types of QoS behavior qosket compo-
nents, one that does data shaping and another that inter-
faces to a QoS mechanism. These QoS behavior qosket
components include mostly control and algorithmic code
because their decisions are made by the LRM.

4. An Example DRE System with End-to-End
QoS Management

As part of the DARPA PCES program, we have been
developing a live flight capstone demonstration based on a
scenario of multiple UAVs performing surveillance and
target tracking, described in more detail in [8]. The Multi-
UAV surveillance and target tracking application that we
are constructing for the PCES program includes several
UAVs delivering imagery to, and receiving commands
from, a command and control center and ground stations.
Each UAV is the source of an end-to-end information
stream, sending imagery and other information to the C2
node, and performing one of the following roles, each
with different mission requirements:

Surveillance – In this role, the UAV is performing sur-
veillance of a designated area. The imagery coming
from a surveillance UAV must have sufficient resolu-
tion and scan size (i.e., the area covered by the camera)
and must be delivered at a rate sufficient to avoid gaps
in surveillance.
Tracking – Imagery sent by a UAV in this role is
closely examined to track or discern additional details
about the area of interest (AOI). It is therefore rela-
tively more important than imagery coming from sur-
veillance UAVs and needs to be of the highest possible
resolution and possibly a higher rate, but does not need
to cover as large a scan size as long as the images con-
tain the full AOI.
Battle damage indication (BDI) – This role is required
after an action has occurred, such as engagement of a
target, to provide imagery for review of the effective-
ness of the action. High quality imagery is a must, but
the rate can be slower relative to the other roles.
The base functionality of each end-to-end imagery

stream consists of image capture (i.e., the UAV’s camera
sensor and associated processing) and image sending (i.e.,
communicating the imagery off-board) on the UAV; and
the image receipt, display, and processing on the C2 node.
The image generation rate is a configurable parameter that
indicates how often an image should be pushed out, which

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

mission
requirements

System
Resource
Manager

System
Resource
Manager

Information

Supplier

Information

Consumer

Data
shaping
qosket

Data
shaping
qosket

QoS
mechanism

qosket

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

QoS
mechanism

qosket

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

mission
requirements

System
Resource
Manager

System
Resource
Manager

System
Resource
Manager

System
Resource
Manager

Information

Supplier

Information

Supplier

Information

Consumer

Information

Consumer

Data
shaping
qosket

Data
shaping
qosket

Data
shaping
qosket

Data
shaping
qosket

QoS
mechanism

qosket

QoS
mechanism

qosket

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

Local
Resource
Manager

QoS
mechanism

qosket

QoS
mechanism

qosket

Figure 4. End-to-end QoS management elements
are instantiated as qosket components and as-
sembled with the functional components.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

is determined by the usage requirements of the imagery,
and can be different than the rate at which it is collected.
We use both CIAO [15], an implementation of the
CORBA Component Model, and PRiSm [11], an avionics
specific component model, in the demonstration applica-
tion.

The full scope of the demonstration system includes a
combination of live flight vehicles, ground vehicles, and
simulated participants, and is described in [8].

4.2 System Layer Qosket Components

We augment the functional stream with qosket compo-
nents as described in Section 3 to get end-to-end QoS
management. The full assembly for a representative im-
agery stream is illustrated in Figure 5. There is one SRM
component, which we locate at the C2 node, so it is near
the receivers and the command authority, both of which
provide information needed to determine the mission re-
quirements. In PCES, we use a demonstration driver,
which performs theater-wide situation assessment and
keeps track of the number and role of participants. This
serves as the system repository and when something in the
system state changes, such as the number or role of par-
ticipants, the demonstration driver notifies the SRM
component. The SRM uses the relative weights of the
roles, the importance of each UAV within a role, the num-
ber of UAVs, and the amount of resources available, in or-
der to compute a resource allocation for each UAV. It cre-
ates a policy structure for each participant consisting of
the following:

The UAV’s role (surveillance, target tracking, or BDI)
The UAV’s importance relative to others in the role

Allocations of resources (bandwidth, CPU, network
priority)
Minimum and maximum allowable qualities (frame
rate, cropping, scale, compression, and CPU reserva-
tion)

This policy event is pushed to each of the LRMs.

4.3 Local Layer Qosket Components

There is an LRM component associated with the sender
assembly and another one associated with the receiver as-
sembly. Each receives the policy sent by the SRM and up-
dates the relevant QoS Predictors with the minimum and
maximum cropping, scaling and compression levels. The
LRM then queries the QoS Predictors to get the proper
levels to set for each of the data shaping components to fit
the allocated bandwidth and CPU. The adaptation strategy
and tradeoffs for each role is captured in a model of the
system [9] and is used to determine the order of assembly
and calling of the QoS predictors and the data shaping
qosket components. For example, the strategy we use for
the surveillance role is to reduce the rate until the mini-
mum (the minimum is the slowest rate that does not cause
gaps in surveillance); compress until the maximum al-
lowed compression; and scale the image as a last resort if
needed.

The LRM then sets each of the QoS mechanism qosket
components with the proper settings from the policy and
QoS predictors.

4.4 Mechanism Layer Qosket Components

The PCES application includes three of the types of

inc
cur

out
ima

Fragment/Pace
Qosket

sen
ima out

Sender1

qos

croppingQosPredictor1

pol
res
inc
com
sca
cro
dif

ima
out
cro
sca

com
cpu

LRM1

inc
cur

out
ima

CompressQosket1

qos

compressionQosPredictor1

qos

scalingQosPredictor1

inc
ima

out
cur

DiffServQosket1

inc

Display1

pol
res
inc
com
sca
cro
dif

ima
out
cro
sca

com
cpu

LRM_LR1

blu pol
res

SystemResourceManager

inc
cur

out
ima

CropQosket1

inc
cur

out
ima

ScaleQosket1

cpu

CPUBroker_Qosket1 cpu

CPUBroker_Receiver1

inc out

LocalReceiver1

inc
cur

out
ima

DefragmentQosket

Figure 5. Full assembly for one end-to-end image delivery stream in the PCES Multi-UAV Surveillance
and Target Tracking Demonstration

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

QoS behavior qosket components listed in Section 3.1,
QoS mechanism, QoS manager, and data adaptation qos-
ket components.

The Diffserv qosket component is a QoS mechanism
qosket component responsible for setting DiffServ code-
points (DSCPs) on component containers. The LRM uses
the network priority from the SRM policy to configure the
Diffserv component and the container and ORB ensure
that all packets going out have their DSCP correctly set.
Routers configured to support Diffserv ensure that the
packets get queued according to their DSCP priorities.

The CPU Broker qosket component is a QoS manager
qosket component responsible for reserving CPU cycles
over a period of time for a component container. The
LRM uses the minimum and maximum CPU reservation
and the relative importance from the SRM policy to con-
figure the CPU Broker component. The underlying CPU
mechanisms (CPU Broker [5] and TimeSys Linux) guar-
antee that the container gets the minimum CPU cycles it
needs. In the case of CPU contention, no more than the
maximum CPU cycles are allocated to the container. Note
that at any given point in time, a container might be con-
suming less than the minimum CPU, if the resources
aren’t needed, or more than the maximum CPU, if more
than the maximum resources are available.

Data Shaping Qosket Components. Once the available
CPU and network resources have been allocated across
UAV streams, each stream must shape its data to use the
allocated resources effectively. We assemble several data
shaping qoskets that the LRM uses to accomplish this.

Fragmentation, Pacing, and Defragment qosket com-
ponents are combined to reduce jitter in the network by
spreading the transmission of data evenly over the interval
specified by its rate. The LRM configures them with the
allocated bandwidth and a fragment size (the maximum
transmission unit of the network is a logical choice). The
fragmentation component breaks an incoming image into
fixed sized fragments and the pacing component sends the
fragments over the network at regular intervals. Fragmen-
tation on the sender side, of course, must be accompanied
by assembly (or defragmenting) on the receiver side. The
defragment component receives fragments and, once it has
received all the fragments of an image, reconstructs the
image and pushes it out.

The Compress qosket component is responsible for
compressing an image. The level of compression is set by
the LRM as specified by the QoS Predictor. In the current
prototype, we have three levels of compression: no com-
pression (PPM format), lossless compression (PNG for-
mat), and lossy compression (JPEG format).

The Crop qosket component removes a specified
amount of the image from a set place in the image. The
amount that the image is cropped is set by the LRM as
specified by the QoS Predictor. In the current prototype,

we crop from the center of the image. However, with ad-
ditional image processing or identification of the area of
interest in the C2 command information, the image could
be cropped around the AOI no matter where it is in the
image. We have five levels of cropping in the current pro-
totype. Our algorithm crops images uniformly around
edges, e.g., Crop20Percent removes 5% of the pixels from
each edge, reducing the image to 81% of its original size.

The Scale qosket component reduces the size of an im-
age. The LRM sets the amount that the image is scaled as
specified by the QoS Predictor. Our current prototype
supports three scaling levels, NoScale (factor 0), Half-
Scale (factor 2), and QuarterScale (factor 4).

4.5 Putting It All Together

Figure 5 illustrates a full logical assembly of one end-
to-end QoS-managed UAV image stream. The Sender
component generates a PPM image and sends it out. The
LRM takes this image, examines the available resources,
consults the QoS predictors to determine a suitable set of
adaptations, updates the QoS levels on each qosket com-
ponent, and pushes the image out. The processed image
comes out from the Compress qosket component in the
suitable size and format to fit the available resources. The
Fragmentation and Pace qosket component splits the im-
age into fragments and streams them out with the proper
DSCP header, while making sure it is not consuming more
bandwidth than it is allowed. On the other side of the net-
work, the Defragment qosket component assembles the
incoming data fragments into an image and sends it out.
The LocalReceiver component receives the adapted im-
age, decompresses it into a PPM image, and sends it out
for display by the Display component.

The SRM, with knowledge of the number of end-to-
end UAV image streams and the relative importance of
each, divides the available shared resources between them
and provides each LRM with a policy including the
amount of resources it is allowed and the role it is playing
in the full system. Assuming there are enough resources,
the SRM ensures that every end-to-end image stream gets
at least the minimum it needs and that the more important
streams get the majority of the resources. In the cases
where there are not enough resources for all the streams,
the SRM ensures that the most important streams get the
resources that are available. The LRMs make sure that the
allocated resources for each end-to-end stream are used
most effectively for the UAV’s role in the system.

5. Related Work

Other research projects have tackled the issues of end-
to-end QoS management. Many of these concentrate only
on network QoS, where end-to-end means managing the

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

reservations or queues along network paths [1][12]. A
few, however, have moved toward the ideals that we lay
out in this paper, that end-to-end QoS means coordinated
management of all resources that are shared, constrained,
and can become the bottleneck at any given time with
shaping of the application resource usage to the available
resources. The BRENTA architecture [10] describes in
different ways some of the concepts we are realizing in
PCES. It concentrates on contract-based negotiation of
network QoS, but with the addition that applications
should adapt to the available resources, even while realiz-
ing that some legacy applications might not have that
flexibility. QARMA [6] includes architectural elements
similar to those we described, including a resource man-
ager and system repository, provided as CORBA services.
Li et al [7] propose a task control model approach in
which they add a monitoring task and an adaptation task
for each functional task in the system. The monitoring task
recognizes QoS violations and the adaptation task adjusts
application behavior to compensate.

6. Conclusions

We have presented a multi-layered architecture for dy-
namic end-to-end QoS management for distributed, real-
time embedded systems. The architecture captures the
mission requirements and system configuration, and dis-
tributes it as policy to local QoS management capabilities
that control and enforce QoS management. The multi-
level architecture is more scalable than centralized QoS
management systems, more mission-aware than resource-
centric management systems, and more appropriate for
loosely coupled DRE systems such as the distributed
multi-UAV application. Using our qosket component
middleware gives us the flexibility to encapsulate and as-
semble the resource managers, monitors, and QoS mecha-
nisms appropriately for the deployment environment, sys-
tem design, and distribution.

Acknowledgements

The authors would like to gratefully acknowledge the con-
tributions of Rick Schantz and George Heineman to the
work described in this paper.

References

[1] H. Bai, M. Atiquzzaman, W. Ivancic. “Achieving End-to-
End QoS in the Next Generation Internet: Integrated Ser-
vices Over Differentiated Service Networks,” NASA/TM-
2001-210755, March 2001.

[2] R. Campbell, R. Daley, B. Dasarathy, P. Lardieri, B. Orner,
R. Schantz, R. Coleburn, L. Welch, P. Work. “Toward an
Approach for Specification of QoS and Resource Informa-

tion for Dynamic Resource Management,” 2nd RTAS Work-
shop on Model-Driven Embedded Systems (MoDES), To-
ronto, Canada, May 25, 2004.

[3] B. Dasarathy, S. Gadgil, R. Vaidyanathan, K. Parmeswaran,
B. Coan, M. Conarty, V. Bhanot. “Network QoS Assurance
in a Multi-Layer Adaptive Resource Management Scheme
for Mission-Critical Applications using the CORBA Mid-
dleware Framework,” Real-time and Embedded Technology
and Applications Symposium (RTAS), San Francisco, CA,
March 2005.

[4] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, J. Zinky.
“Building Adaptive Distributed Applications with Middle-
ware and Aspects,” Conference on Aspect-Oriented Soft-
ware Development (AOSD), Lancaster, UK, March 2004.

[5] E. Eide, T. Stack, J. Regehr, J. Lepreau. “Dynamic CPU
Management for Real-Time, Middleware-Based Systems,”
10th IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), Toronto, ON, May 2004.

[6] D. Fleeman, M. Gillen, A. Lenharth, M. Delaney, L. Welch,
D. Juedes, C. Liu. “Quality-based Adaptive Resource Man-
agement Architecture (QARMA): A CORBA Resource
Management Service,” International Parallel and Distrib-
uted Processing Symposium, Santa Fe, NM, April 2004.

[7] B. Li, D. Xu, K. Nahrstedt, J. Liu. “End-to-End QoS Sup-
port for Adaptive Applications Over the Internet,” SPIE
Proceedings on Internet Routing and Quality of Service,
Boston, Massachusetts, November 1-6, 1998.

[8] J. Loyall, R. Schantz, D. Corman, J. Paunicka, S. Fernan-
dez. “A Distributed Real-time Embedded Application for
Surveillance, Detection, and Tracking of Time Critical Tar-
gets,” Real-time and Embedded Technology and Applica-
tions Symposium (RTAS), San Francisco, CA, March 2005.

[9] J. Loyall, J. Ye, S. Neema, N. Mahadevan. “Model-Based
Design of End-to-End Quality of Service in a Multi-UAV
Surveillance and Target Tracking Application,” 2nd RTAS
Workshop on Model-Driven Embedded Systems (MoDES),
Toronto, Canada, May 25, 2004.

[10] D. Mandato, A. Kassler, T. Valladares, G. Neureiter. “Han-
dling End-To-End QoS in Mobile Heterogeneous Network-
ing Environments,” International Symposium on Personal,
Indoor and Mobile Radio Communications, October 2001.

[11] W. Roll. “Towards Model-Based and CCM-Based Applica-
tions for Real-Time Systems,” 6th IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC), Hokkaido, Japan, May 14-16, 2003.

[12] V. Sander, W. Adamson, I. Foster, A. Roy. “End-to-End
Provision of Policy Information for Network QoS,” 10th

IEEE Symposium on High Performance Distributed Com-
puting (HPDC), August 2001.

[13] R. Schantz, J. Loyall, M. Atighetchi, P. Pal. “Packaging
Quality of Service Control Behaviors for Reuse,” Interna-
tional Symposium on Object-Oriented Real-time distributed
Computing (ISORC), Washington, DC, April 2002.

[14] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro,
G. Duzan. “Component-Based Dynamic QoS Adaptations
in Distributed Real-Time and Embedded Systems,” Distrib-
uted Objects and Applications (DOA), Agia Napa, Cyprus,
October 25-29, 2004.

[15] TAO and CIAO,
http://www.cs.wustl.edu/~schmidt/TAO.html

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on March 2, 2009 at 11:52 from IEEE Xplore. Restrictions apply.

